1
|
Hao Z, Zhou Y, Zhang Y, Wang D, Wei Y, Ji X, Sun WR, Wang P, Li Y, Lopez IB, Pedraz JL, Ramalingam M, Xie S, Wang R. Celastrol loaded nanocomplex for painless tumor therapy via YAP inhibition. Sci Rep 2025; 15:13133. [PMID: 40240779 PMCID: PMC12003811 DOI: 10.1038/s41598-025-97055-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025] Open
Abstract
Cancer-related pain is prevalent and severely impairs patients' quality of life. However, conventional cancer therapies primarily target tumor cell destruction, often overlooking the management of cancer pain. Thus, there is an immediate necessity to develop therapeutic agents that can both suppress tumor growth and alleviate cancer pain. In this study, we report a celastrol (CEL)-based nanocomposites (PDA-BSA-MnO2-CEL) for pain-less cancer immunotherapy. Results from in vitro and in vivo experiments demonstrate the efficacy and mechanism of the nanocomposites in pain-less immunotherapy. MnO2 and CEL induce immunogenic cell death (ICD), mediating immunotherapy. Additionally, CEL significantly reduces the secretion of the immunosuppressive factor Yes-associated protein (YAP) within the tumor microenvironment, thereby enhancing the efficacy of immunotherapy. The downregulation of YAP leads to reduced expression of vascular endothelial growth factor (VEGF), inhibiting tumor growth and decreasing activation of the pain-associated VEGF receptor 1 (VEGFR1), thus providing an analgesic effect. Moreover, CEL reduces inflammatory pain by lowering levels of inflammatory factors in tumors. The design of this nanocomposites system integrates immunotherapy with cancer pain inhibition, offering a novel approach to patient-centered tumor therapy.
Collapse
Affiliation(s)
- Zhaokun Hao
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, 264003, People's Republic of China
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai, 264000, People's Republic of China
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Yuming Zhou
- Department of Clinical Laboratory, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, People's Republic of China
| | - Yuqiang Zhang
- Department of Clinical Laboratory, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, People's Republic of China
| | - Danyang Wang
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Yiying Wei
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Xiaopu Ji
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Wan Ru Sun
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Pingyu Wang
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - YouJie Li
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Irene Bautista Lopez
- NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/ EHU), 01006, Vitoria-Gasteiz, Spain
| | - José Luis Pedraz
- NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/ EHU), 01006, Vitoria-Gasteiz, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III (ISCIII), 28029, Madrid, Spain
- Joint Research Laboratory (JRL) on Bioprinting and Advanced Pharma Development, Centro de investigació n Lascaray Ikergunea, A Joined Venture of TECNALIA, Basque Research & Technology Alliance (BRTA), Avenida Miguel de Unamuno, 01006, Vitoria-Gasteiz, Spain
| | - Murugan Ramalingam
- NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/ EHU), 01006, Vitoria-Gasteiz, Spain.
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009, Vitoria-Gasteiz, Spain.
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III (ISCIII), 28029, Madrid, Spain.
- Joint Research Laboratory (JRL) on Bioprinting and Advanced Pharma Development, Centro de investigació n Lascaray Ikergunea, A Joined Venture of TECNALIA, Basque Research & Technology Alliance (BRTA), Avenida Miguel de Unamuno, 01006, Vitoria-Gasteiz, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013, Bilbao, Spain.
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, People's Republic of China.
| | - Shuyang Xie
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai, 264000, People's Republic of China.
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, 264003, People's Republic of China.
| | - Ranran Wang
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, 264003, People's Republic of China.
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai, 264000, People's Republic of China.
| |
Collapse
|
2
|
Wang Y, Liu Q, Jiang Y, Mao L, Zoubaa M, Wang J, Bu H, Ma M, Yuan J, Cao J, Fan X. Anwulignan Alleviates Bone Cancer Pain by Modulating the PPARα/CXCR2 Signaling Pathway in the Rat Spinal Cord. CNS Neurosci Ther 2025; 31:e70302. [PMID: 40079428 PMCID: PMC11904945 DOI: 10.1111/cns.70302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/16/2025] [Accepted: 02/08/2025] [Indexed: 03/15/2025] Open
Abstract
AIMS Advanced cancer patients frequently endure severe pain from bone metastases, and few effective treatments for bone cancer pain (BCP) exist. Although Anwulignan is known for its antioxidant, anti-inflammatory, and antitumor properties, its effects on BCP remain unclear. This study aims to explore the analgesic effects and mechanisms of Anwulignan on bone cancer pain. METHODS Western blotting and immunofluorescence assessed molecular expression and localization. X-ray, micro-CT, TRAP, and ALP staining examined bone destruction in rats. MTT, colony formation assays, and in vivo imaging analyzed tumor changes. RNA-Seq identified differentially expressed genes, validated by ChIP analysis. RESULTS Here, we showed that Anwulignan alleviated mechanical, thermal, and cold hypersensitivity and spontaneous pain, prevented bone destruction, and suppressed local tumor growth in rats with BCP. Furthermore, Anwulignan was firmly bound to proliferator-activated receptor alpha (PPARα), increasing its thermal stability. Intrathecal (i.t.) injection of PPARα siRNA increased pain sensitivity in naive rats, and PPARα siRNA abrogated the analgesic effect of Anwulignan in BCP model rats. Moreover, the PPARα agonist pirinixic acid reduced BCP hypersensitivity and abrogated the upregulation of CXC chemokine receptor 2 (CXCR2). Importantly, PPARα bound to the CXCR2 promoter region, and Anwulignan could reverse the reduced binding of PPARα to CXCR2 caused by BCP. CONCLUSION Taken together, these results indicate that Anwulignan is a potential antitumor and analgesic agent that exerts its effects via upregulation of PPARα expression to inhibit the expression of CXCR2 and could be used for treating BCP.
Collapse
Affiliation(s)
- Yueliang Wang
- Department of Pain MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Qingying Liu
- Department of Pain MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Yingying Jiang
- Department of Neuropharmacology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Longfei Mao
- College of Basic Medicine and Forensic MedicineHenan University of Science and TechnologyLuoyangChina
| | - Mohamed Zoubaa
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Jian Wang
- Department of Pain MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Huilian Bu
- Department of Pain MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Minyu Ma
- Department of Pain MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Jingjing Yuan
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Jing Cao
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenan ProvinceChina
- Institute of NeuroscienceZhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Xiaochong Fan
- Department of Pain MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| |
Collapse
|
3
|
Chen X, Zeng Y, Wang Z, Zhu J, Liu F, Zhu M, Zheng J, Chen Q, Zhai D, Chen Y, Niu J, Xue Z, Sun G, Li F, Pan Z. NFAT1 Signaling Contributes to Bone Cancer Pain by Regulating IL-18 Expression in Spinal Microglia. CNS Neurosci Ther 2025; 31:e70222. [PMID: 39957627 PMCID: PMC11831200 DOI: 10.1111/cns.70222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/09/2024] [Accepted: 01/03/2025] [Indexed: 02/18/2025] Open
Abstract
AIMS This study aimed to test the hypothesis that nuclear factor of activated T cells 1 (NFAT1) signaling contributes to bone cancer pain by regulating interleukin (IL)-18 expression in spinal microglia. METHODS This study was performed on male mice using a Lewis lung carcinoma-induced bone cancer pain model. Nociceptive behaviors were evaluated by measuring mechanical allodynia, thermal hyperalgesia, and spontaneous pain. Expression levels were measured via real-time quantitative polymerase chain reaction, western blotting, and immunofluorescence analysis. The effect of pharmacologic intervention of spinal NFAT1/IL-18 signaling on bone cancer pain was the primary outcome. RESULTS NFAT1 expression was upregulated in the spinal microglia after tumor inoculation. Pharmacological inhibition of NFAT1 upregulation prevented and reversed bone cancer-related pain behaviors. In spinal microglia, NFAT1 inhibition decreased p38 MAPK phosphorylation and IL-18 production. Blocking NFAT1 signaling suppressed tumor-induced neuronal sensitization and microglial activation as well as activation of the N-methyl-D-aspartate receptor and the subsequent Ca2+-dependent signaling. CONCLUSION Microglia NFAT1-p38 signaling contributes to bone cancer pain through IL-18-mediated central sensitization in spinal microglia. NFAT1 could be a potential target for therapeutic intervention to prevent bone cancer pain.
