1
|
Rahman T, Patel S. Recent developments in probing the levels and flux of selected organellar cations as well as organellar mechanosensitivity. Curr Opin Chem Biol 2025; 87:102600. [PMID: 40319567 DOI: 10.1016/j.cbpa.2025.102600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 05/07/2025]
Abstract
Electrochemical gradients exist not only across the plasma membrane (PM) but also across membranes of organelles. Various endomembrane-localised ion channels and transporters have been identified, the activity of which is critical for organellar (and also cellular) ionic homeostasis that underpins diverse cellular processes. Aberrant organellar ion flux underlies several diseases, identifying organellar channels and transporters as potential drug targets. Therefore, the need for probing the functions of these proteins in situ cannot be overemphasised. The acidic interior of a few organelles as well as the dynamic nature of most organelles historically presented challenges for reliable estimation of luminal ionic concentrations. But there have been significant methodological and technical advancements by now, allowing measurement of levels of specific ions within these organelles as well as their flux across endomembranes with increasing precision. Evidence also continues to amass reporting mechanosensitivity of the endomembranes and its physiological significance. Here we highlight some recent developments in tools and techniques for measuring the levels and movement of some selected organellar cations as well as organellar mechanosensitivity.
Collapse
Affiliation(s)
- Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK.
| | - Sandip Patel
- Department of Cell and Developmental Biology, University College London, London, UK
| |
Collapse
|
2
|
Kondratskyi A, Bazzone A, Rapedius M, Zerlotti R, Masson B, Sadanandan NP, Parker JL, Santinho A, Moutia M, Thiam AR, Kemp A, Seibertz F, Murciano N, Friis S, Becker N, Obergrussberger A, Barthmes M, George C, George M, Dalrymple D, Gasnier B, Newstead S, Grimm C, Fertig N. Lysosomal Ion Channels and Transporters: Recent Findings, Therapeutic Potential, and Technical Approaches. Bioelectricity 2025; 7:29-57. [PMID: 40342936 PMCID: PMC12056583 DOI: 10.1089/bioe.2025.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025] Open
Abstract
In recent years, there has been a growing interest in lysosomal ion channels and transporters due to their critical role in maintaining lysosomal function and their involvement in a variety of diseases, particularly lysosomal storage diseases, cancer, and neurodegenerative disorders. Recent advancements in research techniques, including manual and automated patch clamp (APC) electrophysiology, solid-supported membrane-based electrophysiology (SSME), and fluorescence-based ion imaging, have further enhanced our ability to investigate lysosomal ion channels and transporters in both physiological and pathological conditions, spurring drug discovery efforts. Several pharmaceutical companies are now developing therapies aimed at modulating these channels and transporters to improve lysosomal function in disease. Small molecules targeting channels like transient receptor potential mucolipin (TRPML) 1 and TMEM175, as well as drugs modulating lysosomal pH, are currently in preclinical and clinical development. This review provides an overview of the role of lysosomal ion channels and transporters in health and disease, highlights the cutting-edge techniques used to study them, and discusses the therapeutic potential of targeting these channels and transporters in the treatment of various diseases. Furthermore, in addition to summarizing recent discoveries, we contribute novel functional data on cystinosin, TRPML1, and two-pore channel 2 (TPC2), utilizing both SSME and APC approaches.
Collapse
Affiliation(s)
| | | | | | | | | | - Nidish Ponath Sadanandan
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig Maximilians University, Munich, Germany
| | - Joanne L. Parker
- Department of Biochemistry, University of Oxford, Oxford, UK
- The Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | | | | | - Abdou Rachid Thiam
- Laboratoire de Physique de l’École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, Paris, France
| | - Arlene Kemp
- SB Drug Discovery a Sygnature Discovery Business, West of Scotland Science Park, Glasgow, UK
| | | | | | | | | | | | | | | | | | - David Dalrymple
- SB Drug Discovery a Sygnature Discovery Business, West of Scotland Science Park, Glasgow, UK
| | - Bruno Gasnier
- Saints-Pères Paris Institute for the Neurosciences, Université Paris Cité, Centre National de la Recherche Scientifique, Paris, France
| | - Simon Newstead
- Department of Biochemistry, University of Oxford, Oxford, UK
- The Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Christian Grimm
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig Maximilians University, Munich, Germany
- Immunology, Infection and Pandemic Research IIP, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Munich/Frankfurt, Germany
| | | |
Collapse
|
3
|
Yang RZ, Wang DD, Li SM, Liu PP, Kang JS. Development and Application of a Mitochondrial Genetically Encoded Voltage Indicator in Narcosis. Neurosci Bull 2024; 40:1529-1544. [PMID: 38829505 PMCID: PMC11422539 DOI: 10.1007/s12264-024-01235-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/11/2024] [Indexed: 06/05/2024] Open
Abstract
Mitochondrial membrane potential (MMP) plays a crucial role in the function of cells and organelles, involving various cellular physiological processes, including energy production, formation of reactive oxygen species (ROS), unfolded protein stress, and cell survival. Currently, there is a lack of genetically encoded fluorescence indicators (GEVIs) for MMP. In our screening of various GEVIs for their potential monitoring MMP, the Accelerated Sensor of Action Potentials (ASAP) demonstrated optimal performance in targeting mitochondria and sensitivity to depolarization in multiple cell types. However, mitochondrial ASAPs also displayed sensitivity to ROS in cardiomyocytes. Therefore, two ASAP mutants resistant to ROS were generated. A double mutant ASAP3-ST exhibited the highest voltage sensitivity but weaker fluorescence. Overall, four GEVIs capable of targeting mitochondria were obtained and named mitochondrial potential indicators 1-4 (MPI-1-4). In vivo, fiber photometry experiments utilizing MPI-2 revealed a mitochondrial depolarization during isoflurane-induced narcosis in the M2 cortex.
Collapse
Affiliation(s)
- Run-Zhou Yang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Dian-Dian Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Sen-Miao Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Pei-Pei Liu
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jian-Sheng Kang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
4
|
Hu M, Feng X, Liu Q, Liu S, Huang F, Xu H. The ion channels of endomembranes. Physiol Rev 2024; 104:1335-1385. [PMID: 38451235 PMCID: PMC11381013 DOI: 10.1152/physrev.00025.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024] Open
Abstract
The endomembrane system consists of organellar membranes in the biosynthetic pathway [endoplasmic reticulum (ER), Golgi apparatus, and secretory vesicles] as well as those in the degradative pathway (early endosomes, macropinosomes, phagosomes, autophagosomes, late endosomes, and lysosomes). These endomembrane organelles/vesicles work together to synthesize, modify, package, transport, and degrade proteins, carbohydrates, and lipids, regulating the balance between cellular anabolism and catabolism. Large ion concentration gradients exist across endomembranes: Ca2+ gradients for most endomembrane organelles and H+ gradients for the acidic compartments. Ion (Na+, K+, H+, Ca2+, and Cl-) channels on the organellar membranes control ion flux in response to cellular cues, allowing rapid informational exchange between the cytosol and organelle lumen. Recent advances in organelle proteomics, organellar electrophysiology, and luminal and juxtaorganellar ion imaging have led to molecular identification and functional characterization of about two dozen endomembrane ion channels. For example, whereas IP3R1-3 channels mediate Ca2+ release from the ER in response to neurotransmitter and hormone stimulation, TRPML1-3 and TMEM175 channels mediate lysosomal Ca2+ and H+ release, respectively, in response to nutritional and trafficking cues. This review aims to summarize the current understanding of these endomembrane channels, with a focus on their subcellular localizations, ion permeation properties, gating mechanisms, cell biological functions, and disease relevance.
Collapse
Affiliation(s)
- Meiqin Hu
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Xinghua Feng
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Qiang Liu
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Siyu Liu
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Fangqian Huang
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Haoxing Xu
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
5
|
Rogers M, Obergrussberger A, Kondratskyi A, Fertig N. Using automated patch clamp electrophysiology platforms in ion channel drug discovery: an industry perspective. Expert Opin Drug Discov 2024; 19:523-535. [PMID: 38481119 DOI: 10.1080/17460441.2024.2329104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/06/2024] [Indexed: 04/25/2024]
Abstract
INTRODUCTION Automated patch clamp (APC) is now well established as a mature technology for ion channel drug discovery in academia, biotech and pharma companies, and in contract research organizations (CRO), for a variety of applications including channelopathy research, compound screening, target validation and cardiac safety testing. AREAS COVERED Ion channels are an important class of drugged and approved drug targets. The authors present a review of the current state of ion channel drug discovery along with new and exciting developments in ion channel research involving APC. This includes topics such as native and iPSC-derived cells in ion channel drug discovery, channelopathy research, organellar and biologics in ion channel drug discovery. EXPERT OPINION It is our belief that APC will continue to play a critical role in ion channel drug discovery, not only in 'classical' hit screening, target validation and cardiac safety testing, but extending these applications to include high throughput organellar recordings and optogenetics. In this way, with advancements in APC capabilities and applications, together with high resolution cryo-EM structures, ion channel drug discovery will be re-invigorated, leading to a growing list of ion channel ligands in clinical development.
Collapse
Affiliation(s)
- Marc Rogers
- Albion Drug Discovery Services Ltd, Cambridge, UK
| | | | | | | |
Collapse
|
6
|
Chen CC. Electrophysiological Techniques on the Study of Endolysosomal Ion Channels. Handb Exp Pharmacol 2023; 278:217-233. [PMID: 36871125 DOI: 10.1007/164_2023_638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Endolysosomal ion channels are a group of ion channel proteins that are functionally expressed on the membrane of endolysosomal vesicles. The electrophysiological properties of these ion channels in the intracellular organelle membrane cannot be observed using conventional electrophysiological techniques. This section compiles the different electrophysiological techniques utilized in recent years to study endolysosomal ion channels and describes their methodological characteristics, emphasizing the most widely used technique for whole endolysosome recordings to date. This includes the use of different pharmacological tools and genetic tools for the application of patch-clamping techniques for specific stages of endolysosomes, allowing the recording of ion channel activity in different organelles, such as recycling endosomes, early endosomes, late endosomes, and lysosomes. These electrophysiological techniques are not only cutting-edge technologies that help to investigate the biophysical properties of known and unknown intracellular ion channels but also help us to investigate the physiopathological role of these ion channels in the distribution of dynamic vesicles and to identify new therapeutic targets for precision medicine and drug screening.
Collapse
Affiliation(s)
- Cheng-Chang Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
7
|
Wang Q, Zhu MX. NAADP-Dependent TPC Current. Handb Exp Pharmacol 2023; 278:35-56. [PMID: 35902437 DOI: 10.1007/164_2022_606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Two-pore channels, TPC1 and TPC2, are Ca2+- and Na+-permeable cation channels expressed on the membranes of endosomes and lysosomes in nearly all mammalian cells. These channels have been implicated in Ca2+ signaling initiated from the endolysosomes, vesicular trafficking, cellular metabolism, macropinocytosis, and viral infection. Although TPCs have been shown to mediate Ca2+ release from acidic organelles in response to NAADP (nicotinic acid adenine dinucleotide phosphate), the most potent Ca2+ mobilizing messenger, questions remain whether NAADP is a direct ligand of these channels. In whole-endolysosomal patch clamp recordings, it has been difficult to detect NAADP-evoked currents in vacuoles that expressed TPC1 or TPC2, while PI(3,5)P2 (phosphatidylinositol 3,5-bisphosphate) activated a highly Na+-selective current under the same experimental configuration. In this chapter, we summarize recent progress in this area and provide our observations on NAADP-elicited TPC2 currents from enlarged endolysosomes as well as their possible relationships with the currents evoked by PI(3,5)P2. We propose that TPCs are channels dually regulated by PI(3,5)P2 and NAADP in an interdependent manner and the two endogenous ligands may have both distinguished and cooperative roles.
