1
|
Cheong KL, Chen L, Lu SY, Sabir A, Chen J, Wang Z, Veeraperumal S, Aweya JJ, Chen XQ, Zhong S, Tan K, Abd El-Aty AM. Structure-function relationship of the brown seaweed Undaria pinnatifida laminaran: Protein kinase C-mediated mucus secretion and gut barrier restoration. Carbohydr Polym 2025; 358:123525. [PMID: 40383584 DOI: 10.1016/j.carbpol.2025.123525] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 05/20/2025]
Abstract
Ulcerative colitis is a chronic inflammatory condition of the intestine characterized by mucosal damage and a compromised epithelial barrier. This study explored the protective and therapeutic potential of laminaran derived from the brown seaweed Undaria pinnatifida in promoting mucin secretion and restoring mucosal barrier integrity. Physicochemical analysis revealed laminaran as having a β-(1 → 3)-linked glucose backbone with β-(1 → 6)-linked branches and a molecular weight of 14.41 kDa. In vitro experiments revealed that laminaran enhanced the expression of mucin-related proteins in a lipopolysaccharide-induced LS174T model. Laminaran also upregulated the expression of sulfotransferases, which are essential for mucin sulfation, and promoted vesicular transport by increasing the expression of vesicle-associated membrane protein 8 and synaptosome-associated protein-23, facilitating mucin secretion. These effects are mediated through the protein kinase C (PKC) pathway, which involves PKCα and PKCβII. In an in vivo model, laminaran alleviated dextran sulfate sodium-induced colitis, increasing mucus thickness and overall intestinal barrier function. These results suggest that laminaran is a promising therapeutic agent for treating ulcerative colitis, suggesting a novel approach to restoring the mucosal barrier and reducing intestinal inflammation. This study lays the groundwork for developing laminaran-based treatments for ulcerative colitis and other intestinal diseases associated with epithelial barrier dysfunction.
Collapse
Affiliation(s)
- Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang. China; Department of Biology, College of Science, Shantou University, Guangdong, China
| | - Lin Chen
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang. China
| | - Si-Yuan Lu
- Department of Biology, College of Science, Shantou University, Guangdong, China
| | - Amanullah Sabir
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang. China
| | - Jianping Chen
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang. China
| | - Zhuo Wang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang. China
| | - Suresh Veeraperumal
- Department of Biology, College of Science, Shantou University, Guangdong, China
| | - Jude Juventus Aweya
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Xian-Qiang Chen
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China.
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang. China.
| | - Karsoon Tan
- Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf University, Qinzhou, Guangxi, China.
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey
| |
Collapse
|
2
|
Dong Z, Chen Z, Yu K, Zhao D, Jia J, Gao X, Wang D. Roles of plasma proteins in mediating the causal effect of the lipid species on gastric cancer: Insights from proteomic and two-step Mendelian randomization. Medicine (Baltimore) 2025; 104:e42485. [PMID: 40388730 PMCID: PMC12091653 DOI: 10.1097/md.0000000000042485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 05/02/2025] [Indexed: 05/21/2025] Open
Abstract
The change of plasma lipid species has close contacts with gastric cancer (GC). However, the specific mechanism still needs to be explored further. We aim to utilize plasma proteins to decipher the association between lipid species and GC, and seek possible drug targets for GC. We performed a two-step Mendelian randomization (MR) analysis to investigate causal relationships among 179 lipid species, 4907 plasma proteins, and GC. Using summary-data-based MR and colocalization, we first examined protein-GC associations in discovery (N = 35,559) and validation (N = 54,219) cohorts. Subsequent MR analyses assessed lipid-GC and lipid-protein relationships, followed by mediation analysis using error propagation methods. Finally, macromolecular docking of prioritized proteins identified potential therapeutic ligands. Our MR analysis revealed causal relationships between 12 lipid species and GC, as well as 3 plasma proteins and GC. Importantly, mediation analysis demonstrated that CCDC80 protein mediates 2.90% (95% CI: 0.30-5.5%) of the protective effect of diacylglycerol (16:1_18:1) against GC. Based on these findings, we identified valproic acid as a promising therapeutic candidate targeting CCDC80 for GC treatment. Our study demonstrates that reduced CCDC80 expression mediates the tumor-promoting effects of diacylglycerol (16:1_18:1) in GC pathogenesis. Molecular docking confirms valproic acid binds stably to CCDC80, suggesting its therapeutic potential. These findings advance GC etiology understanding and provide a new drug development direction.