Collapse
Affiliation(s)
- Xuetai Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Department of AnesthesiologyThe Yancheng Clinical College of Xuzhou Medical University, The First people’s Hospital of YanchengYanchengChina
| | - Ying Zeng
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Department of AnesthesiologyThe Yancheng Clinical College of Xuzhou Medical University, The First people’s Hospital of YanchengYanchengChina
| | - Zizhu Wang
- Department of AnesthesiologyObstetrics and Gynecology Hospital of Fudan UniversityShanghaiChina
| | - Jixiang Zhu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Department of AnesthesiologyThe Yancheng Clinical College of Xuzhou Medical University, The First people’s Hospital of YanchengYanchengChina
| | - Fengyun Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Department of AnesthesiologyThe Yancheng Clinical College of Xuzhou Medical University, The First people’s Hospital of YanchengYanchengChina
| | - Mingxuan Zhu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Department of AnesthesiologyThe Yancheng Clinical College of Xuzhou Medical University, The First people’s Hospital of YanchengYanchengChina
| | - Jiayi Zheng
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Department of AnesthesiologyThe Yancheng Clinical College of Xuzhou Medical University, The First people’s Hospital of YanchengYanchengChina
| | - Qingdaiyao Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Department of AnesthesiologyThe Yancheng Clinical College of Xuzhou Medical University, The First people’s Hospital of YanchengYanchengChina
| | - Dongxu Zhai
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Department of AnesthesiologyThe Yancheng Clinical College of Xuzhou Medical University, The First people’s Hospital of YanchengYanchengChina
| | - Yangyang Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Department of AnesthesiologyThe Yancheng Clinical College of Xuzhou Medical University, The First people’s Hospital of YanchengYanchengChina
| | - Jiayao Niu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Department of AnesthesiologyThe Yancheng Clinical College of Xuzhou Medical University, The First people’s Hospital of YanchengYanchengChina
| | - Zhouya Xue
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Department of AnesthesiologyThe Yancheng Clinical College of Xuzhou Medical University, The First people’s Hospital of YanchengYanchengChina
| | - Guan Sun
- Department of NeurosurgeryThe Yancheng Clinical College of Xuzhou Medical University, The First people's Hospital of YanchengYanchengJiangsuChina
| | - Feng Li
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Department of AnesthesiologyThe Yancheng Clinical College of Xuzhou Medical University, The First people’s Hospital of YanchengYanchengChina
| | - Zhiqiang Pan
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Department of AnesthesiologyThe Yancheng Clinical College of Xuzhou Medical University, The First people’s Hospital of YanchengYanchengChina
| |
Collapse
|
4
|
Zhang ZX, Tian Y, Li S, Jing HB, Cai J, Li M, Xing GG. Involvement of HDAC2-mediated kcnq2/kcnq3 genes transcription repression activated by EREG/EGFR-ERK-Runx1 signaling in bone cancer pain. Cell Commun Signal 2024; 22:416. [PMID: 39192337 PMCID: PMC11350972 DOI: 10.1186/s12964-024-01797-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024] Open
Abstract
Bone cancer pain (BCP) represents a prevalent symptom among cancer patients with bone metastases, yet its underlying mechanisms remain elusive. This study investigated the transcriptional regulation mechanism of Kv7(KCNQ)/M potassium channels in DRG neurons and its involvement in the development of BCP in rats. We show that HDAC2-mediated transcriptional repression of kcnq2/kcnq3 genes, which encode Kv7(KCNQ)/M potassium channels in dorsal root ganglion (DRG), contributes to the sensitization of DRG neurons and the pathogenesis of BCP in rats. Also, HDAC2 requires the formation of a corepressor complex with MeCP2 and Sin3A to execute transcriptional regulation of kcnq2/kcnq3 genes. Moreover, EREG is identified as an upstream signal molecule for HDAC2-mediated kcnq2/kcnq3 genes transcription repression. Activation of EREG/EGFR-ERK-Runx1 signaling, followed by the induction of HDAC2-mediated transcriptional repression of kcnq2/kcnq3 genes in DRG neurons, leads to neuronal hyperexcitability and pain hypersensitivity in tumor-bearing rats. Consequently, the activation of EREG/EGFR-ERK-Runx1 signaling, along with the subsequent transcriptional repression of kcnq2/kcnq3 genes by HDAC2 in DRG neurons, underlies the sensitization of DRG neurons and the pathogenesis of BCP in rats. These findings uncover a potentially targetable mechanism contributing to bone metastasis-associated pain in cancer patients.
Collapse
Affiliation(s)
- Zi-Xian Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center and Neuroscience Research Institute, Peking University, Beijing, China
| | - Yue Tian
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center and Neuroscience Research Institute, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, 100191, China
| | - Song Li
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center and Neuroscience Research Institute, Peking University, Beijing, China
| | - Hong-Bo Jing
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center and Neuroscience Research Institute, Peking University, Beijing, China
| | - Jie Cai
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center and Neuroscience Research Institute, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, 100191, China
| | - Min Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China.
| | - Guo-Gang Xing
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center and Neuroscience Research Institute, Peking University, Beijing, China.
- Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, 100191, China.
| |
Collapse
|
5
|
Yang J, Yu Z, Jiang Y, Zhang Z, Tian Y, Cai J, Wei M, Lyu Y, Yang D, Shen S, Xing G, Li M. SIRT3 alleviates painful diabetic neuropathy by mediating the FoxO3a-PINK1-Parkin signaling pathway to activate mitophagy. CNS Neurosci Ther 2024; 30:e14703. [PMID: 38572816 PMCID: PMC10993345 DOI: 10.1111/cns.14703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024] Open
Abstract
INTRODUCTION Painful diabetic neuropathy (PDN) is a common complication of diabetes. Previous studies have implicated that mitochondrial dysfunction plays a role in the development of PDN, but its pathogenesis and mechanism have not been fully investigated. METHODS In this study, we used high-fat diet/low-dose streptozotocin-induced rats as a model of type 2 diabetes mellitus. Behavioral testing, whole-cell patch-clamp recordings of dorsal root ganglion (DRG) neurons, and complex sensory nerve conduction velocity studies were used to assess peripheral neuropathy. Mitochondrial membrane potential (MMP), ATP, tissue reactive oxygen species, and transmission electron microscopy were used to evaluate the function and morphology of mitochondria in DRG. Real-time PCR, western blot, and immunofluorescence were performed to investigate the mechanism. RESULTS We found that damaged mitochondria were accumulated and mitophagy was inhibited in PDN rats. The expression of sirtuin 3 (SIRT3), which is an NAD+-dependent deacetylase in mitochondria, was inhibited. Overexpression of SIRT3 in DRG neurons by intrathecally administered LV-SIRT3 lentivirus ameliorated neurological and mitochondrial dysfunctions. This was evidenced by the reversal of allodynia and nociceptor hyperexcitability, as well as the restoration of MMP and ATP levels. Overexpression of SIRT3 restored the inhibited mitophagy by activating the FoxO3a-PINK1-Parkin signaling pathway. The effects of SIRT3 overexpression, including the reversal of allodynia and nociceptor hyperexcitability, the improvement of impaired mitochondria and mitophagy, and the restoration of PINK1 and Parkin expression, were counteracted when FoxO3a siRNA was intrathecally injected. CONCLUSION These results showed that SIRT3 overexpression ameliorates PDN via activation of FoxO3a-PINK1-Parkin-mediated mitophagy, suggesting that SIRT3 may become an encouraging therapeutic strategy for PDN.