Collapse
Affiliation(s)
- Qiaochu Wang
- Beijing Children's Hospital, Capital Medical University, Beijing, China
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
8
|
Dietrich P, Gradogna A, Carpaneto A. The Plant Vacuole as Heterologous System to Characterize the Functional Properties of TPC Channels. Handb Exp Pharmacol 2023; 278:235-247. [PMID: 35879579 DOI: 10.1007/164_2022_604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Human TPC channels are an emerging family of intracellular proteins fundamental for cell physiology and involved in various severe pathologies. Their localization in the membranes of endo-lysosomes, intracellular compartments of submicrometric dimensions, makes their study difficult with usual electrophysiological techniques. In this work, we show how the plant vacuole, a versatile organelle that can occupy up to 90% of the volume in mature plant cells, can be used as a heterologous system of expression for functional characterization. For this purpose, the use of vacuoles isolated from mesophyll cells of the Arabidopsis thaliana mutant lacking the endogenous TPC avoids unwanted interferences. The patch-clamp technique can be successfully applied to plant vacuoles in all different configuration modes; of note, the whole-vacuole configuration allows to study channel modulation by cytosolic factors. The combination of patch-clamp with fluorescence techniques, for example, by using fluorescent probes sensitive to specific ions of interest, represents a useful extension to investigate the selectivity properties of the channels. Therefore, the plant vacuole, similar to Xenopus oocytes for ion channels and transporters localized in the plasma membrane, has the capability to become a model system for functional studies on intracellular ion channels and transporters.
Collapse
Affiliation(s)
- P Dietrich
- Lehrstuhl für Molekulare Pflanzenphysiologie, Department Biologie Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | - A Carpaneto
- Institute of Biophysics, Genoa, Italy.
- Department of Earth, Environment and Life Sciences (DISTAV) - University of Genoa, Genoa, Italy.
| |
Collapse
|
9
|
Klier PEZ, Roo R, Miller EW. Fluorescent indicators for imaging membrane potential of organelles. Curr Opin Chem Biol 2022; 71:102203. [PMID: 36084425 PMCID: PMC10259174 DOI: 10.1016/j.cbpa.2022.102203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 01/27/2023]
Abstract
Plasma membrane potential is a key driver of the physiology of excitable cells like neurons and cardiomyocytes. Voltage-sensitive fluorescent indicators offer a powerful complement to traditional electrode-based approaches to measuring and monitoring membrane potential. Intracellular organelles can also generate membrane potential, yet the electrode- and fluorescent indicator-based approaches used for plasma membrane potential imaging are difficult to implement on intact organelles in their native environment. Here, we survey recent advances in developing and deploying voltage-sensitive fluorescent indicators to interrogate organelle membrane potential in intact cells.
Collapse
Affiliation(s)
- Pavel E Z Klier
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Ryan Roo
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Evan W Miller
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA; Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
10
|
Li G, Huang D, Li P, Yuan X, Yarotskyy V, Li PL. Regulation of exosome release by lysosomal acid ceramidase in coronary arterial endothelial cells: Role of TRPML1 channel. CURRENT TOPICS IN MEMBRANES 2022; 90:37-63. [PMID: 36368874 PMCID: PMC9842397 DOI: 10.1016/bs.ctm.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lysosomal acid ceramidase (AC) has been reported to determine multivesicular body (MVB) fate and exosome secretion in different mammalian cells including coronary arterial endothelial cells (CAECs). However, this AC-mediated regulation of exosome release from CAECs and associated underlying mechanism remain poorly understood. In the present study, we hypothesized that AC controls lysosomal Ca2+ release through TRPML1 channel to regulate exosome release in murine CAECs. To test this hypothesis, we isolated and cultured CAECs from WT/WT and endothelial cell-specific Asah1 gene (gene encoding AC) knockout mice. Using these CAECs, we first demonstrated a remarkable increase in exosome secretion and significant reduction of lysosome-MVB interaction in CAECs lacking Asah1 gene compared to those cells from WT/WT mice. ML-SA1, a TRPML1 channel agonist, was found to enhance lysosome trafficking and increase lysosome-MVB interaction in WT/WT CAECs, but not in CAECs lacking Asah1 gene. However, sphingosine, an AC-derived sphingolipid, was able to increase lysosome movement and lysosome-MVB interaction in CAECs lacking Asah1 gene, leading to reduced exosome release from these cells. Moreover, Asah1 gene deletion was shown to substantially inhibit lysosomal Ca2+ release through suppression of TRPML1 channel activity in CAECs. Sphingosine as an AC product rescued the function of TRPML1 channel in CAECs lacking Asah1 gene. These results suggest that Asah1 gene defect and associated deficiency of AC activity may inhibit TRPML1 channel activity, thereby reducing MVB degradation by lysosome and increasing exosome release from CAECs. This enhanced exosome release from CAECs may contribute to the development of coronary arterial disease under pathological conditions.
Collapse
Affiliation(s)
- Guangbi Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Dandan Huang
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Pengyang Li
- Division of Cardiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Xinxu Yuan
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Viktor Yarotskyy
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
11
|
Advances in measuring cancer cell metabolism with subcellular resolution. Nat Methods 2022; 19:1048-1063. [PMID: 36008629 DOI: 10.1038/s41592-022-01572-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 07/05/2022] [Indexed: 11/08/2022]
Abstract
Characterizing metabolism in cancer is crucial for understanding tumor biology and for developing potential therapies. Although most metabolic investigations analyze averaged metabolite levels from all cell compartments, subcellular metabolomics can provide more detailed insight into the biochemical processes associated with the disease. Methodological limitations have historically prevented the wider application of subcellular metabolomics in cancer research. Recently, however, ways to distinguish and identify metabolic pathways within organelles have been developed, including state-of-the-art methods to monitor metabolism in situ (such as mass spectrometry-based imaging, Raman spectroscopy and fluorescence microscopy), to isolate key organelles via new approaches and to use tailored isotope-tracing strategies. Herein, we examine the advantages and limitations of these developments and look to the future of this field of research.
Collapse
|
12
|
Patel S, Yuan Y, Chen CC, Jaślan D, Gunaratne G, Grimm C, Rahman T, Marchant JS. Electrophysiology of Endolysosomal Two-Pore Channels: A Current Account. Cells 2022; 11:2368. [PMID: 35954212 PMCID: PMC9368155 DOI: 10.3390/cells11152368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 12/10/2022] Open
Abstract
Two-pore channels TPC1 and TPC2 are ubiquitously expressed pathophysiologically relevant proteins that reside on endolysosomal vesicles. Here, we review the electrophysiology of these channels. Direct macroscopic recordings of recombinant TPCs expressed in enlarged lysosomes in mammalian cells or vacuoles in plants and yeast demonstrate gating by the Ca2+-mobilizing messenger NAADP and/or the lipid PI(3,5)P2. TPC currents are regulated by H+, Ca2+, and Mg2+ (luminal and/or cytosolic), as well as protein kinases, and they are impacted by single-nucleotide polymorphisms linked to pigmentation. Bisbenzylisoquinoline alkaloids, flavonoids, and several approved drugs demonstrably block channel activity. Endogenous TPC currents have been recorded from a number of primary cell types and cell lines. Many of the properties of endolysosomal TPCs are recapitulated upon rerouting channels to the cell surface, allowing more facile recording through conventional electrophysiological means. Single-channel analyses have provided high-resolution insight into both monovalent and divalent permeability. The discovery of small-molecule activators of TPC2 that toggle the ion selectivity from a Ca2+-permeable (NAADP-like) state to a Na+-selective (PI(3,5)P2-like) state explains discrepancies in the literature relating to the permeability of TPCs. Identification of binding proteins that confer NAADP-sensitive currents confirm that indirect, remote gating likely underpins the inconsistent observations of channel activation by NAADP.
Collapse
Affiliation(s)
- Sandip Patel
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK;
| | - Yu Yuan
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK;
| | - Cheng-Chang Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 100229, Taiwan;
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Dawid Jaślan
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians University, 80336 Munich, Germany; (D.J.); (C.G.)
| | - Gihan Gunaratne
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; (G.G.); (J.S.M.)
| | - Christian Grimm
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians University, 80336 Munich, Germany; (D.J.); (C.G.)
| | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK;
| | - Jonathan S. Marchant
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; (G.G.); (J.S.M.)
| |
Collapse
|
13
|
Geisslinger F, Müller M, Chao YK, Grimm C, Vollmar AM, Bartel K. Targeting TPC2 sensitizes acute lymphoblastic leukemia cells to chemotherapeutics by impairing lysosomal function. Cell Death Dis 2022; 13:668. [PMID: 35915060 PMCID: PMC9343397 DOI: 10.1038/s41419-022-05105-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 02/08/2023]
Abstract
Despite novel therapy regimens and extensive research, chemoresistance remains a challenge in leukemia treatment. Of note, recent studies revealed lysosomes as regulators of cell death and chemotherapy response, suggesting this organelle is a novel target for chemosensitization. Interestingly, drug-resistant VCR-R CEM acute lymphoblastic leukemia (ALL) cells have an increased expression of the lysosomal cation channel Two-Pore-Channel 2 (TPC2) compared to drug-naïve CCRF-CEM ALL cells. Concurrently, knockout (KO) of TPC2 sensitized drug-resistant VCR-R CEM cells to treatment with cytostatics. The chemosensitizing effect could be confirmed in several cell lines as well as in heterogeneous, patient-derived xenograft ALL cells, using the pharmacological TPC2 inhibitors naringenin and tetrandrine. We reveal that a dual mechanism of action mediates chemo sensitization by loss of lysosomal TPC2 function. First, because of increased lysosomal pH, lysosomal drug sequestration is impaired, leading to an increased nuclear accumulation of doxorubicin and hence increased DNA damage. Second, lysosomes of TPC2 KO cells are more prone to lysosomal damage as a result of morphological changes and dysregulation of proteins influencing lysosomal stability. This leads to induction of lysosomal cell death (LCD), evident by increased cathepsin B levels in the cytosol, truncation of pro-apoptotic Bid, as well as the reversibility of cell death by co-treatment with the cathepsin B inhibitor CA-074Me in TPC2 KO cells. In summary, this study establishes TPC2 as a novel, promising, druggable target for combination therapy approaches in ALL to overcome chemoresistance, which could be exploited in the clinic in the future. Additionally, it unravels LCD signaling as an important death-inducing component upon loss of TPC2 function.
