1
|
Bagheri L, Javanbakht M, Malekian S, Ghahderijani BH, Taghipour S, Tanha FD, Ranjkesh M, Cegolon L, Zhao S. Antifibrotic therapeutic strategies in systemic sclerosis: Critical role of the Wnt/β-catenin and TGF-β signal transduction pathways as potential targets. Eur J Pharmacol 2025; 999:177607. [PMID: 40209848 DOI: 10.1016/j.ejphar.2025.177607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/25/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Systemic sclerosis (SSc) is a prototypic fibrosing disorder characterized by widespread fibrosis and immune dysregulation. Current evidence highlights the intricate cross-talk between the canonical Wnt/β-catenin signaling pathway and transforming growth factor-beta (TGF-β) signaling, both of which play fundamental roles in the pathogenesis of fibrosis. This review aims to elucidate the central role of the Wnt/β-catenin-TGF-β pathway and TGF-β signal transduction pathway in fibrotic diseases, focusing on SSc. We summarized evidence from cellular biology studies, animal model investigations and clinical observations to provide a comprehensive view of the mechanisms causing pathological fibrosis. In addition, we explore the possibilities of antifibrotic therapeutic strategies against Wnt/β-catenin-TGF-β signaling to counteract fibrosis, delineating approaches for treatment of SSc patients by targeting these interconnected signaling pathways.
Collapse
Affiliation(s)
- Leyla Bagheri
- Department of Internal Medicine, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Javanbakht
- Nephrology and Urology Research Center, Clinical Science Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sheida Malekian
- Department of Internal Medicine, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sadra Taghipour
- Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Fatemeh Davari Tanha
- Department of Infertility, Yas Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Luca Cegolon
- Department of Medical, Surgical & Health Sciences, University of Trieste, 34128, Trieste, Italy; Public Health Unit, University Health Agency Giuliano-Isontina (ASUGI), 34148, Trieste, Italy
| | - Shi Zhao
- School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
2
|
Alkon N, Chennareddy S, Cohenour ER, Ruggiero JR, Stingl G, Bangert C, Rindler K, Bauer WM, Weninger W, Griss J, Jonak C, Brunner PM. Single-cell sequencing delineates T-cell clonality and pathogenesis of the parapsoriasis disease group. J Allergy Clin Immunol 2025; 155:461-478. [PMID: 39278361 DOI: 10.1016/j.jaci.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/30/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Mycosis fungoides (MF), the most common cutaneous T-cell lymphoma, is often underdiagnosed in early stages because of similarities with benign dermatoses such as atopic dermatitis (AD). Furthermore, the delineation from what is called "parapsoriasis en plaque", a disease that can appear either in a small- or large-plaque form, is still controversial. OBJECTIVE We sought to characterize the parapsoriasis disease spectrum. METHODS We performed single-cell RNA sequencing of skin biopsies from patients within the parapsoriasis-to-early-stage MF spectrum, stratified for small and large plaques, and compared them to AD, psoriasis, and healthy control skin. RESULTS Six of 8 large-plaque lesions harbored either an expanded alpha/beta or gamma/delta T-cell clone with downregulation of CD7 expression, consistent with a diagnosis of early-stage MF. In contrast, 6 of 7 small-plaque lesions were polyclonal in nature, thereby lacking a lymphomatous phenotype, and also revealed a less inflammatory microenvironment than early-stage MF or AD. Of note, polyclonal small- and large-plaque lesions characteristically harbored a population of NPY+ innate lymphoid cells and displayed a stromal signature of complement upregulation and antimicrobial hyperresponsiveness in fibroblasts and sweat gland cells, respectively. These conditions were clearly distinct from AD or psoriasis, which uniquely harbored CD3+CRTH2+ IL-13 expressing "TH2A" cells, or strong type 17 inflammation, respectively. CONCLUSION These data position polyclonal small- and large-plaque parapsoriasis lesions as a separate disease entity that characteristically harbors a so far undescribed innate lymphoid cell population. We thus propose a new term, "polyclonal parapsoriasis en plaque", for this kind of lesion because they can be clearly differentiated from early- and advanced-stage MF, psoriasis, and AD on several cellular and molecular levels.
Collapse
Affiliation(s)
- Natalia Alkon
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Sumanth Chennareddy
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Emry R Cohenour
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - John R Ruggiero
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Georg Stingl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Christine Bangert
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Katharina Rindler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang M Bauer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Johannes Griss
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Constanze Jonak
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| | - Patrick M Brunner
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
3
|
Mishra AP, Kumar R, Harilal S, Nigam M, Datta D, Singh S, Waranuch N, Chittasupho C. Demystifying the management of cancer through smart nano-biomedicine via regulation of reactive oxygen species. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:497-532. [PMID: 39480523 DOI: 10.1007/s00210-024-03469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/17/2024] [Indexed: 11/02/2024]
Abstract
Advancements in therapeutic strategies and combinatorial approaches for cancer management have led to the majority of cancers in the initial stages to be regarded as treatable and curable. However, certain high-grade cancers in the initial stages are still regarded as chronic and difficult to manage, requiring novel therapeutic strategies. In this era of targeted and precision therapy, novel strategies for targeted delivery of drug and synergistic therapies, integrating nanotherapeutics, polymeric materials, and modulation of the tumor microenvironment are being developed. One such strategy is the study and utilization of smart-nano biomedicine, which refers to stimuli-responsive polymeric materials integrated with the anti-cancer drug that can modulate the reactive oxygen species (ROS) in the tumor microenvironment or can be ROS responsive for the mitigation as well as management of various cancers. The article explores in detail the ROS, its types, and sources; the antioxidant system, including scavengers and their role in cancer; the ROS-responsive targeted polymeric materials, including synergistic therapies for the treatment of cancer via modulating the ROS in the tumor microenvironment, involving therapeutic strategies promoting cancer cell death; and the current landscape and future prospects.
Collapse
Affiliation(s)
- Abhay Prakash Mishra
- Cosmetics and Natural Products Research Centre, Department of Pharmaceutical Technology, Naresuan University, Phitsanulok, 65000, Thailand
| | - Rajesh Kumar
- Faculty of Pharmaceutical Sciences, Kerala University of Health Sciences, Kerala, 680596, India.
| | - Seetha Harilal
- Faculty of Pharmaceutical Sciences, Kerala University of Health Sciences, Kerala, 680596, India
| | - Manisha Nigam
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University, Srinagar Garhwal, Uttarakhand, 246174, India
| | - Deepanjan Datta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal Karnataka, 576104, India
| | - Sudarshan Singh
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Neti Waranuch
- Cosmetics and Natural Products Research Centre, Department of Pharmaceutical Technology, Naresuan University, Phitsanulok, 65000, Thailand
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
4
|
Dai H, Ketkar S, Tan T, Atkinson EG, Burrage L, Worley KC, Christopher B, Lyons MA, Assassi S, Mayes MD, Lee B. Exploring the complexity of systemic sclerosis etiology by trio whole genome sequencing. Hum Mol Genet 2024; 33:1643-1647. [PMID: 38970828 PMCID: PMC11413644 DOI: 10.1093/hmg/ddae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/08/2024] Open
Abstract
Systemic sclerosis (SSc) is a heterogeneous rare autoimmune fibrosing disorder affecting connective tissue. The etiology of systemic sclerosis is largely unknown and many genes have been suggested as susceptibility loci of modest impact by genome-wide association study (GWAS). Multiple factors can contribute to the pathological process of the disease, which makes it more difficult to identify possible disease-causing genetic alterations. In this study, we have applied whole genome sequencing (WGS) in 101 indexed family trios, supplemented with transcriptome sequencing on cultured fibroblast cells of four patients and five family controls where available. Single nucleotide variants (SNVs) and copy number variants (CNVs) were examined, with emphasis on de novo variants. We also performed enrichment test for rare variants in candidate genes previously proposed in association with systemic sclerosis. We identified 42 exonic and 34 ncRNA de novo SNV changes in 101 trios, from a total of over 6000 de novo variants genome wide. We observed higher than expected de novo variants in PRKXP1 gene. We also observed such phenomenon along with increased expression in patient group in NEK7 gene. Additionally, we also observed significant enrichment of rare variants in candidate genes in the patient cohort, further supporting the complexity/multi-factorial etiology of systemic sclerosis. Our findings identify new candidate genes including PRKXP1 and NEK7 for future studies in SSc. We observed rare variant enrichment in candidate genes previously proposed in association with SSc, which suggest more efforts should be pursued to further investigate possible pathogenetic mechanisms associated with those candidate genes.
Collapse
Affiliation(s)
- Hongzheng Dai
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston 77030, United States
- Molecular Division, Baylor Genetics, 2450 Holcombe Blvd, Houston 77021, United States
| | - Shamika Ketkar
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston 77030, United States
| | - Taotao Tan
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston 77030, United States
| | - Elizabeth G Atkinson
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston 77030, United States
| | - Lindsay Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston 77030, United States
- Department of Genetics, Texas Children’s Hospital, 6620 Main St, Houston 77030, United States
| | - Kim C Worley
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston 77030, United States
| | - Brian Christopher
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston 77030, United States
| | - Marka A Lyons
- Division of Rheumatology, University of Texas Health Science Center, 7000 Fannin St, Houston 77030, United States
| | - Shervin Assassi
- Division of Rheumatology, University of Texas Health Science Center, 7000 Fannin St, Houston 77030, United States
| | - Maureen D Mayes
- Division of Rheumatology, University of Texas Health Science Center, 7000 Fannin St, Houston 77030, United States
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston 77030, United States
- Department of Genetics, Texas Children’s Hospital, 6620 Main St, Houston 77030, United States
| |
Collapse
|
5
|
Moroncini G, Svegliati S, Grieco A, Cuccioloni M, Mozzicafreddo M, Paolini C, Agarbati S, Spadoni T, Amoresano A, Pinto G, Chen Q, Benfaremo D, Tonnini C, Senzacqua M, Alizzi S, Nieto K, Finke D, Viola N, Amico D, Galgani M, Gasparini S, Zuccatosta L, Menzo S, Müller M, Kleinschmidt J, Funaro A, Giordano A, La Cava A, Dorfmüller P, Amoroso A, Pucci P, Pezone A, Avvedimento EV, Gabrielli A. Adeno-Associated Virus Type 5 Infection via PDGFRα Is Associated With Interstitial Lung Disease in Systemic Sclerosis and Generates Composite Peptides and Epitopes Recognized by the Agonistic Immunoglobulins Present in Patients With Systemic Sclerosis. Arthritis Rheumatol 2024; 76:620-630. [PMID: 37975161 DOI: 10.1002/art.42746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 09/14/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVE The etiopathogenesis of systemic sclerosis (SSc) is unknown. Platelet-derived growth factor receptors (PDGFRs) are overexpressed in patients with SSc. Because PDGFRα is targeted by the adeno-associated virus type 5 (AAV5), we investigated whether AAV5 forms a complex with PDGFRα exposing epitopes that may induce the immune responses to the virus-PDGFRα complex. METHODS The binding of monomeric human PDGFRα to the AAV5 capsid was analyzed by in silico molecular docking, surface plasmon resonance (SPR), and genome editing of the PDGFRα locus. AAV5 was detected in SSc lungs by in situ hybridization, immunohistochemistry, confocal microscopy, and molecular analysis of bronchoalveolar lavage (BAL) fluid. Immune responses to AAV5 and PDGFRα were evaluated by SPR using SSc monoclonal anti-PDGFRα antibodies and immunoaffinity-purified anti-PDGFRα antibodies from sera of patients with SSc. RESULTS AAV5 was detected in the BAL fluid of 41 of 66 patients with SSc with interstitial lung disease (62.1%) and in 17 of 66 controls (25.75%) (P < 0.001). In SSc lungs, AAV5 localized in type II pneumocytes and in interstitial cells. A molecular complex formed of spatially contiguous epitopes of the AAV5 capsid and of PDGFRα was identified and characterized. In silico molecular docking analysis and binding to the agonistic anti-PDGFRα antibodies identified spatially contiguous epitopes derived from PDGFRα and AAV5 that interacted with SSc agonistic antibodies to PDGFRα. These peptides were also able to bind total IgG isolated from patients with SSc, not from healthy controls. CONCLUSION These data link AVV5 with the immune reactivity to endogenous antigens in SSc and provide a novel element in the pathogenesis of SSc.