Collapse
Affiliation(s)
- Jing Yang
- Department of AnesthesiologyPeking University Third HospitalBeijingChina
| | - Zhuoying Yu
- Department of AnesthesiologyPeking University Third HospitalBeijingChina
| | - Ye Jiang
- Department of AnesthesiologyPeking University Third HospitalBeijingChina
| | - Zixian Zhang
- Neuroscience Research Institute, Peking UniversityBeijingChina
- Department of Neurobiology, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
- Key Laboratory for NeuroscienceMinistry of Education of China and National Health Commission of ChinaBeijingChina
| | - Yue Tian
- Neuroscience Research Institute, Peking UniversityBeijingChina
- Department of Neurobiology, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
- Key Laboratory for NeuroscienceMinistry of Education of China and National Health Commission of ChinaBeijingChina
| | - Jie Cai
- Neuroscience Research Institute, Peking UniversityBeijingChina
- Department of Neurobiology, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
- Key Laboratory for NeuroscienceMinistry of Education of China and National Health Commission of ChinaBeijingChina
| | - Min Wei
- Department of AnesthesiologyPeking University Third HospitalBeijingChina
| | - Yanhan Lyu
- Department of AnesthesiologyPeking University Third HospitalBeijingChina
| | - Dongsheng Yang
- Department of AnesthesiologyPeking University Third HospitalBeijingChina
| | - Shixiong Shen
- Department of AnesthesiologyPeking University Third HospitalBeijingChina
| | - Guo‐Gang Xing
- Neuroscience Research Institute, Peking UniversityBeijingChina
- Department of Neurobiology, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
- Key Laboratory for NeuroscienceMinistry of Education of China and National Health Commission of ChinaBeijingChina
| | - Min Li
- Department of AnesthesiologyPeking University Third HospitalBeijingChina
| |
Collapse
|
6
|
Liu Q, Lu Z, Ren H, Fu L, Wang Y, Bu H, Ma M, Ma L, Huang C, Wang J, Zang W, Cao J, Fan X. Cav3.2 T-Type calcium channels downregulation attenuates bone cancer pain induced by inhibiting IGF-1/HIF-1α signaling pathway in the rat spinal cord. J Bone Oncol 2023; 42:100495. [PMID: 37583441 PMCID: PMC10423893 DOI: 10.1016/j.jbo.2023.100495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/17/2023] Open
Abstract
Background Bone cancer pain (BCP) is one of the most ubiquitous and refractory symptoms of cancer patients that needs to be urgently addressed. Substantial studies have revealed the pivotal role of Cav3.2 T-type calcium channels in chronic pain, however, its involvement in BCP and the specific molecular mechanism have not been fully elucidated. Methods The expression levels of Cav3.2, insulin-like growth factor 1(IGF-1), IGF-1 receptor (IGF-1R) and hypoxia-inducible factor-1α (HIF-1α) were detected by Western blot in tissues and cells. X-ray and Micro CT used to detect bone destruction in rats. Immunofluorescence was used to detect protein expression and spatial location in the spinal dorsal horn. Electrophoretic mobility shift assay used to verify the interaction between HIF-1α and Cav3.2. Results The results showed that the expression of Cav3.2 channel was upregulated and blockade of this channel alleviated mechanical allodynia and thermal hyperalgesia in BCP rats. Additionally, inhibition of IGF-1/IGF-1R signaling not only reversed the BCP-induced upregulation of Cav3.2 and HIF-1α, but also decreased nociceptive hypersensitivity in BCP rats. Inhibition of IGF-1 increased Cav3.2 expression levels, which were abolished by pretreatment with HIF-1α siRNA in PC12 cells. Furthermore, nuclear HIF-1α bound to the promoter of Cav3.2 to regulate the Cav3.2 transcription level, and knockdown of HIF-1α suppresses the IGF-1-induced upregulation of Cav3.2 and pain behaviors in rats with BCP. Conclusion These findings suggest that spinal Cav3.2 T-type calcium channels play a central role during the development of bone cancer pain in rats via regulation of the IGF-1/IGF-1R/HIF-1α pathway.
Collapse
Affiliation(s)
- Qingying Liu
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zhongyuan Lu
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Huan Ren
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Lijun Fu
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yueliang Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Huilian Bu
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Minyu Ma
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Letian Ma
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Chen Huang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jian Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Weidong Zang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Jing Cao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Xiaochong Fan
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
7
|
Li S, Jakobs TC. Secreted phosphoprotein 1 slows neurodegeneration and rescues visual function in mouse models of aging and glaucoma. Cell Rep 2022; 41:111880. [PMID: 36577373 PMCID: PMC9847489 DOI: 10.1016/j.celrep.2022.111880] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/01/2022] [Accepted: 12/02/2022] [Indexed: 12/29/2022] Open
Abstract
Aging causes an irreversible, cumulative decline in neuronal function. Using the visual system as a model, we show that astrocytes play a critical role in maintaining retinal ganglion cell health and that deletion of SPP1 (secreted phosphoprotein 1, or osteopontin) from astrocytes leads to increased vulnerability of ganglion cells to age, elevated intraocular pressure, and traumatic optic nerve damage. Overexpression of SPP1 slows the age-related decline in ganglion cell numbers and is highly protective of visual function in a mouse model of glaucoma. SPP1 acts by promoting phagocytosis and secretion of neurotrophic factors while inhibiting production of neurotoxic and pro-inflammatory factors. SPP1 up-regulates transcription of genes related to oxidative phosphorylation, functionally enhances mitochondrial respiration, and promotes the integrity of mitochondrial microstructure. SPP1 increases intracellular ATP concentration via up-regulation of VDAC1.
Collapse
Affiliation(s)
- Song Li
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA 02114, USA.
| | - Tatjana C Jakobs
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA 02114, USA.
| |
Collapse
|
8
|
Huang Y, Chen SR, Pan HL. Calcineurin Regulates Synaptic Plasticity and Nociceptive Transmission at the Spinal Cord Level. Neuroscientist 2022; 28:628-638. [PMID: 34791930 DOI: 10.1177/10738584211046888] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Calcineurin, the predominant Ca2+/calmodulin-dependent serine/threonine protein phosphatase (also known as protein phosphatase 2B), is highly expressed in immune T cells and the nervous system, including the dorsal root ganglion and spinal cord. It controls synaptic transmission and plasticity by maintaining the appropriate phosphorylation status of many ion channels present at presynaptic and postsynaptic sites. As such, normal calcineurin activity in neurons and synapses is mainly involved in negative feedback regulation in response to increased neuronal activity and intracellular Ca2+ levels. Calcineurin inhibitors (e.g., cyclosporine and tacrolimus) are widely used as immunosuppressants in tissue and organ transplantation recipients and for treating autoimmune diseases but can cause severe pain in some patients. Furthermore, diminished calcineurin activity at the spinal cord level may play a major role in the transition from acute to chronic neuropathic pain after nerve injury. Restoring calcineurin activity at the spinal cord level produces long-lasting pain relief in animal models of neuropathic pain. In this article, we provide an overview of recent studies on the critical roles of calcineurin in regulating glutamate NMDA and AMPA receptors, voltage-gated Ca2+ channels, potassium channels, and transient receptor potential channels expressed in the spinal dorsal horn and primary sensory neurons.
Collapse
Affiliation(s)
- Yuying Huang
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
9
|
Yuan ZL, Liu XD, Zhang ZX, Li S, Tian Y, Xi K, Cai J, Yang XM, Liu M, Xing GG. Activation of GDNF-ERK-Runx1 signaling contributes to P2X3R gene transcription and bone cancer pain. iScience 2022; 25:104936. [PMID: 36072549 PMCID: PMC9441333 DOI: 10.1016/j.isci.2022.104936] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/15/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Bone cancer pain is a common symptom in cancer patients with bone metastases and its underlying mechanisms remain unknown. Here, we report that Runx1 directly upregulates the transcriptional activity of P2X3 receptor (P2X3R) gene promoter in PC12 cells. Knocking down Runx1 in dorsal root ganglion (DRG) neurons suppresses the functional upregulation of P2X3R, attenuates neuronal hyperexcitability and pain hypersensitivity in tumor-bearing rats, whereas overexpressing Runx1 promotes P2X3R gene transcription in DRG neurons, induces neuronal hyperexcitability and pain hypersensitivity in naïve rats. Activation of GDNF-GFRα1-Ret-ERK signaling is required for Runx1-mediated P2X3R gene transcription in DRG neurons, and contributes to neuronal hyperexcitability and pain hypersensitivity in tumor-bearing rats. These findings indicate that the Runx1-mediated P2X3R gene transcription resulted from activation of GDNF-GFRα1-Ret-ERK signaling contributes to the sensitization of DRG neurons and pathogenesis of bone cancer pain. Our findings identify a potentially targetable mechanism that may cause bone metastasis-associated pain in cancer patients.