Collapse
Affiliation(s)
- Franz Geisslinger
- grid.5252.00000 0004 1936 973XLudwig-Maximilians University, Departement of Pharmacy, Pharmaceutical Biology, Munich, Germany
| | - Martin Müller
- grid.5252.00000 0004 1936 973XLudwig-Maximilians University, Departement of Pharmacy, Pharmaceutical Biology, Munich, Germany
| | - Yu-Kai Chao
- grid.5252.00000 0004 1936 973XLudwig-Maximilians University, Walther-Straub-Institute of Pharmacology and Toxicology, Munich, Germany
| | - Christian Grimm
- grid.5252.00000 0004 1936 973XLudwig-Maximilians University, Walther-Straub-Institute of Pharmacology and Toxicology, Munich, Germany
| | - Angelika M. Vollmar
- grid.5252.00000 0004 1936 973XLudwig-Maximilians University, Departement of Pharmacy, Pharmaceutical Biology, Munich, Germany
| | - Karin Bartel
- grid.5252.00000 0004 1936 973XLudwig-Maximilians University, Departement of Pharmacy, Pharmaceutical Biology, Munich, Germany
| |
Collapse
|
14
|
Festa M, Minicozzi V, Boccaccio A, Lagostena L, Gradogna A, Qi T, Costa A, Larisch N, Hamamoto S, Pedrazzini E, Milenkovic S, Scholz-Starke J, Ceccarelli M, Vitale A, Dietrich P, Uozumi N, Gambale F, Carpaneto A. Current Methods to Unravel the Functional Properties of Lysosomal Ion Channels and Transporters. Cells 2022; 11:921. [PMID: 35326372 PMCID: PMC8946281 DOI: 10.3390/cells11060921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 02/07/2023] Open
Abstract
A distinct set of channels and transporters regulates the ion fluxes across the lysosomal membrane. Malfunctioning of these transport proteins and the resulting ionic imbalance is involved in various human diseases, such as lysosomal storage disorders, cancer, as well as metabolic and neurodegenerative diseases. As a consequence, these proteins have stimulated strong interest for their suitability as possible drug targets. A detailed functional characterization of many lysosomal channels and transporters is lacking, mainly due to technical difficulties in applying the standard patch-clamp technique to these small intracellular compartments. In this review, we focus on current methods used to unravel the functional properties of lysosomal ion channels and transporters, stressing their advantages and disadvantages and evaluating their fields of applicability.
Collapse
Affiliation(s)
- Margherita Festa
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy;
| | - Velia Minicozzi
- INFN, Department of Physics, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy;
| | - Anna Boccaccio
- Institute of Biophysics, National Research Council, Via De Marini 6, 16149 Genoa, Italy; (A.B.); (L.L.); (A.G.); (J.S.-S.); (F.G.)
| | - Laura Lagostena
- Institute of Biophysics, National Research Council, Via De Marini 6, 16149 Genoa, Italy; (A.B.); (L.L.); (A.G.); (J.S.-S.); (F.G.)
| | - Antonella Gradogna
- Institute of Biophysics, National Research Council, Via De Marini 6, 16149 Genoa, Italy; (A.B.); (L.L.); (A.G.); (J.S.-S.); (F.G.)
| | - Tianwen Qi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Viale Benedetto XV 5, 16132 Genoa, Italy;
| | - Alex Costa
- Department of Biosciences, University of Milan, 20133 Milan, Italy;
| | - Nina Larisch
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany; (N.L.); (P.D.)
| | - Shin Hamamoto
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan;
| | - Emanuela Pedrazzini
- Institute of Agricultural Biology and Biotechnology, National Research Council, Via Bassini 15, 20133 Milan, Italy; (E.P.); (A.V.)
| | - Stefan Milenkovic
- Department of Physics, University of Cagliari, 09042 Monserrato, Italy; (S.M.); (M.C.)
- IOM-CNR Unità di Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy
| | - Joachim Scholz-Starke
- Institute of Biophysics, National Research Council, Via De Marini 6, 16149 Genoa, Italy; (A.B.); (L.L.); (A.G.); (J.S.-S.); (F.G.)
| | - Matteo Ceccarelli
- Department of Physics, University of Cagliari, 09042 Monserrato, Italy; (S.M.); (M.C.)
- IOM-CNR Unità di Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy
| | - Alessandro Vitale
- Institute of Agricultural Biology and Biotechnology, National Research Council, Via Bassini 15, 20133 Milan, Italy; (E.P.); (A.V.)
| | - Petra Dietrich
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany; (N.L.); (P.D.)
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan;
| | - Franco Gambale
- Institute of Biophysics, National Research Council, Via De Marini 6, 16149 Genoa, Italy; (A.B.); (L.L.); (A.G.); (J.S.-S.); (F.G.)
| | - Armando Carpaneto
- Institute of Biophysics, National Research Council, Via De Marini 6, 16149 Genoa, Italy; (A.B.); (L.L.); (A.G.); (J.S.-S.); (F.G.)
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Viale Benedetto XV 5, 16132 Genoa, Italy;
| |
Collapse
|
15
|
Bhat OM, Yuan X, Kukreja RC, Li PL. Regulatory role of mammalian target of rapamycin signaling in exosome secretion and osteogenic changes in smooth muscle cells lacking acid ceramidase gene. FASEB J 2021; 35:e21732. [PMID: 34143450 PMCID: PMC8221173 DOI: 10.1096/fj.202100385r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/22/2021] [Accepted: 06/01/2021] [Indexed: 12/28/2022]
Abstract
Acid ceramidase (murine gene code: Asah1) (50 kDa) belongs to N-terminal nucleophile hydrolase family. This enzyme is located in the lysosome, which mediates conversion of ceramide (CER) into sphingosine and free fatty acids at acidic pH. CER plays an important role in intracellular sphingolipid metabolism and its increase causes inflammation. The mammalian target of rapamycin complex 1 (mTORC1) signaling on late endosomes (LEs)/lysosomes may control cargo selection, membrane biogenesis, and exosome secretion, which may be fine controlled by lysosomal sphingolipids such as CER. This lysosomal-CER-mTOR signaling may be a crucial molecular mechanism responsible for development of arterial medial calcification (AMC). Torin-1 (5 mg/kg/day), an mTOR inhibitor, significantly decreased aortic medial calcification accompanied with decreased expression of osteogenic markers like osteopontin (OSP) and runt-related transcription factor 2 (RUNX2) and upregulation of smooth muscle 22α (SM22-α) in mice receiving high dose of Vitamin D (500 000 IU/kg/day). Asah1fl/fl /SMCre mice had markedly increased co-localization of mTORC1 with lysosome-associated membrane protein-1 (Lamp-1) (lysosome marker) and decreased co-localization of vacuolar protein sorting-associated protein 16 (VPS16) (a multivesicular bodies [MVBs] marker) with Lamp-1, suggesting mTOR activation caused reduced MVBs interaction with lysosomes. Torin-1 significantly reduced the co-localization of mTOR vs Lamp-1, increased lysosome-MVB interaction which was associated with reduced accumulation of CD63 and annexin 2 (exosome markers) in the coronary arterial wall of mice. Using coronary artery smooth muscle cells (CASMCs), Pi -stimulation significantly increased p-mTOR expression in Asah1fl/fl /SMCre CASMCs as compared to WT/WT cells associated with increased calcium deposition and mineralization. Torin-1 blocked Pi -induced calcium deposition and mineralization. siRNA mTOR and Torin-1 significantly reduce co-localization of mTORC1 with Lamp-1, increased VPS16 vs Lamp-1 co-localization in Pi -stimulated CASMCs, associated with decreased exosome release. Functionally, Torin-1 significantly reduces arterial stiffening as shown by restoration from increased pulse wave velocity and decreased elastin breaks. These results suggest that lysosomal CER-mTOR signaling may play a critical role for the control of lysosome-MVB interaction, exosome secretion and arterial stiffening during AMC.
Collapse
Affiliation(s)
- Owais M. Bhat
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298
| | - Xinxu Yuan
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298
| | - Rakesh C. Kukreja
- VCU Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University, 1101 East Marshall Street, Richmond, VA 23298-0204
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298
| |
Collapse
|
16
|
Li G, Huang D, Bhat OM, Poklis JL, Zhang A, Zou Y, Kidd J, Gehr TWB, Li PL. Abnormal podocyte TRPML1 channel activity and exosome release in mice with podocyte-specific Asah1 gene deletion. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158856. [PMID: 33221496 PMCID: PMC7770122 DOI: 10.1016/j.bbalip.2020.158856] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/16/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022]
Abstract
Podocytopathy and associated nephrotic syndrome (NS) have been reported in a knockout mouse strain (Asah1fl/fl/PodoCre) with a podocyte-specific deletion of α subunit (the main catalytic subunit) of acid ceramidase (Ac). However, the pathogenesis of podocytopathy of these mice remains unknown. The present study tested whether exosome release from podocytes is enhanced due to Asah1 gene knockout, which may serve as a pathogenic mechanism switching on podocytopathy and associated NS in Asah1fl/fl/PodoCre mice. We first demonstrated the remarkable elevation of urinary exosome excretion in Asah1fl/fl/PodoCre mice compared with WT/WT mice, which was accompanied by significant Annexin-II (an exosome marker) accumulation in glomeruli of Asah1fl/fl/PodoCre mice, as detected by immunohistochemistry. In cell studies, we also confirmed that Asah1 gene knockout enhanced exosome release in the primary cultures of podocyte isolated from Asah1fl/fl/PodoCre mice compared to WT/WT mice. In the podocytes from Asah1fl/fl/PodoCre mice, the interactions of lysosome and multivesicular body (MVB) were demonstrated to be decreased in comparison with those from their control littermates, suggesting reduced MVB degradation that may lead to increase in exosome release. Given the critical role of transient receptor potential mucolipin 1 (TRPML1) channel in Ca2+-dependent lysosome trafficking and consequent lysosome-MVB interaction, we tested whether lysosomal Ca2+ release through TRPML1 channels is inhibited in the podocytes of Asah1fl/fl/PodoCre mice. By GCaMP3 Ca2+ imaging, it was found that lysosomal Ca2+ release through TRPML1 channels was substantially suppressed in podocytes with Asah1 gene deletion. As an Ac product, sphingosine was found to rescue TRPML1 channel activity and thereby recover lysosome-MVB interaction and reduce exosome release of podocytes from Asah1fl/fl/PodoCre mice. Combination of N, N-dimethylsphingosine (DMS), a potent sphingosine kinase inhibitor, and sphingosine significantly inhibited urinary exosome excretion of Asah1fl/fl/PodoCre mice. Moreover, rescue of Aash1 gene expression in podocytes of Asah1fl/fl/PodoCre mice showed normal ceramide metabolism and exosome secretion. Based on these results, we conclude that the normal expression of Ac importantly contributes to the control of TRPML1 channel activity, lysosome-MVB interaction, and consequent exosome release from podocytes. Asah1 gene defect inhibits TRPML1 channel activity and thereby enhances exosome release, which may contribute to the development of podocytopathy and associated NS.
Collapse
Affiliation(s)
- Guangbi Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Dandan Huang
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Owais M Bhat
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Justin L Poklis
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Aolin Zhang
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Yao Zou
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Jason Kidd
- Division of Nephrology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Todd W B Gehr
- Division of Nephrology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
17
|
Okamoto K, Ebina T, Fujii N, Konishi K, Sato Y, Kashima T, Nakano R, Hioki H, Takeuchi H, Yumoto J, Matsuzaki M, Ikegaya Y. Tb 3+-doped fluorescent glass for biology. SCIENCE ADVANCES 2021; 7:7/2/eabd2529. [PMID: 33523970 PMCID: PMC7787498 DOI: 10.1126/sciadv.abd2529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
Optical investigation and manipulation constitute the core of biological experiments. Here, we introduce a new borosilicate glass material that contains the rare-earth ion terbium(III) (Tb3+), which emits green fluorescence upon blue light excitation, similar to green fluorescent protein (GFP), and thus is widely compatible with conventional biological research environments. Micropipettes made of Tb3+-doped glass allowed us to target GFP-labeled cells for single-cell electroporation, single-cell transcriptome analysis (Patch-seq), and patch-clamp recording under real-time fluorescence microscopic control. The glass also exhibited potent third harmonic generation upon infrared laser excitation and was usable for online optical targeting of fluorescently labeled neurons in the in vivo neocortex. Thus, Tb3+-doped glass simplifies many procedures in biological experiments.