Collapse
Affiliation(s)
- Zhenhua Dong
- Gastric and Colorectal Surgery Department, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhiqing Chen
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Kai Yu
- Urology Department, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Dingliang Zhao
- Second Urology Department, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jianling Jia
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xulei Gao
- Second Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Daguang Wang
- Gastric and Colorectal Surgery Department, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
3
|
Bai Y, Jiang M, Chen X, Zhou G. Disrupting lipid homeostasis with CAV2 in OSCC triggers apoptosis, lipolysis, and mitochondrial dysfunction by transcriptional repression of PPARγ. Cell Biosci 2025; 15:59. [PMID: 40369665 PMCID: PMC12080114 DOI: 10.1186/s13578-025-01399-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 04/17/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND Abnormal lipid droplet (LD) dynamics in oral squamous cell carcinoma (OSCC) indicate lipid metabolism alterations that facilitate malignancy progression. However, the specific mechanisms by which disruptions in lipid homeostasis affect malignancy processes remain poorly understood. This study investigated the role of LD-associated protein Caveolin2 (CAV2) in OSCC lipid homeostasis and progression. METHODS The clinical relevance of CAV2 in OSCC was assessed through transcriptomics, single-cell sequencing, and functional validation in OSCC cells. CAV2 knockdown via shRNA was used to analyze its effects on growth, apoptosis, lipid homeostasis, and mitochondrial function. RNA sequencing, lipidomics, and molecular docking elucidated mechanisms of lipid metabolic disruption. Lipolysis was evaluated via glycerol release, lipidomics, and expression of related genes and proteins. Seahorse assays were used to evaluate mitochondrial dysfunction by analyzing mitochondrial respiration, while additional experiments assessed ROS levels, MMP, morphology, mass, and organelle interactions. In vivo, studies examined tumor progression in nude mice implanted with CAV2-knockdown OSCC cells. The regulatory role of PPARγ on CAV2 was explored through bioinformatics, correlation analysis, and dual-luciferase assays. Coimmunoprecipitation assessed CAV2 and NCOR1 binding with PPARγ, while the PPARγ inverse agonist T0070907 was used to enhance NCOR1-mediated repression of CAV2. RESULTS CAV2 was upregulated in OSCC and correlated with poor clinical outcomes. CAV2 knockdown increased apoptosis, reduced proliferation, and disrupted lipid homeostasis, elevating polyunsaturated fatty acids (PUFAs). Regulatory networks responsible for PUFA accumulation were mapped in CAV2-knockdown OSCC cells, from upstream regulators to downstream effects. Furthermore, lipolysis and mitochondrial dysfunction were also enhanced following CAV2 silencing. In vivo, CAV2 knockdown suppressed OSCC progression. Mechanistically, PPARγ regulated CAV2 transcription via NCOR1, but OSCC cells disrupted this repression. The PPARγ inverse agonist T0070907 restored NCOR1-mediated repression, synergistically enhancing the effects of CAV2 knockdown on apoptosis, lipolysis, and mitochondrial dysfunction. CONCLUSIONS Alteration of CAV2 disrupted lipid homeostasis and inhibited OSCC progression by affecting key processes, including apoptosis, lipolysis, and mitochondrial dysfunction. The disruption was driven by the dysregulation of the PPARγ/NCOR1 axis, highlighting the potential of targeting CAV2 and its interaction with PPARγ as a therapeutic strategy for OSCC.
