1
|
Frommelt F, Ladurner R, Goldmann U, Wolf G, Ingles-Prieto A, Lineiro-Retes E, Gelová Z, Hopp AK, Christodoulaki E, Teoh ST, Leippe P, Santini BL, Rebsamen M, Lindinger S, Serrano I, Onstein S, Klimek C, Barbosa B, Pantielieieva A, Dvorak V, Hannich TJ, Schoenbett J, Sansig G, Mocking TAM, Ooms JF, IJzerman AP, Heitman LH, Sykacek P, Reinhardt J, Müller AC, Wiedmer T, Superti-Furga G. The solute carrier superfamily interactome. Mol Syst Biol 2025:10.1038/s44320-025-00109-1. [PMID: 40355756 DOI: 10.1038/s44320-025-00109-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 03/28/2025] [Accepted: 04/11/2025] [Indexed: 05/15/2025] Open
Abstract
Solute carrier (SLC) transporters form a protein superfamily that enables transmembrane transport of diverse substrates including nutrients, ions and drugs. There are about 450 different SLCs, residing in a variety of subcellular membranes. Loss-of-function of an unusually high proportion of SLC transporters is genetically associated with a plethora of human diseases, making SLCs a rapidly emerging but challenging drug target class. Knowledge of their protein environment may elucidate the molecular basis for their functional integration with metabolic and cellular pathways and help conceive pharmacological interventions based on modulating proteostatic regulation. We aimed at obtaining a global survey of the SLC-protein interaction landscape and mapped the protein-protein interactions of 396 SLCs by interaction proteomics. We employed a functional assessment based on RNA interference of interactors in combination with measurement of protein stability and localization. As an example, we detail the role of a SLC16A6 phospho-degron and the contributions of PDZ-domain proteins LIN7C and MPP1 to the trafficking of SLC43A2. Overall, our work offers a resource for SLC-protein interactions for the scientific community.
Collapse
Affiliation(s)
- Fabian Frommelt
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Rene Ladurner
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Ulrich Goldmann
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Gernot Wolf
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Alvaro Ingles-Prieto
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Eva Lineiro-Retes
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Zuzana Gelová
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Ann-Katrin Hopp
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Eirini Christodoulaki
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Shao Thing Teoh
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Philipp Leippe
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Brianda L Santini
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Manuele Rebsamen
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Sabrina Lindinger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Iciar Serrano
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Svenja Onstein
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Christoph Klimek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Barbara Barbosa
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Anastasiia Pantielieieva
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Vojtech Dvorak
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Thomas J Hannich
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Julian Schoenbett
- Novartis Pharma AG, Novartis Biomedical Research NBR/DSc, CH-4002, Basel, Switzerland
| | - Gilles Sansig
- Novartis Pharma AG, Novartis Biomedical Research NBR/DSc, CH-4002, Basel, Switzerland
| | - Tamara A M Mocking
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Jasper F Ooms
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Adriaan P IJzerman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Laura H Heitman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Peter Sykacek
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190, Vienna, Austria
| | - Juergen Reinhardt
- Novartis Pharma AG, Novartis Biomedical Research NBR/DSc, CH-4002, Basel, Switzerland
| | - André C Müller
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Tabea Wiedmer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria.
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria.
- Fondazione Ri.MED, Palermo, Italy.
| |
Collapse
|
2
|
Zhang Z, Sie B, Chang A, Leng Y, Nardone C, Timms RT, Elledge SJ. Elucidation of E3 ubiquitin ligase specificity through proteome-wide internal degron mapping. Mol Cell 2023; 83:3377-3392.e6. [PMID: 37738965 PMCID: PMC10594193 DOI: 10.1016/j.molcel.2023.08.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/07/2023] [Accepted: 08/17/2023] [Indexed: 09/24/2023]
Abstract
The ubiquitin-proteasome system plays a critical role in biology by regulating protein degradation. Despite their importance, precise recognition specificity is known for a few of the 600 E3s. Here, we establish a two-pronged strategy for identifying and mapping critical residues of internal degrons on a proteome-scale in HEK-293T cells. We employ global protein stability profiling combined with machine learning to identify 15,800 peptides likely to contain sequence-dependent degrons. We combine this with scanning mutagenesis to define critical residues for over 5,000 predicted degrons. Focusing on Cullin-RING ligase degrons, we generated mutational fingerprints for 219 degrons and developed DegronID, a computational algorithm enabling the clustering of degron peptides with similar motifs. CRISPR analysis enabled the discovery of E3-degron pairs, of which we uncovered 16 pairs that revealed extensive degron variability and structural determinants. We provide the visualization of these data on the public DegronID data browser as a resource for future exploration.
Collapse
Affiliation(s)
- Zhiqian Zhang
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Brandon Sie
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Aiquan Chang
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Yumei Leng
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher Nardone
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Richard T Timms
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Stephen J Elledge
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Low TY, Lee PY. Tandem Affinity Purification (TAP) of Interacting Prey Proteins with FLAG- and HA-Tagged Bait Proteins. Methods Mol Biol 2023; 2690:69-80. [PMID: 37450137 DOI: 10.1007/978-1-0716-3327-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Proteins often interact with each other to form complexes and play functional roles in almost all cellular processes. The study of protein-protein interactions is therefore critical to understand protein function and biological pathways. Affinity Purification coupled with Mass Spectrometry (AP-MS) is an invaluable technique for identifying the interaction partners in protein complexes. In this approach, the protein of interest is fused to an affinity tag, followed by the expression and purification of the fusion protein. The affinity-purified sample is then analyzed by mass spectrometry to identify the interaction partners of the bait proteins. In this chapter, we detail the protocol for tandem affinity purification (TAP) based on the use of the FLAG (a fusion tag with peptide sequence DYKDDDDK) and hemagglutinin (HA) peptide epitopes. The immunoprecipitation using dual-affinity tags offers the advantage of increasing the specificity of the purification with lower nonspecific-background interactions.
Collapse
Affiliation(s)
- Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Pey Yee Lee
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| |
Collapse
|
4
|
Lee PY, Low TY. Identification and Quantification of Affinity-Purified Proteins with MaxQuant, Followed by the Discrimination of Nonspecific Interactions with the CRAPome Interface. Methods Mol Biol 2023; 2690:299-310. [PMID: 37450156 DOI: 10.1007/978-1-0716-3327-4_25] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Affinity purification coupled to mass spectrometry (AP-MS) is a powerful method to analyze protein-protein interactions (PPIs). The AP-MS approach provides an unbiased analysis of the entire protein complex and is useful to identify indirect interactors. However, reliable protein identification from the complex AP-MS experiments requires appropriate control of false identifications and rigorous statistical analysis. Another challenge that can arise from AP-MS analysis is to distinguish bona fide interacting proteins from the non-specifically bound endogenous proteins or the "background contaminants" that co-purified by the bait experiments. In this chapter, we will first describe the protocol for performing in-solution trypsinization for the samples from the AP experiment followed by LC-MS/MS analysis. We will then detail the MaxQuant workflow for protein identification and quantification for the PPI data derived from the AP-MS experiment. Finally, we describe the CRAPome interface to process the data by filtering against contaminant lists, score the interactions and visualize the protein interaction networks.
Collapse
Affiliation(s)
- Pey Yee Lee
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| |
Collapse
|
5
|
Fiore APZP, Rodrigues AM, Ribeiro-Filho HV, Manucci AC, de Freitas Ribeiro P, Botelho MCS, Vogel C, Lopes-de-Oliveira PS, Pagano M, Bruni-Cardoso A. Extracellular matrix stiffness regulates degradation of MST2 via SCF βTrCP. Biochim Biophys Acta Gen Subj 2022; 1866:130238. [PMID: 36044955 PMCID: PMC9926743 DOI: 10.1016/j.bbagen.2022.130238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/01/2022] [Accepted: 08/23/2022] [Indexed: 01/28/2023]
Abstract
The Hippo pathway plays central roles in relaying mechanical signals during development and tumorigenesis, but how the proteostasis of the Hippo kinase MST2 is regulated remains unknown. Here, we found that chemical inhibition of proteasomal proteolysis resulted in increased levels of MST2 in human breast epithelial cells. MST2 binds SCFβTrCP E3 ubiquitin ligase and silencing βTrCP resulted in MST2 accumulation. Site-directed mutagenesis combined with computational molecular dynamics studies revealed that βTrCP binds MST2 via a non-canonical degradation motif. Additionally, stiffer extracellular matrix, as well as hyperactivation of integrins resulted in enhanced MST2 degradation mediated by integrin-linked kinase (ILK) and actomyosin stress fibers. Our study uncovers the underlying biochemical mechanisms controlling MST2 degradation and underscores how alterations in the microenvironment rigidity regulate the proteostasis of a central Hippo pathway component.