Collapse
Affiliation(s)
- Kazuki Okamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Teppei Ebina
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Kuniaki Konishi
- Institute for Photon Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yu Sato
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Tetsuhiko Kashima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Risako Nakano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Hioki
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Haruki Takeuchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Junji Yumoto
- Institute for Photon Science and Technology, The University of Tokyo, Tokyo, Japan
- Department of Physics, The University of Tokyo, Tokyo, Japan
| | - Masanori Matsuzaki
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka, Japan
| |
Collapse
|
18
|
Bhat OM, Li G, Yuan X, Huang D, Gulbins E, Kukreja RC, Li PL. Arterial Medial Calcification through Enhanced small Extracellular Vesicle Release in Smooth Muscle-Specific Asah1 Gene Knockout Mice. Sci Rep 2020; 10:1645. [PMID: 32015399 PMCID: PMC6997457 DOI: 10.1038/s41598-020-58568-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 01/17/2020] [Indexed: 11/09/2022] Open
Abstract
Arterial medial calcification (AMC) involves an increased small extracellular vesicle (sEV) secretion and apatite calcium precipitation in the arterial wall. The mechanisms mediating AMC remain poorly understood. In the present study, smooth muscle-specific acid ceramidase (Ac) gene knockout mice (Asah1fl/fl/SMCre) were used to demonstrate the role of lysosomal ceramide signaling pathway in AMC. Asah1fl/fl/SMCre mice were found to have more severe AMC in both aorta and coronary arteries compared to their littermates (Asah1fl/fl/SMwt and WT/WT mice) after receiving a high dose vitamin D. These mice also had pronounced upregulation of osteopontin and RUNX2 (osteogenic markers), CD63, AnX2 (sEV markers) and ALP expression (mineralization marker) in the arterial media. In cultured coronary arterial smooth muscle cells (CASMCs) from Asah1fl/fl/SMCre mice, high dose of Pi led to a significantly increased calcium deposition, phenotypic change and sEV secretion compared to WT CASMCs, which was associated with reduced lysosome-multivesicular body (MVB) interaction. Also, GW4869, sEV release inhibitor decreased sEV secretion and calcification in these cells. Lysosomal transient receptor potential mucolipin 1 (TRPML1) channels regulating lysosome interaction with MVBs were found remarkably inhibited in Asah1fl/fl/SMCre CASMCs as shown by GCaMP3 Ca2+ imaging and Port-a-Patch patch clamping of lysosomes. Lysosomal Ac in SMCs controls sEV release by regulating lysosomal TRPML1 channel activity and lysosome-MVB interaction, which importantly contributes to phenotypic transition and AMC.
Collapse
MESH Headings
- Acid Ceramidase/genetics
- Acid Ceramidase/metabolism
- Animals
- Aorta/metabolism
- Aorta/pathology
- Calcium Signaling
- Cells, Cultured
- Coronary Vessels/metabolism
- Coronary Vessels/pathology
- Disease Models, Animal
- Extracellular Vesicles/metabolism
- Extracellular Vesicles/pathology
- Farber Lipogranulomatosis/genetics
- Farber Lipogranulomatosis/metabolism
- Lysosomes/metabolism
- Male
- Metabolic Networks and Pathways
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Cardiovascular
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Sphingolipids/metabolism
- Transient Receptor Potential Channels/agonists
- Transient Receptor Potential Channels/metabolism
- Vascular Calcification/genetics
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
Collapse
Affiliation(s)
- Owais M Bhat
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA
| | - Guangbi Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA
| | - Xinxu Yuan
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA
| | - Dandan Huang
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany and Dept. of Surgery, University of Cincinnati, Cincinnati, USA
| | - Rakesh C Kukreja
- VCU Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University, 1101 East Marshall Street, Richmond, VA, 23298-0204, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA.
| |
Collapse
|
19
|
Yu J, Yang J. Ion channels as potential redox sensors in lysosomes. Channels (Austin) 2019; 13:477-482. [PMID: 31662029 PMCID: PMC6833971 DOI: 10.1080/19336950.2019.1684428] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/26/2019] [Accepted: 09/15/2019] [Indexed: 02/08/2023] Open
Abstract
Lysosomes are central organelles that recycle materials and energy to maintain intracellular homeostasis. Lysosomes are capable of sensing environmental cues such as nutrition to regulate their function accordingly. Whether lysosomes can sense redox signaling, however, was unclear. Here in this review, we summarized recent evidence of lysosomal ion channel as redox sensors for this organelle. We also discussed their roles in lysosomal diseases that features imbalanced redox.
Collapse
Affiliation(s)
- Jie Yu
- Sports Science Research Center, Zhejiang College of Sports, Hangzhou, China
| | - Junsheng Yang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
20
|
Bartel K, Müller R, von Schwarzenberg K. Differential regulation of AMP-activated protein kinase in healthy and cancer cells explains why V-ATPase inhibition selectively kills cancer cells. J Biol Chem 2019; 294:17239-17248. [PMID: 31604821 DOI: 10.1074/jbc.ra119.010243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/16/2019] [Indexed: 01/02/2023] Open
Abstract
The cellular energy sensor AMP-activated protein kinase (AMPK) is a metabolic hub regulating various pathways involved in tumor metabolism. Here we report that vacuolar H+-ATPase (V-ATPase) inhibition differentially affects regulation of AMPK in tumor and nontumor cells and that this differential regulation contributes to the selectivity of V-ATPase inhibitors for tumor cells. In nonmalignant cells, the V-ATPase inhibitor archazolid increased phosphorylation and lysosomal localization of AMPK. We noted that AMPK localization has a prosurvival role, as AMPK silencing decreased cellular growth rates. In contrast, in cancer cells, we found that AMPK is constitutively active and that archazolid does not affect its phosphorylation and localization. Moreover, V-ATPase-independent AMPK induction in tumor cells protected them from archazolid-induced cytotoxicity, further underlining the role of AMPK as a prosurvival mediator. These observations indicate that AMPK regulation is uncoupled from V-ATPase activity in cancer cells and that this makes them more susceptible to cell death induction by V-ATPase inhibitors. In both tumor and healthy cells, V-ATPase inhibition induced a distinct metabolic regulatory cascade downstream of AMPK, affecting ATP and NADPH levels, glucose uptake, and reactive oxygen species production. We could attribute the prosurvival effects to AMPK's ability to maintain redox homeostasis by inhibiting reactive oxygen species production and maintaining NADPH levels. In summary, the results of our work indicate that V-ATPase inhibition has differential effects on AMPK-mediated metabolic regulation in cancer and healthy cells and explain the tumor-specific cytotoxicity of V-ATPase inhibition.
Collapse
Affiliation(s)
- Karin Bartel
- Department of Pharmacy, Pharmaceutical Biology, Ludwig Maximilians University, 81377 Munich, Germany
| | - Rolf Müller
- Helmholtz Center for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, and Department of Pharmacy at Saarland University, Saarland University Campus, 66123 Saarbrücken, Germany
| | - Karin von Schwarzenberg
- Department of Pharmacy, Pharmaceutical Biology, Ludwig Maximilians University, 81377 Munich, Germany
| |
Collapse
|
21
|
Li G, Huang D, Hong J, Bhat OM, Yuan X, Li PL. Control of lysosomal TRPML1 channel activity and exosome release by acid ceramidase in mouse podocytes. Am J Physiol Cell Physiol 2019; 317:C481-C491. [PMID: 31268777 PMCID: PMC6766620 DOI: 10.1152/ajpcell.00150.2019] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023]
Abstract
The transient receptor potential mucolipin 1 (TRPML1) channel has been reported to mediate lysosomal Ca2+ release that is involved in Ca2+-dependent lysosome trafficking and autophagic flux. However, this regulatory mechanism of lysosomal TRPML1 channel activity in podocytes remains poorly understood. In the present study, we tested whether the TRPML1 channel in podocytes mediates lysosome trafficking, which is essential for multivesicular body (MVB) degradation by lysosomes. We first demonstrated the abundant expression of TRPML1 channel in podocytes. By GCaMP3 Ca2+ imaging, we characterized the lysosomal specificity of TRPML1 channel-mediated Ca2+ release in podocytes. Given the important role of acid ceramidase (AC) in lysosome function and podocyte injury, we tested whether AC regulates this TRPML1 channel-mediated Ca2+ release and consequent lysosome-dependent MVB degradation in podocytes. Pharmacologically, it was found that TRPML1 channel activity was remarkably attenuated by the AC inhibitor carmofur. Sphingosine, as an AC product, was demonstrated to induce TRPML1-mediated Ca2+ release, which was inhibited by a TRPML1 blocker, verapamil. Using a Port-a-Patch planar patch-clamp system, we found that AC-associated sphingolipids, sphingomyelin, ceramide, and sphingosine had different effects on TRPML1 channel activity in podocytes. Functionally, the inhibition of AC or blockade of TRPML1 channels was found to suppress the interaction of lysosomes and MVBs, leading to increased exosome release from podocytes. These results suggest that AC is critical for TRPML1 channel-mediated Ca2+ release, which controls lysosome-MVB interaction and exosome release in podocytes.
Collapse
Affiliation(s)
- Guangbi Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Dandan Huang
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Jinni Hong
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Owais M Bhat
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Xinxu Yuan
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
22
|
Bartel K, Pein H, Popper B, Schmitt S, Janaki-Raman S, Schulze A, Lengauer F, Koeberle A, Werz O, Zischka H, Müller R, Vollmar AM, von Schwarzenberg K. Connecting lysosomes and mitochondria - a novel role for lipid metabolism in cancer cell death. Cell Commun Signal 2019; 17:87. [PMID: 31358011 PMCID: PMC6664539 DOI: 10.1186/s12964-019-0399-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/15/2019] [Indexed: 12/29/2022] Open
Abstract
Background The understanding of lysosomes has been expanded in recent research way beyond their view as cellular trash can. Lysosomes are pivotal in regulating metabolism, endocytosis and autophagy and are implicated in cancer. Recently it was discovered that the lysosomal V-ATPase, which is known to induce apoptosis, interferes with lipid metabolism in cancer, yet the interplay between these organelles is poorly understood. Methods LC-MS/MS analysis was performed to investigate lipid distribution in cells. Cell survival and signaling pathways were analyzed by means of cell biological methods (qPCR, Western Blot, flow cytometry, CellTiter-Blue). Mitochondrial structure was analyzed by confocal imaging and electron microscopy, their function was determined by flow cytometry and seahorse measurements. Results Our data reveal that interfering with lysosomal function changes composition and subcellular localization of triacylglycerids accompanied by an upregulation of PGC1α and PPARα expression, master regulators of energy and lipid metabolism. Furthermore, cardiolipin content is reduced driving mitochondria into fission, accompanied by a loss of membrane potential and reduction in oxidative capacity, which leads to a deregulation in cellular ROS and induction of mitochondria-driven apoptosis. Additionally, cells undergo a metabolic shift to glutamine dependency, correlated with the fission phenotype and sensitivity to lysosomal inhibition, most prominent in Ras mutated cells. Conclusion This study sheds mechanistic light on a largely uninvestigated triangle between lysosomes, lipid metabolism and mitochondrial function. Insight into this organelle crosstalk increases our understanding of mitochondria-driven cell death. Our findings furthermore provide a first hint on a connection of Ras pathway mutations and sensitivity towards lysosomal inhibitors. Graphical Abstract ![]()
Electronic supplementary material The online version of this article (10.1186/s12964-019-0399-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karin Bartel
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany.