Collapse
Affiliation(s)
- Gianluca Moroncini
- Università Politecnica delle Marche and Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | | | | | | | | | | | | | | | | | | | - Qingxin Chen
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Devis Benfaremo
- Università Politecnica delle Marche and Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | | | | | - Silvia Alizzi
- Università di Torino and Azienda Ospedaliera Universitaria Città della Salute e della Scienza, di Torino, Torino, Italy
| | - Karen Nieto
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Doreen Finke
- Università Politecnica delle Marche, Ancona, Italy
| | - Nadia Viola
- Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | | | | | - Stefano Gasparini
- Università Politecnica delle Marche and Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | - Lina Zuccatosta
- Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | - Stefano Menzo
- Università Politecnica delle Marche and Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | - Martin Müller
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | | - Antonio La Cava
- Federico II University, Napoli, Italy
- University of California, Los Angeles, CA
| | | | - Antonio Amoroso
- Università di Torino and Azienda Ospedaliera Universitaria Città della Salute e della Scienza, di Torino, Torino, Italy
| | | | | | | | - Armando Gabrielli
- Università Politecnica delle Marche, Ancona, Italy, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy, and Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
6
|
Komura K, Yanaba K, Bouaziz JD, Yoshizaki A, Hasegawa M, Varga J, Takehara K, Matsushita T. Perspective to precision medicine in scleroderma. Front Immunol 2024; 14:1298665. [PMID: 38304250 PMCID: PMC10830793 DOI: 10.3389/fimmu.2023.1298665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/26/2023] [Indexed: 02/03/2024] Open
Abstract
Systemic sclerosis (SSc) is a rare and heterogeneous disease with no relevant environmental trigger or significant responsible gene. It has been and will continue to be difficult to identify large enough patients to conduct classic population-based epidemiologic exposure/non-exposure studies with adequate power to ascertain environmental and genetic risk factors for these entities. The complexity of pathogenesis and heterogeneity are likely to require personalized/precision medicine for SSc. Since several potential drugs are currently available for specific patients if not whole SSc, classification of SSc seems to form the foundation for a better therapeutic strategy. To date, SSc has been classified based on the extent/severity of the affected area as well as some disease markers, including the autoantibody profile. However, such an analysis should also lead to improvements in the design of appropriately stratified clinical trials to determine the effects and prediction of targeted therapies. An approach based on drug response preclinically conducted using patients' own fibroblasts in vitro, can provide a precise disease marker/therapeutic selection for clinical practice. Because scleroderma dermal fibroblasts have a persistent hyper-productive phenotype occurring not only in person, but also in cell culture conditions. Thus, an accumulating approach based on disease markers ensures progression and de-escalation to re-establish a better life with a personally optimized drug environment after the onset of SSc.
Collapse
Affiliation(s)
- Kazuhiro Komura
- Department of Dermatology, Kanazawa Red Cross Hospital, Japanese Red Cross Society, Kanazawa, Japan
- Northwestern Scleroderma Program, Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Koichi Yanaba
- Department of Dermatology, Jikei University, Tokyo, Japan
| | | | - Ayumi Yoshizaki
- Department of Dermatology, University of Tokyo, Tokyo, Japan
| | | | - John Varga
- Northwestern Scleroderma Program, Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | | | | |
Collapse
|
7
|
Abiola T, John EO, Sossou IT, Charles Callistus B. Immune boosting and ameliorative properties of aqueous extract of Vernonia amygdalina Delile against MSG-induced genotoxicity: An in silico and in vivo approach. Heliyon 2024; 10:e23226. [PMID: 38163244 PMCID: PMC10755317 DOI: 10.1016/j.heliyon.2023.e23226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Vernonia amygdalina (VA) is popularly consumed as food and as medicine due to its nutritional and bioactive constituents. This study assessed the anti-genotoxic effect of aqueous leaf extract of VA against monosodium (MSG) -induced genotoxicity. Crude extraction and phytochemical analysis were done using standard methods. In silico studies was done using compounds in the extract against Bcl-2, NF-kB 50, DNA polymerase lambda, DNA ligase, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX). Twelve rats were divided into three groups with four rats in each group. Group I was fed on food and water, group II received MSG (4 g/kg) per body weight (pbw) intraperitoneally, group III received MSG (4 g/kg) pbw intraperitoneally followed by oral dose of VA leaf extract (250 mg/kg) per body weight. The number of the micronucleated red blood cells and white blood cells were determined from blood smears microscopically. Results showed that aqueous extract of VA contained in mg/100 g alkaloids (7.04 ± 0.16), saponins (3.91 ± 0.13), flavonoid (1.64 ± 0.16), phenol (3.40 ± 0.12) and tannins (0.07 ± 0.32). In silico studies revealed high binding interaction (ΔG > -8.6) of vernoniosides D and E with all the tested proteins. There was a reduction in the number of micronucleated cells, neutrophils and eosinophils of the treated group compared to the MSG group, while there was an increase in the lymphocyte count. The anti-genotoxic effects of VA leaf extract might be attributed to the synergistic interaction of the various bioactive components in the extract. VA could be a potential plant for the prevention of cancer and other diseases that attenuate the immune system.
Collapse
Affiliation(s)
- Temitope Abiola
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | - Emmanuel O. John
- Department of Chemical Sciences, Biochemistry Unit, College of Natural and Applied Sciences, Oduduwa University, Ipetumodu, Ile-Ife, Osun State, Nigeria
| | - Ibukun Temitope Sossou
- Department of Medical Laboratory Sciences, Faculty of Basic Medical Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | | |
Collapse
|
8
|
Zhu L, Liu L, Wang A, Liu J, Huang X, Zan T. Positive feedback loops between fibroblasts and the mechanical environment contribute to dermal fibrosis. Matrix Biol 2023; 121:1-21. [PMID: 37164179 DOI: 10.1016/j.matbio.2023.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/06/2023] [Accepted: 05/07/2023] [Indexed: 05/12/2023]
Abstract
Dermal fibrosis is characterized by excessive deposition of extracellular matrix in the dermis and affects millions of people worldwide and causes limited movement, disfigurement and psychological distress in patients. Fibroblast dysfunction of plays a central role in the pathogenesis of dermal fibrosis and is controlled by distinct factors. Recent studies support the hypothesis that fibroblasts can drive matrix deposition and stiffening, which in turn can exacerbate the functional dysregulation of fibroblasts. Ultimately, through a positive feedback loop, uncontrolled pathological fibrosis develops. This review aims to summarize the phenomenon and mechanism of the positive feedback loop in dermal fibrosis, and discuss potential therapeutic targets to help further elucidate the pathogenesis of dermal fibrosis and develop therapeutic strategies. In this review, fibroblast-derived compositional and structural changes in the ECM that lead to altered mechanical properties are briefly discussed. We focus on the mechanisms by which mechanical cues participate in dermal fibrosis progression. The mechanosensors discussed in the review include integrins, DDRs, proteoglycans, and mechanosensitive ion channels. The FAK, ERK, Akt, and Rho pathways, as well as transcription factors, including MRTF and YAP/TAZ, are also discussed. In addition, we describe stiffness-induced biological changes in the ECM on fibroblasts that contribute to the formation of a positive feedback loop. Finally, we discuss therapeutic strategies to treat the vicious cycle and present important suggestions for researchers conducting in-depth research.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Lechen Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Aoli Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jinwen Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Sha JM, Zhang RQ, Wang XC, Zhou Y, Song K, Sun H, Tu B, Tao H. Epigenetic reader MeCP2 repressed WIF1 boosts lung fibroblast proliferation, migration and pulmonary fibrosis. Toxicol Lett 2023; 381:1-12. [PMID: 37061208 DOI: 10.1016/j.toxlet.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 03/18/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
Epigenetic has been implicated in pulmonary fibrosis. However, there is limited information regarding the biological role of the epigenetic reader MeCP2 in pulmonary fibrosis. The aim of this study was to investigate the role of MeCP2 and its target WIF1 in pulmonary fibrosis. The pathological changes and collagen depositions was analyzed by H&E, Masson's Trichrome Staining and Sirius Red staining. MeCP2, WIF1, α-SMA, Wnt1, β-catenin, and collagen I expression were analyzed by western blotting, RT-qPCR, immunohistochemistry, immunofluorescence, respectively. The effects of MeCP2 on pulmonary fibrosis involve epigenetic mechanisms, using cultured cells, animal models, and clinical samples. Herein, our results indicated that MeCP2 level was up-regulated, while WIF1 was decreased in Bleomycin (BLM)-induced mice pulmonary fibrosis tissues, patients pulmonary fibrosis tissues and TGF-β1-induced lung fibroblast. Knockdown of MeCP2 by siRNA can rescue WIF1 downregulation in TGF-β1-induced lung fibroblast, inhibited lung fibroblast activation. The DNA methylation inhibitor 5-azadC-treated lung fibroblasts have increased WIF1 expression with reduced MeCP2 association. In addition, we found that reduced expression of WIF1 caused by TGF-β1 is associated with the promoter methylation status of WIF1. Moreover, in vivo studies revealed that knockdown of MeCP2 mice exhibited significantly ameliorated pulmonary fibrosis, decreased interstitial collagen deposition, and increased WIF1 expression. Taken together, our study showed that epigenetic reader MeCP2 repressed WIF1 facilitates lung fibroblast proliferation, migration and pulmonary fibrosis.
Collapse
Affiliation(s)
- Ji-Ming Sha
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China; Department of Thoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, P.R. China 230601
| | - Ren-Quan Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China.
| | - Xian-Chen Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, P.R. China 230601
| | - Yang Zhou
- Department of Thoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, P.R. China 230601
| | - Kai Song
- Department of Thoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, P.R. China 230601
| | - He Sun
- Department of Thoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, P.R. China 230601
| | - Bin Tu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, P.R. China 230601
| | - Hui Tao
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, P.R. China 230601.
| |
Collapse
|
10
|
Pezone A, Olivieri F, Napoli MV, Procopio A, Avvedimento EV, Gabrielli A. Inflammation and DNA damage: cause, effect or both. Nat Rev Rheumatol 2023; 19:200-211. [PMID: 36750681 DOI: 10.1038/s41584-022-00905-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2022] [Indexed: 02/09/2023]
Abstract
Inflammation is a biological response involving immune cells, blood vessels and mediators induced by endogenous and exogenous stimuli, such as pathogens, damaged cells or chemicals. Unresolved (chronic) inflammation is characterized by the secretion of cytokines that maintain inflammation and redox stress. Mitochondrial or nuclear redox imbalance induces DNA damage, which triggers the DNA damage response (DDR) that is orchestrated by ATM and ATR kinases, which modify gene expression and metabolism and, eventually, establish the senescent phenotype. DDR-mediated senescence is induced by the signalling proteins p53, p16 and p21, which arrest the cell cycle in G1 or G2 and promote cytokine secretion, producing the senescence-associated secretory phenotype. Senescence and inflammation phenotypes are intimately associated, but highly heterogeneous because they vary according to the cell type that is involved. The vicious cycle of inflammation, DNA damage and DDR-mediated senescence, along with the constitutive activation of the immune system, is the core of an evolutionarily conserved circuitry, which arrests the cell cycle to reduce the accumulation of mutations generated by DNA replication during redox stress caused by infection or inflammation. Evidence suggests that specific organ dysfunctions in apparently unrelated diseases of autoimmune, rheumatic, degenerative and vascular origins are caused by inflammation resulting from DNA damage-induced senescence.
Collapse
Affiliation(s)
- Antonio Pezone
- Dipartimento di Biologia, Università Federico II, Napoli, Italy.
| | - Fabiola Olivieri
- Dipartimento di Scienze Cliniche e Molecolari, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
- Clinica di Medicina di Laboratorio e di Precisione, IRCCS INRCA, Ancona, Italy
| | - Maria Vittoria Napoli
- Dipartimento di Scienze Cliniche e Molecolari, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Antonio Procopio
- Dipartimento di Scienze Cliniche e Molecolari, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
- Clinica di Medicina di Laboratorio e di Precisione, IRCCS INRCA, Ancona, Italy
| | - Enrico Vittorio Avvedimento
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Istituto di Endocrinologia ed Oncologia Sperimentale del C.N.R., Università Federico II, Napoli, Italy.
| | - Armando Gabrielli
- Fondazione di Medicina Molecolare e Terapia Cellulare, Università Politecnica delle Marche, Ancona, Italy.
| |
Collapse
|
11
|
Gilbert MM, Mathes SC, Mahajan AS, Rohan CA, Travers JB, Thyagarajan A. The role of sirtuins in dermal fibroblast function. Front Med (Lausanne) 2023; 10:1021908. [PMID: 36993812 PMCID: PMC10040577 DOI: 10.3389/fmed.2023.1021908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
The sirtuins are a family of seven proteins that perform a variety of dermatological functions and help maintain both the structure and function of the skin. More specifically, the sirtuins have been shown to be altered in multiple dermal cell types including dermal fibroblasts. The functions of dermal fibroblasts are extensive, and include playing a significant role in wound healing as well as helping to maintain the integrity of the skin. As dermal fibroblasts age, they can undergo a state of permanent cell cycle arrest, known as cellular senescence. This senescent process can occur as a result of various stressors, including oxidative stress, ultraviolet radiation -induced stress, and replicative stress. In recent years, there has been a growing interest in both enhancing the cutaneous fibroblast’s ability to facilitate wound healing and altering fibroblast cellular senescence. Thus, in this review, we examine the relationship between sirtuin signaling and dermal fibroblasts to understand how this family of proteins may modulate skin conditions ranging from the wound healing process to photocarcinogenesis associated with fibroblast senescence. Additionally, we offer supporting data from experiments examining the relationship between fibroblast senescence and sirtuin levels in an oxidative stress model indicating that senescent dermal fibroblasts exhibit diminished sirtuin levels. Furthermore, we survey the research on the role of sirtuins in specific dermatological disease states that where dermal fibroblast function has been implicated. Finally, we conclude with outlining potential clinical applications of sirtuins in dermatology. In sum, we find that the literature on the involvement of sirtuins in dermal fibroblasts is limited, with research still in its early stages. Nevertheless, intriguing preliminary findings merit additional investigation into the clinical implications of sirtuins in dermatology.