Collapse
Affiliation(s)
- Ana Paula Zen Petisco Fiore
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, Brazil; Department of Biology, New York University, New York, NY 10003, USA
| | - Ana Maria Rodrigues
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Helder Veras Ribeiro-Filho
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas 13083-970, Brazil
| | - Antonio Carlos Manucci
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Pedro de Freitas Ribeiro
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | | | - Christine Vogel
- Department of Biology, New York University, New York, NY 10003, USA
| | | | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Alexandre Bruni-Cardoso
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, Brazil.
| |
Collapse
|
6
|
Hou C, Li Y, Wang M, Wu H, Li T. Systematic prediction of degrons and E3 ubiquitin ligase binding via deep learning. BMC Biol 2022; 20:162. [PMID: 35836176 PMCID: PMC9281121 DOI: 10.1186/s12915-022-01364-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/29/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Degrons are short linear motifs, bound by E3 ubiquitin ligase to target protein substrates to be degraded by the ubiquitin-proteasome system. Mutations leading to deregulation of degron functionality disrupt control of protein abundance due to mistargeting of proteins destined for degradation and often result in pathologies. Targeting degrons by small molecules also emerges as an exciting drug design strategy to upregulate the expression of specific proteins. Despite their essential function and disease targetability, reliable identification of degrons remains a conundrum. Here, we developed a deep learning-based model named Degpred that predicts general degrons directly from protein sequences. RESULTS We showed that the BERT-based model performed well in predicting degrons singly from protein sequences. Then, we used the deep learning model Degpred to predict degrons proteome-widely. Degpred successfully captured typical degron-related sequence properties and predicted degrons beyond those from motif-based methods which use a handful of E3 motifs to match possible degrons. Furthermore, we calculated E3 motifs using predicted degrons on the substrates in our collected E3-substrate interaction dataset and constructed a regulatory network of protein degradation by assigning predicted degrons to specific E3s with calculated motifs. Critically, we experimentally verified that a predicted SPOP binding degron on CBX6 prompts CBX6 degradation and mediates the interaction with SPOP. We also showed that the protein degradation regulatory system is important in tumorigenesis by surveying degron-related mutations in TCGA. CONCLUSIONS Degpred provides an efficient tool to proteome-wide prediction of degrons and binding E3s singly from protein sequences. Degpred successfully captures typical degron-related sequence properties and predicts degrons beyond those from previously used motif-based methods, thus greatly expanding the degron landscape, which should advance the understanding of protein degradation, and allow exploration of uncharacterized alterations of proteins in diseases. To make it easier for readers to access collected and predicted datasets, we integrated these data into the website http://degron.phasep.pro/ .
Collapse
Affiliation(s)
- Chao Hou
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, 100191 China
| | - Yuxuan Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, 100191 China
| | - Mengyao Wang
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871 China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Hong Wu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871 China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
- Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
| | - Tingting Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, 100191 China
| |
Collapse
|
7
|
Fan J, Bellon M, Ju M, Zhao L, Wei M, Fu L, Nicot C. Clinical significance of FBXW7 loss of function in human cancers. Mol Cancer 2022; 21:87. [PMID: 35346215 PMCID: PMC8962602 DOI: 10.1186/s12943-022-01548-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/22/2022] [Indexed: 12/13/2022] Open
Abstract
FBXW7 (F-Box and WD Repeat Domain Containing 7) (also referred to as FBW7 or hCDC4) is a component of the Skp1-Cdc53 / Cullin-F-box-protein complex (SCF/β-TrCP). As a member of the F-box protein family, FBXW7 serves a role in phosphorylation-dependent ubiquitination and proteasome degradation of oncoproteins that play critical role(s) in oncogenesis. FBXW7 affects many regulatory functions involved in cell survival, cell proliferation, tumor invasion, DNA damage repair, genomic instability and telomere biology. This thorough review of current literature details how FBXW7 expression and functions are regulated through multiple mechanisms and how that ultimately drives tumorigenesis in a wide array of cell types. The clinical significance of FBXW7 is highlighted by the fact that FBXW7 is frequently inactivated in human lung, colon, and hematopoietic cancers. The loss of FBXW7 can serve as an independent prognostic marker and is significantly correlated with the resistance of tumor cells to chemotherapeutic agents and poorer disease outcomes. Recent evidence shows that genetic mutation of FBXW7 differentially affects the degradation of specific cellular targets resulting in a distinct and specific pattern of activation/inactivation of cell signaling pathways. The clinical significance of FBXW7 mutations in the context of tumor development, progression, and resistance to therapies as well as opportunities for targeted therapies is discussed.
Collapse
Affiliation(s)
- Jingyi Fan
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China.,Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Marcia Bellon
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Mingyi Ju
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China.
| | - Christophe Nicot
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA.
| |
Collapse
|
8
|
Wang C, Tan X, Tang D, Gou Y, Han C, Ning W, Lin S, Zhang W, Chen M, Peng D, Xue Y. GPS-Uber: a hybrid-learning framework for prediction of general and E3-specific lysine ubiquitination sites. Brief Bioinform 2022; 23:6509047. [PMID: 35037020 DOI: 10.1093/bib/bbab574] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022] Open
Abstract
As an important post-translational modification, lysine ubiquitination participates in numerous biological processes and is involved in human diseases, whereas the site specificity of ubiquitination is mainly decided by ubiquitin-protein ligases (E3s). Although numerous ubiquitination predictors have been developed, computational prediction of E3-specific ubiquitination sites is still a great challenge. Here, we carefully reviewed the existing tools for the prediction of general ubiquitination sites. Also, we developed a tool named GPS-Uber for the prediction of general and E3-specific ubiquitination sites. From the literature, we manually collected 1311 experimentally identified site-specific E3-substrate relations, which were classified into different clusters based on corresponding E3s at different levels. To predict general ubiquitination sites, we integrated 10 types of sequence and structure features, as well as three types of algorithms including penalized logistic regression, deep neural network and convolutional neural network. Compared with other existing tools, the general model in GPS-Uber exhibited a highly competitive accuracy, with an area under curve values of 0.7649. Then, transfer learning was adopted for each E3 cluster to construct E3-specific models, and in total 112 individual E3-specific predictors were implemented. Using GPS-Uber, we conducted a systematic prediction of human cancer-associated ubiquitination events, which could be helpful for further experimental consideration. GPS-Uber will be regularly updated, and its online service is free for academic research at http://gpsuber.biocuckoo.cn/.
Collapse
Affiliation(s)
- Chenwei Wang
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiaodan Tan
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Dachao Tang
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yujie Gou
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Cheng Han
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Wanshan Ning
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shaofeng Lin
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Weizhi Zhang
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Miaomiao Chen
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Di Peng
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yu Xue
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
9
|
Wei P, Jiang J, Xiao M, Zeng M, Liu X, Zhao B, Chen F. The transcript ENST00000444125 of lncRNA LINC01503 promotes cancer stem cell properties of glioblastoma cells via reducing FBXW1 mediated GLI2 degradation. Exp Cell Res 2022; 412:113009. [PMID: 34990616 DOI: 10.1016/j.yexcr.2022.113009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/22/2021] [Accepted: 01/02/2022] [Indexed: 11/04/2022]
Abstract
LINC010503 is a novel oncogenic lncRNA in multiple cancers. In this study, we further explored the expression of LINC010503 transcripts and their regulations on the glioblastoma (GBM) stem cell (GSC) properties. LINC01503 transcription patterns in GBM and normal brain tissues were compared using RNA-seq data from Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA)-GBM. GBM cell lines (U251 and U87) were used as in vitro cell models for cellular and molecular studies. The results showed that ENST00000444125 was the dominant transcript of LINC01503 in both normal and tumor tissues. Its expression was significantly elevated in the tumor group and associated with poor survival outcomes. LINC01503 had both cytoplasmic and nuclear distribution. It positively modulated the expression of multiple GSC markers, including CD133, SOX2, NESTIN, ALDH1A1, and MSI1, and tumorsphere formation in U251 and U87 cells. RNA pull-down and RIP-qPCR assay confirmed an interaction between ENST00000444125 and GLI2. ENST00000444125 positively regulated the half-life of the GLI2 protein in GBM cells. ENST00000444125 overexpression reduced GLI2 ubiquitination and partially attenuated FBXW1 overexpression induced GLI2 ubiquitination. ENST00000444125 overexpression could activate Wnt/β-catenin signaling in GBM cells. However, these activating effects were remarkedly hampered when GLI2 was knocked down. In conclusion, this study revealed that LINC01503 might have isoform-specific dysregulation in GBM. Among the two major transcripts expressed in GBM cells, ENST00000444125 might be the major functional transcript. Its upregulation might enhance the GSC properties of GBM cells via reducing FBXW1-mediated proteasomal degradation of GLI2.
