1
|
Deng Y, Hou M, Wu Y, Liu Y, Xia X, Yu C, Yu J, Yang H, Zhang Y, Zhu X. SIRT3-PINK1-PKM2 axis prevents osteoarthritis via mitochondrial renewal and metabolic switch. Bone Res 2025; 13:36. [PMID: 40087281 PMCID: PMC11909255 DOI: 10.1038/s41413-025-00413-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 03/17/2025] Open
Abstract
Maintaining mitochondrial homeostasis is critical for preserving chondrocyte physiological conditions and increasing resistance against osteoarthritis (OA). However, the underlying mechanisms governing mitochondrial self-renewal and energy production remain elusive. In this study, we demonstrated mitochondrial damage and aberrant mitophagy in OA chondrocytes. Genetically overexpressing PTEN-induced putative kinase 1 (PINK1) protects against cartilage degeneration by removing defective mitochondria. PINK1 knockout aggravated cartilage damage due to impaired mitophagy. SIRT3 directly deacetylated PINK1 to promote mitophagy and cartilage anabolism. Specifically, PINK1 phosphorylated PKM2 at the Ser127 site, preserving its active tetrameric form. This inhibited nuclear translocation and the interaction with β-catenin, resulting in a metabolic shift and increased energy production. Finally, a double-knockout mouse model demonstrated the role of the SIRT3-PINK1-PKM2 axis in safeguarding the structural integrity of articular joints and improving motor functions. Overall, this study provides a novel insight into the regulation of mitochondrial renewal and metabolic switches in OA.
Collapse
Affiliation(s)
- Yaoge Deng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215000, China
| | - Mingzhuang Hou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215000, China
| | - Yubin Wu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215000, China
| | - Yang Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215000, China
| | - Xiaowei Xia
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215000, China
| | - Chenqi Yu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215000, China
| | - Jianfeng Yu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215000, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China.
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215000, China.
| | - Yijian Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China.
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215000, China.
| | - Xuesong Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China.
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215000, China.
| |
Collapse
|
2
|
Yao CY, Tao HT, He JJ, Zhu FY, Xie CQ, Cheng YN, Li JQ, Liu ZZ, Hou CY, Liu XL, Fan YL, Fang D, Lv XR. NUAK1 acts as a novel regulator of PD-L1 via activating GSK-3β/β-catenin pathway in hepatocellular carcinoma. Mol Med 2025; 31:38. [PMID: 39901136 PMCID: PMC11789290 DOI: 10.1186/s10020-025-01088-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/16/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND NUAK1 is associated with metastasis and drug resistance in hepatocellular carcinoma (HCC). However, little is known about the immune functions of NUAK1 in HCC. Therefore, the aim of this study was to elucidate the novel role of NUAK1 in facilitating immune evasion in HCC and to investigate the mechanisms underpinning this process. METHOD The levels of NUAK1 expression and the infiltration of CD8+ T cells were assessed in tumor tissues from HCC patients and mice xenograft model. HCC cell lines were used to validate the role of NUAK1 in regulating the transcription of PD-L1, the diethylnitrosamine-induced HCC model was established and the expression levels of NUAK1 and PD-L1 proteins in the rat livers were detected. Western blotting, immunofluorescence, real time PCR, and immunohistochemical staining were used to investigate the underlying mechanisms by which NUAK1 regulates PD-L1 expression in hepatocellular carcinoma. RESULTS NUAK1 expression was negatively correlated with CD8+ T cell infiltration in tumor tissues from HCC patients and mice xenograft model. Both gain and loss of functions have identified NUAK1 promoted PD-L1 expression at transcriptional level in HCC cells. The increased expression of NUAK1 and PD-L1 proteins were observed in the rat livers of diethylnitrosamine-induced HCC model. Moreover, overexpression of NUAK1 promotes GSK3β Ser9 phosphorylation, β-catenin expression and nuclear accumulation in HCC cells. By contrast, knockdown of NUAK1 has opposite effects. Inhibition of GSK3β activity significantly promoted β-catenin expression and PD-L1 expression in HCC cells. IHC analyses of tumor tissues from HCC patients suggested that the levels of p-GSK3β and β-catenin were positively correlated with NUAK1 expression. Knockdown of β-catenin also reversed NUAK1-mediated PD-L1 expression in HCC cells. CONCLUSIONS This study revealed a novel role for NUAK1, which promotes the transcriptional expression of PD-L1 by activating GSK3β/β-catenin signaling pathway, leading to immune escape of hepatocellular carcinoma. Registry and the registration no. of the study/trial: Not applicable.
Collapse
Affiliation(s)
- Chao-Yan Yao
- Department of Pharmacy, The First Affiliated Hospital of Henan University, Kaifeng, 475004, China
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Hang-Tian Tao
- Department of Pharmacy, The First Affiliated Hospital of Henan University, Kaifeng, 475004, China
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Jin-Jin He
- Department of Pharmacy, The First Affiliated Hospital of Henan University, Kaifeng, 475004, China
| | - Feng-Yi Zhu
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Cui-Qing Xie
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Yu-Na Cheng
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Ji-Qin Li
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Zhuang-Zhuang Liu
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Chun-Yu Hou
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Xue-Li Liu
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Yong-Li Fan
- Department of Oncology, The First Affiliated Hospital of Henan University, Kaifeng, 475000, China.
| | - Dong Fang
- Department of Pharmacy, The First Affiliated Hospital of Henan University, Kaifeng, 475004, China.
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China.
| | - Xin-Rui Lv
- Kaifeng Key Laboratory for Infectious Diseases and Biosafety, The First Affiliated Hospital of Henan University, Ximen Ave, Kaifeng, 475000, China.
| |
Collapse
|
3
|
Tan X, Xun L, Yin Q, Chen C, Zhang T, Shen T. Epigenetic Modifications in HBV-Related Hepatocellular Carcinoma. J Viral Hepat 2025; 32:e14044. [PMID: 39868653 DOI: 10.1111/jvh.14044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/13/2024] [Accepted: 11/30/2024] [Indexed: 01/28/2025]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer. Hepatitis B virus (HBV) is the main pathogen for HCC development. HBV covalently closed circular DNA (cccDNA) forms extra-host chromatin-like minichromosomes in the nucleus of hepatocytes with host histones, non-histones, HBV X protein (HBx) and HBV core protein (HBc). Epigenetic alterations are dynamic and reversible, which regulate gene expression without altering the DNA sequence and play a pivotal role in the regulation of HCC onset and progression. The aim of this review is to elucidate the deregulation of epigenetic mechanisms involved in the pathogenesis of HBV-related HCC (HBV-HCC), including post-translational histone and non-histone modifications, DNA hypermethylation and hypomethylation, non-coding RNA modification on HBV cccDNA minichromosomes and host factors, effecting the replication/transcription of HBV cccDNA and transcription/translation of host genes, and thus HBV-HCC progression. It is expected that the epigenetic regulation perspective provides new ways for more in-depth development of therapeutic control of HBV-HCC.
Collapse
Affiliation(s)
- Xiaoqing Tan
- Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China
- Department of Pulmonary and Critical Care Medicine, Yunnan Provincial Key Laboratory for Clinical Virology, Institute of Basic and Clinical Medicine, The First People's Hospital of Yunnan Province, Kunming, Peoples republic of China, China
| | - Linting Xun
- Department of Gastroenterology, the First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, People's Republic of China
| | - Qi Yin
- Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, People's Republic of China, China
| | - Chaohui Chen
- Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Tao Zhang
- Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China
- Department of Pulmonary and Critical Care Medicine, Yunnan Provincial Key Laboratory for Clinical Virology, Institute of Basic and Clinical Medicine, The First People's Hospital of Yunnan Province, Kunming, Peoples republic of China, China
| | - Tao Shen
- Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China
- Department of Pulmonary and Critical Care Medicine, Yunnan Provincial Key Laboratory for Clinical Virology, Institute of Basic and Clinical Medicine, The First People's Hospital of Yunnan Province, Kunming, Peoples republic of China, China
| |
Collapse
|
4
|
Tian M, Yang L, Zhao Z, Li J, Wang L, Yin Q, Hu W, Lou Y, Du J, Zhao P. TIPE drives a cancer stem-like phenotype by promoting glycolysis via PKM2/HIF-1α axis in melanoma. eLife 2024; 13:RP92741. [PMID: 39728923 DOI: 10.7554/elife.92741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
TIPE (TNFAIP8) has been identified as an oncogene and participates in tumor biology. However, how its role in the metabolism of tumor cells during melanoma development remains unclear. Here, we demonstrated that TIPE promoted glycolysis by interacting with pyruvate kinase M2 (PKM2) in melanoma. We found that TIPE-induced PKM2 dimerization, thereby facilitating its translocation from the cytoplasm to the nucleus. TIPE-mediated PKM2 dimerization consequently promoted HIF-1α activation and glycolysis, which contributed to melanoma progression and increased its stemness features. Notably, TIPE specifically phosphorylated PKM2 at Ser 37 in an extracellular signal-regulated kinase (ERK)-dependent manner. Consistently, the expression of TIPE was positively correlated with the levels of PKM2 Ser37 phosphorylation and cancer stem cell (CSC) markers in melanoma tissues from clinical samples and tumor bearing mice. In summary, our findings indicate that the TIPE/PKM2/HIF-1α signaling pathway plays a pivotal role in promoting CSC properties by facilitating the glycolysis, which would provide a promising therapeutic target for melanoma intervention.