Collapse
Affiliation(s)
- Michael M. Gilbert
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Departments of Dermatology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- *Correspondence: Michael M. Gilbert,
| | | | - Avinash S. Mahajan
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
| | - Craig A. Rohan
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Departments of Dermatology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Dayton Veterans Administration Medical Center, Dayton, OH, United States
| | - Jeffrey B. Travers
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Departments of Dermatology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Dayton Veterans Administration Medical Center, Dayton, OH, United States
| | - Anita Thyagarajan
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Anita Thyagarajan,
| |
Collapse
|
12
|
Liu Y, Wen D, Ho C, Yu L, Zheng D, O'Reilly S, Gao Y, Li Q, Zhang Y. Epigenetics as a versatile regulator of fibrosis. J Transl Med 2023; 21:164. [PMID: 36864460 PMCID: PMC9983257 DOI: 10.1186/s12967-023-04018-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Fibrosis, a process caused by excessive deposition of extracellular matrix (ECM), is a common cause and outcome of organ failure and even death. Researchers have made many efforts to understand the mechanism of fibrogenesis and to develop therapeutic strategies; yet, the outcome remains unsatisfactory. In recent years, advances in epigenetics, including chromatin remodeling, histone modification, DNA methylation, and noncoding RNA (ncRNA), have provided more insights into the fibrotic process and have suggested the possibility of novel therapy for organ fibrosis. In this review, we summarize the current research on the epigenetic mechanisms involved in organ fibrosis and their possible clinical applications.
Collapse
Affiliation(s)
- Yangdan Liu
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Dongsheng Wen
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Chiakang Ho
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Li Yu
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Danning Zheng
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | | | - Ya Gao
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Qingfeng Li
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Yifan Zhang
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
13
|
Dudakovic A, Bayram B, Bettencourt JW, Limberg AK, Galvan ML, Carrasco ME, Stans B, Thaler R, Morrey ME, Sanchez-Sotelo J, Berry DJ, van Wijnen AJ, Abdel MP. The epigenetic regulator BRD4 is required for myofibroblast differentiation of knee fibroblasts. J Cell Biochem 2023; 124:320-334. [PMID: 36648754 PMCID: PMC9990907 DOI: 10.1002/jcb.30368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 01/18/2023]
Abstract
Arthrofibrosis, which is characterized by excessive scar tissue and limited motion, can complicate the daily functioning of patients after total knee arthroplasty (TKA). Molecular hallmarks of arthrofibrosis include pathologic accumulation of myofibroblasts and disproportionate collagen deposition. Epigenetic mechanisms, including posttranslation modification of histones, control gene expression and may regulate fibrotic events. This study assessed the role of the bromodomain and extra-terminal (BET) proteins on myofibroblast differentiation. This group of epigenetic regulators recognize acetylated lysines and are targeted by a class of drugs known as BET inhibitors. RNA-seq analysis revealed robust mRNA expression of three BET members (BRD2, BRD3, and BRD4) while the fourth member (BRDT) is not expressed in primary TKA knee outgrowth fibroblasts. RT-qPCR and western blot analyses revealed that BET inhibition with the small molecule JQ1 impairs TGFβ1-induced expression of ACTA2, a key myofibroblast marker, in primary outgrowth knee fibroblasts. Similarly, JQ1 administration also reduced COL3A1 mRNA levels and collagen deposition as monitored by picrosirius red staining. Interestingly, the inhibitory effects of JQ1 on ACTA2 mRNA and protein expression, as well as COL3A1 expression and collagen deposition, were paralleled by siRNA-mediated depletion of BRD4. Together, these data reveal that BRD4-mediated epigenetic events support TGFβ1-mediated myofibroblast differentiation and collagen deposition as seen in arthrofibrosis. To our knowledge, these are the first studies that assess epigenetic regulators and their downstream events in the context of arthrofibrosis. Future studies may reveal clinical utility for drugs that target epigenetic pathways, specifically BET proteins, in the prevention and treatment of arthrofibrosis.
Collapse
Affiliation(s)
- Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Banu Bayram
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Afton K. Limberg
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - M. Lizeth Galvan
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Britta Stans
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Mark E. Morrey
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Daniel J. Berry
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Andre J. van Wijnen
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT, USA
| | - Matthew P. Abdel
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
14
|
Di Bartolomeo L, Vaccaro F, Irrera N, Borgia F, Li Pomi F, Squadrito F, Vaccaro M. Wnt Signaling Pathways: From Inflammation to Non-Melanoma Skin Cancers. Int J Mol Sci 2023; 24:ijms24021575. [PMID: 36675086 PMCID: PMC9867176 DOI: 10.3390/ijms24021575] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Canonical and non-canonical Wnt signaling pathways are involved in cell differentiation and homeostasis, but also in tumorigenesis. In fact, an exaggerated activation of Wnt signaling may promote tumor growth and invasion. We summarize the most intriguing evidence about the role of Wnt signaling in cutaneous carcinogenesis, in particular in the pathogenesis of non-melanoma skin cancer (NMSC). Wnt signaling is involved in several ways in the development of skin tumors: it may modulate the inflammatory tumor microenvironment, synergize with Sonic Hedgehog pathway in the onset of basal cell carcinoma, and contribute to the progression from precancerous to malignant lesions and promote the epithelial-mesenchymal transition in squamous cell carcinoma. Targeting Wnt pathways may represent an additional efficient approach in the management of patients with NMSC.
Collapse
Affiliation(s)
- Luca Di Bartolomeo
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy
| | - Federico Vaccaro
- Department of Dermatology, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Messina, 98125 Messina, Italy
| | - Francesco Borgia
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy
| | - Federica Li Pomi
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Messina, 98125 Messina, Italy
| | - Mario Vaccaro
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy
- Correspondence:
| |
Collapse
|
15
|
Mellone M, Piotrowska K, Venturi G, James L, Bzura A, Lopez MA, James S, Wang C, Ellis MJ, Hanley CJ, Buckingham JF, Cox KL, Hughes G, Valge-Archer V, King EV, Beers SA, Jaquet V, Jones GD, Savelyeva N, Sayan E, Parsons JL, Durant S, Thomas GJ. ATM Regulates Differentiation of Myofibroblastic Cancer-Associated Fibroblasts and Can Be Targeted to Overcome Immunotherapy Resistance. Cancer Res 2022; 82:4571-4585. [PMID: 36353752 PMCID: PMC9755965 DOI: 10.1158/0008-5472.can-22-0435] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/28/2022] [Accepted: 09/21/2022] [Indexed: 11/11/2022]
Abstract
Myofibroblastic cancer-associated fibroblast (myoCAF)-rich tumors generally contain few T cells and respond poorly to immune-checkpoint blockade. Although myoCAFs are associated with poor outcome in most solid tumors, the molecular mechanisms regulating myoCAF accumulation remain unclear, limiting the potential for therapeutic intervention. Here, we identify ataxia-telangiectasia mutated (ATM) as a central regulator of the myoCAF phenotype. Differentiating myofibroblasts in vitro and myoCAFs cultured ex vivo display activated ATM signaling, and targeting ATM genetically or pharmacologically could suppress and reverse differentiation. ATM activation was regulated by the reactive oxygen species-producing enzyme NOX4, both through DNA damage and increased oxidative stress. Targeting fibroblast ATM in vivo suppressed myoCAF-rich tumor growth, promoted intratumoral CD8 T-cell infiltration, and potentiated the response to anti-PD-1 blockade and antitumor vaccination. This work identifies a novel pathway regulating myoCAF differentiation and provides a rationale for using ATM inhibitors to overcome CAF-mediated immunotherapy resistance. SIGNIFICANCE ATM signaling supports the differentiation of myoCAFs to suppress T-cell infiltration and antitumor immunity, supporting the potential clinical use of ATM inhibitors in combination with checkpoint inhibition in myoCAF-rich, immune-cold tumors.
Collapse
Affiliation(s)
- Massimiliano Mellone
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Klaudia Piotrowska
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Giulia Venturi
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Lija James
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Aleksandra Bzura
- Department of Genetics and Genome Biology, Cancer Research Centre, University of Leicester, Leicester, United Kingdom
| | - Maria A. Lopez
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Sonya James
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Chuan Wang
- Department of Molecular and Clinical Cancer Medicine, Cancer Research Centre, University of Liverpool, Liverpool, United Kingdom
| | - Matthew J. Ellis
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Christopher J. Hanley
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Josephine F. Buckingham
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Kerry L. Cox
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Gareth Hughes
- Bioscience, Oncology Innovative Medicines and Early Development (IMED) Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Viia Valge-Archer
- Bioscience, Oncology Innovative Medicines and Early Development (IMED) Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Emma V. King
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Stephen A. Beers
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Vincent Jaquet
- Department of Pathology and Immunology, Centre Médical Universitaire, Genève, Switzerland
| | - George D.D. Jones
- Department of Genetics and Genome Biology, Cancer Research Centre, University of Leicester, Leicester, United Kingdom
| | - Natalia Savelyeva
- Department of Molecular and Clinical Cancer Medicine, Cancer Research Centre, University of Liverpool, Liverpool, United Kingdom
| | - Emre Sayan
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jason L. Parsons
- Department of Molecular and Clinical Cancer Medicine, Cancer Research Centre, University of Liverpool, Liverpool, United Kingdom
| | - Stephen Durant
- Bioscience, Oncology Innovative Medicines and Early Development (IMED) Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Gareth J. Thomas
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
16
|
Heim X, Bermudez J, Joshkon A, Kaspi E, Bachelier R, Nollet M, Vélier M, Dou L, Brodovitch A, Foucault-Bertaud A, Leroyer AS, Benyamine A, Daumas A, Granel B, Sabatier F, Dignat-George F, Blot-Chabaud M, Bardin N. CD146 at the Interface between Oxidative Stress and the Wnt Signaling Pathway in Systemic Sclerosis. J Invest Dermatol 2022; 142:3200-3210.e5. [PMID: 35690141 DOI: 10.1016/j.jid.2022.03.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/01/2022] [Accepted: 03/12/2022] [Indexed: 01/05/2023]
Abstract
CD146 involvement was recently described in skin fibrosis of systemic sclerosis through its regulation of the Wnt pathway. Because the interaction between Wnt and ROS signaling plays a major role in fibrosis, we hypothesized that in systemic sclerosis, CD146 may regulate Wnt/ROS crosstalk. Using a transcriptomic and western blot analysis performed on CD146 wild-type or knockout mouse embryonic fibroblasts, we showed a procanonical Wnt hallmark in the absence of CD146 that is reversed when CD146 expression is restored. We found an elevated ROS content in knockout cells and an increase in DNA oxidative damage in the skin sections of knockout mice compared with those of wild-type mice. We also showed that ROS increased CD146 and its noncanonical Wnt ligand, WNT5A, only in wild-type cells. In humans, fibroblasts from patients with systemic sclerosis presented higher ROS content and expressed CD146, whereas control fibroblasts did not. Moreover, CD146 and its ligand were upregulated by ROS in both human fibroblasts. The increase in bleomycin-induced WNT5A expression was abrogated when CD146 was silenced. We showed an interplay between Wnt and ROS signaling in systemic sclerosis, regulated by CD146, which promotes the noncanonical Wnt pathway and prevents ROS signaling, opening the way for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Xavier Heim
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France; Service d'immunologie, Biogénopôle, Hôpital de la Timone, Assistance Publique des Hôpitaux de Marseille (AP-HM), Marseille, France.