Collapse
Affiliation(s)
- Pan Wei
- Department of Neurosurgery, The First People(')s Hospital of LongQuanYi District, Chengdu, Sichuan, 610100, China
| | - Jing Jiang
- Department of Gastroenterology, The First People(')s Hospital of LongQuanYi District, Chengdu, Sichuan, 610100, China
| | - Ming Xiao
- Department of Neurosurgery, The First People(')s Hospital of LongQuanYi District, Chengdu, Sichuan, 610100, China
| | - Mengfei Zeng
- Department of Neurosurgery, The First People(')s Hospital of LongQuanYi District, Chengdu, Sichuan, 610100, China
| | - Xingzhi Liu
- Department of Neurosurgery, The First People(')s Hospital of LongQuanYi District, Chengdu, Sichuan, 610100, China
| | - Baihao Zhao
- Department of Neurosurgery, The First People(')s Hospital of LongQuanYi District, Chengdu, Sichuan, 610100, China
| | - Fang Chen
- Department of Neurosurgery, The First People(')s Hospital of LongQuanYi District, Chengdu, Sichuan, 610100, China.
| |
Collapse
|
10
|
Global identification of phospho-dependent SCF substrates reveals a FBXO22 phosphodegron and an ERK-FBXO22-BAG3 axis in tumorigenesis. Cell Death Differ 2022; 29:1-13. [PMID: 34215846 PMCID: PMC8738747 DOI: 10.1038/s41418-021-00827-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
SKP1-CUL1-F-box (SCF) ubiquitin ligases play fundamental roles in cellular functions. Typically, substrate phosphorylation is required for SCF recognition and subsequent degradation. However, phospho-dependent substrates remain largely unidentified. Here, using quantitative phoshoproteome approach, we performed a system-wide investigation of phospho-dependent SCF substrates. This strategy identified diverse phospho-dependent candidates. Biochemical verification revealed a mechanism by which SCFFBXO22 recognizes the motif XXPpSPXPXX as a conserved phosphodegron to target substrates for destruction. We further demonstrated BAG3, a HSP70 co-chaperone, is a bona fide substrate of SCFFBXO22. FBXO22 mediates BAG3 ubiquitination and degradation that requires ERK-dependent BAG3 phosphorylation at S377. FBXO22 depletion or expression of a stable BAG3 S377A mutant promotes tumor growth via defects in apoptosis and cell cycle progression in vitro and in vivo. In conclusion, our study identified broad phosphorylation-dependent SCF substrates and demonstrated a phosphodegron recognized by FBXO22 and a novel ERK-FBXO22-BAG3 axis involved in tumorigenesis.
Collapse
|
11
|
Mayca Pozo F, Geng X, Tamagno I, Jackson MW, Heimsath EG, Hammer JA, Cheney RE, Zhang Y. MYO10 drives genomic instability and inflammation in cancer. SCIENCE ADVANCES 2021; 7:eabg6908. [PMID: 34524844 PMCID: PMC8443186 DOI: 10.1126/sciadv.abg6908] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/26/2021] [Indexed: 05/29/2023]
Abstract
Genomic instability is a hallmark of human cancer; yet the underlying mechanisms remain poorly understood. Here, we report that the cytoplasmic unconventional Myosin X (MYO10) regulates genome stability, through which it mediates inflammation in cancer. MYO10 is an unstable protein that undergoes ubiquitin-conjugating enzyme H7 (UbcH7)/β-transducin repeat containing protein 1 (β-TrCP1)–dependent degradation. MYO10 is upregulated in both human and mouse tumors and its expression level predisposes tumor progression and response to immune therapy. Overexpressing MYO10 increased genomic instability, elevated the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING)–dependent inflammatory response, and accelerated tumor growth in mice. Conversely, depletion of MYO10 ameliorated genomic instability and reduced the inflammation signaling. Further, inhibiting inflammation or disrupting Myo10 significantly suppressed the growth of both human and mouse breast tumors in mice. Our data suggest that MYO10 promotes tumor progression through inducing genomic instability, which, in turn, creates an immunogenic environment for immune checkpoint blockades.
Collapse
Affiliation(s)
- Franklin Mayca Pozo
- Department of Pharmacology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Xinran Geng
- Department of Pharmacology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ilaria Tamagno
- Department of Pathology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Mark W. Jackson
- Department of Pathology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ernest G. Heimsath
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - John A. Hammer
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
| | - Richard E. Cheney
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Youwei Zhang
- Department of Pharmacology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
12
|
Abu Ahmad Y, Oknin-Vaisman A, Bitman-Lotan E, Orian A. From the Evasion of Degradation to Ubiquitin-Dependent Protein Stabilization. Cells 2021; 10:2374. [PMID: 34572023 PMCID: PMC8469536 DOI: 10.3390/cells10092374] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/30/2021] [Accepted: 09/04/2021] [Indexed: 12/11/2022] Open
Abstract
A hallmark of cancer is dysregulated protein turnover (proteostasis), which involves pathologic ubiquitin-dependent degradation of tumor suppressor proteins, as well as increased oncoprotein stabilization. The latter is due, in part, to mutation within sequences, termed degrons, which are required for oncoprotein recognition by the substrate-recognition enzyme, E3 ubiquitin ligase. Stabilization may also result from the inactivation of the enzymatic machinery that mediates the degradation of oncoproteins. Importantly, inactivation in cancer of E3 enzymes that regulates the physiological degradation of oncoproteins, results in tumor cells that accumulate multiple active oncoproteins with prolonged half-lives, leading to the development of "degradation-resistant" cancer cells. In addition, specific sequences may enable ubiquitinated proteins to evade degradation at the 26S proteasome. While the ubiquitin-proteasome pathway was originally discovered as central for protein degradation, in cancer cells a ubiquitin-dependent protein stabilization pathway actively translates transient mitogenic signals into long-lasting protein stabilization and enhances the activity of key oncoproteins. A central enzyme in this pathway is the ubiquitin ligase RNF4. An intimate link connects protein stabilization with tumorigenesis in experimental models as well as in the clinic, suggesting that pharmacological inhibition of protein stabilization has potential for personalized medicine in cancer. In this review, we highlight old observations and recent advances in our knowledge regarding protein stabilization.
Collapse
Affiliation(s)
| | | | | | - Amir Orian
- Rappaport Faculty of Medicine, R-TICC, Technion-IIT, Efron St. Bat-Galim, Haifa 3109610, Israel; (Y.A.A.); (A.O.-V.); (E.B.-L.)
| |
Collapse
|
13
|
Rumpret M, von Richthofen HJ, van der Linden M, Westerlaken GHA, Talavera Ormeño C, Low TY, Ovaa H, Meyaard L. Recognition of S100 proteins by Signal Inhibitory Receptor on Leukocytes-1 negatively regulates human neutrophils. Eur J Immunol 2021; 51:2210-2217. [PMID: 34145909 PMCID: PMC8457157 DOI: 10.1002/eji.202149278] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/12/2021] [Accepted: 06/15/2021] [Indexed: 12/23/2022]
Abstract
Signal inhibitory receptor on leukocytes‐1 (SIRL‐1) is an inhibitory receptor with a hitherto unknown ligand, and is expressed on human monocytes and neutrophils. SIRL‐1 inhibits myeloid effector functions such as reactive oxygen species (ROS) production. In this study, we identify S100 proteins as SIRL‐1 ligands. S100 proteins are composed of two calcium‐binding domains. Various S100 proteins are damage‐associated molecular patterns (DAMPs) released from damaged cells, after which they initiate inflammation by ligating activating receptors on immune cells. We now show that the inhibitory SIRL‐1 recognizes individual calcium‐binding domains of all tested S100 proteins. Blocking SIRL‐1 on human neutrophils enhanced S100 protein S100A6‐induced ROS production, showing that S100A6 suppresses neutrophil ROS production via SIRL‐1. Taken together, SIRL‐1 is an inhibitory receptor recognizing the S100 protein family of DAMPs. This may help limit tissue damage induced by activated neutrophils.
Collapse
Affiliation(s)
- Matevž Rumpret
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Helen J von Richthofen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Maarten van der Linden
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Geertje H A Westerlaken
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Cami Talavera Ormeño
- Oncode Institute, Utrecht, The Netherlands.,Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Teck Y Low
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences and Netherlands Proteomics Center, Utrecht University, Utrecht, The Netherlands
| | - Huib Ovaa
- Oncode Institute, Utrecht, The Netherlands.,Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Linde Meyaard
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| |
Collapse
|
14
|
Saei AA, Beusch CM, Sabatier P, Wells JA, Gharibi H, Meng Z, Chernobrovkin A, Rodin S, Näreoja K, Thorsell AG, Karlberg T, Cheng Q, Lundström SL, Gaetani M, Végvári Á, Arnér ESJ, Schüler H, Zubarev RA. System-wide identification and prioritization of enzyme substrates by thermal analysis. Nat Commun 2021; 12:1296. [PMID: 33637753 PMCID: PMC7910609 DOI: 10.1038/s41467-021-21540-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Despite the immense importance of enzyme-substrate reactions, there is a lack of general and unbiased tools for identifying and prioritizing substrate proteins that are modified by the enzyme on the structural level. Here we describe a high-throughput unbiased proteomics method called System-wide Identification and prioritization of Enzyme Substrates by Thermal Analysis (SIESTA). The approach assumes that the enzymatic post-translational modification of substrate proteins is likely to change their thermal stability. In our proof-of-concept studies, SIESTA successfully identifies several known and novel substrate candidates for selenoprotein thioredoxin reductase 1, protein kinase B (AKT1) and poly-(ADP-ribose) polymerase-10 systems. Wider application of SIESTA can enhance our understanding of the role of enzymes in homeostasis and disease, opening opportunities to investigate the effect of post-translational modifications on signal transduction and facilitate drug discovery.