Collapse
Affiliation(s)
- Yuting Bai
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Mingjing Jiang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiaojie Chen
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Gang Zhou
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
4
|
Chen Y, Xiao J, Zhang L, Mu J, Wang J, Yu X, Li L, Xiao Z, Liang Y. Diacylglycerol from camellia oil improves hyperuricemia by inhibiting xanthine oxidase and modulating gut microbiota. Int J Biol Macromol 2025; 309:142451. [PMID: 40158583 DOI: 10.1016/j.ijbiomac.2025.142451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/02/2025]
Abstract
Camellia oil exhibits multiple beneficial effects on cardiovascular, glucose, and lipid metabolism. However, the impact of camellia oil and diacylglycerol (DAG), which is one of the active compounds of camellia oil, is uncertain in terms of hyperuricemia (HUA). It was found that the physicochemical characterization of camellia oil and DAG shows a rich content of unsaturated fatty acids (UFA), particularly oleic acid and linoleic acid, thereby supporting their potential in treating HUA. In hyperuricemic mice, camellia oil and DAG dose-dependently reduced urine and serum uric acid (UA), serum creatinine, and xanthine oxidase (XOD) activity. High doses of camellia oil and DAG treatment dramatically reduced pro-inflammatory mediators in hyperuricemic mice's renal tissue, showing a dose-dependent reduction in hepatic XOD activity and inflammation. HUA may be treated by modulating gut flora with camellia oil and DAG. The alteration of Lactobacillus and Helicobacter abundance play key roles. PICRUSt2 functional prediction showed that phenylalanine, tyrosine, and tryptophan metabolic pathways may be mediated by camellia oil and DAG in HUA mice.
Collapse
Affiliation(s)
- Yajuan Chen
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Jingjing Xiao
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, China; Hunan Provincial Key Laboratory of Oils &Fats Molecular Structure and Function, Hunan Academy of Forestry, Changsha, China
| | - Lingyu Zhang
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Jianfei Mu
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Jianqiang Wang
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xudong Yu
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Li Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, China; Hunan Provincial Key Laboratory of Oils &Fats Molecular Structure and Function, Hunan Academy of Forestry, Changsha, China
| | - Zhihong Xiao
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, China; Hunan Provincial Key Laboratory of Oils &Fats Molecular Structure and Function, Hunan Academy of Forestry, Changsha, China.
| | - Ying Liang
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
5
|
He T, Wang ZY, Xu B, Zhong CJ, Wang LN, Shi HC, Yang ZY, Zhou SQ, Li H, Hu B, Zhu XD, Shen YH, Zhou J, Fan J, Sun HC, Huang C. CXCL6 Reshapes Lipid Metabolism and Induces Neutrophil Extracellular Trap Formation in Cholangiocarcinoma Progression and Immunotherapy Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2503009. [PMID: 40305734 DOI: 10.1002/advs.202503009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/31/2025] [Indexed: 05/02/2025]
Abstract
The chemokine CXCL6 is identified as a pivotal regulator of biological processes across multiple malignancies. However, its function in cholangiocarcinoma (CCA) is underexplored. Tumor profiling for CXCL6 is performed using a public database. Both in vitro and in vivo experiments are utilized to evaluate the oncogenic effects of CXCL6 on CCA. Additionally, RNA-Seq is employed to detect transcriptomic changes related to CXCL6 expression in CCA cells and neutrophils. Molecular docking, fluorescence colocalization, and Co-IP are used to elucidate a direct interaction between JAKs and CXCR1/2. Additionally, LC-MS lipidomics and explored the impact of CXCL6 on immunotherapy in vivo. CXCL6 is upregulated in CCA tissues and promoted the proliferation and metastasis of CCA. Mechanistically, CXCL6 regulated the CXCR1/2-JAK-STAT/PI3K axis in CCA via autocrine signaling, leading to lipid metabolic reprogramming, and promoted neutrophil extracellular traps (NETs) formation by activating the RAS/MAPK pathway in neutrophils. Eventually, NETs formation induced immunotherapy resistance in CCA by blocking CD8+T cell infiltration. CXCL6 modulates CCA progression through the CXCR1/2-JAK-STAT/PI3K axis and reshaping its lipid metabolism. CXCL6 also mediates immunotherapy resistance through NETs, which may be a potential therapeutic target and biomarker for CCA.