| | | | - Ahmad Joshkon
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | - Elise Kaspi
- Aix Marseille University, APHM, INSERM, MMG, Hôpital la Timone, Service de Biologie Cellulaire, Marseille, France
| | | | - Marie Nollet
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | - Mélanie Vélier
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France; Hematology and Vascular Biology Department, Hopital de la Conception, Assistance Publique des Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Laetitia Dou
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | - Alexandre Brodovitch
- Service d'immunologie, Biogénopôle, Hôpital de la Timone, Assistance Publique des Hôpitaux de Marseille (AP-HM), Marseille, France
| | | | | | - Audrey Benyamine
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France; Internal Medicine Department, Hopital Nord, Assistance Publique des Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Aurélie Daumas
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France; Internal Medicine, Geriatric and Therapeutic Department, Hopital de la Timone, Assistance Publique des Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Brigitte Granel
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France; Internal Medicine Department, Hopital Nord, Assistance Publique des Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Florence Sabatier
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France; Cell Therapy Laboratory, INSERM CIC BT 1409, Hôpital de la Conception, Assistance Publique des Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Françoise Dignat-George
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France; Hematology and Vascular Biology Department, Hopital de la Conception, Assistance Publique des Hôpitaux de Marseille (AP-HM), Marseille, France
| | | | - Nathalie Bardin
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France; Service d'immunologie, Biogénopôle, Hôpital de la Timone, Assistance Publique des Hôpitaux de Marseille (AP-HM), Marseille, France
| |
Collapse
|
17
|
Liotti A, Ferrara AL, Loffredo S, Galdiero MR, Varricchi G, Di Rella F, Maniscalco GT, Belardo M, Vastano R, Prencipe R, Pignata L, Romano R, Spadaro G, de Candia P, Pezone A, De Rosa V. Epigenetics: an Opportunity to Shape Innate and Adaptive Immune Responses. Immunol Suppl 2022; 167:451-470. [PMID: 36043705 DOI: 10.1111/imm.13571] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/09/2022] [Indexed: 12/01/2022]
Abstract
Epigenetics connects genetic and environmental factors: it includes DNA methylation, histone post-translational modifications and the regulation of chromatin accessibility by non-coding RNAs, all of which control constitutive or inducible gene transcription. This plays a key role in harnessing the transcriptional programs of both innate and adaptive immune cells due to its plasticity and environmental-driven nature, piloting myeloid and lymphoid cell fate decision with no change in their genomic sequence. In particular, epigenetic marks at the site of lineage specific transcription factors and maintenance of cell type-specific epigenetic modifications, referred to as "epigenetic memory", dictate cell differentiation, cytokine production and functional capacity following repeated antigenic exposure in memory T cells. Moreover, metabolic and epigenetic reprogramming occurring during a primary innate immune response leads to enhanced responses to secondary challenges, a phenomenon known as "trained immunity". Here we discuss how stable and dynamic epigenetic states control immune cell identity and plasticity in physiological and pathological conditions. Dissecting the regulatory circuits of cell fate determination and maintenance is of paramount importance for understanding the delicate balance between immune cell activation and tolerance, in healthy conditions and in autoimmune diseases. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Antonietta Liotti
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Anne Lise Ferrara
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy.,Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI) and World Allergy Organization (WAO) Center of Excellence, University of Naples "Federico II", Naples, Italy
| | - Stefania Loffredo
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy.,Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI) and World Allergy Organization (WAO) Center of Excellence, University of Naples "Federico II", Naples, Italy
| | - Maria Rosaria Galdiero
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy.,Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI) and World Allergy Organization (WAO) Center of Excellence, University of Naples "Federico II", Naples, Italy
| | - Gilda Varricchi
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy.,Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI) and World Allergy Organization (WAO) Center of Excellence, University of Naples "Federico II", Naples, Italy
| | - Francesca Di Rella
- Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Giorgia Teresa Maniscalco
- Neurological Clinic and Stroke Unit and Multiple Sclerosis Center "A. Cardarelli" Hospital, Naples, Italy
| | - Martina Belardo
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI) and World Allergy Organization (WAO) Center of Excellence, University of Naples "Federico II", Naples, Italy
| | - Roberta Vastano
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI) and World Allergy Organization (WAO) Center of Excellence, University of Naples "Federico II", Naples, Italy
| | - Rosaria Prencipe
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Laura Pignata
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Roberta Romano
- Department of Translational Medical Sciences, Pediatric Section, University of Naples "Federico II", Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI) and World Allergy Organization (WAO) Center of Excellence, University of Naples "Federico II", Naples, Italy
| | - Paola de Candia
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Antonio Pezone
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Veronica De Rosa
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| |
Collapse
|
18
|
Lou H, Ling GS, Cao X. Autoantibodies in systemic lupus erythematosus: From immunopathology to therapeutic target. J Autoimmun 2022; 132:102861. [PMID: 35872103 DOI: 10.1016/j.jaut.2022.102861] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 11/26/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multiple organ inflammatory damage and wide spectrum of autoantibodies. The autoantibodies, especially anti-dsDNA and anti-Sm autoantibodies are highly specific to SLE, and participate in the immune complex formation and inflammatory damage on multiple end-organs such as kidney, skin, and central nervous system (CNS). However, the underlying mechanisms of autoantibody-induced tissue damage and systemic inflammation are still not fully understood. Single cell analysis of autoreactive B cells and monoclonal antibody screening from patients with active SLE has improved our understanding on the origin of autoreactive B cells and the antigen targets of the pathogenic autoantibodies. B cell depletion therapies have been widely studied in the clinics, but the development of more specific therapies against the pathogenic B cell subset and autoantibodies with improved efficacy and safety still remain a big challenge. A more comprehensive autoantibody profiling combined with functional characterization of autoantibodies in diseases development will shed new insights on the etiology and pathogenesis of SLE and guide a specific treatment to individual SLE patients.
Collapse
Affiliation(s)
- Hantao Lou
- Ludwig Institute of Cancer Research, University of Oxford, Oxford, OX3 7DR, UK; Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
| | - Guang Sheng Ling
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xuetao Cao
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK; Nankai-Oxford International Advanced Institute, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
19
|
Hayat R, Manzoor M, Hussain A. Wnt Signaling Pathway: A Comprehensive Review. Cell Biol Int 2022; 46:863-877. [PMID: 35297539 DOI: 10.1002/cbin.11797] [Citation(s) in RCA: 160] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/10/2022] [Accepted: 03/07/2022] [Indexed: 11/09/2022]
Abstract
Wnt signaling is an evolutionary cell-to-cell coordination mechanism and it is highly critical for a variety of physiological processes of an organism's body, including stem cell regeneration, proliferation, division, migration, polarity of a cell, determining fate of the cell and specification of neural crest, neural symmetry and morphogenesis. Wnts are extracellular secreted glycol proteins, consisted of a family of 19 human proteins that represent the complex nature of the regulatory structure and physiological efficiency of signaling. Moreover, a Wnt/β-catenin-dependent pathway and the β-catenin-independent pathway that is further classified into the Planar Cell Polarity and Wnt/Ca2+ pathways have been established as key signaling nodes downstream of the frizzled (Fz/Fzd) receptor, and these nodes are extensively analyzed at biochemical and molecular levels. Genetic and epigenetic activities that ultimately characterize the pathway and its subsequent responses contribute to Wnt-β-catenin signaling pathway hypo or hyper-activation and is associated with the variety of human disorders progression most significantly cancers. Recognizing how this mechanism operates is crucial to the advancement of cancer prevention therapies or regenerative medicine methods. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Rabia Hayat
- Institute of Evolution and Marine Biodiversity, Ocean university of China, Qingdao
| | - Maleeha Manzoor
- Department of Zoology, Government College University, Faisalabad
| | - Ali Hussain
- Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore
| |
Collapse
|
20
|
The interaction of canonical Wnt/β-catenin signaling with protein lysine acetylation. Cell Mol Biol Lett 2022; 27:7. [PMID: 35033019 PMCID: PMC8903542 DOI: 10.1186/s11658-021-00305-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
Canonical Wnt/β-catenin signaling is a complex cell-communication mechanism that has a central role in the progression of various cancers. The cellular factors that participate in the regulation of this signaling are still not fully elucidated. Lysine acetylation is a significant protein modification which facilitates reversible regulation of the target protein function dependent on the activity of lysine acetyltransferases (KATs) and the catalytic function of lysine deacetylases (KDACs). Protein lysine acetylation has been classified into histone acetylation and non-histone protein acetylation. Histone acetylation is a kind of epigenetic modification, and it can modulate the transcription of important biological molecules in Wnt/β-catenin signaling. Additionally, as a type of post-translational modification, non-histone acetylation directly alters the function of the core molecules in Wnt/β-catenin signaling. Conversely, this signaling can regulate the expression and function of target molecules based on histone or non-histone protein acetylation. To date, various inhibitors targeting KATs and KDACs have been discovered, and some of these inhibitors exert their anti-tumor activity via blocking Wnt/β-catenin signaling. Here, we discuss the available evidence in understanding the complicated interaction of protein lysine acetylation with Wnt/β-catenin signaling, and lysine acetylation as a new target for cancer therapy via controlling this signaling.
Collapse
|
21
|
Benfaremo D, Svegliati S, Paolini C, Agarbati S, Moroncini G. Systemic Sclerosis: From Pathophysiology to Novel Therapeutic Approaches. Biomedicines 2022; 10:biomedicines10010163. [PMID: 35052842 PMCID: PMC8773282 DOI: 10.3390/biomedicines10010163] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 12/30/2022] Open
Abstract
Systemic sclerosis (SSc) is a systemic, immune-mediated chronic disorder characterized by small vessel alterations and progressive fibrosis of the skin and internal organs. The combination of a predisposing genetic background and triggering factors that causes a persistent activation of immune system at microvascular and tissue level is thought to be the pathogenetic driver of SSc. Endothelial alterations with subsequent myofibroblast activation, excessive extracellular matrix (ECM) deposition, and unrestrained tissue fibrosis are the pathogenetic steps responsible for the clinical manifestations of this disease, which can be highly heterogeneous according to the different entity of each pathogenic step in individual subjects. Although substantial progress has been made in the management of SSc in recent years, disease-modifying therapies are still lacking. Several molecular pathways involved in SSc pathogenesis are currently under evaluation as possible therapeutic targets in clinical trials. These include drugs targeting fibrotic and metabolic pathways (e.g., TGF-β, autotaxin/LPA, melanocortin, and mTOR), as well as molecules and cells involved in the persistent activation of the immune system (e.g., IL4/IL13, IL23, JAK/STAT, B cells, and plasma cells). In this review, we provide an overview of the most promising therapeutic targets that could improve the future clinical management of SSc.
Collapse
Affiliation(s)
- Devis Benfaremo
- Clinica Medica, Department of Internal Medicine, Ospedali Riuniti “Umberto I-G.M. Lancisi-G. Salesi”, 60126 Ancona, Italy;
| | - Silvia Svegliati
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (S.S.); (C.P.); (S.A.)
| | - Chiara Paolini
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (S.S.); (C.P.); (S.A.)
| | - Silvia Agarbati
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (S.S.); (C.P.); (S.A.)
| | - Gianluca Moroncini
- Clinica Medica, Department of Internal Medicine, Ospedali Riuniti “Umberto I-G.M. Lancisi-G. Salesi”, 60126 Ancona, Italy;
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (S.S.); (C.P.); (S.A.)
- Correspondence:
| |
Collapse
|
22
|
Oxidative Stress Induced by Reactive Oxygen Species (ROS) and NADPH Oxidase 4 (NOX4) in the Pathogenesis of the Fibrotic Process in Systemic Sclerosis: A Promising Therapeutic Target. J Clin Med 2021; 10:jcm10204791. [PMID: 34682914 PMCID: PMC8539594 DOI: 10.3390/jcm10204791] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 02/07/2023] Open
Abstract
Numerous clinical and research investigations conducted during the last two decades have implicated excessive oxidative stress caused by high levels of reactive oxygen species (ROS) in the development of the severe and frequently progressive fibrotic process in Systemic Sclerosis (SSc). The role of excessive oxidative stress in SSc pathogenesis has been supported by the demonstration of increased levels of numerous biomarkers, indicative of cellular and molecular oxidative damage in serum, plasma, and other biological fluids from SSc patients, and by the demonstration of elevated production of ROS by various cell types involved in the SSc fibrotic process. However, the precise mechanisms mediating oxidative stress development in SSc and its pathogenetic effects have not been fully elucidated. The participation of the NADPH oxidase NOX4, has been suggested and experimentally supported by the demonstration that SSc dermal fibroblasts display constitutively increased NOX4 expression and that reduction or abrogation of NOX4 effects decreased ROS production and the expression of genes encoding fibrotic proteins. Furthermore, NOX4-stimulated ROS production may be involved in the development of certain endothelial and vascular abnormalities and may even participate in the generation of SSc-specific autoantibodies. Collectively, these observations suggest NOX4 as a novel therapeutic target for SSc.
