1
|
Rodriguez-Sevilla JJ, Ganan-Gomez I, Kumar B, Thongon N, Ma F, Chien KS, Kim YJ, Yang H, Loghavi S, Tan R, Adema V, Li Z, Tanaka T, Uryu H, Kanagal-Shamanna R, Al-Atrash G, Bejar R, Banerjee PP, Lynn Cha S, Montalban-Bravo G, Dougherty M, Fernandez Laurita MC, Wheeler N, Jia B, Papapetrou EP, Izzo F, Dueñas DE, McAllen S, Gu Y, Todisco G, Ficara F, Della Porta MG, Jain A, Takahashi K, Clise-Dwyer K, Halene S, Bertilaccio MTS, Garcia-Manero G, Daher M, Colla S. Natural killer cells' functional impairment drives the immune escape of pre-malignant clones in early-stage myelodysplastic syndromes. Nat Commun 2025; 16:3450. [PMID: 40216768 PMCID: PMC11992119 DOI: 10.1038/s41467-025-58662-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 03/25/2025] [Indexed: 04/14/2025] Open
Abstract
Dissecting the preneoplastic disease states' biological mechanisms that precede tumorigenesis can lead to interventions that can slow down disease progression and/or mitigate disease-related comorbidities. Myelodysplastic syndromes (MDS) cannot be cured by currently available pharmacological therapies, which fail to eradicate aberrant hematopoietic stem cells (HSCs), most of which are mutated by the time of diagnosis. Here, we sought to elucidate how MDS HSCs evade immune surveillance and expand in patients with clonal cytopenias of undetermined significance (CCUS), the pre-malignant stage of MDS. We used multi-omic single-cell approaches and functional in vitro studies to show that immune escape at disease initiation is mainly mediated by mutant, dysfunctional natural killer (NK) cells with impaired cytotoxic capability against cancer cells. Preclinical in vivo studies demonstrated that injecting NK cells from healthy donors efficiently depleted CCUS mutant cells while allowing normal cells to regenerate hematopoiesis. Our findings suggest that early intervention with adoptive cell therapy can prevent or delay the development of MDS.
Collapse
Affiliation(s)
| | - Irene Ganan-Gomez
- Department of Leukemia, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Bijender Kumar
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Natthakan Thongon
- Department of Leukemia, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Feiyang Ma
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kelly S Chien
- Department of Leukemia, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Yi J Kim
- Department of Genomic Medicine, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Hui Yang
- Department of Leukemia, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roselyn Tan
- Moores Cancer Center, University of California San Diego, Moores Cancer Center, San Diego, CA, USA
| | - Vera Adema
- Department of Leukemia, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Zongrui Li
- Department of Genomic Medicine, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Tomoyuki Tanaka
- Department of Genomic Medicine, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Hidetaka Uryu
- Department of Genomic Medicine, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gheath Al-Atrash
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rafael Bejar
- Moores Cancer Center, University of California San Diego, Moores Cancer Center, San Diego, CA, USA
| | - Pinaki Prosad Banerjee
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sophia Lynn Cha
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Max Dougherty
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria Claudina Fernandez Laurita
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Noelle Wheeler
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Baosen Jia
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eirini P Papapetrou
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Franco Izzo
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniela E Dueñas
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Salome McAllen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yiqian Gu
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Gabriele Todisco
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy
| | - Francesca Ficara
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy
- Istituto di Ricerca Genetica e Biomedica, National Research Council, 20090, Milan, Italy
| | - Matteo Giovanni Della Porta
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy
| | - Abhinav Jain
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Koichi Takahashi
- Department of Leukemia, The University of MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Karen Clise-Dwyer
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | | | | | - May Daher
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Simona Colla
- Department of Leukemia, The University of MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
2
|
Lindenbergh PL, van der Stegen SJ. Adoptive Cell Therapy from the Dish: Potentiating Induced Pluripotent Stem Cells. Transfus Med Hemother 2025; 52:27-41. [PMID: 39944411 PMCID: PMC11813279 DOI: 10.1159/000540473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/19/2024] [Indexed: 02/16/2025] Open
Abstract
Background The clinical success of autologous adoptive cell therapy (ACT) is substantial but wide application is challenged by the quality and quantity of the patient's immune cells and the need for personalized manufacturing processes. Induced pluripotent stem cells (iPSCs) can be differentiated into immune effectors and thus provide an alternative, allogeneic cell source for ACT. Here, we compare iPSC-derived immune effectors to their PBMC-derived counterparts and review iPSC-derived ACT products currently under preclinical and clinical development. Summary iPSC-derived T cells, NK cells, macrophages, and neutrophils largely mimic their PBMC-derived counterparts in terms of cell-surface marker expression and cytotoxic effector functions. iPSC-derived immune effectors can be engineered with chimeric antigen receptors and other activating receptors to redirect their cytotoxic potential specifically to tumor-associated antigens (TAAs). However, several differences between iPSC- and PBMC-derived immune effectors remain and have inspired additional engineering strategies to enhance the antitumor capacity of iPSC-derived immune effectors. Key Messages iPSCs can be engineered to facilitate the generation of immune effectors with homogenous specificity for TAAs and enhanced effector functions. TAA-specific and functionally enhanced iPSC-derived T and NK cells are currently undergoing clinical evaluation in phase 1 trials. Engineered iPSC-derived macrophages and neutrophils are in preclinical development.
Collapse
Affiliation(s)
- Pieter L. Lindenbergh
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | | |
Collapse
|
3
|
Gonzàlez Gutierrez C, Aimard A, Biarnes-Pélicot M, Kerfelec B, Puech PH, Robert P, Piazza F, Chames P, Limozin L. Decoupling Individual Host Response and Immune Cell Engager Cytotoxic Potency. ACS NANO 2025; 19:2089-2098. [PMID: 39791371 DOI: 10.1021/acsnano.4c08541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Immune cell engagers are molecular agents, usually antibody-based constructs, engineered to recruit immune cells against cancer cells and kill them. They are versatile and powerful tools for cancer immunotherapy. Despite the multiplication of engagers tested and accepted in the clinic, how molecular and cellular parameters influence their actions is poorly understood. In particular, disentangling the respective roles of host immune cells and engager biophysical characteristics is needed to improve their design and efficiency. Focusing here on harnessing antibody-dependent Natural Killer cell cytotoxicity, we measure the efficiency of 6 original bispecific antibodies (bsAb), associating an anti-HER2 nanobody and an anti-CD16 nanobody. In vitro cytotoxicity data using primary human NK cells on different target cell lines exposing different antigen densities were collected, exhibiting a wide range of bsAb dose response. In order to rationalize our observations, we introduce a simple multiscale model, postulating that the density of bsAb bridging the two cells is the main parameter triggering the cytotoxic response. We introduce two microscopic parameters: the surface cooperativity describing bsAb affinity at the bridging step and the threshold of bridge density determining the donor-dependent response. Both parameters permit ranking Abs and donors and predicting bsAb potency as a function of antibodies bulk affinities and receptor surface densities on cells. Our approach thus provides a general way to decouple donor response from immune engager characteristics, rationalizing the landscape of molecule design.