Collapse
Affiliation(s)
- Zhu-Lin Yuan
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Xiao-Dan Liu
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Zi-Xian Zhang
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Song Li
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Yue Tian
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Ke Xi
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Jie Cai
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Xiao-Mei Yang
- Department of Human Anatomy and Embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Min Liu
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Guo-Gang Xing
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| |
Collapse
|
10
|
Lüscher B, Verheirstraeten M, Krieg S, Korn P. Intracellular mono-ADP-ribosyltransferases at the host-virus interphase. Cell Mol Life Sci 2022; 79:288. [PMID: 35536484 PMCID: PMC9087173 DOI: 10.1007/s00018-022-04290-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/15/2022] [Accepted: 04/05/2022] [Indexed: 01/22/2023]
Abstract
The innate immune system, the primary defense mechanism of higher organisms against pathogens including viruses, senses pathogen-associated molecular patterns (PAMPs). In response to PAMPs, interferons (IFNs) are produced, allowing the host to react swiftly to viral infection. In turn the expression of IFN-stimulated genes (ISGs) is induced. Their products disseminate the antiviral response. Among the ISGs conserved in many species are those encoding mono-ADP-ribosyltransferases (mono-ARTs). This prompts the question whether, and if so how, mono-ADP-ribosylation affects viral propagation. Emerging evidence demonstrates that some mono-ADP-ribosyltransferases function as PAMP receptors and modify both host and viral proteins relevant for viral replication. Support for mono-ADP-ribosylation in virus–host interaction stems from the findings that some viruses encode mono-ADP-ribosylhydrolases, which antagonize cellular mono-ARTs. We summarize and discuss the evidence linking mono-ADP-ribosylation and the enzymes relevant to catalyze this reversible modification with the innate immune response as part of the arms race between host and viruses.
Collapse
Affiliation(s)
- Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Maud Verheirstraeten
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Sarah Krieg
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Patricia Korn
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| |
Collapse
|
11
|
Kaushal JB, Batra SK, Rachagani S. Hedgehog signaling and its molecular perspective with cholesterol: a comprehensive review. Cell Mol Life Sci 2022; 79:266. [PMID: 35486193 PMCID: PMC9990174 DOI: 10.1007/s00018-022-04233-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/18/2022] [Accepted: 03/07/2022] [Indexed: 02/08/2023]
Abstract
Hedgehog (Hh) signaling is evolutionarily conserved and plays an instructional role in embryonic morphogenesis, organogenesis in various animals, and the central nervous system organization. Multiple feedback mechanisms dynamically regulate this pathway in a spatiotemporal and context-dependent manner to confer differential patterns in cell fate determination. Hh signaling is complex due to canonical and non-canonical mechanisms coordinating cell-cell communication. In addition, studies have demonstrated a regulatory framework of Hh signaling and shown that cholesterol is vital for Hh ligand biogenesis, signal generation, and transduction from the cell surface to intracellular space. Studies have shown the importance of a specific cholesterol pool, termed accessible cholesterol, which serves as a second messenger, conveying signals between smoothened (Smo) and patched 1 (Ptch1) across the plasma and ciliary membranes. Remarkably, recent high-resolution structural and molecular studies shed new light on the interplay between Hh signaling and cholesterol in membrane biology. These studies elucidated novel mechanistic insight into the release and dispersal of cholesterol-anchored Hh and the basis of Hh recognition by Ptch1. Additionally, the putative model of Smo activation by cholesterol binding and/or modification and Ptch1 antagonization of Smo has been explicated. However, the coupling mechanism of Hh signaling and cholesterol offered a new regulatory principle in cell biology: how effector molecules of the Hh signal network react to and remodel cholesterol accessibility in the membrane and selectively activate Hh signaling proteins thereof. Recognizing the biological importance of cholesterol in Hh signaling activation and transduction opens the door for translational research to develop novel therapeutic strategies. This review looks in-depth at canonical and non-canonical Hh signaling and the distinct proposed model of cholesterol-mediated regulation of Hh signaling components, facilitating a more sophisticated understanding of the Hh signal network and cholesterol biology.
Collapse
Affiliation(s)
- Jyoti B Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred and Pamela Buffet Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred and Pamela Buffet Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
12
|
Weichseldorfer M, Tagaya Y, Reitz M, DeVico AL, Latinovic OS. Identifying CCR5 coreceptor populations permissive for HIV-1 entry and productive infection: implications for in vivo studies. J Transl Med 2022; 20:39. [PMID: 35073923 PMCID: PMC8785515 DOI: 10.1186/s12967-022-03243-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
Background The chemokine receptor CCR5 is the major coreceptor for HIV-1 cell entry. We previously observed that not all CCR5 mAbs reduce HIV-1 infection, suggesting that only some CCR5 populations are permissive for HIV-1 entry. This study aims to better understand the relevant conformational states of the cellular coreceptor, CCR5, involved in HIV entry. We hypothesized that CCR5 assumes multiple configurations during normal cycling on the plasma membrane, but only particular forms facilitate HIV-1 infection. Methods To this end, we quantified different CCR5 populations using six CCR5 monoclonal antibodies (mAbs) with different epitope specificities and visualized them with super-resolution microscopy. We quantified each surface CCR5 population before and after HIV-1 infection. Results Based on CCR5 conformational changes, down-modulation, and trafficking rates (internalization and recycling kinetics), we were able to distinguish among heterogeneous CCR5 populations and thus which populations might best be targeted to inhibit HIV-1 entry. We assume that a decreased surface presence of a particular CCR5 subpopulation following infection means that it has been internalized due to HIV-1 entry, and that it therefore represents a highly relevant target for future antiviral therapy strategies. Strikingly, this was most true for antibody CTC8, which targets the N-terminal region of CCR5 and blocks viral entry more efficiently than it blocks chemokine binding. Conclusions Defining the virus-host interactions responsible for HIV-1 transmission, including specific coreceptor populations capable of establishing de novo infections, is essential for the development of an HIV-1 vaccine. This study hopefully will facilitate further development of inhibitors to block CCR5 usage by HIV-1, as well as inform future HIV-1 vaccine design. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03243-8.
Collapse
Affiliation(s)
- Matthew Weichseldorfer
- Institute of Human Virology, School of Medicine, University of Maryland, 725 W. Lombard St., Baltimore, MD, 21201, USA
| | - Yutaka Tagaya
- Institute of Human Virology, School of Medicine, University of Maryland, 725 W. Lombard St., Baltimore, MD, 21201, USA.,Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Marvin Reitz
- Institute of Human Virology, School of Medicine, University of Maryland, 725 W. Lombard St., Baltimore, MD, 21201, USA.,Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Anthony L DeVico
- Institute of Human Virology, School of Medicine, University of Maryland, 725 W. Lombard St., Baltimore, MD, 21201, USA.,Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Olga S Latinovic
- Institute of Human Virology, School of Medicine, University of Maryland, 725 W. Lombard St., Baltimore, MD, 21201, USA. .,Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA.
| |
Collapse
|
13
|
Fan LJ, Kan HM, Chen XT, Sun YY, Chen LP, Shen W. Vascular endothelial growth factor-A/vascular endothelial growth factor2 signaling in spinal neurons contributes to bone cancer pain. Mol Pain 2022; 18:17448069221075891. [PMID: 35083936 PMCID: PMC8874205 DOI: 10.1177/17448069221075891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Tumor metastasis to bone is often accompanied by a severe pain syndrome (cancer-induced bone pain, CIBP) that is frequently unresponsive to analgesics, which markedly reduces patient quality of life and cancer treatment tolerance in patients. Prolonged pain can induce hypersensitivity via spinal plasticity, and several recent studies have implicated the involvement of vascular endothelial growth factor-A (VEGF-A) signaling in this process. Here, we speculated that CIBP is associated with VEGF-A/VEGFR2 signaling in the spinal cord. A mouse model of CIBP was established by intramedullary injection of Lewis lung carcinoma (LLC) cells in the mouse femur. Pain sensitization and potential amelioration via VEGF-A/VEGFR2 blockade were measured using paw withdrawal threshold to mechanical stimulation and paw withdrawal latency to thermal. Spinal VEGF-A/VEGFR2 signaling was blocked by intrathecal injection of the VEGF-A antibody or the specific VEGFR2 inhibitor ZM323881. Changes in the expression levels of VEGF-A, VEGFR2, and other pain-related signaling factors were measured using western blotting and immunofluorescence staining. Mice after LLC injection demonstrated mechanical allodynia and thermal hyperalgesia, both of which were suppressed via anti-VEGF-A antibody or ZM323881. Conversely, the intrathecal injection of exogenous VEGF-A was sufficient to cause pain hypersensitivity in naïve mice via the VEGFR2-mediated activation of protein kinase C. Moreover, the spinal blockade of VEGF-A or VEGFR2 also suppressed N-methyl-D-aspartate receptor (NMDAR) activation and downstream Ca2+-dependent signaling. Thus, spinal VEGF-A/VEGFR2/NMDAR signaling pathways may be critical mediators of CIBP.