Collapse
|
23
|
|
24
|
Advances in epigenetics in systemic sclerosis: molecular mechanisms and therapeutic potential. Nat Rev Rheumatol 2021; 17:596-607. [PMID: 34480165 DOI: 10.1038/s41584-021-00683-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 12/21/2022]
Abstract
Systemic sclerosis (SSc) is a prototypical inflammatory fibrotic disease involving inflammation, vascular abnormalities and fibrosis that primarily affect the skin and lungs. The aetiology of SSc is unknown and its pathogenesis is only partially understood. Of all the rheumatic diseases, SSc carries the highest all-cause mortality rate and represents an unmet medical need. A growing body of evidence implicates epigenetic aberrations in this intractable disease, including specific modifications affecting the three main cell types involved in SSc pathogenesis: immune cells, endothelial cells and fibroblasts. In this Review, we discuss the latest insights into the role of DNA methylation, histone modifications and non-coding RNAs in SSc and how these epigenetic alterations affect disease features. In particular, histone modifications have a role in the regulation of gene expression pertinent to activation of fibroblasts to myofibroblasts, governing their fate. DNA methyltransferases are crucial in disease pathogenesis by mediating methylation of DNA in specific promoters, regulating expression of specific pathways. We discuss targeting of these enzymes for therapeutic gain. Innovative epigenetic therapy could be targeted to treat the disease in a precision epigenetics approach.
Collapse
|
25
|
Li SS, Sun Q, Hua MR, Suo P, Chen JR, Yu XY, Zhao YY. Targeting the Wnt/β-Catenin Signaling Pathway as a Potential Therapeutic Strategy in Renal Tubulointerstitial Fibrosis. Front Pharmacol 2021; 12:719880. [PMID: 34483931 PMCID: PMC8415231 DOI: 10.3389/fphar.2021.719880] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/03/2021] [Indexed: 12/15/2022] Open
Abstract
The Wnt/β-catenin signaling pathway plays important roles in embryonic development and tissue homeostasis. Wnt signaling is induced, and β-catenin is activated, associated with the development and progression of renal fibrosis. Wnt/β-catenin controls the expression of various downstream mediators such as snail1, twist, matrix metalloproteinase-7, plasminogen activator inhibitor-1, transient receptor potential canonical 6, and renin-angiotensin system components in epithelial cells, fibroblast, and macrophages. In addition, Wnt/β-catenin is usually intertwined with other signaling pathways to promote renal interstitial fibrosis. Actually, given the crucial of Wnt/β-catenin signaling in renal fibrogenesis, blocking this signaling may benefit renal interstitial fibrosis. There are several antagonists of Wnt signaling that negatively control Wnt activation, and these include soluble Fzd-related proteins, the family of Dickkopf 1 proteins, Klotho and Wnt inhibitory factor-1. Furthermore, numerous emerging small-molecule β-catenin inhibitors cannot be ignored to prevent and treat renal fibrosis. Moreover, we reviewed the knowledge focusing on anti-fibrotic effects of natural products commonly used in kidney disease by inhibiting the Wnt/β-catenin signaling pathway. Therefore, in this review, we summarize recent advances in the regulation, downstream targets, role, and mechanisms of Wnt/β-catenin signaling in renal fibrosis pathogenesis. We also discuss the therapeutic potential of targeting this pathway to treat renal fibrosis; this may shed new insights into effective treatment strategies to prevent and treat renal fibrosis.
Collapse
Affiliation(s)
- Shan-Shan Li
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi’an, China
- The First School of Clinical Medicine, Shaanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Qian Sun
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi’an, China
- The First School of Clinical Medicine, Shaanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Meng-Ru Hua
- Faculty of Life Science and Medicine, Northwest University, Xi’an, China
| | - Ping Suo
- Faculty of Life Science and Medicine, Northwest University, Xi’an, China
| | - Jia-Rong Chen
- Department of Clinical Pharmacy, Affiliated Hospital of Chengdu University, Chengdu, China
| | - Xiao-Yong Yu
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi’an, China
| | - Ying-Yong Zhao
- Faculty of Life Science and Medicine, Northwest University, Xi’an, China
| |
Collapse
|
26
|
Baral H, Sekiguchi A, Uchiyama A, Nisaa Amalia S, Yamazaki S, Inoue Y, Yokoyama Y, Ogino S, Torii R, Hosoi M, Akai R, Iwawaki T, Ishikawa O, Motegi SI. Inhibition of skin fibrosis in systemic sclerosis by botulinum toxin B via the suppression of oxidative stress. J Dermatol 2021; 48:1052-1061. [PMID: 33840125 DOI: 10.1111/1346-8138.15888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022]
Abstract
Oxidative stress has been reported to play an important role in the pathogenesis of skin fibrosis in systemic sclerosis (SSc). We previously identified that botulinum toxin (BTX) injection suppresses pressure ulcer formation in a cutaneous ischemia-reperfusion injury mouse model by regulation of oxidative stress. However, the therapeutic possibility of BTX administration for preventing skin fibrosis in SSc is unclear. The objective of this study was to investigate the effect of BTX-B on skin fibrosis in a murine model of SSc and determine the underlying mechanism. We found that BTX-B injection significantly reduced dermal thickness and inflammatory cell infiltration in bleomycin-induced skin fibrosis lesion in mice. We also identified that the oxidative stress signal detected through bioluminescence in OKD48 mice after bleomycin injection in the skin was significantly decreased by BTX-B. Additionally, mRNA levels of oxidative stress associated factors (NOX2, HO-1, Trx2) were significantly decreased by BTX-B. Apoptotic cells in the lesional skin of bleomycin-treated mice were significantly reduced by BTX-B. Oxidant-induced intracellular accumulation of reactive oxygen species in SSc fibroblasts was also inhibited by BTX-B. In conclusion, BTX-B might improve bleomycin-induced skin fibrosis via the suppression of oxidative stress and inflammatory cells in the skin. BTX-B injection may have a therapeutic effect on skin fibrosis in SSc.
Collapse
Affiliation(s)
- Hritu Baral
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akiko Sekiguchi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akihiko Uchiyama
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Syahla Nisaa Amalia
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sahori Yamazaki
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yuta Inoue
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoko Yokoyama
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sachiko Ogino
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Ryoko Torii
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Mari Hosoi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Ryoko Akai
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Takao Iwawaki
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Osamu Ishikawa
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sei-Ichiro Motegi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
27
|
Epigenome Chaos: Stochastic and Deterministic DNA Methylation Events Drive Cancer Evolution. Cancers (Basel) 2021; 13:cancers13081800. [PMID: 33918773 PMCID: PMC8069666 DOI: 10.3390/cancers13081800] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Cancer is a group of diseases characterized by abnormal cell growth with a high potential to invade other tissues. Genetic abnormalities and epigenetic alterations found in tumors can be due to high levels of DNA damage and repair. These can be transmitted to daughter cells, which assuming other alterations as well, will generate heterogeneous and complex populations. Deciphering this complexity represents a central point for understanding the molecular mechanisms of cancer and its therapy. Here, we summarize the genomic and epigenomic events that occur in cancer and discuss novel approaches to analyze the epigenetic complexity of cancer cell populations. Abstract Cancer evolution is associated with genomic instability and epigenetic alterations, which contribute to the inter and intra tumor heterogeneity, making genetic markers not accurate to monitor tumor evolution. Epigenetic changes, aberrant DNA methylation and modifications of chromatin proteins, determine the “epigenome chaos”, which means that the changes of epigenetic traits are randomly generated, but strongly selected by deterministic events. Disordered changes of DNA methylation profiles are the hallmarks of all cancer types, but it is not clear if aberrant methylation is the cause or the consequence of cancer evolution. Critical points to address are the profound epigenetic intra- and inter-tumor heterogeneity and the nature of the heterogeneity of the methylation patterns in each single cell in the tumor population. To analyze the methylation heterogeneity of tumors, new technological and informatic tools have been developed. This review discusses the state of the art of DNA methylation analysis and new approaches to reduce or solve the complexity of methylated alleles in DNA or cell populations.
Collapse
|
28
|
Lu C, Shao X, Zhou S, Pan C. LINC00176 facilitates CD4 +T cell adhesion in systemic lupus erythematosus via the WNT5a signaling pathway by regulating WIF1. Mol Immunol 2021; 134:202-209. [PMID: 33813201 DOI: 10.1016/j.molimm.2021.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 01/20/2021] [Accepted: 02/18/2021] [Indexed: 10/21/2022]
Abstract
Accruing research shows the implications of long non-coding RNAs (lncRNAs) in the progression of various autoimmune diseases including systemic lupus erythematosus (SLE). The present study aimed to identify the expression pattern of LINC00176 in SLE and to explore its effects on CD4+T cell adhesion in this context. The biological functions of LINC00176, WIF1 and WNT5a on CD4+T cells in SLE were evaluated via gain- and loss-of-function experiments, following delivery of pcDNA3-LINC00176, siRNA-LINC00176, pcDNA3-WIF1 and WNT-sFRP5 (an inhibitor for the WNT5a signaling pathway). High LINC00176 expression was evident in the CD4+T cells of SLE patients. Additionally, WIF1 was identified as a potential target gene of LINC00176, and was negatively regulated by LINC00176. The overexpression of LINC00176 could promote proliferation and adhesion of CD4+T cells in SLE. Such alternations were reversed following up-regulation of WIF1 or inhibition of the WNT5a signaling pathway. Taken together, the key findings of our study highlight the ability of LINC00176 to potentially promote the proliferation and adhesion of CD4+T cells in SLE by down-regulating WIF1 and activating the WNT5a signaling pathway, providing new insight and a theoretical basis for translation in SLE therapy.
Collapse
Affiliation(s)
- Chang Lu
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Xue Shao
- Department of Hepatopancreatobiliary Medicine, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Shengzhu Zhou
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Chenyu Pan
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, 130041, PR China.
| |
Collapse
|
29
|
Sakata K, Yasuoka H, Yoshimoto K, Takeuchi T. Decreased activation of ataxia telangiectasia mutated (ATM) in monocytes from patients with systemic sclerosis. Rheumatology (Oxford) 2021; 59:3961-3970. [PMID: 32743653 DOI: 10.1093/rheumatology/keaa312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/06/2020] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES The regulation system for oxidative stress in systemic sclerosis (SSc) remains unclear. This study aimed to clarify the possible involvement of ataxia telangiectasia mutated (ATM), which plays a key role in DNA repair and redox balance, in the pathogenesis of SSc. METHODS Thirty patients with SSc and 15 healthy controls were enrolled. Expression of ATM and phosphorylated ATM (pATM), an activated form of ATM, in phagocytes in whole blood samples was analysed by FACS. Correlations between expression levels of ATM/pATM and clinical parameters of SSc patients were statistically analysed. Peripheral monocytes were cultured with an ATM-specific inhibitor (KU55933), and reactive oxygen species production in the cells was measured. RESULTS Expression level of pATM in peripheral monocytes and neutrophils from SSc patients was significantly lower than those in healthy controls (P = 0.04 and P < 0.001, respectively), while no significant difference in total ATM expression was observed between SSc and healthy controls. In addition, pATM expression in monocytes of SSc patients with interstitial lung disease or digital pitting scar was remarkably lower than in the patients without these clinical features (P = 0.02 and P = 0.03), respectively. Moreover, pATM expression in monocytes positively correlated with forced vital capacity and negatively correlated with the serum Krebs von den Lungen-6 level. Notably, KU55933, an ATM-specific inhibitor, enhanced reactive oxygen species production by monocytes under oxidative stress. CONCLUSION Our data revealed that decreased ATM activation in monocytes was associated with SSc-interstitial lung disease and that impaired ATM activation in monocytes may contribute to the disease process of SSc via uncontrolled reactive oxygen species production.
Collapse
Affiliation(s)
- Komei Sakata
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo
| | - Hidekata Yasuoka
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo.,Division of Infectious Diseases and Rheumatology, Department of Internal Medicine, Fujita Health University School of Medicine, Aichi
| | - Keiko Yoshimoto
- Department of Biotechnology, Tokyo Technical College, Tokyo, Japan
| | - Tsutomu Takeuchi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo
| |
Collapse
|
30
|
Dees C, Chakraborty D, Distler JHW. Cellular and molecular mechanisms in fibrosis. Exp Dermatol 2021; 30:121-131. [PMID: 32931037 DOI: 10.1111/exd.14193] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/14/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
Abstract
The activation of fibroblasts is required for physiological tissue remodelling such as wound healing. However, when the regulatory mechanisms are disrupted and fibroblasts remain persistently activated, the progressive deposition of extracellular matrix proteins leads to tissue fibrosis, which results in dysfunction or even loss of function of the affected organ. Although fibrosis has been recognized as a major cause of morbidity and mortality in modern societies, there are only few treatment options available that directly disrupt the release of extracellular matrix from fibroblasts. Intensive research in recent years, however, identified several pathways as core fibrotic mechanisms that are shared across different fibrotic diseases and organs. We discuss herein selection of those core pathways, especially downstream of the profibrotic TGF-β pathway, which are druggable and which may be transferable from bench to bedside.