Collapse
Affiliation(s)
- Tian He
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zi-Yi Wang
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Bin Xu
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Cheng-Jie Zhong
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lu-Na Wang
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Huan-Chen Shi
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zi-Yue Yang
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shi-Qi Zhou
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hui Li
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Bo Hu
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiao-Dong Zhu
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ying-Hao Shen
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jian Zhou
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jia Fan
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hui-Chuan Sun
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Cheng Huang
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| |
Collapse
|
6
|
Wang Y, Wang Y, Bao L, Vale G, McDonald JG, Fang Y, Peng Y, Kumar A, Xing C, Brasó-Maristany F, Prat A, Arteaga CL, Wang Y, Luo W. ZMYND8 drives HER2 antibody resistance in breast cancer via lipid control of IL-27. Nat Commun 2025; 16:3908. [PMID: 40281007 PMCID: PMC12032076 DOI: 10.1038/s41467-025-59184-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
Anti-HER2 antibodies are effective but often lead to resistance in patients with HER2+ breast cancer. Here, we report an epigenetic crosstalk with aberrant glycerophospholipid metabolism and inflammation as a key resistance mechanism of anti-HER2 therapies in HER2+ breast cancer. Histone reader ZMYND8 specifically confers resistance to cancer cells against trastuzumab and/or pertuzumab. Mechanistically, ZMYND8 enhances cPLA2α expression in resistant tumor cells through inducing c-Myc. cPLA2α inactivates phosphatidylcholine-specific phospholipase C to inhibit phosphatidylcholine breakdown into diacylglycerol, which diminishes protein kinase C activity leading to interleukin-27 secretion. Supplementation with interleukin-27 protein counteracts cPLA2α loss to reinforce trastuzumab resistance in HER2+ tumor cells and patient-derived organoids. Upregulation of ZMYND8, c-Myc, cPLA2α, and IL-27 is prevalent in HER2+ breast cancer patients following HER2-targeted therapies. Targeting c-Myc or cPLA2α effectively overcomes anti-HER2 therapy resistance in patient-derived xenografts. Collectively, this study uncovers a druggable signaling cascade that drives resistance to HER2-targeted therapies in HER2+ breast cancer.
Collapse
Affiliation(s)
- Yong Wang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yanan Wang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Lei Bao
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Goncalo Vale
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey G McDonald
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yisheng Fang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yan Peng
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ashwani Kumar
- Eugene McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Fara Brasó-Maristany
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Cancer Institute and Blood Diseases, Hospital Clínic of Barcelona, Barcelona, Spain
- Reveal Genomics, S.L., Barcelona, Spain
| | - Aleix Prat
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Cancer Institute and Blood Diseases, Hospital Clínic of Barcelona, Barcelona, Spain
- Reveal Genomics, S.L., Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Institute of Oncology-Hospital Quirónsalud, Barcelona, Spain
| | - Carlos L Arteaga
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yingfei Wang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX, USA
- Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Weibo Luo
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA.
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA.
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
7
|
Li Z, Wei Z, Su W, Cheng L, Zhang L. The Impact of Mechanical Circulatory Support Devices on White Blood Cell Phenotype and Function. Cardiovasc Eng Technol 2025:10.1007/s13239-025-00784-z. [PMID: 40251454 DOI: 10.1007/s13239-025-00784-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/07/2025] [Indexed: 04/20/2025]
Abstract
BACKGROUND Mechanical circulatory support devices (MCSDs) have gradually become an effective treatment of end-stage heart failure (HF). However, the introduction of foreign surfaces and non-physiological shear stress (NPSS) can cause severe damage to various blood cells, leading to impaired function of immune system and increased risk of complications such as inflammation and thrombosis. The effect of mechanical injury on white blood cell (WBC) has been largely neglected compared to that on red blood cell (RBC) and platelet (PLT). METHOD To better understand the impact of MCSDs on WBCs and emphasize the importance of investigating WBC damage to avoid adverse events during mechanical circulatory support, this review elaborated the induction of WBC phenotypic and functional injury by MCSD-related factors, and the relationship between injury and clinical complications. Furthermore, this article provided a detailed review and comparative analysis of in vitro blood-shearing devices (BSDs) and detection methods used in WBC damage investigation. RESULTS NPSS, biomaterials and other related factors can activate WBC, decrease WBC function, and promote the release of pro-inflammatory and pro-thrombotic microparticles, increasing the risk of inflammation and thrombotic complications. The evaluation of WBC damage typically involves measuring cell viability and dysfunction using in vitro BSDs (e.g. concentric cylinder devices) and injury detection methods (e.g. flow cytometry). CONCLUSIONS WBCs with normal morphology may also experience functional failure due to NPSS from MCSDs, leading to sublethal mechanical cell injury. Therefore, the effect of MCSDs on WBCs can be more comprehensively evaluated by a combination of measuring cell functional capacity and cell counting.