| | - Helmut Pein
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Bastian Popper
- Department of Anatomy and Cell Biology, Biomedical Center, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 9, 82152, Planegg-Martinsried, Germany
| | - Sabine Schmitt
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine, 80802, Munich, Germany
| | - Sudha Janaki-Raman
- Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Am Hubland, 97074, Würzburg, Germany
| | - Almut Schulze
- Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Am Hubland, 97074, Würzburg, Germany
| | - Florian Lengauer
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Andreas Koeberle
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Oliver Werz
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Hans Zischka
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine, 80802, Munich, Germany.,Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Rolf Müller
- Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Helmholtz Institute for Pharmaceutical Research Saarland, Saarland University, PO 151150, Universitätscampus E8 1, 66123, Saarbrücken, Germany
| | - Angelika M Vollmar
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Karin von Schwarzenberg
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany.
| |
Collapse
|
23
|
Bartel K, Winzi M, Ulrich M, Koeberle A, Menche D, Werz O, Müller R, Guck J, Vollmar AM, von Schwarzenberg K. V-ATPase inhibition increases cancer cell stiffness and blocks membrane related Ras signaling - a new option for HCC therapy. Oncotarget 2018; 8:9476-9487. [PMID: 28036299 PMCID: PMC5354746 DOI: 10.18632/oncotarget.14339] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/12/2016] [Indexed: 11/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most frequent cancer worldwide and the third leading cause of cancer-related death. However, therapy options are limited leaving an urgent need to develop new strategies. Currently, targeting cancer cell lipid and cholesterol metabolism is gaining interest especially regarding HCC. High cholesterol levels support proliferation, membrane-related mitogenic signaling and increase cell softness, leading to tumor progression, malignancy and invasive potential. However, effective ways to target cholesterol metabolism for cancer therapy are still missing. The V-ATPase inhibitor archazolid was recently shown to interfere with cholesterol metabolism. In our study, we report a novel therapeutic potential of V-ATPase inhibition in HCC by altering the mechanical phenotype of cancer cells leading to reduced proliferative signaling. Archazolid causes cellular depletion of free cholesterol leading to an increase in cell stiffness and membrane polarity of cancer cells, while hepatocytes remain unaffected. The altered membrane composition decreases membrane fluidity and leads to an inhibition of membrane-related Ras signaling resulting decreased proliferation in vitro and in vivo. V-ATPase inhibition represents a novel link between cell biophysical properties and proliferative signaling selectively in malignant HCC cells, providing the basis for an attractive and innovative strategy against HCC.
Collapse
Affiliation(s)
- Karin Bartel
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany
| | - Maria Winzi
- Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | - Melanie Ulrich
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany
| | - Andreas Koeberle
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Dirk Menche
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, 53121 Bonn, Germany
| | - Oliver Werz
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Saarland University, 66123 Saarbrücken, Germany
| | - Jochen Guck
- Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | - Angelika M Vollmar
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany
| | - Karin von Schwarzenberg
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany
| |
Collapse
|
24
|
Shapovalov G, Ritaine A, Bidaux G, Slomianny C, Borowiec AS, Gordienko D, Bultynck G, Skryma R, Prevarskaya N. Organelle membrane derived patches: reshaping classical methods for new targets. Sci Rep 2017; 7:14082. [PMID: 29074990 PMCID: PMC5658434 DOI: 10.1038/s41598-017-13968-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 10/04/2017] [Indexed: 12/12/2022] Open
Abstract
Intracellular ion channels are involved in multiple signaling processes, including such crucial ones as regulation of cellular motility and fate. With 95% of the cellular membrane belonging to intracellular organelles, it is hard to overestimate the importance of intracellular ion channels. Multiple studies have been performed on these channels over the years, however, a unified approach allowing not only to characterize their activity but also to study their regulation by partner proteins, analogous to the patch clamp “golden standard”, is lacking. Here, we present a universal approach that combines the extraction of intracellular membrane fractions with the preparation of patchable substrates that allows to characterize these channels in endogenous protein environment and to study their regulation by partner proteins. We validate this method by characterizing activity of multiple intracellular ion channels localized to different organelles and by providing detailed electrophysiological characterization of the regulation of IP3R activity by endogenous Bcl-2. Thus, after synthesis and reshaping of the well-established approaches, organelle membrane derived patch clamp provides the means to assess ion channels from arbitrary cellular membranes at the single channel level.
Collapse
Affiliation(s)
- George Shapovalov
- Inserm U1003, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Université de Sciences et Technologies de Lille (USTL), F-59655, Villeneuve d'Ascq, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics; Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | - Abigaël Ritaine
- Inserm U1003, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Université de Sciences et Technologies de Lille (USTL), F-59655, Villeneuve d'Ascq, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics; Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | - Gabriel Bidaux
- Inserm U1003, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Université de Sciences et Technologies de Lille (USTL), F-59655, Villeneuve d'Ascq, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics; Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France.,Laboratoire INSERM U1060, CarMeN Laboratory, Claude Bernard Lyon 1 University, 8, avenue Rockfeller, F-69373, Lyon, France
| | - Christian Slomianny
- Inserm U1003, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Université de Sciences et Technologies de Lille (USTL), F-59655, Villeneuve d'Ascq, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics; Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | - Anne-Sophie Borowiec
- Inserm U1003, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Université de Sciences et Technologies de Lille (USTL), F-59655, Villeneuve d'Ascq, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics; Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France.,Laboratoire INSERM U1060, CarMeN Laboratory, Claude Bernard Lyon 1 University, 8, avenue Rockfeller, F-69373, Lyon, France
| | - Dmitri Gordienko
- Inserm U1003, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Université de Sciences et Technologies de Lille (USTL), F-59655, Villeneuve d'Ascq, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics; Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Herestraat 49, BE-3000, Leuven, Belgium
| | - Roman Skryma
- Inserm U1003, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Université de Sciences et Technologies de Lille (USTL), F-59655, Villeneuve d'Ascq, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics; Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | - Natalia Prevarskaya
- Inserm U1003, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Université de Sciences et Technologies de Lille (USTL), F-59655, Villeneuve d'Ascq, France. .,Laboratory of Excellence, Ion Channels Science and Therapeutics; Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France.
| |
Collapse
|
25
|
TPC2 polymorphisms associated with a hair pigmentation phenotype in humans result in gain of channel function by independent mechanisms. Proc Natl Acad Sci U S A 2017; 114:E8595-E8602. [PMID: 28923947 DOI: 10.1073/pnas.1705739114] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Two-pore channels (TPCs) are endolysosomal cation channels. Two members exist in humans, TPC1 and TPC2. Functional roles associated with the ubiquitously expressed TPCs include VEGF-induced neoangiogenesis, LDL-cholesterol trafficking and degradation, physical endurance under fasting conditions, autophagy regulation, the acrosome reaction in sperm, cancer cell migration, and intracellular trafficking of pathogens such as Ebola virus or bacterial toxins (e.g., cholera toxin). In a genome-wide association study for variants associated with human pigmentation characteristics two coding variants of TPC2, rs35264875 (encoding M484L) and rs3829241 (encoding G734E), have been found to be associated with a shift from brown to blond hair color. In two recent follow-up studies a role for TPC2 in pigmentation has been further confirmed. However, these human polymorphic variants have not been functionally characterized until now. The development of endolysosomal patch-clamp techniques has made it possible to investigate directly ion channel activities and characteristics in isolated endolysosomal organelles. We applied this technique here to scrutinize channel characteristics of the polymorphic TPC2 variants in direct comparison with WT. We found that both polymorphisms lead to a gain of channel function by independent mechanisms. We next conducted a clinical study with more than 100 blond- and brown/black-haired individuals. We performed a genotype/phenotype analysis and subsequently isolated fibroblasts from WT and polymorphic variant carriers for endolysosomal patch-clamp experimentation to confirm key in vitro findings.
Collapse
|
26
|
Patch-clamp technique to characterize ion channels in enlarged individual endolysosomes. Nat Protoc 2017; 12:1639-1658. [PMID: 28726848 DOI: 10.1038/nprot.2017.036] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
According to proteomics analyses, more than 70 different ion channels and transporters are harbored in membranes of intracellular compartments such as endosomes and lysosomes. Malfunctioning of these channels has been implicated in human diseases such as lysosomal storage disorders, neurodegenerative diseases and metabolic pathologies, as well as in the progression of certain infectious diseases. As a consequence, these channels have engendered very high interest as future drug targets. Detailed electrophysiological characterization of intracellular ion channels is lacking, mainly because standard methods to analyze plasma membrane ion channels, such as the patch-clamp technique, are not readily applicable to intracellular organelles. Here we present a protocol detailing how to implement a manual patch-clamp technique for endolysosomal compartments. In contrast to the alternatively used planar endolysosomal patch-clamp technique, this method is a visually controlled, direct patch-clamp technique similar to conventional patch-clamping. The protocol assumes basic knowledge and experience with patch-clamp methods. Implementation of the method requires up to 1 week, and material preparation takes ∼2-4 d. An individual experiment (i.e., measurement of channel currents across the endolysosomal membrane), including control experiments, can be completed within 1 h. This excludes the time for endolysosome enlargement, which takes between 1 and 48 h, depending on the approach and cell type used. Data analysis requires an additional hour.
Collapse
|
27
|
Methods for monitoring Ca 2+ and ion channels in the lysosome. Cell Calcium 2017; 64:20-28. [DOI: 10.1016/j.ceca.2016.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 12/07/2016] [Accepted: 12/07/2016] [Indexed: 12/22/2022]
|
28
|
Grimm C, Chen CC, Wahl-Schott C, Biel M. Two-Pore Channels: Catalyzers of Endolysosomal Transport and Function. Front Pharmacol 2017; 8:45. [PMID: 28223936 PMCID: PMC5293812 DOI: 10.3389/fphar.2017.00045] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/20/2017] [Indexed: 01/17/2023] Open
Abstract
Two-pore channels (TPCs) have recently emerged as a novel class of non-selective cation channels in the endolysosomal system. There are two members in the human genome, TPC1 and TPC2. Studies with TPC knockout and knockdown models have revealed that these channels participate in the regulation of multiple endolysosomal trafficking pathways which when dysregulated can lead to or influence the development of a range of different diseases such as lysosomal storage, metabolic, or infectious diseases. TPCs have been demonstrated to be activated by different endogenous stimuli, PI(3,5)P2 and NAADP, and ATP has been found to block TPC activation via mTOR. Loss of TPCs can lead to obesity and hypercholesterolemia, and to a slow-down of intracellular virus and bacterial toxin trafficking, it can affect VEGF-induced neoangiogenesis, autophagy, human hair pigmentation or the acrosome reaction in sperm. Moreover, physiological roles of TPCs in cardiac myocytes and pancreatic β cells have been postulated.