Collapse
Affiliation(s)
- Maojin Tian
- Center of Translational Medicine, Zibo Central Hospital Affiliated to Binzhou Medical University, Zibo, China
| | - Le Yang
- Shandong First Medical University, Jinan, China
| | - Ziqian Zhao
- The Second Medical College, Xinjiang Medical University, Urumqi, China
| | - Jigang Li
- Center of Translational Medicine, Zibo Central Hospital Affiliated to Binzhou Medical University, Zibo, China
| | - Lianqing Wang
- Center of Translational Medicine, Zibo Central Hospital Affiliated to Binzhou Medical University, Zibo, China
| | | | - Wei Hu
- Center of Translational Medicine, Zibo Central Hospital Affiliated to Binzhou Medical University, Zibo, China
| | - Yunwei Lou
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Jianxin Du
- Center of Translational Medicine, Zibo Central Hospital Affiliated to Binzhou Medical University, Zibo, China
| | - Peiqing Zhao
- Center of Translational Medicine, Zibo Central Hospital Affiliated to Binzhou Medical University, Zibo, China
| |
Collapse
|
5
|
Zhang ZS, Gao ZX, He JJ, Ma C, Tao HT, Zhu FY, Cheng YN, Xie CQ, Li JQ, Liu ZZ, Hou LL, Sun H, Xie SQ, Fang D. Andrographolide sensitizes glioma to temozolomide by inhibiting DKK1 expression. Br J Cancer 2024; 131:1387-1398. [PMID: 39266624 PMCID: PMC11473956 DOI: 10.1038/s41416-024-02842-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Temozolomide (TMZ) is the first-line chemotherapeutic drug for gliomas treatment. However, the clinical efficacy of TMZ in glioma patients was very limited. Therefore, it is urgently needed to discover a novel approach to increase the sensitivity of glioma cells to TMZ. METHODS Western blot, immunohistochemical staining, and qRT-PCR assays were used to explore the mechanisms underlying TMZ promoting DKK1 expression and andrographolide (AND) inhibiting DKK1 expression. HPLC was used to detect the ability of andrographolide (AND) to penetrate the blood-brain barrier. MTT assay, bioluminescence images, magnetic resonance imaging (MRI) and H&E staining were employed to measure the proliferative activity of glioma cells and the growth of intracranial tumors. RESULTS TMZ can promote DKK1 expression in glioma cells and brain tumors of an orthotopic model of glioma. DKK1 could promote glioma cell proliferation and tumor growth in an orthotopic model of glioma. Mechanistically, TMZ increased EGFR expression and subsequently induced the activation of its downstream MEK-ERK and PI3K-Akt pathways, thereby promoting DKK1 expression in glioma cells. Andrographolide inhibited TMZ-induced DKK1 expression through inactivating MEK-ERK and PI3K-Akt pathways. Andrographolide can cross the blood-brain barrier, the combination of TMZ and andrographolide not only improved the anti-tumor effects of TMZ but also showed a survival benefit in an orthotopic model of glioma. CONCLUSION Andrographolide can enhance anti-tumor activity of TMZ against glioma by inhibiting DKK1 expression.
Collapse
Affiliation(s)
- Zhan-Sheng Zhang
- Department of Pharmacy, The First Afffliated Hospital of Henan University, N. Jinming Ave, Kaifeng, 475004, China
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Zi-Xuan Gao
- Department of Pharmacy, The First Afffliated Hospital of Henan University, N. Jinming Ave, Kaifeng, 475004, China
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Jin-Jin He
- Department of Pharmacy, The First Afffliated Hospital of Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Can Ma
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Hang-Tian Tao
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Feng-Yi Zhu
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Yu-Na Cheng
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Cui-Qing Xie
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Ji-Qin Li
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Zhuang-Zhuang Liu
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Li-Li Hou
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Hua Sun
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China.
| | - Song-Qiang Xie
- Department of Pharmacy, The First Afffliated Hospital of Henan University, N. Jinming Ave, Kaifeng, 475004, China.
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China.
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Kaifeng, 475004, China.
| | - Dong Fang
- Department of Pharmacy, The First Afffliated Hospital of Henan University, N. Jinming Ave, Kaifeng, 475004, China.
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China.
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Kaifeng, 475004, China.
| |
Collapse
|
6
|
Chunlian Z, Qi W, Rui Z. The Role of Pyruvate Kinase M2 Posttranslational Modification in the Occurrence and Development of Hepatocellular Carcinoma. Cell Biochem Funct 2024; 42:e4125. [PMID: 39327771 DOI: 10.1002/cbf.4125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/09/2024] [Accepted: 09/08/2024] [Indexed: 09/28/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the deadly malignant tumors that directly leads to the death of nearly one million people worldwide every year, causing a serious burden on society. In the presence of sufficient oxygen, HCC cells rapidly generate energy through aerobic glycolysis, which promotes tumor cell proliferation, immune evasion, metastasis, angiogenesis, and drug resistance. Pyruvate kinase M2 (PKM2) is a key rate-limiting enzyme in glycolysis. In recent years, studies have found that PKM2 not only exerts pyruvate kinase activity in the process of glucose metabolism, but also exerts protein kinase activity in non-metabolic pathways to affect tumor cell processes, and its activity is flexibly regulated by various posttranslational modifications such as acetylation, phosphorylation, lactylation, ubiquitination, SUMOylation, and so forth. This review summarizes the role of posttranslational modifications of PKM2-related sites in the development of HCC.
Collapse
Affiliation(s)
- Zhao Chunlian
- Second Hospital of Lanzhou University, Lanzhou, China
| | - Wan Qi
- Second Hospital of Lanzhou University, Lanzhou, China
| | - Zhao Rui
- Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
7
|
Chen W, Tan M, Zhang H, Gao T, Ren J, Cheng S, Chen J. Signaling molecules in the microenvironment of hepatocellular carcinoma. Funct Integr Genomics 2024; 24:146. [PMID: 39207523 DOI: 10.1007/s10142-024-01427-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Hepatocellular carcinoma (HCC) is a major fatal cancer that is known for its high recurrence and metastasis. An increasing number of studies have shown that the tumor microenvironment is closely related to the metastasis and invasion of HCC. The HCC microenvironment is a complex integrated system composed of cellular components, the extracellular matrix (ECM), and signaling molecules such as chemokines, growth factors, and cytokines, which are generally regarded as crucial molecules that regulate a series of important processes, such as the migration and invasion of HCC cells. Considering the crucial role of signaling molecules, this review aims to elucidate the regulatory effects of chemokines, growth factors, and cytokines on HCC cells in their microenvironment to provide important references for clarifying the development of HCC and exploring effective therapeutic targets.