Collapse
Affiliation(s)
- Amir Ata Saei
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| | - Christian M Beusch
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Pierre Sabatier
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Juan Astorga Wells
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Hassan Gharibi
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Zhaowei Meng
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Alexey Chernobrovkin
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Pelago Bioscience AB, Solna, Sweden
| | - Sergey Rodin
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Katja Näreoja
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Ann-Gerd Thorsell
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Tobias Karlberg
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Qing Cheng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Susanna L Lundström
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Massimiliano Gaetani
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- SciLifeLab, Stockholm, Sweden
- Chemical Proteomics Core Facility, Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ákos Végvári
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Proteomics Biomedicum, Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Herwig Schüler
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Roman A Zubarev
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
- Department of Pharmacological & Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.
| |
Collapse
|
15
|
Witting KF, Mulder MP. Highly Specialized Ubiquitin-Like Modifications: Shedding Light into the UFM1 Enigma. Biomolecules 2021; 11:biom11020255. [PMID: 33578803 PMCID: PMC7916544 DOI: 10.3390/biom11020255] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/15/2022] Open
Abstract
Post-translational modification with Ubiquitin-like proteins represents a complex signaling language regulating virtually every cellular process. Among these post-translational modifiers is Ubiquitin-fold modifier (UFM1), which is covalently attached to its substrates through the orchestrated action of a dedicated enzymatic cascade. Originally identified to be involved embryonic development, its biological function remains enigmatic. Recent research reveals that UFM1 regulates a variety of cellular events ranging from DNA repair to autophagy and ER stress response implicating its involvement in a variety of diseases. Given the contribution of UFM1 to numerous pathologies, the enzymes of the UFM1 cascade represent attractive targets for pharmacological inhibition. Here we discuss the current understanding of this cryptic post-translational modification especially its contribution to disease as well as expand on the unmet needs of developing chemical and biochemical tools to dissect its role.
Collapse
|
16
|
Merkel Cell Polyomavirus Large T Antigen Unique Domain Regulates Its Own Protein Stability and Cell Growth. Viruses 2020; 12:v12091043. [PMID: 32962090 PMCID: PMC7551350 DOI: 10.3390/v12091043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Merkel cell polyomavirus (MCV) is the only known human oncogenic virus in the polyomaviridae family and the etiological agent of most Merkel cell carcinomas (MCC). MCC is an aggressive and highly metastatic skin cancer with a propensity for recurrence and poor prognosis. Large tumor antigen (LT), is an essential oncoprotein for MCV transcription, viral replication, and cancer cell proliferation. MCV LT is a short-lived protein that encodes a unique domain: MCV LT unique regions (MURs). These domains consist of phosphorylation sites that interact with multiple E3 ligases, thus limiting LT expression and consequently, viral replication. In this study, we show that MURs are necessary for regulating LT stability via multiple E3 ligase interactions, resulting in cell growth arrest. While expression of wild-type MCV LT induced a decrease in cellular proliferation, deletion of the MUR domains resulted in increased LT stability and cell proliferation. Conversely, addition of MURs to SV40 LT propagated E3 ligase interactions, which in turn, reduced SV40 LT stability and decreased cell growth activity. Our results demonstrate that compared to other human polyomaviruses (HPyVs), MCV LT has evolved to acquire the MUR domains that are essential for MCV LT autoregulation, potentially leading to viral latency and MCC.
Collapse
|
17
|
Ubiquitylation of the ER-Shaping Protein Lunapark via the CRL3KLHL12 Ubiquitin Ligase Complex. Cell Rep 2020; 31:107664. [DOI: 10.1016/j.celrep.2020.107664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 01/16/2020] [Accepted: 04/28/2020] [Indexed: 11/19/2022] Open
|
18
|
Baek K, Krist DT, Prabu JR, Hill S, Klügel M, Neumaier LM, von Gronau S, Kleiger G, Schulman BA. NEDD8 nucleates a multivalent cullin-RING-UBE2D ubiquitin ligation assembly. Nature 2020; 578:461-466. [PMID: 32051583 PMCID: PMC7050210 DOI: 10.1038/s41586-020-2000-y] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/09/2020] [Indexed: 01/23/2023]
Abstract
Eukaryotic cell biology depends on cullin-RING E3 ligase (CRL)-catalysed protein ubiquitylation1, which is tightly controlled by the modification of cullin with the ubiquitin-like protein NEDD82-6. However, how CRLs catalyse ubiquitylation, and the basis of NEDD8 activation, remain unknown. Here we report the cryo-electron microscopy structure of a chemically trapped complex that represents the ubiquitylation intermediate, in which the neddylated CRL1β-TRCP promotes the transfer of ubiquitin from the E2 ubiquitin-conjugating enzyme UBE2D to its recruited substrate, phosphorylated IκBα. NEDD8 acts as a nexus that binds disparate cullin elements and the RING-activated ubiquitin-linked UBE2D. Local structural remodelling of NEDD8 and large-scale movements of CRL domains converge to juxtapose the substrate and the ubiquitylation active site. These findings explain how a distinctive ubiquitin-like protein alters the functions of its targets, and show how numerous NEDD8-dependent interprotein interactions and conformational changes synergistically configure a catalytic CRL architecture that is both robust, to enable rapid ubiquitylation of the substrate, and fragile, to enable the subsequent functions of cullin-RING proteins.
Collapse
Affiliation(s)
- Kheewoong Baek
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - David T Krist
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - J Rajan Prabu
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Spencer Hill
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Maren Klügel
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Lisa-Marie Neumaier
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Susanne von Gronau
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Gary Kleiger
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
19
|
Magliozzi R, Carrero ZI, Low TY, Yuniati L, Valdes-Quezada C, Kruiswijk F, van Wijk K, Heck AJR, Jackson CL, Guardavaccaro D. Inheritance of the Golgi Apparatus and Cytokinesis Are Controlled by Degradation of GBF1. Cell Rep 2019; 23:3381-3391.e4. [PMID: 29898406 DOI: 10.1016/j.celrep.2018.05.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/05/2018] [Accepted: 05/10/2018] [Indexed: 11/27/2022] Open
Abstract
Although much is known about how chromosome segregation is coupled to cell division, how intracellular organelles partition during mitotic division is poorly understood. We report that the phosphorylation-dependent degradation of the ARFGEF GBF1 regulates organelle trafficking during cell division. We show that, in mitosis, GBF1 is phosphorylated on Ser292 and Ser297 by casein kinase-2 allowing recognition by the F-box protein βTrCP. GBF1 interaction with βTrCP recruits GBF1 to the SCFβTrCP ubiquitin ligase complex, triggering its degradation. Phosphorylation and degradation of GBF1 occur along microtubules at the intercellular bridge of telophase cells and are required for Golgi membrane positioning and postmitotic Golgi reformation. Indeed, expression of a non-degradable GBF1 mutant inhibits the transport of the Golgi cluster adjacent to the midbody toward the Golgi twin positioned next to the centrosome and results in defective Golgi reassembly and cytokinesis failure. These findings define a mechanism that controls postmitotic Golgi reassembly and inheritance.
Collapse
Affiliation(s)
- Roberto Magliozzi
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 Utrecht, the Netherlands
| | - Zunamys I Carrero
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 Utrecht, the Netherlands
| | - Teck Yew Low
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands; The Netherlands Proteomics Center, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Laurensia Yuniati
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 Utrecht, the Netherlands
| | - Christian Valdes-Quezada
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 Utrecht, the Netherlands
| | - Flore Kruiswijk
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 Utrecht, the Netherlands
| | - Koen van Wijk
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 Utrecht, the Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands; The Netherlands Proteomics Center, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Catherine L Jackson
- Membrane Dynamics and Intracellular Trafficking, Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Daniele Guardavaccaro
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 Utrecht, the Netherlands.
| |
Collapse
|
20
|
Rayner SL, Morsch M, Molloy MP, Shi B, Chung R, Lee A. Using proteomics to identify ubiquitin ligase-substrate pairs: how novel methods may unveil therapeutic targets for neurodegenerative diseases. Cell Mol Life Sci 2019; 76:2499-2510. [PMID: 30919022 PMCID: PMC11105231 DOI: 10.1007/s00018-019-03082-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/14/2019] [Accepted: 03/20/2019] [Indexed: 12/13/2022]
Abstract
Ubiquitin ligases play an integral role in fine-tuning signaling cascades necessary for normal cell function. Aberrant regulation of ubiquitin ligases has been implicated in several neurodegenerative diseases, generally, due to mutations within the E3 ligase itself. Several proteomic-based methods have recently emerged to facilitate the rapid identification of ligase-substrate pairs-a previously challenging feat due to the transient nature of ligase-substrate interactions. These novel methods complement standard immunoprecipitations (IPs) and include proximity-dependent biotin identification (BioID), ubiquitin ligase-substrate trapping, tandem ubiquitin-binding entities (TUBEs), and a molecular trapping unit known as the NEDDylator. The implementation of these techniques is expected to facilitate the rapid identification of novel substrates of E3 ubiquitin ligases, a process that is likely to enhance our understanding of neurodegenerative diseases and highlight novel therapeutic targets for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Stephanie L Rayner
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, 2 Technology Place, Macquarie Park, Sydney, NSW, 2109, Australia
| | - Marco Morsch
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, 2 Technology Place, Macquarie Park, Sydney, NSW, 2109, Australia
| | - Mark P Molloy
- Faculty of Medicine and Health, Sydney School of Medicine, Royal North Shore Hospital, Pacific Hwy, St Leonards, Sydney, NSW, 2065, Australia
| | - Bingyang Shi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, 2 Technology Place, Macquarie Park, Sydney, NSW, 2109, Australia
| | - Roger Chung
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, 2 Technology Place, Macquarie Park, Sydney, NSW, 2109, Australia
| | - Albert Lee
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, 2 Technology Place, Macquarie Park, Sydney, NSW, 2109, Australia.