Collapse
Affiliation(s)
- Li-Jun Fan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Hou-Ming Kan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Xue-Tai Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Yuan-Yuan Sun
- Department of Anesthesiology, Xuzhou First People’s Hospital, Xuzhou, China
| | - Li-ping Chen
- Department of Pain Management, Affiliated Hospital of Xuzhou, Xuzhou, China
| | - Wen Shen
- Department of Pain Management, Affiliated Hospital of Xuzhou, Xuzhou, China
| |
Collapse
|
14
|
Mini-Review: Two Brothers in Crime - The Interplay of TRESK and TREK in Human Diseases. Neurosci Lett 2021; 769:136376. [PMID: 34852287 DOI: 10.1016/j.neulet.2021.136376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 02/07/2023]
Abstract
TWIK-related spinal cord potassium (TRESK) and TWIK-related potassium (TREK) channels are both subfamilies of the two-pore domain potassium (K2P) channel group. Despite major structural, pharmacological, as well as biophysical differences, emerging data suggest that channels of these two subfamilies are functionally more closely related than previously assumed. Recent studies, for instance, indicate an assembling of TRESK and TREK subunits, leading to the formation of heterodimeric channels with different functional properties compared to homodimeric ones. Formation of tandems consisting of TRESK and TREK subunits might thus multiply the functional diversity of both TRESK and TREK activity. Based on the involvement of these channels in the pathophysiology of migraine, we here highlight the role as well as the impact of the interplay of TRESK and TREK subunits in the context of different disease settings. In this regard, we focus on their involvement in migraine and pain syndromes, as well as on their influence on (neuro-)inflammatory processes. Furthermore, we describe the potential implications for innovative therapeutic strategies that take advantage of TRESK and TREK modulation as well as obstacles encountered in the development of therapies related to the aforementioned diseases.
Collapse
|
15
|
Contribution of Neuronal and Glial Two-Pore-Domain Potassium Channels in Health and Neurological Disorders. Neural Plast 2021; 2021:8643129. [PMID: 34434230 PMCID: PMC8380499 DOI: 10.1155/2021/8643129] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/03/2021] [Indexed: 02/05/2023] Open
Abstract
Two-pore-domain potassium (K2P) channels are widespread in the nervous system and play a critical role in maintaining membrane potential in neurons and glia. They have been implicated in many stress-relevant neurological disorders, including pain, sleep disorder, epilepsy, ischemia, and depression. K2P channels give rise to leaky K+ currents, which stabilize cellular membrane potential and regulate cellular excitability. A range of natural and chemical effectors, including temperature, pressure, pH, phospholipids, and intracellular signaling molecules, substantially modulate the activity of K2P channels. In this review, we summarize the contribution of K2P channels to neuronal excitability and to potassium homeostasis in glia. We describe recently discovered functions of K2P channels in glia, such as astrocytic passive conductance and glutamate release, microglial surveillance, and myelin generation by oligodendrocytes. We also discuss the potential role of glial K2P channels in neurological disorders. In the end, we discuss current limitations in K2P channel researches and suggest directions for future studies.
Collapse
|
16
|
Huang L, Xu G, Jiang R, Luo Y, Zuo Y, Liu J. Development of Non-opioid Analgesics Targeting Two-pore Domain Potassium Channels. Curr Neuropharmacol 2021; 20:16-26. [PMID: 33827408 PMCID: PMC9199554 DOI: 10.2174/1570159x19666210407152528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/14/2021] [Accepted: 03/24/2021] [Indexed: 02/08/2023] Open
Abstract
Two-pore domain potassium (K2P) channels are a diverse family of potassium channels. K2P channels generate background leak potassium currents to regulate cellular excitability and are thereby involved in a wide range of neurological disorders. K2P channels are modulated by a variety of physicochemical factors such as mechanical stretch, temperature, and pH. In the the peripheral nervous system (PNS), K2P channels are widely expressed in nociceptive neurons and play a critical roles in pain perception. In this review, we summarize the recent advances in the pharmacological properties of K2P channels, with a focus on the exogenous small-molecule activators targeting K2P channels. We emphasize the subtype-selectivity, cellular and in vivo pharmacological properties of all the reported small-molecule activators. The key underlying analgesic mechanisms mediated by K2P are also summarized based on the data in the literature from studies using small-molecule activators and genetic knock-out animals. We discuss advantages and limitations of the translational perspectives of K2P in pain medicine and provide outstanding questions for future studies in the end.
Collapse
Affiliation(s)
- Lu Huang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, Sichuan. China
| | - Guangyin Xu
- Department of Physiology and Neurobiology, Institute of Neuroscience, Medical College of Soochow University, Suzhou, 215123, Jiangsu. China
| | - Ruotian Jiang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, Sichuan. China
| | - Yuncheng Luo
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, Sichuan. China
| | - Yunxia Zuo
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, Sichuan. China
| | - Jin Liu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, Sichuan. China
| |
Collapse
|
17
|
Lengyel M, Hajdu D, Dobolyi A, Rosta J, Czirják G, Dux M, Enyedi P. TRESK background potassium channel modifies the TRPV1-mediated nociceptor excitability in sensory neurons. Cephalalgia 2021; 41:827-838. [PMID: 33525904 DOI: 10.1177/0333102421989261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND TWIK-related spinal cord potassium channel (TRESK) background potassium channels have a key role in controlling resting membrane potential and excitability of sensory neurons. A frameshift mutation leading to complete loss of TRESK function has been identified in members of a family suffering from migraine with aura. In the present study, we examined the role of TRESK channels on nociceptor function in mice. METHODS Calcium imaging was used to investigate the role of TRESK channels in the modulation of the response evoked by transient receptor potential vanilloid 1 (TRPV1) receptor stimulation in dorsal root ganglion neurons. Release of calcitonin gene-related peptide from trigeminal afferents and changes in meningeal blood flow were also measured. Experiments were performed on wild-type and TRESK knockout animals. RESULTS Inhibition of TRESK increased the TRPV1-mediated calcium signal in dorsal root ganglion neurons and potentiated capsaicin-induced increases in calcitonin gene-related peptide release and meningeal blood flow. Activation of TRESK decreased the capsaicin sensitivity of sensory neurons, leading to an attenuation of capsaicin-induced increase in meningeal blood flow. In TRESK knockout animals, TRPV1-mediated nociceptive reactions were unaffected by pretreatment with TRESK modulators. CONCLUSIONS Pharmacological manipulation of TRESK channels influences the TRPV1-mediated functions of nociceptors. Altered TRESK function might contribute to trigeminal nociceptor sensitization in migraine patients.
Collapse
Affiliation(s)
- Miklós Lengyel
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Dominika Hajdu
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Alice Dobolyi
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Judit Rosta
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Gábor Czirják
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Mária Dux
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Péter Enyedi
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
18
|
Liu JP, Jing HB, Xi K, Zhang ZX, Jin ZR, Cai SQ, Tian Y, Cai J, Xing GG. Contribution of TRESK two-pore domain potassium channel to bone cancer-induced spontaneous pain and evoked cutaneous pain in rats. Mol Pain 2021; 17:17448069211023230. [PMID: 34102915 PMCID: PMC8193666 DOI: 10.1177/17448069211023230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 05/04/2021] [Accepted: 05/19/2021] [Indexed: 01/11/2023] Open
Abstract
Cancer-associated pain is debilitating. However, the mechanism underlying cancer-induced spontaneous pain and evoked pain remains unclear. Here, using behavioral tests with immunofluorescent staining, overexpression, and knockdown of TRESK methods, we found an extensive distribution of TRESK potassium channel on both CGRP+ and IB4+ nerve fibers in the hindpaw skin, on CGRP+ nerve fibers in the tibial periosteum which lacks IB4+ fibers innervation, and on CGRP+ and IB4+ dorsal root ganglion (DRG) neurons in rats. Moreover, we found a decreased expression of TRESK in the corresponding nerve fibers within the hindpaw skin, the tibial periosteum and the DRG neurons in bone cancer rats. Overexpression of TRESK in DRG neurons attenuated both cancer-induced spontaneous pain (partly reflect skeletal pain) and evoked pain (reflect cutaneous pain) in tumor-bearing rats, in which the relief of evoked pain is time delayed than spontaneous pain. In contrast, knockdown of TRESK in DRG neurons produced both spontaneous pain and evoked pain in naïve rats. These results suggested that the differential distribution and decreased expression of TRESK in the periosteum and skin, which is attributed to the lack of IB4+ fibers innervation within the periosteum of the tibia, probably contribute to the behavioral divergence of cancer-induced spontaneous pain and evoked pain in bone cancer rats. Thus, the assessment of spontaneous pain and evoked pain should be accomplished simultaneously when evaluating the effect of some novel analgesics in animal models. Also, this study provides solid evidence for the role of peripheral TRESK in both cancer-induced spontaneous pain and evoked cutaneous pain.