Collapse
Affiliation(s)
- Wanjin Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Ming Tan
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Hui Zhang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Tingting Gao
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Jihua Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Shengtao Cheng
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
| | - Juan Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
- College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
8
|
Shi HX, Tao HT, He JJ, Zhu FY, Xie CQ, Cheng YN, Hou LL, Sun H, Qin CJ, Fang D, Xie SQ. Targeting DKK1 enhances the antitumor activity of paclitaxel and alleviates chemotherapy-induced peripheral neuropathy in breast cancer. Mol Cancer 2024; 23:152. [PMID: 39085861 PMCID: PMC11290233 DOI: 10.1186/s12943-024-02067-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Chemotherapy in combination with immunotherapy has gradually shown substantial promise to increase T cell infiltration and antitumor efficacy. However, paclitaxel in combination with immune checkpoint inhibitor targeting PD-1/PD-L1 was only used to treat a small proportion of metastatic triple-negative breast cancer (TNBC), and the clinical outcomes was very limited. In addition, this regimen cannot prevent paclitaxel-induced peripheral neuropathy. Therefore, there was an urgent need for a novel target to enhance the antitumor activity of paclitaxel and alleviate chemotherapy-induced peripheral neuropathy in breast cancer. Here, we found that Dickkopf-1 (DKK1) expression was upregulated in multiply subtypes of human breast cancer specimens after paclitaxel-based chemotherapy. Mechanistic studies revealed that paclitaxel promoted DKK1 expression by inducing EGFR signaling in breast cancer cells, and the upregulation of DKK1 could hinder the therapeutic efficacy of paclitaxel by suppressing the infiltration and activity of CD8+ T cells in tumor microenvironment. Moreover, paclitaxel treatment in tumor-bearing mice also increased DKK1 expression through the activation of EGFR signaling in the primary sensory dorsal root ganglion (DRG) neurons, leading to the development of peripheral neuropathy, which is charactered by myelin damage in the sciatic nerve, neuropathic pain, and loss of cutaneous innervation in hindpaw skin. The addition of an anti-DKK1 antibody not only improved therapeutic efficacy of paclitaxel in two murine subtype models of breast cancer but also alleviated paclitaxel-induced peripheral neuropathy. Taken together, our findings providing a potential chemoimmunotherapy strategy with low neurotoxicity that can benefit multiple subtypes of breast cancer patients.
Collapse
Affiliation(s)
- Hong-Xiang Shi
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
- Department of Gastrointestinal Surgery, Huaihe Hospital of Henan University, Kaifeng, 475004, China
| | - Hang-Tian Tao
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Jin-Jin He
- Department of Pharmacy, The First Affiliated Hospital of Henan University, Kaifeng, 475004, China
| | - Feng-Yi Zhu
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Cui-Qing Xie
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Yu-Na Cheng
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Li-Li Hou
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Hua Sun
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Chang-Jiang Qin
- Department of Gastrointestinal Surgery, Huaihe Hospital of Henan University, Kaifeng, 475004, China.
| | - Dong Fang
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China.
- Department of Gastrointestinal Surgery, Huaihe Hospital of Henan University, Kaifeng, 475004, China.
| | - Song-Qiang Xie
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China.
- Department of Gastrointestinal Surgery, Huaihe Hospital of Henan University, Kaifeng, 475004, China.
| |
Collapse
|
9
|
Hu D, Zhao T, Xu C, Pan X, Zhou Z, Wang S. Epigenetic Modifiers in Cancer Metastasis. Biomolecules 2024; 14:916. [PMID: 39199304 PMCID: PMC11352731 DOI: 10.3390/biom14080916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
Metastasis is the primary cause of cancer-related death, with the dissemination and colonization of primary tumor cells at the metastatic site facilitated by various molecules and complex pathways. Understanding the biological mechanisms underlying the metastatic process is critical for the development of effective interventions. Several epigenetic modifications have been identified that play critical roles in regulating cancer metastasis. This review aims to provide a comprehensive summary of recent advances in understanding the role of epigenetic modifiers, including histone modifications, DNA methylation, non-coding RNAs, enhancer reprogramming, chromatin accessibility, and N6-methyladenosine, in metastasis-associated processes, such as epithelial-mesenchymal transition (EMT), cancer cell migration, and invasion. In particular, this review provides a detailed and in-depth description of the role of crosstalk between epigenetic regulators in tumor metastasis. Additionally, we explored the potential and limitations of epigenetics-related target molecules in the diagnosis, treatment, and prognosis of cancer metastasis.
Collapse
Affiliation(s)
- Die Hu
- Key Laboratory of Molecular Genetics between Kangda College of Nanjing Medical University and Suzhou Medical College of Soochow University, Suzhou 215123, China;
- Department of Basic Medicine, Kangda College of Nanjing Medical University, Lianyungang 222000, China; (C.X.); (X.P.)
| | - Tianci Zhao
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China;
| | - Chenxing Xu
- Department of Basic Medicine, Kangda College of Nanjing Medical University, Lianyungang 222000, China; (C.X.); (X.P.)
| | - Xinyi Pan
- Department of Basic Medicine, Kangda College of Nanjing Medical University, Lianyungang 222000, China; (C.X.); (X.P.)
| | - Zhengyu Zhou
- Key Laboratory of Molecular Genetics between Kangda College of Nanjing Medical University and Suzhou Medical College of Soochow University, Suzhou 215123, China;
- Laboratory Animal Center, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Shengjie Wang
- Key Laboratory of Molecular Genetics between Kangda College of Nanjing Medical University and Suzhou Medical College of Soochow University, Suzhou 215123, China;
- Department of Basic Medicine, Kangda College of Nanjing Medical University, Lianyungang 222000, China; (C.X.); (X.P.)
- Laboratory Animal Center, Suzhou Medical College of Soochow University, Suzhou 215123, China
| |
Collapse
|
10
|
Li T, Jiang S, Li T, Xu H, Zhang X, Yan R, Wu X, Jin Y, Wang Z. Exploring the Potential of Cyclic Peptidyl Antitumor Agents Derived from Natural Macrocyclic Peptide Phakellistatin 13. J Med Chem 2024; 67:11789-11813. [PMID: 38990190 DOI: 10.1021/acs.jmedchem.4c00393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The exploration of novel anticancer compounds based on natural cyclopeptides has emerged as a pivotal paradigm in the contemporary advancement of macrocyclic pharmaceuticals. Phakellistatin 13 is a cycloheptapeptide derived from the brown snubby sponge and exhibits remarkable antitumor activity. In this study, we have designed and synthesized a series of chiral cyclopeptides incorporating the rigid isoindolinone moiety at various sites within the natural cycloheptapeptide Phakellistatin 13, with the aim of investigating conformationally constrained cyclopeptides as potential antitumor agents. Cyclopeptide 3, comprising alternating l-/d-amino acid residues, exhibited promising antihepatocellular carcinoma effects. Detailed biological experiments have revealed that Phakellistatin 13 analogs effectively inhibit the proliferation of tumor cells and induce apoptosis and autophagy, while also causing cell cycle arrest through the modulation of the p53 and mitogen-activated protein kinase (MAPK) signaling pathway. This study not only provides valuable insights into chemical structural modifications but also contributes to a deeper understanding of the biological mechanisms underlying the development of natural cyclopeptide-based drugs.
Collapse
Affiliation(s)
- Tong Li
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Shitian Jiang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Tingting Li
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Hongyu Xu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Xiong Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Rui Yan
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Xiaodan Wu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Yingxue Jin
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Zhiqiang Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| |
Collapse
|
11
|
Ma J, Chen Y, Li T, Cao Y, Hu B, Liu Y, Zhang Y, Li X, Liu J, Zhang W, Niu H, Gao J, Zhang Z, Yue K, Wang J, Bao G, Wang C, Wang PG, Zou T, Xie S. Suppression of lysosome metabolism-meditated GARP/TGF-β1 complexes specifically depletes regulatory T cells to inhibit breast cancer metastasis. Oncogene 2024; 43:1930-1940. [PMID: 38698265 DOI: 10.1038/s41388-024-03043-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 02/21/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
Regulatory T cells (Tregs) prevent autoimmunity and contribute to cancer progression. They exert contact-dependent inhibition of immune cells through the production of active transforming growth factor-β1 (TGF-β1). However, the absence of a specific surface marker makes inhibiting the production of active TGF-β1 to specifically deplete human Tregs but not other cell types a challenge. TGF-β1 in an inactive form binds to Tregs membrane protein Glycoprotein A Repetitions Predominant (GARP) and then activates it via an unknown mechanism. Here, we demonstrated that tumour necrosis factor receptor-associated factor 3 interacting protein 3 (TRAF3IP3) in the Treg lysosome is involved in this activation mechanism. Using a novel naphthalenelactam-platinum-based anticancer drug (NPt), we developed a new synergistic effect by suppressing ATP-binding cassette subfamily B member 9 (ABCB9) and TRAF3IP3-mediated divergent lysosomal metabolic programs in tumors and human Tregs to block the production of active GARP/TGF-β1 for remodeling the tumor microenvironment. Mechanistically, NPt is stored in Treg lysosome to inhibit TRAF3IP3-meditated GARP/TGF-β1 complex activation to specifically deplete Tregs. In addition, by promoting the expression of ABCB9 in lysosome membrane, NPt inhibits SARA/p-SMAD2/3 through CHRD-induced TGF-β1 signaling pathway. In addition to expose a previously undefined divergent lysosomal metabolic program-meditated GARP/TGF-β1 complex blockade by exploring the inherent metabolic plasticity, NPt may serve as a therapeutic tool to boost unrecognized Treg-based immune responses to infection or cancer via a mechanism distinct from traditional platinum drugs and currently available immune-modulatory antibodies.