Collapse
Affiliation(s)
- Christian Grimm
- Center for Integrated Protein Science Munich, Ludwig Maximilian University of MunichMunich, Germany
- Department of Pharmacy – Center for Drug Research, Ludwig Maximilian University of MunichMunich, Germany
| | - Cheng-Chang Chen
- Center for Integrated Protein Science Munich, Ludwig Maximilian University of MunichMunich, Germany
- Department of Pharmacy – Center for Drug Research, Ludwig Maximilian University of MunichMunich, Germany
| | - Christian Wahl-Schott
- Center for Integrated Protein Science Munich, Ludwig Maximilian University of MunichMunich, Germany
- Department of Pharmacy – Center for Drug Research, Ludwig Maximilian University of MunichMunich, Germany
| | - Martin Biel
- Center for Integrated Protein Science Munich, Ludwig Maximilian University of MunichMunich, Germany
- Department of Pharmacy – Center for Drug Research, Ludwig Maximilian University of MunichMunich, Germany
| |
Collapse
|
29
|
Nguyen ONP, Grimm C, Schneider LS, Chao YK, Atzberger C, Bartel K, Watermann A, Ulrich M, Mayr D, Wahl-Schott C, Biel M, Vollmar AM. Two-Pore Channel Function Is Crucial for the Migration of Invasive Cancer Cells. Cancer Res 2017; 77:1427-1438. [PMID: 28108508 DOI: 10.1158/0008-5472.can-16-0852] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 11/16/2022]
Abstract
Metastatic invasion is the major cause of cancer-related deaths. In this study, we introduce two-pore channels (TPC), a recently described class of NAADP- and PI(3,5)P2-sensitive Ca2+-permeable cation channels in the endolysosomal system of cells, as candidate targets for the treatment of invasive cancers. Inhibition of the channel abrogated migration of metastatic cancer cells in vitro Silencing or pharmacologic inhibition of the two-pore channel TPC2 reduced lung metastasis of mammary mouse cancer cells. Disrupting TPC function halted trafficking of β1-integrin, leading to its accumulation in EEA1-positive early endosomes. As a consequence, invasive cancer cells were no longer able to form leading edges, which are required for adequate migration. Our findings link TPC to cancer cell migration and provide a preclinical proof of concept for their candidacy as targets to treat metastatic cancers. Cancer Res; 77(6); 1427-38. ©2017 AACR.
Collapse
Affiliation(s)
- Ong Nam Phuong Nguyen
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Christian Grimm
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Lina S Schneider
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Yu-Kai Chao
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Carina Atzberger
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Karin Bartel
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Anna Watermann
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Melanie Ulrich
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Doris Mayr
- Pathological Institute, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Christian Wahl-Schott
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Martin Biel
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-University Munich, Munich, Germany.
| | - Angelika M Vollmar
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-University Munich, Munich, Germany.
| |
Collapse
|
30
|
Brailoiu GC, Brailoiu E. Modulation of Calcium Entry by the Endo-lysosomal System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:423-47. [PMID: 27161239 DOI: 10.1007/978-3-319-26974-0_18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Endo-lysosomes are acidic organelles that besides the role in macromolecules degradation, act as intracellular Ca(2+) stores. Nicotinic acid adenine dinucleotide phosphate (NAADP), the most potent Ca(2+)-mobilizing second messenger, produced in response to agonist stimulation, activates Ca(2+)-releasing channels on endo-lysosomes and modulates a variety of cellular functions. NAADP-evoked signals are amplified by Ca(2+) release from endoplasmic reticulum, via the recruitment of inositol 1,4,5-trisphosphate and/or ryanodine receptors through a Ca(2+)-induced Ca(2+)- release (CICR) mechanism. The endo-lysosomal Ca(2+) channels activated by NAADP were recently identified as the two-pore channels (TPCs). In addition to TPCs, endo-lysosomes express another distinct family of Ca(2+)- permeable channels, namely the transient receptor potential mucolipin (TRPML) channels, functionally distinct from TPCs. TPCs belong to the voltage-gated channels, resembling voltage-gated Na(+) and Ca(2+) channels. TPCs have important roles in vesicular fusion and trafficking, in triggering a global Ca(2+) signal and in modulation of the membrane excitability. Depletion of acidic Ca(2+) stores has been shown to activate store-operated Ca(2+) entry in human platelets and mouse pancreatic β-cells. In human platelets, Ca(2+) influx in response to acidic stores depletion is facilitated by the tubulin-cytoskeleton and occurs through non-selective cation channels and transient receptor potential canonical (TRPC) channels. Emerging evidence indicates that activation of intracellular receptors, situated on endo-lysosomes, elicits canonical and non-canonical signaling mechanisms that involve CICR and activation of non-selective cation channels in plasma membrane. The ability of endo-lysosomal Ca(2+) stores to modulate the Ca(2+) release from other organelles and the Ca(2+) entry increases the diversity and complexity of cellular signaling mechanisms.
Collapse
Affiliation(s)
- G Cristina Brailoiu
- Department of Pharmaceutical Sciences, Jefferson School of Pharmacy, Thomas Jefferson University, 901 Walnut St, Rm 916, Philadelphia, PA, 19107, USA.
| | - Eugen Brailoiu
- Center for Substance Abuse Research, Temple University School of Medicine, 3500 N. Broad Street, Room 848, Philadelphia, PA, 19140, USA
| |
Collapse
|
31
|
Feng X, Yang J. Lysosomal Calcium in Neurodegeneration. MESSENGER (LOS ANGELES, CALIF. : PRINT) 2016; 5:56-66. [PMID: 29082116 PMCID: PMC5659362 DOI: 10.1166/msr.2016.1055] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lysosomes are the central organelles responsible for macromolecule recycling in the cell. Lysosomal dysfunction is the primary cause of lysosomal storage diseases (LSDs), and contributes significantly to the pathogenesis of common neurodegenerative diseases. The lysosomes are also intracellular stores for calcium ions, one of the most common second messenger in the cell. Lysosomal Ca2+ is required for diverse cellular processes including signal transduction, vesicular trafficking, autophagy, nutrient sensing, exocytosis, and membrane repair. In this review, we first summarize some recent progresses in the studies of lysosome Ca2+ regulation, with a focus on the newly discovered lysosomal Ca2+ channels and the mechanisms of lysosomal Ca2+ store refilling. We then discuss how defects in lysosomal Ca2+ release and store maintenance cause lysosomal dysfunction and neurodegeneration.
Collapse
Affiliation(s)
- Xinghua Feng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Junsheng Yang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
- The Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 3089 Natural Science Building (Kraus), 830 North University, Ann Arbor, MI 48109, USA
| |
Collapse
|
32
|
Abstract
The Ca2+-mobilizing second messenger, NAADP (nicotinic acid adenine dinucleotide phosphate), has been with us for nearly 20 years and yet we still cannot fully agree on the identity of its target Ca2+-release channel. In spite of some recent robust challenges to the idea that two-pore channels (TPCs) represent the elusive "NAADP receptor", evidence continues to accumulate that TPCs are important for NAADP-mediated responses. This article will briefly outline the background and review more recent work pertaining to the TPC story.
Collapse
|
33
|
Abstract
Lysosomes are acidic compartments filled with more than 60 different types of hydrolases. They mediate the degradation of extracellular particles from endocytosis and of intracellular components from autophagy. The digested products are transported out of the lysosome via specific catabolite exporters or via vesicular membrane trafficking. Lysosomes also contain more than 50 membrane proteins and are equipped with the machinery to sense nutrient availability, which determines the distribution, number, size, and activity of lysosomes to control the specificity of cargo flux and timing (the initiation and termination) of degradation. Defects in degradation, export, or trafficking result in lysosomal dysfunction and lysosomal storage diseases (LSDs). Lysosomal channels and transporters mediate ion flux across perimeter membranes to regulate lysosomal ion homeostasis, membrane potential, catabolite export, membrane trafficking, and nutrient sensing. Dysregulation of lysosomal channels underlies the pathogenesis of many LSDs and possibly that of metabolic and common neurodegenerative diseases.
Collapse
Affiliation(s)
- Haoxing Xu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109;
| | | |
Collapse
|
34
|
Obergrussberger A, Stölzle-Feix S, Becker N, Brüggemann A, Fertig N, Möller C. Novel screening techniques for ion channel targeting drugs. Channels (Austin) 2015; 9:367-75. [PMID: 26556400 PMCID: PMC4850050 DOI: 10.1080/19336950.2015.1079675] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Ion channels are integral membrane proteins that regulate the flux of ions across the cell membrane. They are involved in nearly all physiological processes, and malfunction of ion channels has been linked to many diseases. Until recently, high-throughput screening of ion channels was limited to indirect, e.g. fluorescence-based, readout technologies. In the past years, direct label-free biophysical readout technologies by means of electrophysiology have been developed. Planar patch-clamp electrophysiology provides a direct functional label-free readout of ion channel function in medium to high throughput. Further electrophysiology features, including temperature control and higher-throughput instruments, are continually being developed. Electrophysiological screening in a 384-well format has recently become possible. Advances in chip and microfluidic design, as well as in cell preparation and handling, have allowed challenging cell types to be studied by automated patch clamp. Assays measuring action potentials in stem cell-derived cardiomyocytes, relevant for cardiac safety screening, and neuronal cells, as well as a large number of different ion channels, including fast ligand-gated ion channels, have successfully been established by automated patch clamp. Impedance and multi-electrode array measurements are particularly suitable for studying cardiomyocytes and neuronal cells within their physiological network, and to address more complex physiological questions. This article discusses recent advances in electrophysiological technologies available for screening ion channel function and regulation.
Collapse
Affiliation(s)
| | | | | | | | | | - Clemens Möller
- b Albstadt-Sigmaringen University; Life Sciences Faculty ; Sigmaringen , Germany
| |
Collapse
|
35
|
Xu H, Martinoia E, Szabo I. Organellar channels and transporters. Cell Calcium 2015; 58:1-10. [PMID: 25795199 DOI: 10.1016/j.ceca.2015.02.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 02/20/2015] [Indexed: 12/22/2022]
Abstract
Decades of intensive research have led to the discovery of most plasma membrane ion channels and transporters and the characterization of their physiological functions. In contrast, although over 80% of transport processes occur inside the cells, the ion flux mechanisms across intracellular membranes (the endoplasmic reticulum, Golgi apparatus, endosomes, lysosomes, mitochondria, chloroplasts, and vacuoles) are difficult to investigate and remain poorly understood. Recent technical advances in super-resolution microscopy, organellar electrophysiology, organelle-targeted fluorescence imaging, and organelle proteomics have pushed a large step forward in the research of intracellular ion transport. Many new organellar channels are molecularly identified and electrophysiologically characterized. Additionally, molecular identification of many of these ion channels/transporters has made it possible to study their physiological functions by genetic and pharmacological means. For example, organellar channels have been shown to regulate important cellular processes such as programmed cell death and photosynthesis, and are involved in many different pathologies. This special issue (SI) on organellar channels and transporters aims to provide a forum to discuss the recent advances and to define the standard and open questions in this exciting and rapidly developing field. Along this line, a new Gordon Research Conference dedicated to the multidisciplinary study of intracellular membrane transport proteins will be launched this coming summer.