Collapse
Affiliation(s)
- Zhuo Li
- Artificial Organ Technology Lab, Bio-manufacturing Engineering Centre, School of Mechanical and Electrical Engineering, Soochow University, NO. 8 Jixue Road, Suzhou, Jiangsu, 215006, China
| | - Zhenling Wei
- Artificial Organ Technology Lab, Bio-manufacturing Engineering Centre, School of Mechanical and Electrical Engineering, Soochow University, NO. 8 Jixue Road, Suzhou, Jiangsu, 215006, China
| | - Wangwang Su
- Artificial Organ Technology Lab, Bio-manufacturing Engineering Centre, School of Mechanical and Electrical Engineering, Soochow University, NO. 8 Jixue Road, Suzhou, Jiangsu, 215006, China
| | - Longhui Cheng
- Artificial Organ Technology Lab, Bio-manufacturing Engineering Centre, School of Mechanical and Electrical Engineering, Soochow University, NO. 8 Jixue Road, Suzhou, Jiangsu, 215006, China
| | - Liudi Zhang
- Artificial Organ Technology Lab, Bio-manufacturing Engineering Centre, School of Mechanical and Electrical Engineering, Soochow University, NO. 8 Jixue Road, Suzhou, Jiangsu, 215006, China.
| |
Collapse
|
8
|
Yao M, Lu Y, Liu T, Lu H, Shang H, Dong B, Zhang JA. Elucidating the role of lipid metabolism dysregulation in the transition from oral lichen planus to oral squamous cell carcinoma. J Transl Med 2025; 23:448. [PMID: 40241125 PMCID: PMC12004824 DOI: 10.1186/s12967-025-06431-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Oral Lichen Planus (OLP) is a chronic inflammatory disorder that may progress to Oral Squamous Cell Carcinoma (OSCC). Lipid metabolism dysregulation has been implicated in tumor development and immune response modulation. This study aims to explore the role of lipid metabolism, particularly the lipids diacylglycerol (DAG), triacylglycerol (TAG), and phosphatidylcholine (PC), in the progression from OLP to OSCC, and to identify potential therapeutic targets for prevention and treatment. METHODS We performed a Mendelian randomization (MR) analysis to investigate the causal relationships between lipid metabolism and the risk of OLP and OSCC. Differential gene expression analysis was conducted to identify key genes related to lipid metabolism. The interactions of lipid species and key genes were examined using drug databases (DrugBank, DGIdb, and TCMSP) to explore potential drug candidates. Enrichment analysis of signaling pathways, including PPAR signaling, was also conducted to understand the underlying mechanisms. RESULTS Our MR analysis revealed that DAG exerts a protective effect in OLP (OR < 1), but its role shifts to a risk factor in OSCC (OR > 1), potentially by altering the tumor immune microenvironment. TAG and PI dysregulation also plays a critical role in tumorigenesis. Gene expression analysis identified several key lipid metabolism-related genes, including SLC27A6, FABP3, FABP4, ADIPOQ, and PLIN1, whose expression differed between OLP and OSCC, highlighting their importance in tumor progression. These genes were enriched in the PPAR signaling pathway, suggesting its involvement in tumor growth and immune modulation. Potential drug candidates, such as palm acid (PA), Imatinib, and Curcumin, were identified through drug-repurposing strategies. CONCLUSION Lipid metabolism dysregulation plays a crucial role in the progression of OLP to OSCC. Targeting key lipid metabolism pathways and genes, such as DAG, TAG, PI, and the PPAR pathway, may offer promising strategies for early diagnosis and therapeutic intervention. This study provides novel insights into the molecular mechanisms of OLP-to-OSCC progression and suggests potential drug candidates, including natural compounds, for future clinical applications. Further research is needed to validate these findings in clinical settings. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Manman Yao