Collapse
Affiliation(s)
- Jing Ma
- School of Pharmacy, The Zhongzhou Laboratory for Integrative Biology, Huaihe Hospital of Henan University, Institute of Chemical Biology, Academy for Advanced Interdisciplinary Studies, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, China
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, Henan, 475004, China
| | - Yutong Chen
- South China University of Technology, Guangzhou, Guangdong, 511442, China
| | - Tao Li
- School of Pharmacy, The Zhongzhou Laboratory for Integrative Biology, Huaihe Hospital of Henan University, Institute of Chemical Biology, Academy for Advanced Interdisciplinary Studies, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, China
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, Henan, 475004, China
| | - Yi Cao
- School of Pharmacy, The Zhongzhou Laboratory for Integrative Biology, Huaihe Hospital of Henan University, Institute of Chemical Biology, Academy for Advanced Interdisciplinary Studies, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, China
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, Henan, 475004, China
| | - Bin Hu
- School of Pharmacy, The Zhongzhou Laboratory for Integrative Biology, Huaihe Hospital of Henan University, Institute of Chemical Biology, Academy for Advanced Interdisciplinary Studies, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, China
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, Henan, 475004, China
| | - Yuru Liu
- School of Pharmacy, The Zhongzhou Laboratory for Integrative Biology, Huaihe Hospital of Henan University, Institute of Chemical Biology, Academy for Advanced Interdisciplinary Studies, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, China
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, Henan, 475004, China
| | - Youran Zhang
- School of Pharmacy, The Zhongzhou Laboratory for Integrative Biology, Huaihe Hospital of Henan University, Institute of Chemical Biology, Academy for Advanced Interdisciplinary Studies, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, China
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, Henan, 475004, China
| | - Xiaoyan Li
- School of Pharmacy, The Zhongzhou Laboratory for Integrative Biology, Huaihe Hospital of Henan University, Institute of Chemical Biology, Academy for Advanced Interdisciplinary Studies, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, China
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, Henan, 475004, China
| | - Jianing Liu
- School of Pharmacy, The Zhongzhou Laboratory for Integrative Biology, Huaihe Hospital of Henan University, Institute of Chemical Biology, Academy for Advanced Interdisciplinary Studies, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, China
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, Henan, 475004, China
| | - Wei Zhang
- School of Pharmacy, The Zhongzhou Laboratory for Integrative Biology, Huaihe Hospital of Henan University, Institute of Chemical Biology, Academy for Advanced Interdisciplinary Studies, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, China
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, Henan, 475004, China
| | - Hanjing Niu
- School of Pharmacy, The Zhongzhou Laboratory for Integrative Biology, Huaihe Hospital of Henan University, Institute of Chemical Biology, Academy for Advanced Interdisciplinary Studies, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, China
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, Henan, 475004, China
| | - Jinhua Gao
- School of Pharmacy, The Zhongzhou Laboratory for Integrative Biology, Huaihe Hospital of Henan University, Institute of Chemical Biology, Academy for Advanced Interdisciplinary Studies, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, China
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, Henan, 475004, China
| | - Zhongze Zhang
- School of Pharmacy, The Zhongzhou Laboratory for Integrative Biology, Huaihe Hospital of Henan University, Institute of Chemical Biology, Academy for Advanced Interdisciplinary Studies, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, China
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, Henan, 475004, China
| | - Kexin Yue
- School of Pharmacy, The Zhongzhou Laboratory for Integrative Biology, Huaihe Hospital of Henan University, Institute of Chemical Biology, Academy for Advanced Interdisciplinary Studies, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, China
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, Henan, 475004, China
| | - Jiajia Wang
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, Henan, 475004, China.
| | - Guochen Bao
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Chaojie Wang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, China
| | - Peng George Wang
- School of Medicine, The Southern University of Science and Technology, Shenzhen, Guangdong, 518005, China
| | - Taotao Zou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Songqiang Xie
- School of Pharmacy, The Zhongzhou Laboratory for Integrative Biology, Huaihe Hospital of Henan University, Institute of Chemical Biology, Academy for Advanced Interdisciplinary Studies, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
12
|
Gao J, Huo Z, Song X, Shao Q, Ren W, Huang X, Zhou S, Tang X. EGFR mediates epithelial‑mesenchymal transition through the Akt/GSK-3β/Snail signaling pathway to promote liver cancer proliferation and migration. Oncol Lett 2024; 27:59. [PMID: 38192662 PMCID: PMC10773224 DOI: 10.3892/ol.2023.14192] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/09/2023] [Indexed: 01/10/2024] Open
Abstract
Epidermal growth factor receptor (EGFR) is expressed in various types of cancer and is associated with the malignant biological behavior of cancer cells. In the present study, the expression of EGFR in hepatocellular carcinoma (HCC) tissues and liver cancer cells was detected by immunohistochemical staining, western blotting and immunofluorescence. Furthermore, a lentivirus was transduced into HepG2 liver cancer cells to knock down EGFR expression. Cell proliferation and migration, and the expression levels of epithelial-mesenchymal transition (EMT) markers were assessed by EdU staining, Cell Counting Kit-8, colony formation, wound healing and Transwell assays, and western blotting. The results revealed that EGF/EGFR can mediate EMT through the Akt/glycogen synthase kinase-3β (GSK-3β)/Snail signaling pathway to promote HepG2 cell proliferation and migration. Inhibition of the activation of the EGFR signaling pathway can help to partially reverse the EMT phenotype, and inhibit the proliferation and migration of HepG2 cells. In conclusion, the EGFR/Akt/GSK-3β/Snail signaling pathway serves an important role in HCC progression, and inhibition of the activation of the EGFR signaling pathway may be a valuable strategy in liver cancer treatment.
Collapse
Affiliation(s)
- Jiafeng Gao
- Medical School, Anhui University of Science & Technology, Huainan, Anhui 232001, P.R. China
| | - Zhen Huo
- Medical School, Anhui University of Science & Technology, Huainan, Anhui 232001, P.R. China
| | - Xueyi Song
- Medical School, Anhui University of Science & Technology, Huainan, Anhui 232001, P.R. China
| | - Qianqian Shao
- Medical School, Anhui University of Science & Technology, Huainan, Anhui 232001, P.R. China
| | - Weiwei Ren
- Department of Gastroenterology and Hepatology, Huainan First People's Hospital and First Affiliated Hospital of Anhui University of Science & Technology, Huainan, Anhui 232001, P.R. China
| | - Xiaolong Huang
- Department of Gastroenterology and Hepatology, Huainan First People's Hospital and First Affiliated Hospital of Anhui University of Science & Technology, Huainan, Anhui 232001, P.R. China
| | - Shuping Zhou
- Department of Gastroenterology and Hepatology, Huainan First People's Hospital and First Affiliated Hospital of Anhui University of Science & Technology, Huainan, Anhui 232001, P.R. China
| | - Xiaolong Tang
- Medical School, Anhui University of Science & Technology, Huainan, Anhui 232001, P.R. China
- Department of Gastroenterology and Hepatology, Huainan First People's Hospital and First Affiliated Hospital of Anhui University of Science & Technology, Huainan, Anhui 232001, P.R. China
| |
Collapse
|
13
|
Zhang S, Liao Z, Li S, Luo Y. Non-metabolic enzyme function of PKM2 in hepatocellular carcinoma: A review. Medicine (Baltimore) 2023; 102:e35571. [PMID: 37861491 PMCID: PMC10589597 DOI: 10.1097/md.0000000000035571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most malignant tumors with the highest incidence and mortality in the world, causing a serious burden on society. Pyruvate kinase M2 (PKM2) is one of the principal metabolic enzymes involved in glycolysis. Studies have shown that PKM2 is highly expressed in HCC and can be translocated to the nucleus, where it interacts with various transcription factors and proteins such as hypoxia-inducible factor-1α, sterol regulatory element-binding protein 1a, signal transducer and activator of transcription 3, nuclear factor erythroid 2-like 2 and histone H3, exerting non-metabolic enzyme functions to regulate the cell cycle, proliferation, apoptosis, immune escape, migration, and invasion, as well as HCC angiogenesis and tumor microenvironment. This review is focused on the recent progress of PKM2 interacting with various transcription factors and proteins affecting the onset and development of HCC, as well as natural drugs and noncoding RNA impacting diverse biological functions of liver cancer cells by regulating PKM2 non-metabolic enzyme functions, thereby providing valuable directions for the prognosis improvement and molecular targeted therapy of HCC in the future.