| |
Collapse
|
21
|
Controlling Nuclear NF-κB Dynamics by β-TrCP-Insights from a Computational Model. Biomedicines 2019; 7:biomedicines7020040. [PMID: 31137887 PMCID: PMC6631534 DOI: 10.3390/biomedicines7020040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/15/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022] Open
Abstract
The canonical nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway regulates central processes in mammalian cells and plays a fundamental role in the regulation of inflammation and immunity. Aberrant regulation of the activation of the transcription factor NF-κB is associated with severe diseases such as inflammatory bowel disease and arthritis. In the canonical pathway, the inhibitor IκB suppresses NF-κB’s transcriptional activity. NF-κB becomes active upon the degradation of IκB, a process that is, in turn, regulated by the β-transducin repeat-containing protein (β-TrCP). β-TrCP has therefore been proposed as a promising pharmacological target in the development of novel therapeutic approaches to control NF-κB’s activity in diseases. This study explores the extent to which β-TrCP affects the dynamics of nuclear NF-κB using a computational model of canonical NF-κB signaling. The analysis predicts that β-TrCP influences the steady-state concentration of nuclear NF-κB, as well as changes characteristic dynamic properties of nuclear NF-κB, such as fold-change and the duration of its response to pathway stimulation. The results suggest that the modulation of β-TrCP has a high potential to regulate the transcriptional activity of NF-κB.
Collapse
|
22
|
Liu J, Yuan Y, Xu J, Xiao K, Xu Y, Guo T, Zhang L, Wang J, Zheng H. β-TrCP Restricts Lipopolysaccharide (LPS)-Induced Activation of TRAF6-IKK Pathway Upstream of IκBα Signaling. Front Immunol 2018; 9:2930. [PMID: 30619291 PMCID: PMC6300488 DOI: 10.3389/fimmu.2018.02930] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/29/2018] [Indexed: 11/14/2022] Open
Abstract
β transducin repeat-containing protein (β-TrCP) is a Skp1-Cul1-F-box ubiquitin ligase, which plays important roles in controlling numerous signaling pathways. Notably, β-TrCP induces ubiquitination and degradation of inhibitor of NF-κB (IκBα), thus triggering activation of NF-κB signaling. Here, we unexpectedly find that β-TrCP restricts TRAF6-IKK signaling upstream of IκBα induced by lipopolysaccharide (LPS). In LPS-Toll-like receptor 4 (TLR4) pathway, protein kinase D1 (PKD1) is essential for activation of TRAF6-IKK-IκBα signaling including TRAF6 ubiquitination, IKK phosphorylation and subsequent IκBα degradation. We found that LPS promotes binding of β-TrCP to PKD1, and results in downregulation of PKD1 and recovery of IκBα protein level. Knockdown of β-TrCP blocks LPS-induced downregulation of PKD1. Supplement of enough PKD1 in cells inhibits recovery of IκBα protein levels during LPS stimulation. Furthermore, we demonstrate that β-TrCP inhibits LPS-induced TRAF6 ubiquitination and IKK phosphorylation. Taken together, our findings identify β-TrCP as an important negative regulator for upstream signaling of IκBα in LPS pathway, and therefore renew the understanding of the roles of β-TrCP in regulating TLRs inflammatory signaling.
Collapse
Affiliation(s)
- Jin Liu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Yukang Yuan
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Jing Xu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Kui Xiao
- Department of Respiratory Medicine, The Second Xiangya Hospital, Institute of Respiratory Disease, Central South University, Changsha, China
| | - Ying Xu
- Department of Intensive Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tingting Guo
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Liting Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Jun Wang
- Department of Intensive Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hui Zheng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| |
Collapse
|
23
|
Tanghe G, Urwyler-Rösselet C, De Groote P, Dejardin E, De Bock PJ, Gevaert K, Vandenabeele P, Declercq W. RIPK4 activity in keratinocytes is controlled by the SCF β-TrCP ubiquitin ligase to maintain cortical actin organization. Cell Mol Life Sci 2018; 75:2827-2841. [PMID: 29435596 PMCID: PMC11105318 DOI: 10.1007/s00018-018-2763-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/22/2018] [Accepted: 01/25/2018] [Indexed: 01/20/2023]
Abstract
RIPK4 is a key player in epidermal differentiation and barrier formation. RIPK4 signaling pathways controlling keratinocyte proliferation and differentiation depend on its kinase activity leading to Dvl2, Pkp1 and IRF6 phosphorylation and NF-κB activation. However, the mechanism regulating RIPK4 activity levels remains elusive. We show that cultured keratinocytes display constitutive active phosphorylated RIPK4 while PKC signaling can trigger RIPK4 activation in various non-keratinocyte cell lines, in which RIPK4 is present in a non-phosphorylated state. Interestingly, we identified the SCFβ-TrCP ubiquitin E3 ligase complex responsible for regulating the active RIPK4 protein level. The SCFβ-TrCP complex binds to a conserved phosphodegron motif in the intermediate domain of RIPK4, subsequently leading to K48-linked ubiquitinylation and degradation. The recruitment of β-TrCP is dependent on RIPK4 activation and trans-autophosphorylation. β-TrCP knock-down resulted in RIPK4-dependent formation of actin stress fibers, cell scattering and increased cell motility, suggesting that tight control of RIPK4 activity levels is crucial to maintain cell shape and behavior in keratinocytes.
Collapse
Affiliation(s)
- Giel Tanghe
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Technologiepark 927, 9052, Gent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Corinne Urwyler-Rösselet
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Technologiepark 927, 9052, Gent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Philippe De Groote
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Technologiepark 927, 9052, Gent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Emmanuel Dejardin
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Institute, University of Liège, Liège, Belgium
| | - Pieter-Jan De Bock
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Technologiepark 927, 9052, Gent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Wim Declercq
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Technologiepark 927, 9052, Gent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
24
|
Hülsmann J, Kravic B, Weith M, Gstaiger M, Aebersold R, Collins BC, Meyer H. AP-SWATH Reveals Direct Involvement of VCP/p97 in Integrated Stress Response Signaling Through Facilitating CReP/PPP1R15B Degradation. Mol Cell Proteomics 2018; 17:1295-1307. [PMID: 29599191 DOI: 10.1074/mcp.ra117.000471] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/07/2018] [Indexed: 12/27/2022] Open
Abstract
The ubiquitin-directed AAA-ATPase VCP/p97 facilitates degradation of damaged or misfolded proteins in diverse cellular stress response pathways. Resolving the complexity of its interactions with partner and substrate proteins and understanding its links to stress signaling is therefore a major challenge. Here, we used affinity-purification SWATH mass spectrometry (AP-SWATH) to identify proteins that specifically interact with the substrate-trapping mutant, p97-E578Q. AP-SWATH identified differential interactions over a large detection range from abundant p97 cofactors to pathway-specific partners and individual ligases such as RNF185 and MUL1 that were trapped in p97-E578Q complexes. In addition, we identified various substrate proteins and candidates including the PP1 regulator CReP/PPP1R15B that dephosphorylates eIF2α and thus counteracts attenuation of translation by stress-kinases. We provide evidence that p97 with its Ufd1-Npl4 adapter ensures rapid constitutive turnover and balanced levels of CReP in unperturbed cells. Moreover, we show that p97-mediated degradation, together with a reduction in CReP synthesis, is essential for timely stress-induced reduction of CReP levels and, consequently, for robust eIF2α phosphorylation to enforce the stress response. Thus, our results demonstrate that p97 not only facilitates bulk degradation of misfolded proteins upon stress, but also directly modulates the integrated stress response at the level of signaling.
Collapse
Affiliation(s)
- Julia Hülsmann
- From the ‡Molecular Biology I, Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Bojana Kravic
- From the ‡Molecular Biology I, Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Matthias Weith
- From the ‡Molecular Biology I, Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Matthias Gstaiger
- §Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Ruedi Aebersold
- §Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland.,¶Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Ben C Collins
- §Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland;
| | - Hemmo Meyer
- From the ‡Molecular Biology I, Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45141 Essen, Germany;
| |
Collapse
|
25
|
Leonard JL, Leonard DM, Wolfe SA, Liu J, Rivera J, Yang M, Leonard RT, Johnson JPS, Kumar P, Liebmann KL, Tutto AA, Mou Z, Simin KJ. The Dkk3 gene encodes a vital intracellular regulator of cell proliferation. PLoS One 2017; 12:e0181724. [PMID: 28738084 PMCID: PMC5524345 DOI: 10.1371/journal.pone.0181724] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/06/2017] [Indexed: 11/18/2022] Open
Abstract
Members of the Dickkopf (Dkk) family of Wnt antagonists interrupt Wnt-induced receptor assembly and participate in axial patterning and cell fate determination. One family member, DKK3, does not block Wnt receptor activation. Loss of Dkk3 expression in cancer is associated with hyperproliferation and dysregulated ß-catenin signaling, and ectopic expression of Dkk3 halts cancer growth. The molecular events mediating the DKK3-dependent arrest of ß-catenin-driven cell proliferation in cancer cells are unknown. Here we report the identification of a new intracellular gene product originating from the Dkk3 locus. This Dkk3b transcript originates from a second transcriptional start site located in intron 2 of the Dkk3 gene. It is essential for early mouse development and is a newly recognized regulator of ß-catenin signaling and cell proliferation. Dkk3b interrupts nuclear translocation ß-catenin by capturing cytoplasmic, unphosphorylated ß-catenin in an extra-nuclear complex with ß-TrCP. These data reveal a new regulator of one of the most studied signal transduction pathways in metazoans and provides a novel, completely untapped therapeutic target for silencing the aberrant ß-catenin signaling that drives hyperproliferation in many cancers.