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Yueting Lu
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tiejun Liu
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hualin Lu
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hongyue Shang
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Bo Dong
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ji-Ao Zhang
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
9
|
Devasahayam Arokia Balaya R, Sen P, Grant CW, Zenka R, Sappani M, Lakshmanan J, Athreya AP, Kandasamy RK, Pandey A, Byeon SK. An integrative multi-omics analysis reveals a multi-analyte signature of pancreatic ductal adenocarcinoma in serum. J Gastroenterol 2025; 60:496-511. [PMID: 39666045 DOI: 10.1007/s00535-024-02197-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 12/01/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) remains a formidable health challenge due to its detection at a late stage and a lack of reliable biomarkers for early detection. Although levels of carbohydrate antigen 19-9 are often used in conjunction with imaging-based tests to aid in the diagnosis of PDAC, there is still a need for more sensitive and specific biomarkers for early detection of PDAC. METHODS We obtained serum samples from 88 subjects (patients with PDAC (n = 58) and controls (n = 30)). We carried out a multi-omics analysis to measure cytokines and related proteins using proximity extension technology and lipidomics and metabolomics using tandem mass spectrometry. Statistical analysis was carried out to find molecular alterations in patients with PDAC and a machine learning model was used to derive a molecular signature of PDAC. RESULTS We quantified 1,462 circulatory proteins along with 873 lipids and 1,001 metabolites. A total of 505 proteins, 186 metabolites and 33 lipids including bone marrow stromal antigen 2 (BST2), keratin 18 (KRT18), and cholesteryl ester(20:5) were found to be significantly altered in patients. We identified different levels of sphingosine, sphinganine, urobilinogen and lactose indicating that glycosphingolipid and galactose metabolisms were significantly altered in patients compared to controls. In addition, elevated levels of diacylglycerols and decreased cholesteryl esters were observed in patients. Using a machine learning model, we identified a signature of 38 biomarkers for PDAC, composed of 21 proteins, 4 lipids, and 13 metabolites. CONCLUSIONS Overall, this study identified several proteins, metabolites and lipids involved in various pathways including cholesterol and lipid metabolism to be changing in patients. In addition, we discovered a multi-analyte signature that could be further tested for detection of PDAC.
Collapse
Affiliation(s)
| | - Partho Sen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Caroline W Grant
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Roman Zenka
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Marimuthu Sappani
- Department of Biostatistics, Christian Medical College, Vellore, Tamil Nadu, 632002, India
| | - Jeyaseelan Lakshmanan
- College of Medicine, Mohammad Bin Rashid University of Medicine and Health Sciences, Dubai, 505055, UAE
| | - Arjun P Athreya
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Richard K Kandasamy
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
- Manipal Academy of Higher Education, Manipal, Karnataka, 5761904, India
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA.
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA.
- Manipal Academy of Higher Education, Manipal, Karnataka, 5761904, India.