Collapse
Affiliation(s)
- Shuangxia Zhang
- School of Pharmacy, Youjiang Medical University for Nationalities, Baise, Guangxi, China
- Basic Medical College, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Zhangxiu Liao
- School of Pharmacy, Youjiang Medical University for Nationalities, Baise, Guangxi, China
- Key Laboratory of Right River Basin Characteristic Ethnic Medicine Research in Guangxi, Baise, Guangxi, China
- Key Laboratory of Tumor Immunopathology, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Shubo Li
- Basic Medical College, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Ying Luo
- Basic Medical College, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| |
Collapse
|
14
|
Li X, Luo LL, Li RF, Chen CL, Sun M, Lin S. Pantothenate Kinase 4 Governs Lens Epithelial Fibrosis by Negatively Regulating Pyruvate Kinase M2-Related Glycolysis. Aging Dis 2023; 14:1834-1852. [PMID: 37196116 PMCID: PMC10529755 DOI: 10.14336/ad.2023.0216-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/16/2023] [Indexed: 05/19/2023] Open
Abstract
Lens fibrosis is one of the leading causes of cataract in the elderly population. The primary energy substrate of the lens is glucose from the aqueous humor, and the transparency of mature lens epithelial cells (LECs) is dependent on glycolysis for ATP. Therefore, the deconstruction of reprogramming of glycolytic metabolism can contribute to further understanding of LEC epithelial-mesenchymal transition (EMT). In the present study, we found a novel pantothenate kinase 4 (PANK4)-related glycolytic mechanism that regulates LEC EMT. The PANK4 level was correlated with aging in cataract patients and mice. Loss of function of PANK4 significantly contributed to alleviating LEC EMT by upregulating pyruvate kinase M2 isozyme (PKM2), which was phosphorylated at Y105, thus switching oxidative phosphorylation to glycolysis. However, PKM2 regulation did not affect PANK4, demonstrating the downstream role of PKM2. Inhibition of PKM2 in Pank4-/- mice caused lens fibrosis, which supports the finding that the PANK4-PKM2 axis is required for LEC EMT. Glycolytic metabolism-governed hypoxia inducible factor (HIF) signaling is involved in PANK4-PKM2-related downstream signaling. However, HIF-1α elevation was independent of PKM2 (S37) but PKM2 (Y105) when PANK4 was deleted, which demonstrated that PKM2 and HIF-1α were not involved in a classic positive feedback loop. Collectively, these results indicate a PANK4-related glycolysis switch that may contribute to HIF-1 stabilization and PKM2 phosphorylation at Y105 and inhibit LEC EMT. The mechanism elucidation in our study may also shed light on fibrosis treatments for other organs.
Collapse
Affiliation(s)
- Xue Li
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China.
| | - Lin-Lin Luo
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China.
| | - Rui-Feng Li
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China.
| | - Chun-Lin Chen
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China.
| | - Min Sun
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China.
| | - Sen Lin
- Department of Neurology, Xinqiao Hospital, The Second Affiliated Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
15
|
Zhang H, Zhang H, Wang J, Fan L, Mu W, Jin Y, Wang Z. Small-molecular cyclic peptide exerts viability suppression effects on HepG2 cells via triggering p53 apoptotic pathways. Chem Biol Interact 2023; 382:110633. [PMID: 37451662 DOI: 10.1016/j.cbi.2023.110633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Cyclic peptides have become an attractive modality for drug development due to their high specificity, metabolic stability and higher cell permeability. In an effort to explore novel antitumor compounds based on natural cyclopeptide from the phakellistatin family, we found an isoindolinone-containing analog (S-PK6) of phakellistatin 6 capable of suppressing the viability and proliferation of HepG2 cells. The aim of the present study is to shed light on the mechanism of action of this novel compound. We have detected differences in gene expression before and after treatment with S-PK6 in human hepatocellular carcinoma HepG2 cell line by transcriptome sequencing. To further investigate biological effects, we have also extensively investigated the tumor cell cycle, mitochondrial membrane potential, and intracellular Ca2+ concentration after S-PK6 treatment. Based on the finding that the apoptosis was associated with the p53 signaling pathway and MAPK signaling pathway, western blotting tests were used to assess the expression level of p53 protein and its degenerative regulator MDM2 protein, which showed that S-PK6 could increase p53 levels efficiently. In summary, our results demonstrate the mechanism of action of a small-molecule cyclopeptide, which could be very useful for examining of the possible mechanisms of natural cyclopeptides.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Huanli Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Jingchun Wang
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, China
| | - Li Fan
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, China
| | - Weijie Mu
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China.
| | - Yingxue Jin
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China; Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Zhiqiang Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| |
Collapse
|
16
|
Scharr M, Scherer S, Hirt B, Neckel PH. Dickkopf1 induces enteric neurogenesis and gliogenesis in vitro if apoptosis is evaded. Commun Biol 2023; 6:808. [PMID: 37532804 PMCID: PMC10397193 DOI: 10.1038/s42003-023-05072-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 06/25/2023] [Indexed: 08/04/2023] Open
Abstract
Neurogenesis in the postnatal enteric nervous system (ENS) is controversially discussed. Yet, deciphering the regenerative potential of the ENS is essential for our understanding and therapy of human enteric neuropathies. Dickkopf1 (DKK1) is a Wnt-antagonist and involved in the homeostasis of various tissues. We hypothesize that DKK1 could function as a negative regulator on the proliferation of ENS-progenitors in the postnatal gut of mice and human infants. Here, we provide evidence that DKK1 is expressed in the murine and human ENS. If applied to ENS-progenitors in vitro, DKK1 leads to an increased proliferation, however, followed by extensive apoptosis. Yet, once we block apoptosis, DKK1-stimulation markedly increases enteric neurogenesis in murine and human ENS-progenitors. Thus, DKK1 is a strong, ambivalent regulator of the ENS-progenitor cell pool in mice and humans. These results are fundamental steps to reshaping our understanding of the homeostasis of the ENS in health and disease.
Collapse
Affiliation(s)
- Melanie Scharr
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| | - Simon Scherer
- Department of Pediatric Surgery and Urology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Bernhard Hirt
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| | - Peter H Neckel
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
17
|
Yao CY, Gao ZX, Hou LL, Fang D. DKK1 promotes NUAK1 transcriptional expression through the activation Akt in hepatocellular carcinoma. Cell Biol Int 2023; 47:383-393. [PMID: 36480792 DOI: 10.1002/cbin.11974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/21/2022] [Indexed: 12/13/2022]
Abstract
NUAK1 is a serine/threonine kinase that has been shown to be associated with poor prognosis in several cancers. Although NUAK1 is frequently overexpressed at the transcript level in hepatocellular carcinoma (HCC), the actual role of NUAK1 and the mechanism of its overexpression in HCC has yet to be reported. In the present study, we found that NUAK1 expression was significantly increased in human HCC tumor tissues. Overexpression of NUAK1 dramatically enhanced HCC cells proliferation and migration in vitro. Stable induction of NUAK1 expression promoted tumor growth and tumor metastases to the lungs in the subcutaneous xenograft models and intravenous metastasis models. At the cellular level, enforced expression of Dickkopf-1 (DKK1) activated the Akt signaling pathway, thereby promoting the mRNA and protein expression of NUAK1 in HCC cells. By contrast, depletion of DKK1 was found to attenuate the mRNA and protein expression of NUAK1. In the subcutaneous xenograft models, stable induction of DKK1 expression not only accelerated tumor growth but also increased p-Akt and NUAK1 expression; whereas knockdown of DKK1 inhibited tumor growth, p-Akt and NUAK1 expression. Furthermore, immunohistochemical analysis of 20 HCC clinical samples showed that the expression level of NUAK1 was positively correlated with DKK1 and p-Akt. Taken together, we provide the first evidence that DKK1 promotes NUAK1 transcriptional expression via the activation Akt in HCC.