Collapse
Affiliation(s)
- Jiang-Ping Liu
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
| | - Hong-Bo Jing
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
| | - Ke Xi
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
| | - Zi-Xian Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
| | - Zi-Run Jin
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
| | - Si-Qing Cai
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
| | - Yue Tian
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
| | - Jie Cai
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
| | - Guo-Gang Xing
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, China
| |
Collapse
|
19
|
Zhang J, Rong L, Shao J, Zhang Y, Liu Y, Zhao S, Li L, Yu W, Zhang M, Ren X, Zhao Q, Zhu C, Luo H, Zang W, Cao J. Epigenetic restoration of voltage-gated potassium channel Kv1.2 alleviates nerve injury-induced neuropathic pain. J Neurochem 2020; 156:367-378. [PMID: 32621322 DOI: 10.1111/jnc.15117] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 12/12/2022]
Abstract
Voltage-gated potassium channels (Kv) are important regulators of neuronal excitability for its role of regulating resting membrane potential and repolarization. Recent studies show that Kv channels participate in neuropathic pain, but the detailed underlying mechanisms are far from being clear. In this study, we used siRNA, miR-137 agomir, and antagomir to regulate the expression of Kv1.2 in spinal cord and dorsal root ganglia (DRG) of naïve and chronic constriction injury (CCI) rats. Kv currents and neuron excitability in DRG neurons were examined by patch-clamp whole-cell recording to verify the change in Kv1.2 function. The results showed that Kv1.2 was down-regulated in DRG and spinal dorsal horn (SDH) by CCI. Knockdown of Kv1.2 by intrathecally injecting Kcna2 siRNA induced significant mechanical and thermal hypersensitivity in naïve rats. Concomitant with the down-regulation of Kv1.2 was an increase in the expression of the miR-137. The targeting and regulating of miR-137 on Kcna2 was verified by dual-luciferase reporter system and intrathecal injecting miR-137 agomir. Furthermore, rescuing the expression of Kv1.2 in CCI rats, achieved through inhibiting miR-137, restored the abnormal Kv currents and excitability in DRG neurons, and alleviated mechanical allodynia and thermal hyperalgesia. These results indicate that the miR-137-mediated Kv1.2 impairment is a crucial etiopathogenesis for the nerve injury-induced neuropathic pain and can be a novel potential therapeutic target for neuropathic pain management.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lina Rong
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jinping Shao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yidan Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaping Liu
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Sen Zhao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lei Li
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wenli Yu
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Mengya Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiuhua Ren
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qingzan Zhao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Changlian Zhu
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Gothenburg University, Gothenburg, Sweden.,Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Huan Luo
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Klinik für Augenheilkunde, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Weidong Zang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Jing Cao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
20
|
The Background K + Channel TRESK in Sensory Physiology and Pain. Int J Mol Sci 2020; 21:ijms21155206. [PMID: 32717813 PMCID: PMC7432782 DOI: 10.3390/ijms21155206] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/18/2022] Open
Abstract
TRESK belongs to the K2P family of potassium channels, also known as background or leak potassium channels due to their biophysical properties and their role regulating membrane potential of cells. Several studies to date have highlighted the role of TRESK in regulating the excitability of specific subtypes of sensory neurons. These findings suggest TRESK could be involved in pain sensitivity. Here, we review the different evidence available that involves the channel in pain and sensory perception, from studies knocking out the channel or overexpressing it to identified mutations that link the channel to migraine pain. In addition, the therapeutic possibilities are discussed, as targeting the channel seems an interesting therapeutic approach to reduce nociceptor activation and to decrease pain.
Collapse
|
21
|
Li Y, Jiao H, Ren W, Ren F. TRESK alleviates trigeminal neuralgia induced by infraorbital nerve chronic constriction injury in rats. Mol Pain 2020; 15:1744806919882511. [PMID: 31558093 PMCID: PMC6822185 DOI: 10.1177/1744806919882511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Trigeminal neuralgia commonly results in pain behaviors and cognitive impairment. Convincing evidence suggests that TWIK-related spinal cord K+ (TRESK) exerts antinociceptive and neuroprotective effects. However, its possible potentials in trigeminal neuralgia remain unclear. Trigeminal neuralgia model was established in rats by generating an infraorbital nerve chronic constriction injury, and rats received intrathecal injections of TRESK-overexpressing lentivirus and siRNA expression vector-targeted against TRESK (si-TRESK) into the trigeminal ganglions. Mechanical allodynia was evaluated by mechanical withdrawal threshold. Cognitive capacity was tested using Morris water maze. The TRESK expression was determined by quantitative real-time polymerase chain reaction and Western blotting. Results showed that the mRNA and protein levels of TRESK were significantly downregulated in trigeminal ganglions in injured rats. Intrathecal treatment with TRESK reduced mechanical allodynia and relieved learning and memory deficits in trigeminal neuralgia rats, while si-TRESK injection caused neuropathic pain and cognitive deficits. In summary, the present study concluded that TRESK ameliorated pain-associated behaviors and cognitive deficits, which was useful as an alternative approach in management of trigeminal neuralgia.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Hena Jiao
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Wenan Ren
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Fei Ren
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, P.R. China
| |
Collapse
|
22
|
Castellanos A, Pujol-Coma A, Andres-Bilbe A, Negm A, Callejo G, Soto D, Noël J, Comes N, Gasull X. TRESK background K + channel deletion selectively uncovers enhanced mechanical and cold sensitivity. J Physiol 2020; 598:1017-1038. [PMID: 31919847 DOI: 10.1113/jp279203] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023] Open
Abstract
KEY POINTS TRESK background K+ channel is expressed in sensory neurons and acts as a brake to reduce neuronal activation. Deletion of the channel enhances the excitability of nociceptors. Skin nociceptive C-fibres show an enhanced activation by cold and mechanical stimulation in TRESK knockout animals. Channel deletion selectively enhances mechanical and cold sensitivity in mice, without altering sensitivity to heat. These results indicate that the channel regulates the excitability of specific neuronal subpopulations involved in mechanosensitivity and cold-sensing. ABSTRACT Background potassium-permeable ion channels play a critical role in tuning the excitability of nociceptors, yet the precise role played by different subsets of channels is not fully understood. Decreases in TRESK (TWIK-related spinal cord K+ channel) expression/function enhance excitability of sensory neurons, but its role in somatosensory perception and nociception is poorly understood. Here, we used a TRESK knockout (KO) mouse to address these questions. We show that TRESK regulates the sensitivity of sensory neurons in a modality-specific manner, contributing to mechanical and cold sensitivity but without any effect on heat sensitivity. Nociceptive neurons isolated from TRESK KO mice show a decreased threshold for activation and skin nociceptive C-fibres show an enhanced activation by cold and mechanical stimulation that was also observed in behavioural tests in vivo. TRESK is also involved in osmotic pain and in early phases of formalin-induced inflammatory pain, but not in the development of mechanical and heat hyperalgesia during chronic pain. In contrast, mice lacking TRESK present cold allodynia that is not further enhanced by oxaliplatin. In summary, genetic removal of TRESK uncovers enhanced mechanical and cold sensitivity, indicating that the channel regulates the excitability of specific neuronal subpopulations involved in mechanosensitivity and cold-sensing, acting as a brake to prevent activation by innocuous stimuli.