Collapse
Affiliation(s)
| | - Adrien Aimard
- Aix-Marseille Univ., CNRS, INSERM, Institut Paoli Calmettes, CRCM, 13009 Marseille, France
| | | | - Brigitte Kerfelec
- Aix-Marseille Univ., CNRS, INSERM, Institut Paoli Calmettes, CRCM, 13009 Marseille, France
| | - Pierre-Henri Puech
- Aix-Marseille Univ., CNRS, INSERM, LAI, Centuri Living Systems, 13009 Marseille, France
| | - Philippe Robert
- Aix-Marseille Univ., CNRS, INSERM, LAI, Centuri Living Systems, 13009 Marseille, France
- Assistance Publique Hôpitaux de Marseille, 13005 Marseille, France
| | - Francesco Piazza
- CNRS, Univ. Orleans, CBM, 45000 Orleans, France
- Dipartimento di Fisica e Astronomia, Università di Firenze and INFN sezione di Firenze, 50019 Sesto Fiorentino, Italy
| | - Patrick Chames
- Aix-Marseille Univ., CNRS, INSERM, Institut Paoli Calmettes, CRCM, 13009 Marseille, France
| | - Laurent Limozin
- Aix-Marseille Univ., CNRS, INSERM, LAI, Centuri Living Systems, 13009 Marseille, France
| |
Collapse
|
4
|
Yao P, Liu YG, Huang G, Hao L, Wang R. The development and application of chimeric antigen receptor natural killer (CAR-NK) cells for cancer therapy: current state, challenges and emerging therapeutic advances. Exp Hematol Oncol 2024; 13:118. [PMID: 39633491 PMCID: PMC11616395 DOI: 10.1186/s40164-024-00583-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
Immunotherapy has transformed the landscape of cancer treatment, with chimeric antigen receptor (CAR)-engineered T (CAR-T) cell therapy emerging as a front runner in addressing some hematological malignancies. Despite its considerable efficacy, the occurrence of severe adverse effects associated with CAR-T cell therapy has limited their scope and prompted the exploration of alternative therapeutic strategies. Natural killer (NK) cells, characterized by both their innate cytotoxicity and ability to lyse target cells without the constraint of peptide specificity conferred by a major histocompatibility complex (MHC), have similarly garnered attention as a viable immunotherapy. As such, another therapeutic approach has recently emerged that seeks to combine the continued success of CAR-T cell therapy with the flexibility of NK cells. Clinical trials involving CAR-engineered NK (CAR-NK) cell therapy have exhibited promising efficacy with fewer deleterious side effects. This review aims to provide a concise overview of the cellular and molecular basis of NK cell biology, facilitating a better understanding of advancements in CAR design and manufacturing. The focus is on current approaches and strategies employed in CAR-NK cell development, exploring at both preclinical and clinical settings. We will reflect upon the achievements, advantages, and challenges intrinsic to CAR-NK cell therapy. Anticipating the maturation of CAR-NK cell therapy technology, we foresee its encouraging prospects for a broader range of cancer patients and other conditions. It is our belief that this CAR-NK progress will bring us closer to making significant strides in the treatment of refractory and recurrent cancers, as well as other immune-mediated disorders.
Collapse
Affiliation(s)
- Pin Yao
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Ya-Guang Liu
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Gang Huang
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Liangchun Hao
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Shenyang, 110004, Liaoning, China
| | - Runan Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
5
|
Coënon L, Geindreau M, Ghiringhelli F, Villalba M, Bruchard M. Natural Killer cells at the frontline in the fight against cancer. Cell Death Dis 2024; 15:614. [PMID: 39179536 PMCID: PMC11343846 DOI: 10.1038/s41419-024-06976-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024]
Abstract
Natural Killer (NK) cells are innate immune cells that play a pivotal role as first line defenders in the anti-tumor response. To prevent tumor development, NK cells are searching for abnormal cells within the body and appear to be key players in immunosurveillance. Upon recognition of abnormal cells, NK cells will become activated to destroy them. In order to fulfill their anti-tumoral function, they rely on the secretion of lytic granules, expression of death receptors and production of cytokines. Additionally, NK cells interact with other cells in the tumor microenvironment. In this review, we will first focus on NK cells' activation and cytotoxicity mechanisms as well as NK cells behavior during serial killing. Lastly, we will review NK cells' crosstalk with the other immune cells present in the tumor microenvironment.