Collapse
Affiliation(s)
- Chao-Yan Yao
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng, China
| | - Zi-Xuan Gao
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng, China
| | - Li-Li Hou
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng, China.,Quality and Technique Supervision, Inspection and Testing Center of Xuchang City, Xuchang, China
| | - Dong Fang
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng, China
| |
Collapse
|
18
|
Yang RH, Qin J, Cao JL, Zhang MZ, Li YY, Wang MQ, Fang D, Xie SQ. Dickkopf-1 drives tumor immune evasion by inducing PD-L1 expression in hepatocellular carcinoma. Biochem Pharmacol 2023; 208:115378. [PMID: 36513141 DOI: 10.1016/j.bcp.2022.115378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Understanding the mechanisms regulating PD-L1 expression in hepatocellular carcinoma (HCC) is important to improve the response rate to PD-1/PD-L1 blockade therapy. Here, we show that DKK1 expression is positively associated with PD-L1 expression and inversely correlated with CD8+ T cell infiltration in human HCC tumor specimens. In a subcutaneous xenograft tumor model, overexpression of DKK1 significantly promotes tumor growth, tumoral PD-L1 expression, but reduces tumoral CD8+ T cell infiltration; whereas knockdown of DKK1 has opposite effects. Moreover, enforced expression of DKK1 dramatically promotes PD-L1 expression, Akt activation, β-catenin phosphorylation and total protein expression in HCC cells. By contrast, knockdown of DKK1 inhibits all, relative to controls. In addition, CKAP4 depletion, Akt inhibition, or β-catenin depletion remarkably abrogates DKK1 overexpression-induced transcriptional expression of PD-L1 in HCC cells. Reconstituted expression of the active Akt1 largely increased PD-L1 transcriptional expression in HCC cells. Similarly, expression of WT β-catenin, but not the phosphorylation-defective β-catenin S552A mutant, significantly promotes PD-L1 expression. Correlation analysis of human HCC tumor specimens further revealed that DKK1 and PD-L1 expression were positively correlated with p-β-catenin expression. Together, our findings revealed that DKK1 promotes PD-L1 expression through the activation of Akt/β-catenin signaling, providing a potential strategy to enhance the clinical efficacy of PD-1/PD-L1 blockade therapy in HCC patients.
Collapse
Affiliation(s)
- Ruo-Han Yang
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng 475004, China; The Academy for Advanced Interdisplinary Studies, Henan University, N. Jinming Ave, Kaifeng 475004, China
| | - Jia Qin
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng 475004, China
| | - Jin-Lan Cao
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng 475004, China
| | - Ming-Zhu Zhang
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng 475004, China
| | - Ying-Ying Li
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng 475004, China
| | - Meng-Qing Wang
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng 475004, China
| | - Dong Fang
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng 475004, China; The Academy for Advanced Interdisplinary Studies, Henan University, N. Jinming Ave, Kaifeng 475004, China; Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Kaifeng 475004, China.
| | - Song-Qiang Xie
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng 475004, China; The Academy for Advanced Interdisplinary Studies, Henan University, N. Jinming Ave, Kaifeng 475004, China.
| |
Collapse
|
19
|
Li X, Zhao K, Lu Y, Wang J, Yao W. Genetic Analysis of Platelet-Related Genes in Hepatocellular Carcinoma Reveals a Novel Prognostic Signature and Determines PRKCD as the Potential Molecular Bridge. Biol Proced Online 2022; 24:22. [PMID: 36463115 PMCID: PMC9719151 DOI: 10.1186/s12575-022-00185-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/23/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) belongs to a representative lethality gastrointestinal malignancy, and comprehensive management of HCC remains intractable at present on account of its invasive biological feature that is easy to relapse and early metastasis. The intimate connection between platelets and tumor progression has been widely reported, and platelet-related indicators are also used in the clinical practice of carcinoma. This work is designed to investigate the significance of platelet-related genes in the prognostic prediction of patients with HCC and their potential role in the cross-talk between HCC cells and platelets in the tumor microenvironment. METHODS By integrating the RNA-seq data and clinicopathological information of HCC patients, we extracted prognosis-associated platelet-related genes based on the univariate cox analysis and further established a relevant prognostic signature via the lasso cox regression analysis, and two independent HCC cohorts were used as external validation. Multiple bioinformatics methods were utilized to explore the underlying functional discrepancy between different risk groups classified by the risk model. And in vitro proliferation, invasion, and migration assays were conducted to investigate the effect of platelet stimulation on HCC cells' viability and motility, and flow cytometric analysis was exerted to demonstrate the influence of HCC cells on platelet activation. RESULTS A novel platelet-related risk model was developed and patients both in the training and testing cohorts were divided into distinct risk subgroups according to the median risk score. It was observed that the high-risk status was closely associated with poor prognosis and worse clinicopathological parameters. Meanwhile, an obvious discrepancy in the constitution of the immune microenvironment also indicated that distinct immune status might be a potential determinant affecting prognosis as well as immunotherapy reactiveness. Moreover, in vitro experiments demonstrated that PRKCD could act as a molecular bridge between tumor cells and platelets, which could either participate in regulating tumor malignant phenotype or mediating platelet activation. CONCLUSIONS In brief, this work reveals a novel platelet-related risk signature for prognostic evaluation of HCC patients and confirms that PRKCD is a key messenger in HCC cell-platelet interaction and plays a crucial role in mediating platelet-induced tumor progression.
Collapse
Affiliation(s)
- Xiangyu Li
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Kai Zhao
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yun Lu
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jianming Wang
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Affiliated Tianyou Hospital, Wuhan University of Science & Technology, Wuhan, 430064, China.
| | - Wei Yao
- Department of Oncology Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
20
|
Zhang SW, Xu JY, Zhang T. DGMP: Identifying Cancer Driver Genes by Jointing DGCN and MLP from Multi-omics Genomic Data. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:928-938. [PMID: 36464123 PMCID: PMC10025764 DOI: 10.1016/j.gpb.2022.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 10/21/2022] [Accepted: 11/04/2022] [Indexed: 12/03/2022]
Abstract
Identification of cancer driver genes plays an important role in precision oncology research, which is helpful to understand cancer initiation and progression. However, most existing computational methods mainly used the protein-protein interaction (PPI) networks, or treated the directed gene regulatory networks (GRNs) as the undirected gene-gene association networks to identify the cancer driver genes, which will lose the unique structure regulatory information in the directed GRNs, and then affect the outcome of the cancer driver gene identification. Here, based on the multi-omics pan-cancer data (i.e., gene expression, mutation, copy number variation, and DNA methylation), we propose a novel method (called DGMP) to identify cancer driver genes by jointing directed graph convolutional network (DGCN) and multilayer perceptron (MLP). DGMP learns the multi-omics features of genes as well as the topological structure features in GRN with the DGCN model and uses MLP to weigh more on gene features for mitigating the bias toward the graph topological features in the DGCN learning process. The results on three GRNs show that DGMP outperforms other existing state-of-the-art methods. The ablation experimental results on the DawnNet network indicate that introducing MLP into DGCN can offset the performance degradation of DGCN, and jointing MLP and DGCN can effectively improve the performance of identifying cancer driver genes. DGMP can identify not only the highly mutated cancer driver genes but also the driver genes harboring other kinds of alterations (e.g., differential expression and aberrant DNA methylation) or genes involved in GRNs with other cancer genes. The source code of DGMP can be freely downloaded from https://github.com/NWPU-903PR/DGMP.