Collapse
Affiliation(s)
- Clara Dees
- Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Debomita Chakraborty
- Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jörg H W Distler
- Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
31
|
Koçak A, Harmancı D, Güner Akdoğan G, Birlik M. Relationship of Wnt pathway activity and organ involvement in scleroderma types. Int J Rheum Dis 2020; 23:1558-1567. [PMID: 32996251 DOI: 10.1111/1756-185x.13973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/06/2020] [Accepted: 09/02/2020] [Indexed: 08/30/2023]
Abstract
OBJECTIVE Scleroderma (SSc) is a chronic inflammatory autoimmune disease characterized by fibrosis in the skin and internal organs. In SSc, the heart, lung, kidney, gastrointestinal (GIS) system, muscle, and peri-articular structures are damaged. There is no study of the relationship between SSc type, stage, pathogenesis, organ involvement, and Wnt signaling. In this study, we aimed to show the relationship of the Wnt gene family and antagonists in SSc subtypes and different organ involvement. METHODS Eighty-five SSc patients and 77 controls were included in this study. The gene expressions and protein levels of the Wnt family and antagonists were analyzed from blood samples. The relationship between these parameters and disease stage, type, and organ involvement were evaluated. RESULTS Wnt-1, Wnt-10b, Wnt-2, and Wnt-6 gene expressions are increased and Axin-2, DKK-1, and Kremen protein expressions are decreased in SSc. Wnt-3a and Wnt-10a gene expressions are increased in generalized SSc compared to limited SSc. Wnt-1, Wnt-2 gene expressions are increased significantly in pulmonary arterial hypertension (PAH)(+) SSc compared to PAH(-) SSc. There was a positive correlation between the modified Rodnan skin score and Wnt-2 in SSc. There was a significant positive correlation between GIS involvement score and Wnt-1, Wnt-2, Wnt-4, Wnt-8a, Wnt-9b in SSc. CONCLUSION Wnt-1 and Wnt-2 were found higher in scleroderma and organ involvement. They may play a role in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Ayşe Koçak
- Kutahya Health Sciences University, Kutahya, Turkey
| | | | | | | |
Collapse
|
32
|
Pezone A, Taddei ML, Tramontano A, Dolcini J, Boffo FL, De Rosa M, Parri M, Stinziani S, Comito G, Porcellini A, Raugei G, Gackowski D, Zarakowska E, Olinski R, Gabrielli A, Chiarugi P, Avvedimento EV. Targeted DNA oxidation by LSD1-SMAD2/3 primes TGF-β1/ EMT genes for activation or repression. Nucleic Acids Res 2020; 48:8943-8958. [PMID: 32697292 PMCID: PMC7498341 DOI: 10.1093/nar/gkaa599] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/24/2020] [Accepted: 07/03/2020] [Indexed: 12/22/2022] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is a complex transcriptional program induced by transforming growth factor β1 (TGF-β1). Histone lysine-specific demethylase 1 (LSD1) has been recognized as a key mediator of EMT in cancer cells, but the precise mechanism that underlies the activation and repression of EMT genes still remains elusive. Here, we characterized the early events induced by TGF-β1 during EMT initiation and establishment. TGF-β1 triggered, 30–90 min post-treatment, a nuclear oxidative wave throughout the genome, documented by confocal microscopy and mass spectrometry, mediated by LSD1. LSD1 was recruited with phosphorylated SMAD2/3 to the promoters of prototypic genes activated and repressed by TGF-β1. After 90 min, phospho-SMAD2/3 downregulation reduced the complex and LSD1 was then recruited with the newly synthesized SNAI1 and repressors, NCoR1 and HDAC3, to the promoters of TGF-β1-repressed genes such as the Wnt soluble inhibitor factor 1 gene (WIF1), a change that induced a late oxidative burst. However, TGF-β1 early (90 min) repression of transcription also required synchronous signaling by reactive oxygen species and the stress-activated kinase c-Jun N-terminal kinase. These data elucidate the early events elicited by TGF-β1 and the priming role of DNA oxidation that marks TGF-β1-induced and -repressed genes involved in the EMT.
Collapse
Affiliation(s)
- Antonio Pezone
- To whom correspondence should be addressed. Tel: +39 0817463614; ;
| | | | | | - Jacopo Dolcini
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Istituto di Endocrinologia ed Oncologia Sperimentale del CNR, Università Federico II, 80131 Napoli, Italy
- Dipartimento di Scienze Cliniche e Molecolari, Clinica Medica, Università Politecnica delle Marche, 60100, Ancona, Italy
| | - Francesca Ludovica Boffo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Istituto di Endocrinologia ed Oncologia Sperimentale del CNR, Università Federico II, 80131 Napoli, Italy
| | - Mariarosaria De Rosa
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Istituto di Endocrinologia ed Oncologia Sperimentale del CNR, Università Federico II, 80131 Napoli, Italy
| | - Matteo Parri
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche, Università degli Studi di Firenze, viale Morgagni 50, 50134 Firenze, Italy
| | - Stefano Stinziani
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche, Università degli Studi di Firenze, viale Morgagni 50, 50134 Firenze, Italy
| | - Giuseppina Comito
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche, Università degli Studi di Firenze, viale Morgagni 50, 50134 Firenze, Italy
| | | | - Giovanni Raugei
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche, Università degli Studi di Firenze, viale Morgagni 50, 50134 Firenze, Italy
| | - Daniel Gackowski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-095 Bydgoszcz, Poland
| | - Ewelina Zarakowska
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-095 Bydgoszcz, Poland
| | - Ryszard Olinski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-095 Bydgoszcz, Poland
| | - Armando Gabrielli
- Dipartimento di Scienze Cliniche e Molecolari, Clinica Medica, Università Politecnica delle Marche, 60100, Ancona, Italy
| | - Paola Chiarugi
- Correspondence may also be addressed to Paola Chiarugi. Tel: +39 0552751247;
| | | |
Collapse
|
33
|
Cheikhi AM, Johnson ZI, Julian DR, Wheeler S, Feghali-Bostwick C, Conley YP, Lyons-Weiler J, Yates CC. Prediction of severity and subtype of fibrosing disease using model informed by inflammation and extracellular matrix gene index. PLoS One 2020; 15:e0240986. [PMID: 33095822 PMCID: PMC7584227 DOI: 10.1371/journal.pone.0240986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 10/06/2020] [Indexed: 11/19/2022] Open
Abstract
Fibrosis is a chronic disease with heterogeneous clinical presentation, rate of progression, and occurrence of comorbidities. Systemic sclerosis (scleroderma, SSc) is a rare rheumatic autoimmune disease that encompasses several aspects of fibrosis, including highly variable fibrotic manifestation and rate of progression. The development of effective treatments is limited by these variabilities. The fibrotic response is characterized by both chronic inflammation and extracellular remodeling. Therefore, there is a need for improved understanding of which inflammation-related genes contribute to the ongoing turnover of extracellular matrix that accompanies disease. We have developed a multi-tiered method using Naïve Bayes modeling that is capable of predicting level of disease and clinical assessment of patients based on expression of a curated 60-gene panel that profiles inflammation and extracellular matrix production in the fibrotic disease state. Our novel modeling design, incorporating global and parametric-based methods, was highly accurate in distinguishing between severity groups, highlighting the importance of these genes in disease. We refined this gene set to a 12-gene index that can accurately identify SSc patient disease state subsets and informs knowledge of the central regulatory pathways in disease progression.
Collapse
Affiliation(s)
- Amin M. Cheikhi
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, United States of America
| | - Zariel I. Johnson
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, United States of America
| | - Dana R. Julian
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, United States of America
- Department of Health Promotion and Development, University of Pittsburgh School of Nursing, Pittsburgh, PA, United States of America
| | - Sarah Wheeler
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Carol Feghali-Bostwick
- Department of Rheumatology & Immunology, Medical University of South Carolina, Charleston, SC, United States of America
| | - Yvette P. Conley
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, United States of America
| | - James Lyons-Weiler
- Genomic and Proteomic Core Laboratories, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Cecelia C. Yates
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, United States of America
- Department of Health Promotion and Development, University of Pittsburgh School of Nursing, Pittsburgh, PA, United States of America
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
- * E-mail:
| |
Collapse
|
34
|
Vlachogiannis NI, Pappa M, Ntouros PA, Nezos A, Mavragani CP, Souliotis VL, Sfikakis PP. Association Between DNA Damage Response, Fibrosis and Type I Interferon Signature in Systemic Sclerosis. Front Immunol 2020; 11:582401. [PMID: 33123169 PMCID: PMC7566292 DOI: 10.3389/fimmu.2020.582401] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/14/2020] [Indexed: 01/22/2023] Open
Abstract
Increased endogenous DNA damage and type I interferon pathway activation have been implicated in systemic sclerosis (SSc) pathogenesis. Because experimental evidence suggests an interplay between DNA damage response/repair (DDR/R) and immune response, we hypothesized that deregulated DDR/R is associated with a type I interferon signature and/or fibrosis extent in SSc. DNA damage levels, oxidative stress, induction of abasic sites and the efficiency of DNA double-strand break repair (DSB/R) and nucleotide excision repair (NER) were assessed in peripheral blood mononuclear cells (PBMCs) derived from 37 SSc patients and 55 healthy controls; expression of DDR/R-associated genes and type I interferon-induced genes was also quantified. Endogenous DNA damage was significantly higher in untreated diffuse or limited SSc (Olive tail moment; 14.7 ± 7.0 and 9.5 ± 4.1, respectively) as well as in patients under cytotoxic treatment (15.0 ± 5.4) but not in very early onset SSc (5.6 ± 1.2) compared with controls (4.9 ± 2.6). Moreover, patients with pulmonary fibrosis had significantly higher DNA damage levels than those without (12.6 ± 5.8 vs. 8.8 ± 4.8, respectively). SSc patients displayed increased oxidative stress and abasic sites, defective DSB/R but not NER capacity, downregulation of genes involved in DSB/R (MRE11A, PRKDC) and base excision repair (PARP1, XRCC1), and upregulation of apoptosis-related genes (BAX, BBC3). Individual levels of DNA damage in SSc PBMCs correlated significantly with the corresponding mRNA expression of type I interferon-induced genes (IFIT1, IFI44 and MX1, r=0.419-0.490) as well as with corresponding skin involvement extent by modified Rodnan skin score (r=0.481). In conclusion, defective DDR/R may exert a fuel-on-fire effect on type I interferon pathway activation and contribute to tissue fibrosis in SSc.
Collapse
Affiliation(s)
- Nikolaos I Vlachogiannis
- First Department of Propaedeutic Internal Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece.,Joint Academic Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Maria Pappa
- First Department of Propaedeutic Internal Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece.,Joint Academic Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Panagiotis A Ntouros
- First Department of Propaedeutic Internal Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece.,Joint Academic Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Adrianos Nezos
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Clio P Mavragani
- Joint Academic Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece.,Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Vassilis L Souliotis
- First Department of Propaedeutic Internal Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece.,Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Petros P Sfikakis
- First Department of Propaedeutic Internal Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece.,Joint Academic Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece
| |
Collapse
|
35
|
Ramahi A, Altorok N, Kahaleh B. Epigenetics and systemic sclerosis: An answer to disease onset and evolution? Eur J Rheumatol 2020; 7:S147-S156. [PMID: 32697935 PMCID: PMC7647676 DOI: 10.5152/eurjrheum.2020.19112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/06/2020] [Indexed: 12/22/2022] Open
Abstract
There is growing evidence that implicates epigenetic modification in the pathogenesis of systemic sclerosis (SSc). The complexity of epigenetic regulation and its dynamic nature complicate the investigation of its role in the disease. We will review the current literature for factors that link epigenetics to SSc by discussing DNA methylation, histone acetylation and methylation, and non-coding RNAs (ncRNAs), particularly microRNA changes in endothelial cells, fibroblasts (FBs), and lymphocytes. These three cell types are significantly involved in the early stages and throughout the course of the disease and are particularly vulnerable to epigenetic regulation. The pathogenesis of SSc is likely related to modifications of the epigenome by environmental signals in individuals with a specific genetic makeup. The epigenome is an attractive therapeutic target; however, successful epigenetics-based treatments require a better understanding of the molecular mechanisms controlling the epigenome and its alteration in the disease.