Collapse
Affiliation(s)
- Loïs Coënon
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Mannon Geindreau
- Equipe TIRECs, Labellisée Ligue Contre le Cancer, Centre de Recherche INSERM CTM-UMR1231, Dijon, France
- University of Bourgogne Franche-Comté, Dijon, France
| | - François Ghiringhelli
- Equipe TIRECs, Labellisée Ligue Contre le Cancer, Centre de Recherche INSERM CTM-UMR1231, Dijon, France
- University of Bourgogne Franche-Comté, Dijon, France
- Platform of Transfer in Biological Oncology, Georges-François Leclerc Cancer Center, Dijon, France
| | - Martin Villalba
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
- Institut du Cancer Avignon-Provence Sainte Catherine, Avignon, France
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France
| | - Mélanie Bruchard
- Equipe TIRECs, Labellisée Ligue Contre le Cancer, Centre de Recherche INSERM CTM-UMR1231, Dijon, France.
- University of Bourgogne Franche-Comté, Dijon, France.
- Platform of Transfer in Biological Oncology, Georges-François Leclerc Cancer Center, Dijon, France.
| |
Collapse
|
6
|
Ross P, Fatima H, Leaman DP, Matthias J, Spencer K, Zwick MB, Henderson SC, Mace EM, Murin CD. Spatial localization of CD16a at the human NK cell ADCC lytic synapse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.605851. [PMID: 39149244 PMCID: PMC11326286 DOI: 10.1101/2024.08.09.605851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Natural Killer (NK) cells utilize effector functions, including antibody-dependent cellular cytotoxicity (ADCC), for the clearance of viral infection and cellular malignancies. NK cell ADCC is mediated by FcγRIIIa (CD16a) binding to the fragment crystallizable (Fc) region of immunoglobulin G (IgG) within immune complexes on a target cell surface. While antibody-induced clustering of CD16a is thought to drive ADCC, the molecular basis for this activity has not been fully described. Here we use MINFLUX nanoscopy to map the spatial distribution of stoichiometrically labeled CD16a across the NK cell membrane, revealing the presence of pairs of CD16a molecules with intra-doublet distance of approximately 17 nm. NK cells activated on supported lipid bilayers by Trastuzumab results in an increase of synaptic regions with greater CD16a density. Our results provide the highest spatial resolution yet described for CD16a imaging, offering new insight into how CD16a organization within the immune synapse could influence ADCC activity. MINFLUX holds great promise to further unravel the molecular details driving CD16a-based activation of NK cells.
Collapse
Affiliation(s)
- Patrick Ross
- San Diego Biomedical Research Institute, San Diego, CA, USA
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Hijab Fatima
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Dan P. Leaman
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | | | - Kathryn Spencer
- Core Microscopy Facility, Scripps Research, La Jolla, CA, USA
| | - Michael B. Zwick
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Scott C. Henderson
- Core Microscopy Facility, Scripps Research, La Jolla, CA, USA
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Emily M. Mace
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Charles Daniel Murin
- San Diego Biomedical Research Institute, San Diego, CA, USA
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| |
Collapse
|
7
|
Franks ML, An JH, Leavenworth JW. The Role of Natural Killer Cells in Oncolytic Virotherapy: Friends or Foes? Vaccines (Basel) 2024; 12:721. [PMID: 39066359 PMCID: PMC11281503 DOI: 10.3390/vaccines12070721] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Oncolytic virotherapy (OVT) has emerged as a promising cancer immunotherapy, and is capable of potentiating other immunotherapies due to its capacity to increase tumor immunogenicity and to boost host antitumor immunity. Natural killer (NK) cells are a critical cellular component for mediating the antitumor response, but hold a mixed reputation for their role in mediating the therapeutic efficacy of OVT. This review will discuss the pros and cons of how NK cells impact OVT, and how to harness this knowledge for the development of effective strategies that could modulate NK cells to improve OVT-based therapeutic outcomes.
Collapse
Affiliation(s)
- Michael L. Franks
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (M.L.F.)
- Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ju-Hyun An
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (M.L.F.)
| | - Jianmei W. Leavenworth
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (M.L.F.)
- The O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
8
|
Nersesian S, Carter EB, Lee SN, Westhaver LP, Boudreau JE. Killer instincts: natural killer cells as multifactorial cancer immunotherapy. Front Immunol 2023; 14:1269614. [PMID: 38090565 PMCID: PMC10715270 DOI: 10.3389/fimmu.2023.1269614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
Natural killer (NK) cells integrate heterogeneous signals for activation and inhibition using germline-encoded receptors. These receptors are stochastically co-expressed, and their concurrent engagement and signaling can adjust the sensitivity of individual cells to putative targets. Against cancers, which mutate and evolve under therapeutic and immunologic pressure, the diversity for recognition provided by NK cells may be key to comprehensive cancer control. NK cells are already being trialled as adoptive cell therapy and targets for immunotherapeutic agents. However, strategies to leverage their naturally occurring diversity and agility have not yet been developed. In this review, we discuss the receptors and signaling pathways through which signals for activation or inhibition are generated in NK cells, focusing on their roles in cancer and potential as targets for immunotherapies. Finally, we consider the impacts of receptor co-expression and the potential to engage multiple pathways of NK cell reactivity to maximize the scope and strength of antitumor activities.
Collapse
Affiliation(s)
- Sarah Nersesian
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Emily B. Carter
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Stacey N. Lee
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | | | - Jeanette E. Boudreau
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
9
|
CAR-NK as a Rapidly Developed and Efficient Immunotherapeutic Strategy against Cancer. Cancers (Basel) 2022; 15:cancers15010117. [PMID: 36612114 PMCID: PMC9817948 DOI: 10.3390/cancers15010117] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Chimeric antigen receptor (CAR)-modified T cell therapy has been rapidly developing in recent years, ultimately revolutionizing immunotherapeutic strategies and providing significant anti-tumor potency, mainly in treating hematological neoplasms. However, graft-versus-host disease (GVHD) and other adverse effects, such as cytokine release syndromes (CRS) and neurotoxicity associated with CAR-T cell infusion, have raised some concerns about the broad application of this therapy. Natural killer (NK) cells have been identified as promising alternative platforms for CAR-based therapies because of their unique features, such as a lack of human leukocyte antigen (HLA)-matching restriction, superior safety, and better anti-tumor activity when compared with CAR-T cells. The lack of CRS, neurotoxicity, or GVHD, in the case of CAR-NK therapy, in addition to the possibility of using allogeneic NK cells as a CAR platform for "off-the-shelf" therapy, opens new windows for strategic opportunities. This review underlines recent design achievements in CAR constructs and summarizes preclinical studies' results regarding CAR-NK therapies' safety and anti-tumor potency. Additionally, new approaches in CAR-NK technology are briefly described, and currently registered clinical trials are listed.
Collapse
|
10
|
Wang MS, Hu Y, Sanchez EE, Xie X, Roy NH, de Jesus M, Winer BY, Zale EA, Jin W, Sachar C, Lee JH, Hong Y, Kim M, Kam LC, Salaita K, Huse M. Mechanically active integrins target lytic secretion at the immune synapse to facilitate cellular cytotoxicity. Nat Commun 2022; 13:3222. [PMID: 35680882 PMCID: PMC9184626 DOI: 10.1038/s41467-022-30809-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 05/19/2022] [Indexed: 01/25/2023] Open
Abstract
Cytotoxic lymphocytes fight pathogens and cancer by forming immune synapses with infected or transformed target cells and then secreting cytotoxic perforin and granzyme into the synaptic space, with potent and specific killing achieved by this focused delivery. The mechanisms that establish the precise location of secretory events, however, remain poorly understood. Here we use single cell biophysical measurements, micropatterning, and functional assays to demonstrate that localized mechanotransduction helps define the position of secretory events within the synapse. Ligand-bound integrins, predominantly the αLβ2 isoform LFA-1, function as spatial cues to attract lytic granules containing perforin and granzyme and induce their fusion with the plasma membrane for content release. LFA-1 is subjected to pulling forces within secretory domains, and disruption of these forces via depletion of the adaptor molecule talin abrogates cytotoxicity. We thus conclude that lymphocytes employ an integrin-dependent mechanical checkpoint to enhance their cytotoxic power and fidelity.