Collapse
Affiliation(s)
- Shao-Wu Zhang
- MOE Key Laboratory of Information Fusion Technology, School of Automation, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Jing-Yu Xu
- MOE Key Laboratory of Information Fusion Technology, School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tong Zhang
- MOE Key Laboratory of Information Fusion Technology, School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
21
|
Bian X, Jiang H, Meng Y, Li YP, Fang J, Lu Z. Regulation of gene expression by glycolytic and gluconeogenic enzymes. Trends Cell Biol 2022; 32:786-799. [PMID: 35300892 DOI: 10.1016/j.tcb.2022.02.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 12/15/2022]
Abstract
Gene transcription and cell metabolism are two fundamental biological processes that mutually regulate each other. Upregulated or altered expression of glucose metabolic genes in glycolysis and gluconeogenesis is a major driving force of enhanced aerobic glycolysis in tumor cells. Importantly, glycolytic and gluconeogenic enzymes in tumor cells acquire moonlighting functions and directly regulate gene expression by modulating chromatin or transcriptional complexes. The mutual regulation between cellular metabolism and gene expression in a feedback mechanism constitutes a unique feature of tumor cells and provides specific molecular and functional targets for cancer treatment.
Collapse
Affiliation(s)
- Xueli Bian
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China; Institute of Biomedical Sciences, Nanchang University Medical College, Nanchang 330031, China
| | - Hongfei Jiang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Ying Meng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Ying-Ping Li
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Jing Fang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China.
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310029, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China.
| |
Collapse
|
22
|
Xia JK, Qin XQ, Zhang L, Liu SJ, Shi XL, Ren HZ. Roles and regulation of histone acetylation in hepatocellular carcinoma. Front Genet 2022; 13:982222. [PMID: 36092874 PMCID: PMC9452893 DOI: 10.3389/fgene.2022.982222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatocellular Carcinoma (HCC) is the most frequent malignant tumor of the liver, but its prognosis is poor. Histone acetylation is an important epigenetic regulatory mode that modulates chromatin structure and transcriptional status to control gene expression in eukaryotic cells. Generally, histone acetylation and deacetylation processes are controlled by the opposing activities of histone acetyltransferases (HATs) and histone deacetylases (HDACs). Dysregulation of histone modification is reported to drive aberrant transcriptional programmes that facilitate liver cancer onset and progression. Emerging studies have demonstrated that several HDAC inhibitors exert tumor-suppressive properties via activation of various cell death molecular pathways in HCC. However, the complexity involved in the epigenetic transcription modifications and non-epigenetic cellular signaling processes limit their potential clinical applications. This review brings an in-depth view of the oncogenic mechanisms reported to be related to aberrant HCC-associated histone acetylation, which might provide new insights into the effective therapeutic strategies to prevent and treat HCC.
Collapse
Affiliation(s)
- Jin-kun Xia
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Hepatobiliary Institute Nanjing University, Nanjing, China
| | - Xue-qian Qin
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Lu Zhang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Shu-jun Liu
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiao-lei Shi
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Hepatobiliary Institute Nanjing University, Nanjing, China
| | - Hao-zhen Ren
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Hepatobiliary Institute Nanjing University, Nanjing, China
| |
Collapse
|
23
|
Zheng Y, Zhou Z, Wei R, Xiao C, Zhang H, Fan T, Zheng B, Li C, He J. The RNA-binding protein PCBP1 represses lung adenocarcinoma progression by stabilizing DKK1 mRNA and subsequently downregulating β-catenin. J Transl Med 2022; 20:343. [PMID: 35907982 PMCID: PMC9338556 DOI: 10.1186/s12967-022-03552-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/24/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND PolyC-RNA-binding protein 1 (PCBP1) functions as a tumour suppressor and RNA regulator that is downregulated in human cancers. Here, we aimed to reveal the biological function of PCBP1 in lung adenocarcinoma (LUAD). METHODS First, PCBP1 was identified as an important biomarker that maintains LUAD through The Cancer Genome Atlas (TCGA) project screening and confirmed by immunohistochemistry and qPCR. Via colony formation, CCK8, IncuCyte cell proliferation, wound healing and Transwell assays, we confirmed that PCBP1 was closely related to the proliferation and migration of LUAD cells. The downstream gene DKK1 was discovered by RNA sequencing of PCBP1 knockdown cells. The underlying mechanisms were further investigated using western blot, qPCR, RIP, RNA pulldown and mRNA stability assays. RESULTS We demonstrate that PCBP1 is downregulated in LUAD tumour tissues. The reduction in PCBP1 promotes the proliferation, migration and invasion of LUAD in vitro and in vivo. Mechanistically, the RNA-binding protein PCBP1 represses LUAD by stabilizing DKK1 mRNA. Subsequently, decreased expression of the DKK1 protein relieves the inhibitory effect on the Wnt/β-catenin signalling pathway. Taken together, these results show that PCBP1 acts as a tumour suppressor gene, inhibiting the tumorigenesis of LUAD. CONCLUSIONS We found that PCBP1 inhibits LUAD development by upregulating DKK1 to inactivate the Wnt/β-catenin pathway. Our findings highlight the potential of PCBP1 as a promising therapeutic target.
Collapse
Affiliation(s)
- Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Zhou
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ran Wei
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Zheng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
24
|
The interaction of canonical Wnt/β-catenin signaling with protein lysine acetylation. Cell Mol Biol Lett 2022; 27:7. [PMID: 35033019 PMCID: PMC8903542 DOI: 10.1186/s11658-021-00305-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
Canonical Wnt/β-catenin signaling is a complex cell-communication mechanism that has a central role in the progression of various cancers. The cellular factors that participate in the regulation of this signaling are still not fully elucidated. Lysine acetylation is a significant protein modification which facilitates reversible regulation of the target protein function dependent on the activity of lysine acetyltransferases (KATs) and the catalytic function of lysine deacetylases (KDACs). Protein lysine acetylation has been classified into histone acetylation and non-histone protein acetylation. Histone acetylation is a kind of epigenetic modification, and it can modulate the transcription of important biological molecules in Wnt/β-catenin signaling. Additionally, as a type of post-translational modification, non-histone acetylation directly alters the function of the core molecules in Wnt/β-catenin signaling. Conversely, this signaling can regulate the expression and function of target molecules based on histone or non-histone protein acetylation. To date, various inhibitors targeting KATs and KDACs have been discovered, and some of these inhibitors exert their anti-tumor activity via blocking Wnt/β-catenin signaling. Here, we discuss the available evidence in understanding the complicated interaction of protein lysine acetylation with Wnt/β-catenin signaling, and lysine acetylation as a new target for cancer therapy via controlling this signaling.
Collapse
|
25
|
Kikuchi A, Matsumoto S, Sada R. Dickkopf signaling, beyond Wnt-mediated biology. Semin Cell Dev Biol 2021; 125:55-65. [PMID: 34801396 DOI: 10.1016/j.semcdb.2021.11.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 02/07/2023]
Abstract
Dickkopf1 (DKK1) was originally identified as a secreted protein that antagonizes Wnt signaling. Although DKK1 is essential for the developmental process, its functions in postnatal and adult life are unclear. However, evidence is accumulating that DKK1 is involved in tumorigenesis in a manner unrelated to Wnt signaling. In addition, recent studies have revealed that DKK1 may control immune reactions, although the relationship of this to Wnt signaling is unknown. Other DKK family members, DKK2-4, are likely to have their own functions. Here, we review the possible novel functions of DKKs. We summarize the characteristics of receptors of DKKs and the signaling mechanisms through DKKs and their receptors, provide evidence showing that DKKs are involved in tumor aggressiveness independently of Wnt signaling, and emphasize promising cancer therapies targeting DKKs and receptors. Lastly, we discuss various physiological and pathological processes controlled by DKKs.
Collapse
Affiliation(s)
- Akira Kikuchi
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita 565-0871, Osaka, Japan.
| | - Shinji Matsumoto
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita 565-0871, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-2 Yamada-oka, Suita 565-0871, Osaka, Japan
| | - Ryota Sada
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita 565-0871, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-2 Yamada-oka, Suita 565-0871, Osaka, Japan
| |
Collapse
|
26
|
Zhang ZS, Yang RH, Yao X, Cheng YY, Shi HX, Yao CY, Gao ZX, Qi DF, Zhang WK, Dou YY, Guo J, Hu MW, Zhao H, Fang D. HGF/c-MET pathway contributes to cisplatin-mediated PD-L1 expression in hepatocellular carcinoma. Cell Biol Int 2021; 45:2521-2533. [PMID: 34486197 DOI: 10.1002/cbin.11697] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/17/2021] [Accepted: 08/28/2021] [Indexed: 12/20/2022]
Abstract
Cisplatin has been reported to promote the expression of programmed cell death ligand-1 (PD-L1) in some cancer cells. However, the underlying mechanism through which PD-L1 is transcriptionally regulated by cisplatin in hepatocellular carcinoma (HCC) cells remains largely unknown. In the present study, we found that the expression of hepatocyte growth factor (HGF), p-Akt, p-ERK, and PD-L1 was increased in cisplatin-treated SNU-368 and SNU-739 cells. HGF stimulation also increased PD-L1 expression in these cells. Moreover, Inhibition of HGF/c-MET, PI3K/Akt, and MEK/ERK signaling pathways can dramatically block cisplatin or HGF-induced PD-L1 expression in SNU-368 and SNU-739 cells. In vivo, combination PHA665752 with cisplatin significantly reduced tumor weight with increased infiltration of CD8+ T cells in the tumor. Taken together, our study suggested that HGF/c-Met axis-induced the activation of PI3K/Akt and MEK/ERK pathways contributes to cisplatin-mediated PD-L1 expression. These findings may provide an alternative avenue for the treatment of HCC.