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Seul Kee Byeon
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
10
|
Liu J, Ma S, Deng D, Yang Y, Li J, Zhang Y, Yin P, Shang D. Multi-Omics Profiling Reveals Glycerolipid Metabolism-Associated Molecular Subtypes and Identifies ALDH2 as a Prognostic Biomarker in Pancreatic Cancer. Metabolites 2025; 15:207. [PMID: 40137171 PMCID: PMC11943634 DOI: 10.3390/metabo15030207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025] Open
Abstract
Background: The reprogramming of lipid metabolism, especially glycerolipid metabolism (GLM), plays a key role in cancer progression and response to therapy. However, the role and molecular characterization of GLM in pancreatic cancer (PC) remain unclear. Methods: A pan-cancer analysis of glycerolipid metabolism-related genes (GMRGs) was first conducted to assess copy-number variants, single-nucleotide variations, methylation, and mRNA expression. Subsequently, GLM in PC was characterized using lipidomics, single-cell RNA sequencing (scRNA-seq), and spatial transcriptomic analysis. A cluster analysis based on bulk RNA sequencing data from 930 PC samples identified GLM-associated subtypes, which were then analyzed for differences in prognosis, biological function, immune microenvironment, and drug sensitivity. To prioritize prognostically relevant GMRGs in PC, we employed a random forest (RF) algorithm to rank their importance across 930 PC samples. Finally, the key biomarker of PC was validated using PCR and immunohistochemistry. Results: Pan-cancer analysis identified molecular features of GMRGs in cancers, while scRNA-seq, spatial transcriptomics, and lipidomics highlighted GLM heterogeneity in PC. Two GLM-associated subtypes with significant prognostic, biofunctional, immune microenvironmental, and drug sensitivity differences were identified in 930 PC samples. Finally, ALDH2 was identified as a novel prognostic biomarker in PC and validated in a large number of datasets and clinical samples. Conclusions: This study highlights the crucial role of GLM in PC and defines a new PC subtype and prognostic biomarker. These findings establish a novel avenue for studying prognostic prediction and precision medicine in PC patients.
Collapse
Affiliation(s)
- Jifeng Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, China; (J.L.); (S.M.); (Y.Y.); (J.L.)
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, China;
| | - Shurong Ma
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, China; (J.L.); (S.M.); (Y.Y.); (J.L.)
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, China;
| | - Dawei Deng
- Department of Hepato-Biliary-Pancreas, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China;
| | - Yao Yang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, China; (J.L.); (S.M.); (Y.Y.); (J.L.)
- Institute of Integrative Medicine, Dalian Medical University, Dalian 116000, China
| | - Junchen Li
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, China; (J.L.); (S.M.); (Y.Y.); (J.L.)
- Institute of Integrative Medicine, Dalian Medical University, Dalian 116000, China
| | - Yunshu Zhang
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, China;
- Institute of Integrative Medicine, Dalian Medical University, Dalian 116000, China
| | - Peiyuan Yin
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, China; (J.L.); (S.M.); (Y.Y.); (J.L.)
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, China;
- Institute of Integrative Medicine, Dalian Medical University, Dalian 116000, China
| | - Dong Shang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, China; (J.L.); (S.M.); (Y.Y.); (J.L.)
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, China;
- Institute of Integrative Medicine, Dalian Medical University, Dalian 116000, China
| |
Collapse
|
11
|
Guo Y, Shen K, Ge S, Zheng Q, Gao J, He X. Exploring the potential causal relationship between fatty acid metabolism ratios and major salivary gland carcinomas: A two-sample Mendelian randomization study. Medicine (Baltimore) 2025; 104:e41802. [PMID: 40101084 PMCID: PMC11922437 DOI: 10.1097/md.0000000000041802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/20/2025] [Indexed: 03/20/2025] Open
Abstract
Major salivary gland carcinomas (MSGCs) is a rare but aggressive cancer, with limited understanding of its metabolic underpinnings. Lipid metabolism, particularly fatty acid metabolism ratios (FAMRs), has been implicated in various cancers, but its role in MSGCs remains unclear. This study aims to explore the potential causal relationships between specific FAMRs and MSGCs using Mendelian randomization (MR) analysis. A 2-sample MR analysis was conducted using summary data from genome-wide association studies. Three FAMRs, including the ratio of diacylglycerol to triglycerides (DAG/TG), total cholesterol (TC) to total lipids (TL) ratio in large very low-density lipoprotein (VLDL; TC/TL in large VLDL), and triglycerides to total lipids ratio in medium VLDL (TG/TL in medium VLDL), were investigated for their potential causal relationships with MSGCs. Sensitivity analyses, including MR-Egger and leave-one-out tests, were performed to assess pleiotropy and the robustness of the results. The DAG/TG and TC/TL ratios in large VLDL were significantly positively associated with an increased risk of MSGCs (OR = 10.921, P = .004 and OR = 2.651, P = .047, respectively). In contrast, the TG/TL ratio in medium VLDL showed a significant negative association with MSGCs risk (OR = 0.460, P = .041). Sensitivity analyses confirmed the robustness of these associations, with no evidence of significant pleiotropy in 2 of the ratios. This study reveals novel insights into the metabolic basis of MSGCs, demonstrating significant associations between specific FAMRs and MSGCs risk. These findings highlight the potential clinical relevance of FAMRs as biomarkers or therapeutic targets in MSGCs. Future studies should focus on diverse populations and mechanistic research to validate these associations and explore their clinical implications.