Collapse
Affiliation(s)
- Haoxing Xu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 3089 Natural Science Building (Kraus), 830 North University Avenue, Ann Arbor, MI 48109-1048, USA.
| | - Enrico Martinoia
- Institute of Plant Biology, University of Zürich, Zollikerstr. 107, CH-8008 Zürich, Switzerland.
| | - Ildiko Szabo
- Department of Biology, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy; CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy.
| |
Collapse
|
36
|
Reconstitution of lysosomal ion channels into artificial membranes. Methods Cell Biol 2015. [PMID: 25665448 DOI: 10.1016/bs.mcb.2014.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Ion channels that are located on intracellular organelles have always posed challenges for biophysicists seeking to measure their ion conduction, selectivity, and gating kinetics. Unlike cell surface ion channels, intracellular ion channels cannot be accessed for biophysical single-channel recordings using the patch-clamp technique while remaining in a physiological setting. Disruption of the cell is always necessary and hence experiments inevitably have a certain "artificial" nature about them. This drawback is turned to considerable advantage if the internal membranes containing the channels of interest can be isolated or if the channels can be purified because they can then be incorporated into artificial membranes of controlled composition. This approach guarantees a tight but flexible control over the biophysical and biochemical environment of the ion channel molecules. This includes the lipid composition of the membrane and the ionic solutions on both sides of the channel, thus allowing the conductance properties of the channel to be accurately measured. Since the influence of multiple unknown regulators of channel function (that could be present within the physiological membrane or in cytosolic, or intraorganelle compartments) is removed, the identification and characterization of physiological and pharmacological regulators that directly affect channel gating can also be achieved. This cannot be performed in a cellular environment. These techniques have typically been used to study the properties of channels located on endoplasmic/sarcoplasmic reticulum (ER/SR) membranes but in this chapter we describe how the techniques are also suited for ion channels of the acidic lysosomal and endolysosomal Ca(2+) stores.
Collapse
|
37
|
Khajavi N, Reinach PS, Slavi N, Skrzypski M, Lucius A, Strauß O, Köhrle J, Mergler S. Thyronamine induces TRPM8 channel activation in human conjunctival epithelial cells. Cell Signal 2014; 27:315-25. [PMID: 25460045 DOI: 10.1016/j.cellsig.2014.11.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/31/2014] [Accepted: 11/12/2014] [Indexed: 11/16/2022]
Abstract
3-Iodothyronamine (T1AM), an endogenous thyroid hormone (TH) metabolite, induces numerous responses including a spontaneously reversible body temperature decline. As such an effect is associated in the eye with increases in basal tear flow and thermosensitive transient receptor potential melastatin 8 (TRPM8) channel activation, we determined in human conjunctival epithelial cells (IOBA-NHC) if T1AM also acts as a cooling agent to directly affect TRPM8 activation at a constant temperature. RT-PCR and quantitative real-time PCR (qPCR) along with immunocytochemistry probed for TRPM8 gene and protein expression whereas functional activity was evaluated by comparing the effects of T1AM with those of TRPM8 mediators on intracellular Ca(2+) ([Ca(2+)]i) and whole-cell currents. TRPM8 gene and protein expression was evident and icilin (20μM), a TRPM8 agonist, increased Ca(2+) influx as well as whole-cell currents whereas BCTC (10μM), a TRPM8 antagonist, suppressed these effects. Similarly, either temperature lowering below 23°C or T1AM (1μM) induced Ca(2+) transients that were blocked by this antagonist. TRPM8 activation by both 1µM T1AM and 20μM icilin prevented capsaicin (CAP) (20μM) from inducing increases in Ca(2+) influx through TRP vanilloid 1 (TRPV1) activation, whereas BCTC did not block this response. CAP (20μM) induced a 2.5-fold increase in IL-6 release whereas during exposure to 20μM capsazepine this rise was completely blocked. Similarly, T1AM (1μM) prevented this response. Taken together, T1AM like icilin is a cooling agent since they both directly elicit TRPM8 activation at a constant temperature. Moreover, there is an inverse association between changes in TRPM8 and TRPV1 activity since these cooling agents blocked both CAP-induced TRPV1 activation and downstream rises in IL-6 release.
Collapse
Affiliation(s)
- Noushafarin Khajavi
- Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Klinik für Augenheilkunde, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Peter S Reinach
- Biological Sciences, SUNY College of Optometry, New York, NY 10036, USA; School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, PR China
| | - Nefeli Slavi
- Biological Sciences, SUNY College of Optometry, New York, NY 10036, USA
| | - Marek Skrzypski
- Department of Animal Physiology and Biochemistry, Poznań University of Life Sciences, 60-637 Poznań, Poland
| | - Alexander Lucius
- Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Klinik für Augenheilkunde, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Olaf Strauß
- Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Klinik für Augenheilkunde, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Stefan Mergler
- Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Klinik für Augenheilkunde, Augustenburger Platz 1, D-13353 Berlin, Germany.
| |
Collapse
|
38
|
Galione A. A primer of NAADP-mediated Ca(2+) signalling: From sea urchin eggs to mammalian cells. Cell Calcium 2014; 58:27-47. [PMID: 25449298 DOI: 10.1016/j.ceca.2014.09.010] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 09/28/2014] [Accepted: 09/29/2014] [Indexed: 02/04/2023]
Abstract
Since the discovery of the Ca(2+) mobilizing effects of the pyridine nucleotide metabolite, nicotinic acid adenine dinucleotide phosphate (NAADP), this molecule has been demonstrated to function as a Ca(2+) mobilizing intracellular messenger in a wide range of cell types. In this review, I will briefly summarize the distinct principles behind NAADP-mediated Ca(2+) signalling before going on to outline the role of this messenger in the physiology of specific cell types. Central to the discussion here is the finding that NAADP principally mobilizes Ca(2+) from acidic organelles such as lysosomes and it is this property that allows NAADP to play a unique role in intracellular Ca(2+) signalling. Lysosomes and related organelles are small Ca(2+) stores but importantly may also initiate a two-way dialogue with other Ca(2+) storage organelles to amplify Ca(2+) release, and may be strategically localized to influence localized Ca(2+) signalling microdomains. The study of NAADP signalling has created a new and fruitful focus on the lysosome and endolysosomal system as major players in calcium signalling and pathophysiology.
Collapse
Affiliation(s)
- Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| |
Collapse
|
39
|
Cuajungco MP, Basilio LC, Silva J, Hart T, Tringali J, Chen CC, Biel M, Grimm C. Cellular zinc levels are modulated by TRPML1-TMEM163 interaction. Traffic 2014; 15:1247-65. [PMID: 25130899 DOI: 10.1111/tra.12205] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 08/02/2014] [Accepted: 08/04/2014] [Indexed: 02/05/2023]
Abstract
Mucolipidosis type IV (MLIV) is caused by loss of function mutations in the TRPML1 ion channel. We previously reported that tissue zinc levels in MLIV were abnormally elevated; however, the mechanism behind this pathologic accumulation remains unknown. Here, we identify transmembrane (TMEM)-163 protein, a putative zinc transporter, as a novel interacting partner for TRPML1. Evidence from yeast two-hybrid, tissue expression pattern, co-immunoprecipitation, mass spectrometry and confocal microscopy studies confirmed the physical association of TMEM163 with TRPML1. This interaction is disrupted when a part of TMEM163's N-terminus was deleted. Further studies to define the relevance of their interaction revealed that the plasma membrane (PM) levels of TMEM163 significantly decrease when TRPML1 is co-expressed in HEK-293 cells, while it mostly localizes within the PM when co-expressed with a mutant TRPML1 that distributes mostly in the PM. Meanwhile, co-expression of TMEM163 does not alter TRPML1 channel activity, but its expression levels in MLIV patient fibroblasts are reduced, which correlate with marked accumulation of zinc in lysosomes when these cells are acutely exposed to exogenous zinc (100 μM). When TMEM163 is knocked down or when TMEM163 and TRPML1 are co-knocked down in HEK-293 cells treated overnight with 100 nm zinc, the cells have significantly higher intracellular zinc levels than untreated control. Overall, these findings suggest that TMEM163 and TRPML1 proteins play a critical role in cellular zinc homeostasis, and thus possibly explain a novel mechanism for the pathological overload of zinc in MLIV disease.
Collapse
Affiliation(s)
- Math P Cuajungco
- Department of Biological Science and Center for Applied Biotechnology Studies, California State University, Fullerton, CA, 92831, USA; Mental Health Research Institute, Melbourne Brain Centre, Parkville, VIC, 3052, Australia
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Grimm C, Holdt LM, Chen CC, Hassan S, Müller C, Jörs S, Cuny H, Kissing S, Schröder B, Butz E, Northoff B, Castonguay J, Luber CA, Moser M, Spahn S, Lüllmann-Rauch R, Fendel C, Klugbauer N, Griesbeck O, Haas A, Mann M, Bracher F, Teupser D, Saftig P, Biel M, Wahl-Schott C. High susceptibility to fatty liver disease in two-pore channel 2-deficient mice. Nat Commun 2014; 5:4699. [DOI: 10.1038/ncomms5699] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 07/10/2014] [Indexed: 12/15/2022] Open
|
41
|
Chen CC, Keller M, Hess M, Schiffmann R, Urban N, Wolfgardt A, Schaefer M, Bracher F, Biel M, Wahl-Schott C, Grimm C. A small molecule restores function to TRPML1 mutant isoforms responsible for mucolipidosis type IV. Nat Commun 2014; 5:4681. [PMID: 25119295 DOI: 10.1038/ncomms5681] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/11/2014] [Indexed: 11/08/2022] Open
Abstract
Mucolipidosis type IV (MLIV) is an autosomal recessive lysosomal storage disorder often characterized by severe neurodevelopmental abnormalities and neuro-retinal degeneration. Mutations in the TRPML1 gene are causative for MLIV. We used lead optimization strategies to identify--and MLIV patient fibroblasts to test--small-molecule activators for their potential to restore TRPML1 mutant channel function. Using the whole-lysosome planar patch-clamp technique, we found that activation of MLIV mutant isoforms by the endogenous ligand PI(3,5)P2 is strongly reduced, while activity can be increased using synthetic ligands. We also found that the F465L mutation renders TRPML1 pH insensitive, while F408Δ impacts synthetic ligand binding. Trafficking defects and accumulation of zinc in lysosomes of MLIV mutant fibroblasts can be rescued by the small molecule treatment. Collectively, our data demonstrate that small molecules can be used to restore channel function and rescue disease associated abnormalities in patient cells expressing specific MLIV point mutations.
Collapse
Affiliation(s)
- Cheng-Chang Chen
- 1] Department of Pharmacy-Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Munchen 81377, Germany [2]
| | - Marco Keller
- 1] Department of Pharmacy, Ludwig-Maximilians-Universität München, Munchen 81377, Germany [2]
| | - Martin Hess
- Department of Biology, Ludwig-Maximilians-Universität München, Munchen 82152, Germany
| | - Raphael Schiffmann
- Institute of Metabolic Disease, Baylor Research Institute, Dallas, Texas, USA
| | - Nicole Urban
- Rudolf-Boehm-Institute for Pharmacology and Toxicolgy, Universität Leipzig, Leipzig 04107, Germany
| | - Annette Wolfgardt
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Munchen 81377, Germany
| | - Michael Schaefer
- Rudolf-Boehm-Institute for Pharmacology and Toxicolgy, Universität Leipzig, Leipzig 04107, Germany
| | - Franz Bracher
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Munchen 81377, Germany
| | - Martin Biel
- Department of Pharmacy-Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Munchen 81377, Germany
| | - Christian Wahl-Schott
- Department of Pharmacy-Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Munchen 81377, Germany
| | - Christian Grimm
- 1] Department of Pharmacy-Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Munchen 81377, Germany [2]
| |
Collapse
|
42
|
The voltage-gated sodium channel TPC1 confers endolysosomal excitability. Nat Chem Biol 2014; 10:463-9. [PMID: 24776928 DOI: 10.1038/nchembio.1522] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/27/2014] [Indexed: 11/09/2022]
Abstract
The physiological function and molecular regulation of plasma membrane potential have been extensively studied, but how intracellular organelles sense and control membrane potential is not well understood. Using whole-organelle patch clamp recording, we show that endosomes and lysosomes are electrically excitable organelles. In a subpopulation of endolysosomes, a brief electrical stimulus elicits a prolonged membrane potential depolarization spike. The organelles have a previously uncharacterized, depolarization-activated, noninactivating Na(+) channel (lysoNaV). The channel is formed by a two-repeat six-transmembrane-spanning (2×6TM) protein, TPC1, which represents the evolutionary transition between 6TM and 4×6TM voltage-gated channels. Luminal alkalization also opens lysoNaV by markedly shifting the channel's voltage dependence of activation toward hyperpolarization. Thus, TPC1 is a member of a new family of voltage-gated Na(+) channels that senses pH changes and confers electrical excitability to organelles.