Collapse
Affiliation(s)
- Jack L. Leonard
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| | - Deborah M. Leonard
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Scot A. Wolfe
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jilin Liu
- Department of Cell and Molecular Physiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jaime Rivera
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Michelle Yang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Ryan T. Leonard
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jacob P. S. Johnson
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Prashant Kumar
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Kate L. Liebmann
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Amanda A. Tutto
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Zhongming Mou
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Karl J. Simin
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
26
|
Tatarskiy VV, Simonov YP, Shcherbinin DS, Brechalov AV, Georgieva SG, Soshnikova NV. Stability of the PHF10 subunit of PBAF signature module is regulated by phosphorylation: role of β-TrCP. Sci Rep 2017; 7:5645. [PMID: 28717195 PMCID: PMC5514133 DOI: 10.1038/s41598-017-05944-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 06/06/2017] [Indexed: 11/13/2022] Open
Abstract
The PBAF chromatin-remodeling complexes are multi-protein machines, regulating expression of genes involved in proliferation and differentiation. PHF10 is a subunit of the PBAF essential for its association with chromatin. Mammalian PHF10 is expressed as four ubiquitous isoforms, which are alternatively incorporated in the complex and differ by their influence on transcription of target genes. PHF10 have different domain structure and two of them (PHF10-S isoforms) lack C-terminal PHD domains, which enables their phosphorylation by CK-1. Here we have found that PBAF subunits have low turnover rate, except for PHF10 which has much lower half-life, and is degraded by β-TrCP. The β-TrCP knockdown stabilizes PBAF core subunits - BRG1 and BAF155 and specific subunits - PHF10, BAF200, BAF180 and BRD7. PHF10 isoforms contain two non-canonical β-TrCP degrons and are degraded by β-TrCP in a phospho-dependent manner. But phosphorylation of PHF10-S degrons by CK-1, contrary to previously described degrons, prevents their degradation. Targeted molecular docking demonstrated that phosphorylated forms of PHF10 bind to β-TrCP with much lower affinity than non-phosphorylated ones, contrary to previously described degrons. This unorthodox mechanism proposes that phosphorylation of β-TrCP degrons by CK-1 could not only degrade a set of proteins, but also stabilize a different set of targets.
Collapse
Affiliation(s)
- Victor V Tatarskiy
- Laboratory of Tumor Cell Death, N.N. Blokhin Russian Cancer Research Center, Kashirskoye Shosse 24, Moscow, 115478, Russia
| | - Yuriy P Simonov
- Department of Transcription Factors, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, Moscow, 119991, Russia
| | - Dmitrii S Shcherbinin
- Laboratory of Structure Bioinformatics, Institute of Biomedical Chemistry (IBMC), Pogodinskaya street 10 building 8, Moscow, 119121, Russia
| | - Alexander V Brechalov
- Department of Transcription Factors, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, Moscow, 119991, Russia
| | - Sofia G Georgieva
- Department of Eukariotic Transcription Factors, Institute of Gene Biology, Russian Academy of Sciences, Vavilov Str. 34/5, Moscow, 119991, Russia. .,Department of Transcription Factors, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, Moscow, 119991, Russia.
| | - Nataliya V Soshnikova
- Department of Eukariotic Transcription Factors, Institute of Gene Biology, Russian Academy of Sciences, Vavilov Str. 34/5, Moscow, 119991, Russia.
| |
Collapse
|
27
|
Systematic approaches to identify E3 ligase substrates. Biochem J 2017; 473:4083-4101. [PMID: 27834739 PMCID: PMC5103871 DOI: 10.1042/bcj20160719] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 08/25/2016] [Accepted: 08/30/2016] [Indexed: 12/11/2022]
Abstract
Protein ubiquitylation is a widespread post-translational modification, regulating cellular signalling with many outcomes, such as protein degradation, endocytosis, cell cycle progression, DNA repair and transcription. E3 ligases are a critical component of the ubiquitin proteasome system (UPS), determining the substrate specificity of the cascade by the covalent attachment of ubiquitin to substrate proteins. Currently, there are over 600 putative E3 ligases, but many are poorly characterized, particularly with respect to individual protein substrates. Here, we highlight systematic approaches to identify and validate UPS targets and discuss how they are underpinning rapid advances in our understanding of the biochemistry and biology of the UPS. The integration of novel tools, model systems and methods for target identification is driving significant interest in drug development, targeting various aspects of UPS function and advancing the understanding of a diverse range of disease processes.
Collapse
|
28
|
Cheng Q, Yuan Y, Li L, Guo T, Miao Y, Ren Y, Liu J, Feng Q, Wang X, Zhao P, Zuo Y, Qian L, Zhang L, Zheng H. Deubiquitinase USP33 is negatively regulated by β-TrCP through ubiquitin-dependent proteolysis. Exp Cell Res 2017; 356:1-7. [PMID: 28506875 DOI: 10.1016/j.yexcr.2017.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/03/2017] [Accepted: 05/12/2017] [Indexed: 10/19/2022]
Abstract
Ubiquitin-mediated proteolysis regulates cellular levels of various proteins, and therefore plays important roles in controlling cell signaling and disease progression. The Skp1-Cul1-F-box ubiquitin ligase β-TrCP is recognized as an important negative regulator for numerous key signaling proteins. Recently, the deubiquitinases (DUBs) have turned out to be essential to regulate signaling pathways related to human diseases. However, whether β-TrCP is able to regulate the deubiquitinase family members remains largely unexplored. Here, we found that β-TrCP downregulated cellular levels of endogenous USP33. We also revealed that β-TrCP interacted with USP33 independently of the classic binding motif for β-TrCP, and mediated USP33 degradation via the ubiquitin proteasome pathway. Furthermore, we found that the WD40 motif of β-TrCP and 201-400 amino acid motif of USP33 are required for the interaction between β-TrCP and USP33. Consequently, β-TrCP attenuated USP33-mediated inhibition of cell proliferation and cell invasion. Taken together, our study clarified that the E3 ligase β-TrCP regulates cellular USP33 levels by the ubiquitin-proteasomal proteolysis.
Collapse
Affiliation(s)
- Qiao Cheng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China; Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Yukang Yuan
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China; Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Lemin Li
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China; Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Tingting Guo
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China; Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Ying Miao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China; Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Ying Ren
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China; Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Jin Liu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China; Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Qian Feng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China; Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Xiaofang Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China; Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Peng Zhao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China; Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Yibo Zuo
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China; Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Liping Qian
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China; Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Liting Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China; Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Hui Zheng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China; Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu Province 215123, China.
| |
Collapse
|
29
|
Li P, Li J, Wang L, Di LJ. Proximity Labeling of Interacting Proteins: Application of BioID as a Discovery Tool. Proteomics 2017; 17. [DOI: 10.1002/pmic.201700002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/24/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Peipei Li
- Cancer Center; Faculty of Health Sciences; University of Macau; Macau SAR of China
| | - Jingjing Li
- Cancer Center; Faculty of Health Sciences; University of Macau; Macau SAR of China
| | - Li Wang
- Cancer Center; Faculty of Health Sciences; University of Macau; Macau SAR of China
- Metabolomics Core; Faculty of Health Sciences; University of Macau; Macau SAR of China
| | - Li-Jun Di
- Cancer Center; Faculty of Health Sciences; University of Macau; Macau SAR of China
| |
Collapse
|
30
|
ZNF395 Is an Activator of a Subset of IFN-Stimulated Genes. Mediators Inflamm 2017; 2017:1248201. [PMID: 28316371 PMCID: PMC5339479 DOI: 10.1155/2017/1248201] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/05/2017] [Indexed: 11/17/2022] Open
Abstract
Activation of the interferon (IFN) pathway in response to infection with pathogens results in the induction of IFN-stimulated genes (ISGs) including proinflammatory cytokines, which mount the proper antiviral immune response. However, aberrant expression of these genes is pathogenic to the host. In addition to IFN-induced transcription factors non-IFN-regulated factors contribute to the transcriptional control of ISGs. Here, we show by genome wide expression analysis, siRNA-mediated suppression and Doxycycline-induced overexpression that the cellular transcription factor ZNF395 activates a subset of ISGs including the chemokines CXCL10 and CXCL11 in keratinocytes. We found that ZNF395 acts independently of IFN but enhances the IFN-induced expression of CXCL10 and CXCL11. Luciferase reporter assays revealed a requirement of intact NFκB-binding sites for ZNF395 to stimulate the CXCL10 promoter. The transcriptional activation of CXCL10 and CXCL11 by ZNF395 was abolished after inhibition of IKK by BMS-345541, which increased the stability of ZNF395. ZNF395 encodes at least two motifs that mediate the enhanced degradation of ZNF395 in response to IKK activation. Thus, IKK is required for ZNF395-mediated activation of transcription and enhances its turn-over to keep the activity of ZNF395 low. Our results support a previously unrecognized role of ZNF395 in the innate immune response and inflammation.