Collapse
Affiliation(s)
- Aida Castellanos
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Anna Pujol-Coma
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Alba Andres-Bilbe
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Ahmed Negm
- Université Côte d'Azur, CNRS UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France.,LabEx Ion Channel Science and Therapeutics, Valbonne, France
| | - Gerard Callejo
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, 08036, Barcelona, Spain
| | - David Soto
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Jacques Noël
- Université Côte d'Azur, CNRS UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France.,LabEx Ion Channel Science and Therapeutics, Valbonne, France
| | - Nuria Comes
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Xavier Gasull
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| |
Collapse
|
23
|
Li WC, Xiong ZY, Huang PZ, Liao YJ, Li QX, Yao ZC, Liao YD, Xu SL, Zhou H, Wang QL, Huang H, Zhang P, Lin JZ, Liu B, Ren J, Hu KP. KCNK levels are prognostic and diagnostic markers for hepatocellular carcinoma. Aging (Albany NY) 2019; 11:8169-8182. [PMID: 31581133 PMCID: PMC6814606 DOI: 10.18632/aging.102311] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 09/21/2019] [Indexed: 12/24/2022]
Abstract
Two-pore-domain (KCNK, K2P) K+ channels are transmembrane protein complexes that control the flow of ions across biofilms, which underlie many essential cellular functions. Because KCNK family members are known to contribute to tumorigenesis in various types of cancer, we hypothesized that they might be differentially expressed in hepatocellular carcinoma (HCC) cells as compared to healthy tissue and serve as diagnostic or prognostic biomarkers. We tested this hypothesis through bioinformatic analyses of publicly available data for the expression of various KCNK subunits in HCC. We observed reduced expression of KCNK2, KCNK15, and KCNK17 in liver cancer, as well as overexpression of KCNK9, all of which correlated with a better prognosis for HCC patients per survival analyses. Moreover, ROC curves indicated that KCNK2, KCNK9, KCNK15, and KCNK17 levels could be used as a diagnostic biomarker for HCC. Finally, our western blot and qRT-PCR results were consistent with those obtained from bioinformatic analyses. Taken together, these results suggest that KCNK2, KCNK9, KCNK15, and KCNK17 could serve as potential diagnostic and prognostic biomarkers of HCC.
Collapse
Affiliation(s)
- Wen-Chao Li
- Department of General Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Yong Xiong
- Department of General Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Pin-Zhu Huang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yang-Jing Liao
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Quan-Xi Li
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Cheng Yao
- Department of General Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ya-Di Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shi-Lei Xu
- Department of General Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui Zhou
- Department of General Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qing-Liang Wang
- Department of General Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - He Huang
- Department of General Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peng Zhang
- Department of General Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ji-Zong Lin
- Department of General Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bo Liu
- Department of General Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jie Ren
- Department of Ultrasound, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kun-Peng Hu
- Department of General Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
24
|
Lengyel M, Erdélyi F, Pergel E, Bálint-Polonka Á, Dobolyi A, Bozsaki P, Dux M, Király K, Hegedűs T, Czirják G, Mátyus P, Enyedi P. Chemically Modified Derivatives of the Activator Compound Cloxyquin Exert Inhibitory Effect on TRESK (K 2P18.1) Background Potassium Channel. Mol Pharmacol 2019; 95:652-660. [PMID: 30979812 DOI: 10.1124/mol.118.115626] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/09/2019] [Indexed: 02/14/2025] Open
Abstract
Cloxyquin has been reported as a specific activator of TRESK [TWIK-related spinal cord K+ channel (also known as K2P18.1)] background potassium channel. In this study, we have synthetized chemically modified analogs of cloxyquin and tested their effects on TRESK and other K2P channels. The currents of murine K2P channels, expressed heterologously in Xenopus oocytes, were measured by two-electrode voltage clamp, whereas the native background K+ conductance of mouse dorsal root ganglion (DRG) neurons was examined by the whole-cell patch-clamp method. Some of the analogs retained the activator character of the parent compound, but, more interestingly, other derivatives inhibited mouse TRESK current. The inhibitor analogs (A2764 and A2793) exerted state-dependent effects. The degree of inhibition by 100 µM A2764 (77.8% ± 3.5%, n = 6) was larger in the activated state of TRESK (i.e., after calcineurin-dependent stimulation) than in the resting state of the channel (42.8% ± 11.5% inhibition, n = 7). The selectivity of the inhibitor compounds was tested on several K2P channels. A2793 inhibited TWIK-related acid-sensitive K+ channel (TASK)-1 (100 µM, 53.4% ± 13, 5%, n = 5), while A2764 was more selective for TRESK, it only moderately influenced TREK-1 and TWIK-related alkaline pH-activated K+ channel. The effect of A2764 was also examined on the background K+ currents of DRG neurons. A subpopulation of DRG neurons, prepared from wild-type animals, expressed background K+ currents sensitive to A2764, whereas the inhibitor did not affect the currents in the DRG neurons of TRESK-deficient mice. Accordingly, A2764 may prove to be useful for the identification of TRESK current in native cells, and for the investigation of the role of the channel in nociception and migraine. SIGNIFICANCE STATEMENT: TRESK background potassium channel is a potential pharmacological target in migraine and neuropathic pain. In this study, we have identified a selective inhibitor of TRESK, A2764. This compound can inhibit TRESK in native cells, leading to cell depolarization and increased excitability. This new inhibitor may be of use to probe the role of TRESK channel in migraine and nociception.
Collapse
Affiliation(s)
- Miklós Lengyel
- Department of Physiology, Faculty of Medicine (M.L., E.P., A.D., P.B., G.C., P.E.), Department of Organic Chemistry, Faculty of Pharmacy (A.B.-P., P.M.), Department of Pharmacology and Pharmacotherapy (K.K.), and Department of Biophysics and Radiation Biology, Faculty of Medicine (T.H.), Semmelweis University, Budapest, Hungary; Gene Technology Division, Institute of Experimental Medicine-Hungarian Academy of Sciences, Budapest, Hungary (F.E.); and Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary (M.D.)
| | - Ferenc Erdélyi
- Department of Physiology, Faculty of Medicine (M.L., E.P., A.D., P.B., G.C., P.E.), Department of Organic Chemistry, Faculty of Pharmacy (A.B.-P., P.M.), Department of Pharmacology and Pharmacotherapy (K.K.), and Department of Biophysics and Radiation Biology, Faculty of Medicine (T.H.), Semmelweis University, Budapest, Hungary; Gene Technology Division, Institute of Experimental Medicine-Hungarian Academy of Sciences, Budapest, Hungary (F.E.); and Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary (M.D.)
| | - Enikő Pergel
- Department of Physiology, Faculty of Medicine (M.L., E.P., A.D., P.B., G.C., P.E.), Department of Organic Chemistry, Faculty of Pharmacy (A.B.-P., P.M.), Department of Pharmacology and Pharmacotherapy (K.K.), and Department of Biophysics and Radiation Biology, Faculty of Medicine (T.H.), Semmelweis University, Budapest, Hungary; Gene Technology Division, Institute of Experimental Medicine-Hungarian Academy of Sciences, Budapest, Hungary (F.E.); and Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary (M.D.)
| | - Ágnes Bálint-Polonka
- Department of Physiology, Faculty of Medicine (M.L., E.P., A.D., P.B., G.C., P.E.), Department of Organic Chemistry, Faculty of Pharmacy (A.B.-P., P.M.), Department of Pharmacology and Pharmacotherapy (K.K.), and Department of Biophysics and Radiation Biology, Faculty of Medicine (T.H.), Semmelweis University, Budapest, Hungary; Gene Technology Division, Institute of Experimental Medicine-Hungarian Academy of Sciences, Budapest, Hungary (F.E.); and Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary (M.D.)
| | - Alice Dobolyi
- Department of Physiology, Faculty of Medicine (M.L., E.P., A.D., P.B., G.C., P.E.), Department of Organic Chemistry, Faculty of Pharmacy (A.B.-P., P.M.), Department of Pharmacology and Pharmacotherapy (K.K.), and Department of Biophysics and Radiation Biology, Faculty of Medicine (T.H.), Semmelweis University, Budapest, Hungary; Gene Technology Division, Institute of Experimental Medicine-Hungarian Academy of Sciences, Budapest, Hungary (F.E.); and Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary (M.D.)
| | - Péter Bozsaki
- Department of Physiology, Faculty of Medicine (M.L., E.P., A.D., P.B., G.C., P.E.), Department of Organic Chemistry, Faculty of Pharmacy (A.B.-P., P.M.), Department of Pharmacology and Pharmacotherapy (K.K.), and Department of Biophysics and Radiation Biology, Faculty of Medicine (T.H.), Semmelweis University, Budapest, Hungary; Gene Technology Division, Institute of Experimental Medicine-Hungarian Academy of Sciences, Budapest, Hungary (F.E.); and Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary (M.D.)