Collapse
Affiliation(s)
- Mitchell S Wang
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Pharmacology Program, Weill-Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Yuesong Hu
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Elisa E Sanchez
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Biochemistry and Molecular Biology Program, Weill-Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Xihe Xie
- Neuroscience Program, Weill-Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Nathan H Roy
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Miguel de Jesus
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benjamin Y Winer
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elizabeth A Zale
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Weiyang Jin
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Chirag Sachar
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Joanne H Lee
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Yeonsun Hong
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Minsoo Kim
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Lance C Kam
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Morgan Huse
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
11
|
Buckle I, Guillerey C. Inhibitory Receptors and Immune Checkpoints Regulating Natural Killer Cell Responses to Cancer. Cancers (Basel) 2021; 13:cancers13174263. [PMID: 34503073 PMCID: PMC8428224 DOI: 10.3390/cancers13174263] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Recent years marked the discovery and increased understanding of the role immune checkpoints play in immunity against cancer. This has revolutionized cancer treatment, saving the lives of many patients. For numerous years the spotlight of success has been directed towards T cells; however, it is now appreciated that other cells play vital roles in this protection. In this review we focused on cytotoxic lymphocytes Natural Killer (NK) cells, which are known to be well equipped in the fight against cancer. We explored the role of well-described and newly emerging inhibitory receptors, including immune checkpoints in regulating NK cell activity against cancer. The knowledge summarized in this review should guide the development of immunotherapies targeting inhibitory receptors with the aim of restoring NK cell responses in cancer patients. Abstract The discovery of immune checkpoints provided a breakthrough for cancer therapy. Immune checkpoints are inhibitory receptors that are up-regulated on chronically stimulated lymphocytes and have been shown to hinder immune responses to cancer. Monoclonal antibodies against the checkpoint molecules PD-1 and CTLA-4 have shown early clinical success against melanoma and are now approved to treat various cancers. Since then, the list of potential candidates for immune checkpoint blockade has dramatically increased. The current paradigm stipulates that immune checkpoint blockade therapy unleashes pre-existing T cell responses. However, there is accumulating evidence that some of these immune checkpoint molecules are also expressed on Natural Killer (NK) cells. In this review, we summarize our latest knowledge about targetable NK cell inhibitory receptors. We discuss the HLA-binding receptors KIRS and NKG2A, receptors binding to nectin and nectin-like molecules including TIGIT, CD96, and CD112R, and immune checkpoints commonly associated with T cells such as PD-1, TIM-3, and LAG-3. We also discuss newly discovered pathways such as IL-1R8 and often overlooked receptors such as CD161 and Siglecs. We detail how these inhibitory receptors might regulate NK cell responses to cancer, and, where relevant, we discuss their implications for therapeutic intervention.
Collapse
|
12
|
Veillette A. The spatial distribution of target cell ligands determines NK cell degranulation. Sci Signal 2021; 14:eabi8525. [PMID: 34035144 DOI: 10.1126/scisignal.abi8525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cell-bound ligands are often viewed as moving passively in response to displacement of their cognate receptors. Verron et al provide an example of the distribution of ligands influencing the functional outcome of receptor stimulation.
Collapse
Affiliation(s)
- André Veillette
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada; Département de médecine, Université de Montréal, Montréal, Québec H3C 3J7, Canada; and Department of Medicine, McGill University, Montréal, Québec H3G 1Y6, Canada.
| |
Collapse
|