Collapse
|
31
|
Xu J, Zhou W, Yang F, Chen G, Li H, Zhao Y, Liu P, Li H, Tan M, Xiong X, Sun Y. The β-TrCP-FBXW2-SKP2 axis regulates lung cancer cell growth with FBXW2 acting as a tumour suppressor. Nat Commun 2017; 8:14002. [PMID: 28090088 PMCID: PMC5241824 DOI: 10.1038/ncomms14002] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 11/21/2016] [Indexed: 12/17/2022] Open
Abstract
β-TrCP and SKP2 are two well-studied F-box proteins, which often act as oncogenes. Whether and how they communicate with each other is unknown. Here we report that FBXW2, a poorly characterized F-box, is a substrate of β-TrCP1 and an E3 ligase for SKP2. While β-TrCP1 promotes FBXW2 ubiquitylation and shortens its half-life, FBXW2 does the same to SKP2. FBXW2 has tumour suppressor activity against lung cancer cells and blocks oncogenic function of both β-TrCP1 and SKP2. The levels of β-TrCP1-FBXW2-SKP2 are inversely correlated during cell cycle with FBXW2 and β-TrCP/SKP2 being high or low, respectively, in arrested cells, whereas the opposite is true in proliferating cells. Consistently, FBXW2 predicts a better patient survival, whereas β-TrCP1 and SKP2 predict a worse survival. Finally, the gain- and loss-of-function mutations of FBXW2 are found in various human cancers. Collectively, our data show that the β-TrCP-FBXW2-SKP2 axis forms an oncogene-tumour suppressor-oncogene cascade to control cancer cell growth with FBXW2 acting as a tumour suppressor by promoting SKP2 degradation.
F-box proteins β-TrCP1 and SKP2 act as oncogenes by promoting targeted degradation of critical protein substrates. Here, the authors identify an axis of F-box proteins β-TrCP1-FBXW2-SKP2 where FBXW2 is a substrate of β-TrCP1 but mediates the degradation of SKP2, thus acting as a tumour suppressor.
Collapse
Affiliation(s)
- Jie Xu
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Weihua Zhou
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Fei Yang
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Guoan Chen
- Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Haomin Li
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China.,Affiliated Children Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yongchao Zhao
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, USA.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China.,Key laboratory of combined multi-organ transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Pengyuan Liu
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China.,Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310020, China
| | - Hua Li
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Mingjia Tan
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Xiufang Xiong
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Yi Sun
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, USA.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
32
|
Shimizu K, Fukushima H, Ogura K, Lien EC, Nihira NT, Zhang J, North BJ, Guo A, Nagashima K, Nakagawa T, Hoshikawa S, Watahiki A, Okabe K, Yamada A, Toker A, Asara JM, Fukumoto S, Nakayama KI, Nakayama K, Inuzuka H, Wei W. The SCFβ-TRCP E3 ubiquitin ligase complex targets Lipin1 for ubiquitination and degradation to promote hepatic lipogenesis. Sci Signal 2017; 10:10/460/eaah4117. [PMID: 28049764 DOI: 10.1126/scisignal.aah4117] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The SCFβ-TRCP E3 ubiquitin ligase complex plays pivotal roles in normal cellular physiology and in pathophysiological conditions. Identification of β-transducin repeat-containing protein (β-TRCP) substrates is therefore critical to understand SCFβ-TRCP biology and function. We used a β-TRCP-phosphodegron motif-specific antibody in a β-TRCP substrate screen coupled with tandem mass spectrometry and identified multiple β-TRCP substrates. One of these substrates was Lipin1, an enzyme and suppressor of the family of sterol regulatory element-binding protein (SREBP) transcription factors, which activate genes encoding lipogenic factors. We showed that SCFβ-TRCP specifically interacted with and promoted the polyubiquitination of Lipin1 in a manner that required phosphorylation of Lipin1 by mechanistic target of rapamycin 1 (mTORC1) and casein kinase I (CKI). β-TRCP depletion in HepG2 hepatocellular carcinoma cells resulted in increased Lipin1 protein abundance, suppression of SREBP-dependent gene expression, and attenuation of triglyceride synthesis. Moreover, β-TRCP1 knockout mice showed increased Lipin1 protein abundance and were protected from hepatic steatosis induced by a high-fat diet. Together, these data reveal a critical physiological function of β-TRCP in regulating hepatic lipid metabolic homeostasis in part through modulating Lipin1 stability.
Collapse
Affiliation(s)
- Kouhei Shimizu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Hidefumi Fukushima
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Kohei Ogura
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Infectious Diseases, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Evan C Lien
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Naoe Taira Nihira
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jinfang Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Brian J North
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ailan Guo
- Cell Signaling Technology Inc., Danvers, MA 01923, USA
| | - Katsuyuki Nagashima
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Tadashi Nakagawa
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Seira Hoshikawa
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan.,Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Asami Watahiki
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Koji Okabe
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Aya Yamada
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Alex Toker
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Satoshi Fukumoto
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan.,Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Keiichi I Nakayama
- Division of Cell Regulation Systems, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Keiko Nakayama
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA. .,Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
33
|
Liu Q, Tang Y, Chen L, Liu N, Lang F, Liu H, Wang P, Sun X. E3 Ligase SCFβTrCP-induced DYRK1A Protein Degradation Is Essential for Cell Cycle Progression in HEK293 Cells. J Biol Chem 2016; 291:26399-26409. [PMID: 27807027 PMCID: PMC5159501 DOI: 10.1074/jbc.m116.717553] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 11/01/2016] [Indexed: 11/29/2022] Open
Abstract
DYRK1A, located on the Down syndrome (DS) critical region of chromosome 21, was found to be overexpressed in brains of DS and Alzheimer's disease individuals. DYRK1A was considered to play important roles in the pathogenesis of DS and Alzheimer's disease; however, the degradation mechanism of DYRK1A was still unclear. In this study, we found that DYRK1A was degraded through the ubiquitin-proteasome pathway in HEK293 cells. The N terminus of DYRK1A that was highly unstable in HEK293 cells contributed to proteolysis of DYRK1A. E3 ligase SCFβTrCP mediated ubiquitination and promoted degradation of DYRK1A through an unconserved binding motif (49SDQQVSALS57) lying in the N terminus. Any Ser-Ala substitution in this motif could decrease the binding between DYRK1A and β-transducin repeat containing protein (βTrCP), resulting in stabilization of DYRK1A. We also found DYRK1A protein was elevated in the G0/G1 phase and decreased in the S and G2/M phase, which was negatively correlated to βTrCP levels in the HEK293 cell cycle. Knockdown of βTrCP caused arrest of the G0/G1 phase, which could be partly rescued by down-regulation of DYRK1A. Our study uncovered a new regulatory mechanism of DYRK1A degradation by SCFβTrCP in HEK293 cell cycle progression.
Collapse
Affiliation(s)
- Qiang Liu
- From the Brain Research Institute
- the Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 10766 Jingshi Road, Jinan 250014, and
| | | | - Long Chen
- National Key Lab of Otolaryngology, and
| | - Na Liu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan 250012
| | - Fangfang Lang
- the Department of Gynecology and Obstetrics, Jinan Central Hospital Affiliated with Shandong University, 105 Jiefang Road, Jinan 250013, China
| | - Heng Liu
- National Key Lab of Otolaryngology, and
| | - Pin Wang
- National Key Lab of Otolaryngology, and
| | - Xiulian Sun
- From the Brain Research Institute,
- National Key Lab of Otolaryngology, and
| |
Collapse
|
34
|
|
35
|
Ding S, Mooney N, Li B, Kelly MR, Feng N, Loktev AV, Sen A, Patton JT, Jackson PK, Greenberg HB. Comparative Proteomics Reveals Strain-Specific β-TrCP Degradation via Rotavirus NSP1 Hijacking a Host Cullin-3-Rbx1 Complex. PLoS Pathog 2016; 12:e1005929. [PMID: 27706223 PMCID: PMC5051689 DOI: 10.1371/journal.ppat.1005929] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/10/2016] [Indexed: 11/18/2022] Open
Abstract
Rotaviruses (RVs) are the leading cause of severe gastroenteritis in young children, accounting for half a million deaths annually worldwide. RV encodes non-structural protein 1 (NSP1), a well-characterized interferon (IFN) antagonist, which facilitates virus replication by mediating the degradation of host antiviral factors including IRF3 and β-TrCP. Here, we utilized six human and animal RV NSP1s as baits and performed tandem-affinity purification coupled with high-resolution mass spectrometry to comprehensively characterize NSP1-host protein interaction network. Multiple Cullin-RING ubiquitin ligase (CRL) complexes were identified. Importantly, inhibition of cullin-3 (Cul3) or RING-box protein 1 (Rbx1), by siRNA silencing or chemical perturbation, significantly impairs strain-specific NSP1-mediated β-TrCP degradation. Mechanistically, we demonstrate that NSP1 localizes to the Golgi with the host Cul3-Rbx1 CRL complex, which targets β-TrCP and NSP1 for co-destruction at the proteasome. Our study uncovers a novel mechanism that RV employs to promote β-TrCP turnover and provides molecular insights into virus-mediated innate immunity inhibition.