| | - Mária Dux
- Department of Physiology, Faculty of Medicine (M.L., E.P., A.D., P.B., G.C., P.E.), Department of Organic Chemistry, Faculty of Pharmacy (A.B.-P., P.M.), Department of Pharmacology and Pharmacotherapy (K.K.), and Department of Biophysics and Radiation Biology, Faculty of Medicine (T.H.), Semmelweis University, Budapest, Hungary; Gene Technology Division, Institute of Experimental Medicine-Hungarian Academy of Sciences, Budapest, Hungary (F.E.); and Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary (M.D.)
| | - Kornél Király
- Department of Physiology, Faculty of Medicine (M.L., E.P., A.D., P.B., G.C., P.E.), Department of Organic Chemistry, Faculty of Pharmacy (A.B.-P., P.M.), Department of Pharmacology and Pharmacotherapy (K.K.), and Department of Biophysics and Radiation Biology, Faculty of Medicine (T.H.), Semmelweis University, Budapest, Hungary; Gene Technology Division, Institute of Experimental Medicine-Hungarian Academy of Sciences, Budapest, Hungary (F.E.); and Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary (M.D.)
| | - Tamás Hegedűs
- Department of Physiology, Faculty of Medicine (M.L., E.P., A.D., P.B., G.C., P.E.), Department of Organic Chemistry, Faculty of Pharmacy (A.B.-P., P.M.), Department of Pharmacology and Pharmacotherapy (K.K.), and Department of Biophysics and Radiation Biology, Faculty of Medicine (T.H.), Semmelweis University, Budapest, Hungary; Gene Technology Division, Institute of Experimental Medicine-Hungarian Academy of Sciences, Budapest, Hungary (F.E.); and Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary (M.D.)
| | - Gábor Czirják
- Department of Physiology, Faculty of Medicine (M.L., E.P., A.D., P.B., G.C., P.E.), Department of Organic Chemistry, Faculty of Pharmacy (A.B.-P., P.M.), Department of Pharmacology and Pharmacotherapy (K.K.), and Department of Biophysics and Radiation Biology, Faculty of Medicine (T.H.), Semmelweis University, Budapest, Hungary; Gene Technology Division, Institute of Experimental Medicine-Hungarian Academy of Sciences, Budapest, Hungary (F.E.); and Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary (M.D.)
| | - Péter Mátyus
- Department of Physiology, Faculty of Medicine (M.L., E.P., A.D., P.B., G.C., P.E.), Department of Organic Chemistry, Faculty of Pharmacy (A.B.-P., P.M.), Department of Pharmacology and Pharmacotherapy (K.K.), and Department of Biophysics and Radiation Biology, Faculty of Medicine (T.H.), Semmelweis University, Budapest, Hungary; Gene Technology Division, Institute of Experimental Medicine-Hungarian Academy of Sciences, Budapest, Hungary (F.E.); and Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary (M.D.)
| | - Péter Enyedi
- Department of Physiology, Faculty of Medicine (M.L., E.P., A.D., P.B., G.C., P.E.), Department of Organic Chemistry, Faculty of Pharmacy (A.B.-P., P.M.), Department of Pharmacology and Pharmacotherapy (K.K.), and Department of Biophysics and Radiation Biology, Faculty of Medicine (T.H.), Semmelweis University, Budapest, Hungary; Gene Technology Division, Institute of Experimental Medicine-Hungarian Academy of Sciences, Budapest, Hungary (F.E.); and Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary (M.D.)
| |
Collapse
|
25
|
Pergel E, Lengyel M, Enyedi P, Czirják G. TRESK (K2P18.1) Background Potassium Channel Is Activated by Novel-Type Protein Kinase C via Dephosphorylation. Mol Pharmacol 2019; 95:661-672. [PMID: 30992311 DOI: 10.1124/mol.119.116269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/04/2019] [Indexed: 02/14/2025] Open
Abstract
TRESK (K2P18.1) background K+ channel is a major determinant of the excitability of primary sensory neurons. It has been reported that human TRESK is activated by the protein kinase C (PKC) activator PMA (phorbol 12-myristate 13-acetate) in Xenopus oocytes. In the present study, we investigated the mechanism of this PKC-dependent TRESK regulation. We show that TRESK is activated by coexpression of the novel-type PKC isoforms η and ε The effect of PKC is not mediated by calcineurin phosphatase, which is known to evoke the calcium-dependent TRESK activation. Mutations of the calcineurin-binding sites in the channel (PQAAAS-AQAP) did not influence the PMA-induced increase of potassium current. In sharp contrast, the mutations of the target residue of calcineurin in TRESK, S264A, and S264E prevented the effect of PMA. The enforced phosphorylation of S264 by coexpression of a microtubule-affinity regulating kinase construct (MARK2Δ) also abolished the PKC-dependent TRESK activation. These results suggest that, in addition to calcineurin, PKC regulates TRESK by changing the phosphorylation status of S264. Coexpression of PKC slowed recovery of the K+ current to the resting state after the calcineurin-dependent dephosphorylation of TRESK. Therefore, the likely mechanism of action is the PKC-dependent inhibition of the kinase responsible for the (re)phosphorylation of the channel at S264. The PKC-dependent dephosphorylation of TRESK protein was also detected by the Phos-tag SDS-PAGE method. In summary, the activation of novel-type PKC results in the slow (indirect) dephosphorylation of TRESK at the regulatory residue S264 in a calcineurin-independent manner.
Collapse
Affiliation(s)
- Enikő Pergel
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Miklós Lengyel
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Péter Enyedi
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Gábor Czirják
- Department of Physiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
26
|
Growth Factor Signaling Regulates Mechanical Nociception in Flies and Vertebrates. J Neurosci 2019; 39:6012-6030. [PMID: 31138657 DOI: 10.1523/jneurosci.2950-18.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 05/15/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023] Open
Abstract
Mechanical sensitization is one of the most difficult clinical pain problems to treat. However, the molecular and genetic bases of mechanical nociception are unclear. Here we develop a Drosophila model of mechanical nociception to investigate the ion channels and signaling pathways that regulate mechanical nociception. We fabricated von Frey filaments that span the subthreshold to high noxious range for Drosophila larvae. Using these, we discovered that pressure (force/area), rather than force per se, is the main determinant of aversive rolling responses to noxious mechanical stimuli. We demonstrated that the RTK PDGF/VEGF receptor (Pvr) and its ligands (Pvfs 2 and 3) are required for mechanical nociception and normal dendritic branching. Pvr is expressed and functions in class IV sensory neurons, whereas Pvf2 and Pvf3 are produced by multiple tissues. Constitutive overexpression of Pvr and its ligands or inducible overexpression of Pvr led to mechanical hypersensitivity that could be partially separated from morphological effects. Genetic analyses revealed that the Piezo and Pain ion channels are required for mechanical hypersensitivity observed upon ectopic activation of Pvr signaling. PDGF, but not VEGF, peptides caused mechanical hypersensitivity in rats. Pharmacological inhibition of VEGF receptor Type 2 (VEGFR-2) signaling attenuated mechanical nociception in rats, suggesting a conserved role for PDGF and VEGFR-2 signaling in regulating mechanical nociception. VEGFR-2 inhibition also attenuated morphine analgesic tolerance in rats. Our results reveal that a conserved RTK signaling pathway regulates baseline mechanical nociception in flies and rats.SIGNIFICANCE STATEMENT Hypersensitivity to touch is poorly understood and extremely difficult to treat. Using a refined Drosophila model of mechanical nociception, we discovered a conserved VEGF-related receptor tyrosine kinase signaling pathway that regulates mechanical nociception in flies. Importantly, pharmacological inhibition of VEGF receptor Type 2 signaling in rats causes analgesia and blocks opioid tolerance. We have thus established a robust, genetically tractable system for the rapid identification and functional analysis of conserved genes underlying mechanical pain sensitivity.
Collapse
|
27
|
Ferrarelli LK. New connections: VEGF beyond the vasculature. Sci Signal 2018. [DOI: 10.1126/scisignal.aav7125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The growth factor VEGF promotes cancer-associated stem cell biology and pain, as well as angiogenesis.
Collapse
|