Collapse
|
43
|
Abstract
TRPML3 belongs to the MCOLN (TRPML) subfamily of transient receptor potential (TRP) channels comprising three genes in mammals. Since the discovery of the pain sensing, capsaicin- and heat-activated vanilloid receptor (TRPV1), TRP channels have been found to be involved in regulating almost all kinds of our sensory modalities. Thus, TRP channel members are sensitive to heat or cold; they are involved in pain or osmosensation, vision, hearing, or taste sensation. Loss or mutation of TRPML1 can cause retina degeneration and eventually blindness in mice and men (mucolipidosis type IV). Gain-of-function mutations in TRPML3 cause deafness and circling behavior in mice. A special feature of TRPML channels is their intracellular expression. They mostly reside in membranes of organelles of the endolysosomal system such as early and late endosomes, recycling endosomes, lysosomes, or lysosome-related organelles. Although the physiological roles of TRPML channels within the endolysosomal system are far from being fully understood, it is speculated that they are involved in the regulation of endolysosomal pH, fusion/fission processes, trafficking, autophagy, and/or (hormone) secretion and exocytosis.
Collapse
|
44
|
Dadacz-Narloch B, Kimura S, Kurusu T, Farmer EE, Becker D, Kuchitsu K, Hedrich R. On the cellular site of two-pore channel TPC1 action in the Poaceae. THE NEW PHYTOLOGIST 2013; 200:663-674. [PMID: 23845012 DOI: 10.1111/nph.12402] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 06/02/2013] [Indexed: 06/02/2023]
Abstract
The slow vacuolar (SV) channel has been characterized in different dicots by patch-clamp recordings. This channel represents the major cation conductance of the largest organelle in most plant cells. Studies with the tpc1-2 mutant of the model dicot plant Arabidopsis thaliana identified the SV channel as the product of the TPC1 gene. By contrast, research on rice and wheat TPC1 suggested that the monocot gene encodes a plasma membrane calcium-permeable channel. To explore the site of action of grass TPC1 channels, we expressed OsTPC1 from rice (Oryza sativa) and TaTPC1 from wheat (Triticum aestivum) in the background of the Arabidopsis tpc1-2 mutant. Cross-species tpc1 complementation and patch-clamping of vacuoles using Arabidopsis and rice tpc1 null mutants documented that both monocot TPC1 genes were capable of rescuing the SV channel deficit. Vacuoles from wild-type rice but not the tpc1 loss-of-function mutant harbor SV channels exhibiting the hallmark properties of dicot TPC1/SV channels. When expressed in human embryonic kidney (HEK293) cells OsTPC1 was targeted to Lysotracker-Red-positive organelles. The finding that the rice TPC1, just like those from the model plant Arabidopsis and even animal cells, is localized and active in lyso-vacuolar membranes associates this cation channel species with endomembrane function.
Collapse
Affiliation(s)
- Beata Dadacz-Narloch
- Institute for Molecular Plant Physiology and Biophysics, University of Wuerzburg, D-97082, Wuerzburg, Germany
| | - Sachie Kimura
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Takamitsu Kurusu
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
- School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Tokyo, 192-0982, Japan
| | - Edward E Farmer
- Department of Plant Molecular Biology, University of Lausanne, Biophore, 1015, Lausanne, Switzerland
| | - Dirk Becker
- Institute for Molecular Plant Physiology and Biophysics, University of Wuerzburg, D-97082, Wuerzburg, Germany
| | - Kazuyuki Kuchitsu
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Wuerzburg, D-97082, Wuerzburg, Germany
| |
Collapse
|
45
|
Abstract
Ion channels are targets of many therapeutically useful agents, and worldwide sales of ion channel-targeted drugs are estimated to be approximately US$12 billion. Nevertheless, considering that over 400 genes encoding ion channel subunits have been identified, ion channels remain significantly under-exploited as therapeutic targets. This is at least partly due to limitations in high-throughput assay technologies that support screening and lead optimization. Will the recent developments in automated electrophysiology rectify this situation? What are the other major limitations and can they be overcome? In this article, we review the status of ion channel drug discovery, discuss current challenges and propose alternative approaches that may facilitate the discovery of new drugs in the future.
Collapse
|
46
|
Marchant JS, Lin-Moshier Y, Walseth TF, Patel S. The Molecular Basis for Ca 2+ Signalling by NAADP: Two-Pore Channels in a Complex? ACTA ACUST UNITED AC 2012; 1:63-76. [PMID: 25309835 DOI: 10.1166/msr.2012.1003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
NAADP is a potent Ca2+ mobilizing messenger in a variety of cells but its molecular mechanism of action is incompletely understood. Accumulating evidence indicates that the poorly characterized two-pore channels (TPCs) in animals are NAADP sensitive Ca2+-permeable channels. TPCs localize to the endo-lysosomal system but are functionally coupled to the better characterized endoplasmic reticulum Ca2+ channels to generate physiologically relevant complex Ca2+ signals. Whether TPCs directly bind NAADP is not clear. Here we discuss the idea based on recent studies that TPCs are the pore-forming subunits of a protein complex that includes tightly associated, low molecular weight NAADP-binding proteins.
Collapse
Affiliation(s)
- Jonathan S Marchant
- Department of Pharmacology, University of Minnesota Medical School, MN 55455, USA
| | - Yaping Lin-Moshier
- Department of Pharmacology, University of Minnesota Medical School, MN 55455, USA
| | - Timothy F Walseth
- Department of Pharmacology, University of Minnesota Medical School, MN 55455, USA
| | - Sandip Patel
- Department of Cell and Developmental Biology, University College London, WC1E 6BT, UK
| |
Collapse
|
47
|
Taylor CW, Dale P. Intracellular Ca(2+) channels - a growing community. Mol Cell Endocrinol 2012; 353:21-8. [PMID: 21889573 DOI: 10.1016/j.mce.2011.08.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 08/16/2011] [Accepted: 08/18/2011] [Indexed: 12/24/2022]
Abstract
The Ca(2+) signals that control almost every cellular activity are generated by regulating Ca(2+) transport, usually via Ca(2+)-permeable channels, across the plasma membrane or the membranes of intracellular organelles. The most widespread and best understood of the intracellular Ca(2+) channels are inositol trisphosphate receptors (IP(3)R) and ryanodine receptors, most of which are expressed in the endoplasmic or sarcoplasmic reticulum. However, accumulating evidence suggests physiological roles for many additional Ca(2+) channels in both ER and other intracellular organelles. Interactions between these channels, whether mediated by Ca(2+) itself or interactions between proteins, is a recurrent feature of the Ca(2+) signals evoked by physiological stimuli. We focus on two specific examples, clustering of IP(3)Rs and NAADP (nicotinic acid dinucleotide phosphate)-evoked Ca(2+) release from endo-lysosomes, to illustrate the diversity of Ca(2+) channels and the interplay between them.
Collapse
|
48
|
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent intracellular Ca(2+)-mobilising messenger. Much evidence indicates that NAADP targets novel Ca(2+) channels located on acidic organelles but the identity of these channels has remained obscure. Recent studies have converged on a novel class of ion channels, the two-pore channels (TPCs) as likely molecular targets. The location of these channels to the endo-lysosomal system and their sensitivity to NAADP match closely those of endogenous NAADP-sensitive channels in both mammalian cells and sea urchin eggs, where the effects of NAADP were discovered. Moreover, the functional coupling of TPCs to archetypal endoplasmic reticulum (ER) Ca(2+) channels is also matched. Biophysical analysis in conjunction with site-directed mutagenesis demonstrates that TPCs are pore-forming subunits of NAADP-gated ion channels. TPCs have a unique two-repeat structure, are regulated by N-linked glycosylation and harbor an endo-lysosomal targeting motif in their N-terminus. Knockdown studies have shown TPCs to regulate smooth muscle contraction, differentiation and endothelial cell activation consistent with previous studies implicating NAADP in these processes. Thus multiple lines of evidence indicate that TPCs are the likely long sought targets for NAADP.
Collapse
Affiliation(s)
- Robert Hooper
- Department of Cell and Developmental Biology, University College London, UK.
| | | |
Collapse
|
49
|
Molecular mechanisms of endolysosomal Ca2+ signalling in health and disease. Biochem J 2011; 439:349-74. [PMID: 21992097 DOI: 10.1042/bj20110949] [Citation(s) in RCA: 317] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Endosomes, lysosomes and lysosome-related organelles are emerging as important Ca2+ storage cellular compartments with a central role in intracellular Ca2+ signalling. Endocytosis at the plasma membrane forms endosomal vesicles which mature to late endosomes and culminate in lysosomal biogenesis. During this process, acquisition of different ion channels and transporters progressively changes the endolysosomal luminal ionic environment (e.g. pH and Ca2+) to regulate enzyme activities, membrane fusion/fission and organellar ion fluxes, and defects in these can result in disease. In the present review we focus on the physiology of the inter-related transport mechanisms of Ca2+ and H+ across endolysosomal membranes. In particular, we discuss the role of the Ca2+-mobilizing messenger NAADP (nicotinic acid adenine dinucleotide phosphate) as a major regulator of Ca2+ release from endolysosomes, and the recent discovery of an endolysosomal channel family, the TPCs (two-pore channels), as its principal intracellular targets. Recent molecular studies of endolysosomal Ca2+ physiology and its regulation by NAADP-gated TPCs are providing exciting new insights into the mechanisms of Ca2+-signal initiation that control a wide range of cellular processes and play a role in disease. These developments underscore a new central role for the endolysosomal system in cellular Ca2+ regulation and signalling.
Collapse
|
50
|
Galione A, Parrington J, Funnell T. Physiological roles of NAADP-mediated Ca2+ signaling. SCIENCE CHINA-LIFE SCIENCES 2011; 54:725-32. [PMID: 21786195 DOI: 10.1007/s11427-011-4207-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 06/25/2011] [Indexed: 10/18/2022]
Abstract
Nicotinic acid dinucleotide phosphate (NAADP) is unique amongst Ca(2+) mobilizing messengers in that its principal function is to mobilize Ca(2+) from acidic organelles. Early studies indicated that it was likely that NAADP activates a novel Ca(2+) release channel distinct from the well characterized Ca(2+) release channels on the (sarco)-endoplasmic reticulum (ER), inositol trisphosphate and ryanodine receptors. In this review, we discuss the emergence of a novel family of endolysosomal channels, the two-pore channels (TPCs), as likely targets for NAADP, and how molecular and pharmacological manipulation of these channels is enhancing our understanding of the physiological roles of NAADP as an intracellular Ca(2+) mobilizing messenger.
Collapse
Affiliation(s)
- Antony Galione
- Department of Pharmacology, University of Oxford, Oxford, UK.
| | | | | |
Collapse
|