Collapse
Affiliation(s)
- Zhan-Sheng Zhang
- Department of Pharmacology, Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Ruo-Han Yang
- Department of Pharmacology, Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Xin Yao
- Department of Pharmacology, Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Yue-Ying Cheng
- Department of Pharmacology, Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Hong-Xiang Shi
- Department of Pharmacology, Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Chao-Yan Yao
- Department of Pharmacology, Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Zi-Xuan Gao
- Department of Pharmacology, Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - De-Fei Qi
- Department of Pharmacology, Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Wen-Ke Zhang
- Department of Pharmacology, Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Yuan-Yuan Dou
- Department of Pharmacology, Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Juan Guo
- Department of Pharmacology, Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Meng-Wen Hu
- Department of Pharmacology, Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Hui Zhao
- Department of Pharmacology, Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Dong Fang
- Department of Pharmacology, Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China.,Department of Pharmacology, Institute of Chemical Biology, School of Pharmacy, Henan University, Kaifeng, China
| |
Collapse
|
27
|
Álvarez-Mercado AI, Caballeria-Casals A, Rojano-Alfonso C, Chávez-Reyes J, Micó-Carnero M, Sanchez-Gonzalez A, Casillas-Ramírez A, Gracia-Sancho J, Peralta C. Insights into Growth Factors in Liver Carcinogenesis and Regeneration: An Ongoing Debate on Minimizing Cancer Recurrence after Liver Resection. Biomedicines 2021; 9:1158. [PMID: 34572344 PMCID: PMC8470173 DOI: 10.3390/biomedicines9091158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 01/18/2023] Open
Abstract
Hepatocellular carcinoma has become a leading cause of cancer-associated mortality throughout the world, and is of great concern. Currently used chemotherapeutic drugs in the treatment of hepatocellular carcinoma lead to severe side effects, thus underscoring the need for further research to develop novel and safer therapies. Liver resection in cancer patients is routinely performed. After partial resection, liver regeneration is a perfectly calibrated response apparently sensed by the body's required liver function. This process hinges on the effect of several growth factors, among other molecules. However, dysregulation of growth factor signals also leads to growth signaling autonomy and tumor progression, so control of growth factor expression may prevent tumor progression. This review describes the role of some of the main growth factors whose dysregulation promotes liver tumor progression, and are also key in regenerating the remaining liver following resection. We herein summarize and discuss studies focused on partial hepatectomy and liver carcinogenesis, referring to hepatocyte growth factor, insulin-like growth factor, and epidermal growth factor, as well as their suitability as targets in the treatment of hepatocellular carcinoma. Finally, and given that drugs remain one of the mainstay treatment options in liver carcinogenesis, we have reviewed the current pharmacological approaches approved for clinical use or research targeting these factors.
Collapse
Affiliation(s)
- Ana I. Álvarez-Mercado
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology, Biomedical Research Center, University of Granada, 18016 Armilla, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Albert Caballeria-Casals
- Hepatic Ischemia-Reperfusion Injury Department, Institut de Recerca Biomèdica August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (A.C.-C.); (C.R.-A.); (M.M.-C.)
| | - Carlos Rojano-Alfonso
- Hepatic Ischemia-Reperfusion Injury Department, Institut de Recerca Biomèdica August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (A.C.-C.); (C.R.-A.); (M.M.-C.)
| | - Jesús Chávez-Reyes
- Facultad de Medicina e Ingeniería en Sistemas Computacionales Matamoros, Universidad Autónoma de Tamaulipas, Matamoros 87300, Mexico; (J.C.-R.); (A.C.-R.)
| | - Marc Micó-Carnero
- Hepatic Ischemia-Reperfusion Injury Department, Institut de Recerca Biomèdica August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (A.C.-C.); (C.R.-A.); (M.M.-C.)
| | - Alfredo Sanchez-Gonzalez
- Teaching and Research Department, Hospital Regional de Alta Especialidad de Ciudad Victoria “Bicentenario 2010”, Ciudad Victoria 87087, Mexico;
| | - Araní Casillas-Ramírez
- Facultad de Medicina e Ingeniería en Sistemas Computacionales Matamoros, Universidad Autónoma de Tamaulipas, Matamoros 87300, Mexico; (J.C.-R.); (A.C.-R.)
- Teaching and Research Department, Hospital Regional de Alta Especialidad de Ciudad Victoria “Bicentenario 2010”, Ciudad Victoria 87087, Mexico;
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute, CIBEREHD, 03036 Barcelona, Spain;
- Barcelona Hepatic Hemodynamic Laboratory, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain
| | - Carmen Peralta
- Hepatic Ischemia-Reperfusion Injury Department, Institut de Recerca Biomèdica August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (A.C.-C.); (C.R.-A.); (M.M.-C.)
| |
Collapse
|
28
|
Wei J, Ma L, Liu W, Wang Y, Shen C, Zhao X, Zhao C. Identification of the molecular targets and mechanisms of compound mylabris capsules for hepatocellular carcinoma treatment through network pharmacology and bioinformatics analysis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 276:114174. [PMID: 33932512 DOI: 10.1016/j.jep.2021.114174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/21/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese herbal formulas have been proven to exert an inhibitory effect on tumor. Compound mylabris capsules (CMC) has been used for treating cancer, especially hepatocellular carcinoma (HCC), for years in China. However, its therapeutic mechanisms on HCC remain unclear. AIM OF THE STUDY This research aimed to elucidate the molecular targets and mechanisms of CMC for treating HCC. MATERIALS AND METHODS First, the bioactive ingredients and potential targets of CMC, as well as HCC-related targets were retrieved from publicly available databases. Next, the overlapped genes between potential targets of CMC and HCC-related targets were determined using bioinformatics analysis. Then, networks of ingredient-target and gene-pathway were constructed. Finally, cell experiments were carried out to examine the effects of CMC-medicated serum on HCC and validate the core molecular targets. RESULTS In total, 151 bioactive ingredients and 255 potential targets of CMC were selected, 982 differentially expressed genes of HCC were identified. Among them, 34 overlapped genes were finally selected. In addition, 20 pathways and 429 GO terms were significantly enriched. Protein-protein interaction and gene-pathway networks indicated that Cyclin B1(CCNB1) and Cyclin Dependent Kinase 1(CDK1) were the core gene targets for the treatment of CMC on HCC. Moreover, in vitro studies showed that CMC-medicated serum significantly inhibited the viability of HepG2 cells. Furthermore, CMC downregulated CCNB1 and CDK1 expressions and induced G2/M phase cell cycle arrest. CONCLUSIONS CMC plays a therapeutic role in HCC via multi-component, -target and -pathway mechanisms, in which CCNB1 and CDK1 may be the core molecular targets. This study indicates that the integration of network pharmacology and bioinformatics analysis, followed by experimental validation, can serves as an effective tool for studying the therapeutic mechanisms of traditional Chinese medicine.
Collapse
Affiliation(s)
- Junwei Wei
- Department of Infectious Diseases, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China.
| | - Luyuan Ma
- Department of Infectious Diseases, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China.
| | - Wenpeng Liu
- Department of Hepatobiliary Surgery, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China.
| | - Yadong Wang
- Department of Infectious Diseases, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China.
| | - Chuan Shen
- Department of Infectious Diseases, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China.
| | - Xin Zhao
- Department of Hepatobiliary Surgery, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China.
| | - Caiyan Zhao
- Department of Infectious Diseases, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China.
| |
Collapse
|