Collapse
Affiliation(s)
- Ahmad Ramahi
- Division of Rheumatology and Immunology, Department of Internal Medicine, University of Toledo Medical Center, Toledo, OH, USA
| | - Nezam Altorok
- Division of Rheumatology and Immunology, Department of Internal Medicine, University of Toledo Medical Center, Toledo, OH, USA
| | - Bashar Kahaleh
- Division of Rheumatology and Immunology, Department of Internal Medicine, University of Toledo Medical Center, Toledo, OH, USA
| |
Collapse
|
36
|
Understanding Fibrosis in Systemic Sclerosis: Novel and Emerging Treatment Approaches. Curr Rheumatol Rep 2020; 22:77. [DOI: 10.1007/s11926-020-00953-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
|
37
|
Huang Y, Xiao D, Huang S, Zhuang J, Zheng X, Chang Y, Yin D. Circular RNA YAP1 attenuates osteoporosis through up-regulation of YAP1 and activation of Wnt/β-catenin pathway. Biomed Pharmacother 2020; 129:110365. [PMID: 32768931 DOI: 10.1016/j.biopha.2020.110365] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Osteoporosis is a systemic bone disease resulting from decreased bone mass and bone microstructure degeneration. Yes-associated protein 1 (YAP1) belongs to YAP family and plays a significant part in controlling bone quality. AIM OF THE STUDY Present study aimed to study the function and up-stream mechanism of YAP1 in the differentiation of BMSCs (bone marrow stromal cells) and MC3T3-E1. METHODS ALP staining, alizarin red staining and western blot analysis of osteogenic biomarkers determined osteogenic differentiation in BMSCs and MC3T3-E1. Mechanistic assays including luciferase reporter assay, RIP assay and RNA pull down assay disclosed the interplays between RNAs. RESULTS YAP1 promoted osteogenic differentiation of BMSCs and MC3T3-E1. Circ_0024097 originated from YAP1 sponged miR-376b-3p to elevate YAP1 expression in BMSCs and MC3T3-E1. Further, YAP1 mediated circ_0024097- promoted effects on osteogenic differentiation. Moreover, circ_0024097 activated Wnt/β-catenin pathway to facilitate osteogenic differentiation. CONCLUSION It was firstly uncovered in present study that circ_0024097 attenuated osteoporosis through promoting osteogenic differentiation via miR-376b-3p/YAP1 axis and Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Yongxiong Huang
- Department of Spine Surgery, Guangdong Provincial People's Hospital, Guangzhou, 510080, Guangdong, China
| | - Dan Xiao
- Department of Spine Surgery, Guangdong Provincial People's Hospital, Guangzhou, 510080, Guangdong, China
| | - Shuaihao Huang
- Department of Spine Surgery, Guangdong Provincial People's Hospital, Guangzhou, 510080, Guangdong, China
| | - Jianxiong Zhuang
- Department of Spine Surgery, Guangdong Provincial People's Hospital, Guangzhou, 510080, Guangdong, China
| | - Xiaoqing Zheng
- Department of Spine Surgery, Guangdong Provincial People's Hospital, Guangzhou, 510080, Guangdong, China
| | - Yunbing Chang
- Department of Spine Surgery, Guangdong Provincial People's Hospital, Guangzhou, 510080, Guangdong, China.
| | - Dong Yin
- Department of Spine Surgery, Guangdong Provincial People's Hospital, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
38
|
Luo Y, Xiao R. The Epigenetic Regulation of Scleroderma and Its Clinical Application. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1253:375-403. [PMID: 32445102 DOI: 10.1007/978-981-15-3449-2_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Scleroderma (systemic sclerosis; SSc) is a complex and highly heterogeneous multisystem rheumatic disease characterized by vascular abnormality, immunologic derangement, and excessive deposition of extracellular matrix (ECM) proteins. To date, the etiology of this life-threatening disorder remains not fully clear. More and more studies show epigenetic modifications play a vital role. The aberrant epigenetic status of certain molecules such as Fli-1, BMPRII, NRP1, CD70, CD40L, CD11A, FOXP3, KLF5, DKK1, SFRP1, and so on contributes to the pathogenesis of progressive vasculopathy, autoimmune dysfunction, and tissue fibrosis in SSc. Meanwhile, numerous miRNAs including miR-21, miR-29a, miR-196a, miR-202-3p, miR-150, miR-let-7a, and others are involved in the process. In addition, the abnormal epigenetic biomarker levels of CD11a, Foxp3, HDAC2, miR-30b, miR-142-3p, miR-150, miR-5196 in SSc are closely correlated with disease severity. In this chapter, we not only review new advancements on the epigenetic mechanisms involved in the pathogenesis of SSc and potential epigenetic biomarkers, but also discuss the therapeutic potential of epigenetic targeting therapeutics such as DNA methylation inhibitors, histone acetylase inhibitors, and miRNA replacement.
Collapse
Affiliation(s)
- Yangyang Luo
- Department of Dermatology, Hunan Children's Hospital, Changsha, China
| | - Rong Xiao
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
39
|
ONCU B, YİLMAZ A, KARADEMİR B, ALTUNOK EÇ, KURU L, AĞRALI ÖB. Cytotoxicity and Collagen Expression Effects of Tideglusib Administration on Human Periodontal Cells: An In-Vitro Study. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2020. [DOI: 10.33808/clinexphealthsci.709924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Duer M, Cobb AM, Shanahan CM. DNA Damage Response: A Molecular Lynchpin in the Pathobiology of Arteriosclerotic Calcification. Arterioscler Thromb Vasc Biol 2020; 40:e193-e202. [PMID: 32404005 DOI: 10.1161/atvbaha.120.313792] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Vascular calcification is a ubiquitous pathology of aging. Oxidative stress, persistent DNA damage, and senescence are major pathways driving both cellular and tissue aging, and emerging evidence suggests that these pathways are activated, and even accelerated, in patients with vascular calcification. The DNA damage response-a complex signaling platform that maintains genomic integrity-is induced by oxidative stress and is intimately involved in regulating cell death and osteogenic differentiation in both bone and the vasculature. Unexpectedly, a posttranslational modification, PAR (poly[ADP-ribose]), which is a byproduct of the DNA damage response, initiates biomineralization by acting to concentrate calcium into spheroidal structures that can nucleate apatitic mineral on the ECM (extracellular matrix). As we start to dissect the molecular mechanisms driving aging-associated vascular calcification, novel treatment strategies to promote healthy aging and delay pathological change are being unmasked. Drugs targeting the DNA damage response and senolytics may provide new avenues to tackle this detrimental and intractable pathology.
Collapse
Affiliation(s)
- Melinda Duer
- From the Department of Chemistry, University of Cambridge, United Kingdom (M.D.)
| | - Andrew M Cobb
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom (A.M.C., C.M.S.)
| | - Catherine M Shanahan
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom (A.M.C., C.M.S.)
| |
Collapse
|
41
|
Movassaghi S, Jafari S, Falahati K, Ataei M, Sanati MH, Jadali Z. Quantification of mitochondrial DNA damage and copy number in circulating blood of patients with systemic sclerosis by a qPCR-based assay. An Bras Dermatol 2020; 95:314-319. [PMID: 32307203 PMCID: PMC7253925 DOI: 10.1016/j.abd.2019.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 11/12/2019] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Although not fully understood, oxidative stress has been implicated in the pathogenesis of different autoimmune diseases such as systemic sclerosis. Accumulating evidence indicates that oxidative stress can induce mitochondrial DNA (mtDNA) damage and variations in mtDNA copy number (mtDNAcn). OBJECTIVE The aim of this study was to explore mtDNAcn and oxidative DNA damage byproducts in peripheral blood of patients with systemic sclerosis and healthy controls. METHODS Forty six patients with systemic sclerosis and forty nine healthy subjects were studied. Quantitative real-time PCR used to measure the relative mtDNAcn and the oxidative damage (oxidized purines) of each sample. RESULTS The mean mtDNAcn was lower in patients with systemic sclerosis than in healthy controls whereas the degree of mtDNA damage was significantly higher in cases as compared to controls. Moreover, there was a negative correlation between mtDNAcn and oxidative DNA damage. STUDY LIMITATIONS The lack of simultaneous analysis and quantification of DNA oxidative damage markers in serum or urine of patients with systemic sclerosis and healthy controls. CONCLUSION These data suggest that alteration in mtDNAcn and increased oxidative DNA damage may be involved in the pathogenesis of systemic sclerosis.
Collapse
Affiliation(s)
- Shafieh Movassaghi
- Department of Rheumatology, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Jafari
- Department of Rheumatology, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Kowsar Falahati
- Clinical Genetics Department, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mitra Ataei
- Clinical Genetics Department, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohammad Hossein Sanati
- Clinical Genetics Department, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Zohreh Jadali
- School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
42
|
Kumar V, Agrawal R, Pandey A, Kopf S, Hoeffgen M, Kaymak S, Bandapalli OR, Gorbunova V, Seluanov A, Mall MA, Herzig S, Nawroth PP. Compromised DNA repair is responsible for diabetes-associated fibrosis. EMBO J 2020; 39:e103477. [PMID: 32338774 PMCID: PMC7265245 DOI: 10.15252/embj.2019103477] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/27/2020] [Accepted: 03/08/2020] [Indexed: 11/09/2022] Open
Abstract
Diabetes-associated organ fibrosis, marked by elevated cellular senescence, is a growing health concern. Intriguingly, the mechanism underlying this association remained unknown. Moreover, insulin alone can neither reverse organ fibrosis nor the associated secretory phenotype, favoring the exciting notion that thus far unknown mechanisms must be operative. Here, we show that experimental type 1 and type 2 diabetes impairs DNA repair, leading to senescence, inflammatory phenotypes, and ultimately fibrosis. Carbohydrates were found to trigger this cascade by decreasing the NAD+ /NADH ratio and NHEJ-repair in vitro and in diabetes mouse models. Restoring DNA repair by nuclear over-expression of phosphomimetic RAGE reduces DNA damage, inflammation, and fibrosis, thereby restoring organ function. Our study provides a novel conceptual framework for understanding diabetic fibrosis on the basis of persistent DNA damage signaling and points to unprecedented approaches to restore DNA repair capacity for resolution of fibrosis in patients with diabetes.
Collapse
Affiliation(s)
- Varun Kumar
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg, Germany.,European Molecular Biology Laboratory, Advanced Light Microscopy Facility, Heidelberg, Germany.,German Center for Diabetes Research (DZD), Heidelberg, Germany
| | - Raman Agrawal
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Aparamita Pandey
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg, Germany
| | - Stefan Kopf
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg, Germany.,German Center for Diabetes Research (DZD), Heidelberg, Germany
| | - Manuel Hoeffgen
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg, Germany
| | - Serap Kaymak
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg, Germany
| | - Obul Reddy Bandapalli
- Hopp Children's Cancer Center, Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Marcus A Mall
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany.,Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Stephan Herzig
- German Center for Diabetes Research (DZD), Heidelberg, Germany.,Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz-Zentrum, München, Germany.,Technical University Munich, Munich, Germany
| | - Peter P Nawroth
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg, Germany.,German Center for Diabetes Research (DZD), Heidelberg, Germany.,Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz-Zentrum, München, Germany
| |
Collapse
|
43
|
Perillo B, Di Donato M, Pezone A, Di Zazzo E, Giovannelli P, Galasso G, Castoria G, Migliaccio A. ROS in cancer therapy: the bright side of the moon. Exp Mol Med 2020; 52:192-203. [PMID: 32060354 PMCID: PMC7062874 DOI: 10.1038/s12276-020-0384-2] [Citation(s) in RCA: 1295] [Impact Index Per Article: 259.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen species (ROS) constitute a group of highly reactive molecules that have evolved as regulators of important signaling pathways. It is now well accepted that moderate levels of ROS are required for several cellular functions, including gene expression. The production of ROS is elevated in tumor cells as a consequence of increased metabolic rate, gene mutation and relative hypoxia, and excess ROS are quenched by increased antioxidant enzymatic and nonenzymatic pathways in the same cells. Moderate increases of ROS contribute to several pathologic conditions, among which are tumor promotion and progression, as they are involved in different signaling pathways and induce DNA mutation. However, ROS are also able to trigger programmed cell death (PCD). Our review will emphasize the molecular mechanisms useful for the development of therapeutic strategies that are based on modulating ROS levels to treat cancer. Specifically, we will report on the growing data that highlight the role of ROS generated by different metabolic pathways as Trojan horses to eliminate cancer cells. Highly reactive molecules called reactive oxygen species (ROS), which at low levels are natural regulators of important signaling pathways in cells, might be recruited to act as “Trojan horses” to kill cancer cells. Researchers in Italy led by Bruno Perillo of the Institute of Food Sciences in Avelllino review the growing evidence suggesting that stimulating production of natural ROS species could become useful in treating cancer. Although ROS production is elevated in cancer cells it can also promote a natural process called programmed cell death. This normally regulates cell turnover, but could be selectively activated to target diseased cells. The authors discuss molecular mechanisms underlying the potential anti-cancer activity of various ROS-producing strategies, including drugs and light-stimulated therapies. They expect modifying the production of ROS to have potential for developing new treatments.