Collapse
Affiliation(s)
- Siyuan Ding
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, United States of America
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Nancie Mooney
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Baxter Laboratory for Stem Cell Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Bin Li
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, United States of America
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, California, United States of America
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Marcus R. Kelly
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Baxter Laboratory for Stem Cell Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ningguo Feng
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, United States of America
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Alexander V. Loktev
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Baxter Laboratory for Stem Cell Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Adrish Sen
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, United States of America
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, California, United States of America
| | - John T. Patton
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Peter K. Jackson
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Baxter Laboratory for Stem Cell Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Harry B. Greenberg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, United States of America
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, California, United States of America
- * E-mail:
| |
Collapse
|
36
|
CHIP mediates down-regulation of nucleobindin-1 in preosteoblast cell line models. Cell Signal 2016; 28:1058-65. [DOI: 10.1016/j.cellsig.2016.04.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/22/2016] [Accepted: 04/27/2016] [Indexed: 11/23/2022]
|
37
|
Shafique S, Younis S, Niaz H, Rashid S. Elucidation, functional clustering and structural characterization of βTrCP1 substrates through a molecular dynamics study. MOLECULAR BIOSYSTEMS 2016; 12:2233-46. [DOI: 10.1039/c6mb00189k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Structural knowledge of substrate recognition by SKP1–CUL1–βTrCP1 complex for targeted cancer therapeutic strategy.
Collapse
Affiliation(s)
- Shagufta Shafique
- National Center for Bioinformatics
- Quaid-i-Azam University
- Islamabad
- Pakistan
| | - Saima Younis
- National Center for Bioinformatics
- Quaid-i-Azam University
- Islamabad
- Pakistan
| | - Hafsa Niaz
- National Center for Bioinformatics
- Quaid-i-Azam University
- Islamabad
- Pakistan
| | - Sajid Rashid
- National Center for Bioinformatics
- Quaid-i-Azam University
- Islamabad
- Pakistan
| |
Collapse
|
38
|
Magliozzi R, Peng M, Mohammed S, Guardavaccaro D, Heck AJ, Low TY. Datasets from an interaction proteomics screen for substrates of the SCF(βTrCP) ubiquitin ligase. Data Brief 2015. [PMID: 26217795 PMCID: PMC4510444 DOI: 10.1016/j.dib.2015.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
An affinity purification-mass spectrometry (AP-MS) method was employed to identify novel substrates of the SCFβTrCP ubiquitin ligase. A FLAG-HA tagged version of the F-box protein βTrCP2, the substrate recognition subunit of SCFβTrCP, was used as bait. βTrCP2 wild type and the two mutants βTrCP2-R447A and βTrCP2-ΔF were expressed and purified from HEK293T cells to be able to discriminate between potential substrates of SCFβTrCP and unspecific binders. Affinity-purified samples were analyzed by mass spectrometry-based proteomics, applying ultra-high performance liquid chromatography (UHPLC) coupled to high-resolution tandem mass spectrometry. The raw mass spectrometry data have been deposited to the PRIDE partner repository with the identifiers PXD001088 and PXD001224. The present dataset is associated with a research resource published in T.Y. Low, M. Peng, R. Magliozzi, S. Mohammed, D. Guardavaccaro, A.J.R. Heck, A systems-wide screen identifies substrates of the SCFβTrCP ubiquitin ligase. Sci. Signal. 7 (2014) rs8–rs8, 10.1126/scisignal.2005882.
Collapse
Affiliation(s)
- Roberto Magliozzi
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CH Utrecht, The Netherlands
| | - Mao Peng
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 H Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, 3584 CT Utrecht, The Netherlands
| | - Shabaz Mohammed
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 H Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, 3584 CT Utrecht, The Netherlands
| | - Daniele Guardavaccaro
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CH Utrecht, The Netherlands
| | - Albert J.R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 H Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, 3584 CT Utrecht, The Netherlands
| | - Teck Yew Low
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 H Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
39
|
Loveless TB, Topacio BR, Vashisht AA, Galaang S, Ulrich KM, Young BD, Wohlschlegel JA, Toczyski DP. DNA Damage Regulates Translation through β-TRCP Targeting of CReP. PLoS Genet 2015; 11:e1005292. [PMID: 26091241 PMCID: PMC4474599 DOI: 10.1371/journal.pgen.1005292] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 05/20/2015] [Indexed: 02/07/2023] Open
Abstract
The Skp1-Cul1-F box complex (SCF) associates with any one of a number of F box proteins, which serve as substrate binding adaptors. The human F box protein βTRCP directs the conjugation of ubiquitin to a variety of substrate proteins, leading to the destruction of the substrate by the proteasome. To identify βTRCP substrates, we employed a recently-developed technique, called Ligase Trapping, wherein a ubiquitin ligase is fused to a ubiquitin-binding domain to “trap” ubiquitinated substrates. 88% of the candidate substrates that we examined were bona fide substrates, comprising twelve previously validated substrates, eleven new substrates and three false positives. One βTRCP substrate, CReP, is a Protein Phosphatase 1 (PP1) specificity subunit that targets the translation initiation factor eIF2α to promote the removal of a stress-induced inhibitory phosphorylation and increase cap-dependent translation. We found that CReP is targeted by βTRCP for degradation upon DNA damage. Using a stable CReP allele, we show that depletion of CReP is required for the full induction of eIF2α phosphorylation upon DNA damage, and contributes to keeping the levels of translation low as cells recover from DNA damage. Approximately 600 human genes encode enzymes that act as ubiquitin ligases, which facilitate the transfer of the small protein ubiquitin to thousands of substrate proteins; “tagging” with ubiquitin often promotes the degradation of the substrate by the proteasome. In this paper, we adapt a technique called Ligase Trapping for use in mammalian cells. Ligase Trapping is a highly accurate method for determining which substrates are targeted by a ubiquitin ligase. Here we use it to identify new substrates of the human cell cycle regulator βTRCP. Our screen was indeed highly accurate, as we were able to validate 88% of the candidate substrates we identified by mass spectrometry. Some of these new substrates were unstable proteins that were stabilized by inhibition of βTRCP, or of the entire class of ubiquitin ligases of which βTRCP is a part. However, others appear to be stable or redundantly-targeted substrates, which have been more difficult to identify with current techniques. This suggests that Ligase Trapping will be able to reliably identify new substrates of human ubiquitin ligases. Further, one of the new βTRCP substrates, CReP, is specifically depleted upon DNA damage, and depletion of CReP contributes to inactivation of the translational machinery upon DNA damage.
Collapse
Affiliation(s)
- Theresa B. Loveless
- Department of Biochemistry and Biophysics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, United States of America
| | - Benjamin R. Topacio
- Department of Biochemistry and Biophysics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, United States of America
| | - Ajay A. Vashisht
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Shastyn Galaang
- Department of Biochemistry and Biophysics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, United States of America
| | - Katie M. Ulrich
- Department of Biochemistry and Biophysics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, United States of America
| | - Brian D. Young
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, California, United States of America
| | - James A. Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, California, United States of America
| | - David P. Toczyski
- Department of Biochemistry and Biophysics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
40
|
Coyaud E, Mis M, Laurent EMN, Dunham WH, Couzens AL, Robitaille M, Gingras AC, Angers S, Raught B. BioID-based Identification of Skp Cullin F-box (SCF)β-TrCP1/2 E3 Ligase Substrates. Mol Cell Proteomics 2015; 14:1781-95. [PMID: 25900982 DOI: 10.1074/mcp.m114.045658] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Indexed: 11/06/2022] Open
Abstract
The identification of ubiquitin E3 ligase substrates has been challenging, due in part to low-affinity, transient interactions, the rapid degradation of targets and the inability to identify proteins from poorly soluble cellular compartments. SCF(β-TrCP1) and SCF(β-TrCP2) are well-studied ubiquitin E3 ligases that target substrates for proteasomal degradation, and play important roles in Wnt, Hippo, and NFκB signaling. Combining 26S proteasome inhibitor (MG132) treatment with proximity-dependent biotin labeling (BioID) and semiquantitative mass spectrometry, here we identify SCF(β-TrCP1/2) interacting partners. Based on their enrichment in the presence of MG132, our data identify over 50 new putative SCF(β-TrCP1/2) substrates. We validate 12 of these new substrates and reveal previously unsuspected roles for β-TrCP in the maintenance of nuclear membrane integrity, processing (P)-body turnover and translational control. Together, our data suggest that β-TrCP is an important hub in the cellular stress response. The technique presented here represents a complementary approach to more standard IP-MS methods and should be broadly applicable for the identification of substrates for many ubiquitin E3 ligases.
Collapse
Affiliation(s)
- Etienne Coyaud
- From the ‡Princess Margaret Cancer Centre, University Health Network
| | - Monika Mis
- §Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto
| | | | - Wade H Dunham
- ¶Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital
| | - Amber L Couzens
- ¶Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital
| | - Melanie Robitaille
- §Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto
| | - Anne-Claude Gingras
- ¶Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital; ‖Department of Molecular Genetics, University of Toronto
| | - Stephane Angers
- §Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto; **Department of Biochemistry, University of Toronto
| | - Brian Raught
- From the ‡Princess Margaret Cancer Centre, University Health Network; ‡‡Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
| |
Collapse
|