Collapse
Affiliation(s)
- Bruno Perillo
- Istituto di Scienze dell'Alimentazione, C.N.R., 83100, Avellino, Italy. .,Istituto per l'Endocrinologia e l'Oncologia Sperimentale, C.N.R., 80131, Naples, Italy.
| | - Marzia Di Donato
- Dipartimento di Medicina di Precisione, Università della Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Antonio Pezone
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131, Naples, Italy
| | - Erika Di Zazzo
- Dipartimento di Medicina di Precisione, Università della Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Pia Giovannelli
- Dipartimento di Medicina di Precisione, Università della Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Giovanni Galasso
- Dipartimento di Medicina di Precisione, Università della Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Gabriella Castoria
- Dipartimento di Medicina di Precisione, Università della Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Antimo Migliaccio
- Dipartimento di Medicina di Precisione, Università della Campania "L. Vanvitelli", 80138, Naples, Italy
| |
Collapse
|
44
|
Chiang MH, Liang CJ, Lin LC, Yang YF, Huang CC, Chen YH, Kao HL, Chen YC, Ke SR, Lee CW, Lin MS, Chen YL. miR-26a attenuates cardiac apoptosis and fibrosis by targeting ataxia-telangiectasia mutated in myocardial infarction. J Cell Physiol 2020; 235:6085-6102. [PMID: 31990056 DOI: 10.1002/jcp.29537] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 01/08/2020] [Indexed: 12/16/2022]
Abstract
Apoptosis and fibrosis play a vital role in myocardial infarction (MI) induced tissue injury. Although microRNAs have been the focus of many studies on cardiac apoptosis and fibrosis in MI, the detailed effects of miR-26a is needed to further understood. The present study demonstrated that miR-26a was downregulated in ST-elevation MI (STEMI) patients and oxygen-glucose deprivation (OGD)-treated H9c2 cells. Downregulation of miR-26a was closely correlated with the increased expression of creatine kinase, creatine kinase-MB and troponin I in STEMI patients. Further analysis identified that ataxia-telangiectasia mutated (ATM) was a target gene for miR-26a based on a bioinformatics analysis. miR-26a overexpression effectively reduced ATM expression, apoptosis, and apoptosis-related proteins in OGD-treated H9c2 cells. In a mouse model of MI, the expression of miR-26a was significantly decreased in the infarct zone of the heart, whereas apoptosis and ATM expression were increased. miR-26a overexpression effectively reduced ATM expression and cardiac apoptosis at Day 1 after MI. Furthermore, we demonstrated that overexpression of miR-26a improved cardiac function and reduced cardiac fibrosis by the reduced expression of collagen type I and connective tissue growth factor (CTGF) in mice at Day 14 after MI. Overexpression of miR-26a or ATM knockdown decreased collagen I and CTGF expression in cultured OGD-treated cardiomyocytes. Taken together, these data demonstrate a prominent role for miR-26a in linking ATM expression to ischemia-induced apoptosis and fibrosis, key features of MI progression. miR-26a reduced MI development by affecting ATM expression and could be targeted in the treatment of MI.
Collapse
Affiliation(s)
- Ming-Hsien Chiang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chan-Jung Liang
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lung-Chun Lin
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Fan Yang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ching-Chang Huang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ying-Hsien Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsien-Li Kao
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Chen Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shin-Rong Ke
- Cardiology Division of Cardiovascular Medical Center, Far Eastern Memorial Hospital, Taipei, Taiwan
| | - Chiang-Wen Lee
- Division of Basic Medical Sciences, Department of Nursing, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi, Taiwan.,Department of Rehabilitation, Chang Gung Memorial Hospital, Chiayi, Taiwan.,Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Mao-Shin Lin
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yuh-Lien Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
45
|
Zhang Y, Distler JHW. Therapeutic molecular targets of SSc-ILD. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2020; 5:17-30. [DOI: 10.1177/2397198319899013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/26/2019] [Indexed: 12/16/2022]
Abstract
Systemic sclerosis is a fibrosing chronic connective tissue disease of unknown etiology. A major hallmark of systemic sclerosis is the uncontrolled and persistent activation of fibroblasts, which release excessive amounts of extracellular matrix, lead to organ dysfunction, and cause high mobility and motility of patients. Systemic sclerosis–associated interstitial lung disease is one of the most common fibrotic organ manifestations in systemic sclerosis and a major cause of death. Treatment options for systemic sclerosis–associated interstitial lung disease and other fibrotic manifestations, however, remain very limited. Thus, there is a huge medical need for effective therapies that target tissue fibrosis, vascular alterations, inflammation, and autoimmune disease in systemic sclerosis–associated interstitial lung disease. In this review, we discuss data suggesting therapeutic ways to target different genes in distinct tissues/organs that contribute to the development of SSc.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Internal Medicine 3—Rheumatology and Immunology, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jörg HW Distler
- Department of Internal Medicine 3—Rheumatology and Immunology, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
46
|
Henderson J, Brown M, Horsburgh S, Duffy L, Wilkinson S, Worrell J, Stratton R, O'Reilly S. Methyl cap binding protein 2: a key epigenetic protein in systemic sclerosis. Rheumatology (Oxford) 2020; 58:527-535. [PMID: 30462328 DOI: 10.1093/rheumatology/key327] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 09/30/2018] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE SSc is an autoimmune connective tissue disease that results in skin fibrosis and currently has no effective treatment. Epigenetic modifications have been described and these may be key in initiating and driving fibroblast activation. Among these epigenetic modifications methylation may be of central importance. The aim of this study was to examine the role of methyl cap binding protein-2 (MeCP2) in SSc fibrosis. METHODS We used healthy and SSc dermal fibroblasts to examine the role of MeCP2, using both small interfering RNA silencing and lentiviral overexpression to determine its effects. We also examined the expression of MeCP2 in SSc fibroblasts by immunoblotting. miRNA132 was quantified by Taqman real time PCR. RESULTS We demonstrated that TGF-β1 induced the expression of MeCP2 in normal cells, and showed that SSc fibroblasts expressed high levels of MeCP2 under basal conditions. MeCP2 positively regulated the expression of extracellular matrix through epigenetic repression of the Wnt antagonist sFRP-1, leading to enhanced Wnt signalling. This mediated fibrosis through glycolysis, as the glycolysis inhibitor 2-deoxyglucose diminished the Wnt-mediated collagen expression. MiR132 expression was reduced in SSc fibroblasts. CONCLUSION The results suggest that an epigenetic loop exists mediating fibrosis. Targeting of MeCP2, as a key epigenetic regulator, may be a promising therapeutic approach, as would targeting the metabolic reprogramming that occurs through aerobic glycolysis.
Collapse
Affiliation(s)
- John Henderson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Max Brown
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Steven Horsburgh
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Laura Duffy
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Sarah Wilkinson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Julie Worrell
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK
| | - Richard Stratton
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital, Division of Medicine, University College London, London, UK
| | - Steven O'Reilly
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| |
Collapse
|
47
|
Zhu Z, Bai X, Wang H, Li X, Sun G, Zhang P. A study on the mechanism of Wnt inhibitory factor 1 in osteoarthritis. Arch Med Sci 2020; 16:898-906. [PMID: 32542093 PMCID: PMC7286342 DOI: 10.5114/aoms.2020.95667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/26/2017] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION In our study we aimed to investigate the mechanism of Wnt inhibitory factor 1 (WIF1) on regulating chondrocyte proliferation and apoptosis via reactive oxygen species (ROS) and the Wnt/βcatenin signaling pathway in osteoarthritis (OA). MATERIAL AND METHODS Osteoarthritis chondrocytes were treated with interleukin 1β (IL-1β) to simulate an inflammatory condition. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot were applied for detecting WIF1 expression in OA chondrocytes. MTT assay and flow cytometry were carried out to analyze the cell proliferation and apoptosis. Content of ROS was detected using flow cytometry, and activity of the Wnt/βcatenin signaling pathway was detected using immunofluorescence, western blot and luciferase reporter assay. Western blot and enzyme-linked immunosorbent assay (ELISA) were performed to detect the expression of apoptosis-related proteins and secretion of matrix metalloproteinases (MMPs). RESULTS WIF1 expression in OA chondrocytes was significantly lower than in normal chondrocytes. After WIF1 cDNA transfection, the aberrantly high ROS level in OA chondrocytes was down-regulated, which led to the increase of proliferation and reduction of apoptosis. The Wnt/βcatenin signaling pathway was suppressed by WIF1 overexpression and the secretion of MMPs was therefore reduced. CONCLUSIONS Up-regulation of WIF1 would promote proliferation and suppress apoptosis of OA chondrocytes through eliminating ROS production and reduce secretion of MMPs via blocking the Wnt/βcatenin signaling pathway.
Collapse
Affiliation(s)
| | - Xizhuang Bai
- Corresponding author: Xizhuang Bai MD, Department of Sports Medicine and Joint Surgery, The People’s Hospital of China Medical University, 33 Wenyi Road Shenhe District, Shenyang 110016 Liaoning, China, Phone: +86 024 24016114, E-mail:
| | | | | | | | | |
Collapse
|
48
|
DNA Damage Response and Oxidative Stress in Systemic Autoimmunity. Int J Mol Sci 2019; 21:ijms21010055. [PMID: 31861764 PMCID: PMC6982230 DOI: 10.3390/ijms21010055] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 02/08/2023] Open
Abstract
The DNA damage response and repair (DDR/R) network, a sum of hierarchically structured signaling pathways that recognize and repair DNA damage, and the immune response to endogenous and/or exogenous threats, act synergistically to enhance cellular defense. On the other hand, a deregulated interplay between these systems underlines inflammatory diseases including malignancies and chronic systemic autoimmune diseases, such as systemic lupus erythematosus, systemic sclerosis, and rheumatoid arthritis. Patients with these diseases are characterized by aberrant immune response to self-antigens with widespread production of autoantibodies and multiple-tissue injury, as well as by the presence of increased oxidative stress. Recent data demonstrate accumulation of endogenous DNA damage in peripheral blood mononuclear cells from these patients, which is related to (a) augmented DNA damage formation, at least partly due to the induction of oxidative stress, and (b) epigenetically regulated functional abnormalities of fundamental DNA repair mechanisms. Because endogenous DNA damage accumulation has serious consequences for cellular health, including genomic instability and enhancement of an aberrant immune response, these results can be exploited for understanding pathogenesis and progression of systemic autoimmune diseases, as well as for the development of new treatments.
Collapse
|
49
|
Asano Y, Varga J. Rationally-based therapeutic disease modification in systemic sclerosis: Novel strategies. Semin Cell Dev Biol 2019; 101:146-160. [PMID: 31859147 DOI: 10.1016/j.semcdb.2019.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023]
Abstract
Systemic sclerosis (SSc) is a highly challenging chronic condition that is dominated by the pathogenetic triad of vascular damage, immune dysregulation/autoimmunity and fibrosis in multiple organs. A hallmark of SSc is the remarkable degree of molecular and phenotypic disease heterogeneity, which surpasses that of other complex rheumatic diseases. Disease trajectories in SSc are unpredictable and variable from patient to patient. Disease-modifying therapies for SSc are lacking, long-term morbidity is considerable and mortality remains unacceptably high. Currently-used empirical approaches to disease modification have modest and variable clinical efficacy and impact on survival, are expensive and frequently associated with unfavorable side effects, and none can be considered curative. However, research during the past several years is yielding significant advances with therapeutic potential. In particular, the application of unbiased omics-based discovery technologies to large and well-characterized SSc patient cohorts, coupled with hypothesis-testing experimental research using a variety of model systems is revealing new insights into SSc that allow formulation of a more nuanced appreciation of disease heterogeneity, and a deepening understanding of pathogenesis. Indeed, we are now presented with numerous novel and rationally-based strategies for targeted SSc therapy, several of which are currently, or expected to be shortly, undergoing clinical evaluation. In this review, we discuss promising novel therapeutic targets and rationally-based approaches to disease modification that have the potential to improve long-term outcomes in SSc.
Collapse
Affiliation(s)
| | - John Varga
- Northwestern Scleroderma Program, Feinberg School of Medicine, Northwestern University, Chicago, United States.
| |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW Epigenetics has been implicated in the pathogenesis of systemic sclerosis (SSc). In this review, the involvement of the three epigenetic mechanisms in SSc development and progression-DNA methylation, histone modifications, and non-coding RNAs-will be discussed. RECENT FINDINGS Alteration in epigenetics was observed in immune cells, dermal fibroblasts, and endothelial cells derived from SSc patients. Genes that are affected include those involved in immune cell function and differentiation, TGFβ and Wnt pathways, extracellular matrix accumulation, transcription factors, and angiogenesis. All the studies remain in the pre-clinical stage. Extensive research provides evidence that epigenetic alterations are critical for SSc pathogenesis. Future epigenomic studies will undoubtedly continue to broaden our understanding of disease pathogenesis and clinical heterogeneity. They will also provide the scientific basis for repurposing epigenetic-modifying agents for SSc patients.
Collapse
Affiliation(s)
- Pei-Suen Tsou
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Pl., 4025 BSRB, Ann Arbor, MI, 48109-2200, USA.
| |
Collapse
|