Collapse
Affiliation(s)
- Yongjie Guo
- Department of Maxillofacial Surgery, Wei Fang People’s Hospital, Wei Fang, China
| | - Kailin Shen
- Department of Intervention, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuqing Ge
- Department of Maxillofacial Surgery, Wei Fang People’s Hospital, Wei Fang, China
| | - Qi Zheng
- School of Stomatology, Shandong Second Medical University, Wei Fang, China
| | - Jingchao Gao
- School of Stomatology, Shandong Second Medical University, Wei Fang, China
| | - Xiaopo He
- Department of Maxillofacial Surgery, Wei Fang People’s Hospital, Wei Fang, China
| |
Collapse
|
12
|
Martins-Chaves RR, Bastos VC, Vitório JG, Duarte-Andrade FF, Pereira TDSF, Leite-Lima F, Gomes TEC, Lebron YAR, Moreira VR, França MS, Santos LVDS, Lange LC, de Macedo AN, Picossi CRC, Pontes HAR, Diniz MG, Gomes CC, de Castro WH, Canuto GAB, Gomez RS. Malignant Transformed and Non-Transformed Oral Leukoplakias Are Metabolically Different. Int J Mol Sci 2025; 26:1802. [PMID: 40076430 PMCID: PMC11898866 DOI: 10.3390/ijms26051802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
Understanding the early molecular events driving oral carcinogenesis is vital for diagnosing oral squamous cell carcinoma (OSCC) promptly. While metabolic differences between oral leukoplakia (OLK), OSCC, and healthy oral mucosa have been reported, the metabolic changes distinguishing malignant transformed OLKs (MT-OLK) from non-transformed OLKs (NT-OLK) remain unexplored. Here, we examine the metabolomic profiles of 5 cases of MT-OLK and 15 of NT-OLK to identify key predictive molecules using untargeted high-performance liquid chromatography-mass spectrometry. The potentially discriminant compounds were highlighted through a robust statistical analysis workflow, and the dysregulated metabolic pathways were illustrated by enrichment analysis. Seventeen molecular features, primarily lipids-including phospholipids, oxidised lipids, cholesteryl esters, and fatty acids-were identified as discriminants between MT-OLK and NT-OLK across statistical and bioinformatic approaches. Pathway enrichment analysis revealed alterations in lipid metabolism, particularly fatty acid synthesis and degradation, steroid hormone biosynthesis, and glycerophospholipid metabolism. Predictive models showed high accuracy (AUC = 0.88) in distinguishing the two groups. This study suggests that metabolomics has the potential to differentiate between MT-OLK and NT-OLK by identifying candidate biomarkers that may contribute to the understanding of malignant transformation. Validation in larger cohorts is warranted to translate these findings into clinical practice.
Collapse
Affiliation(s)
- Roberta Rayra Martins-Chaves
- Graduate Program in Health Sciences, Faculty of Medical Sciences of Minas Gerais (FCMMG), Alameda Ezequiel Dias, 275, Belo Horizonte 30130-110, Minas Gerais, Brazil;
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Av. Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil; (V.C.B.); (J.G.V.); (T.d.S.F.P.); (F.L.-L.); (T.E.C.G.); (W.H.d.C.)
| | - Victor Coutinho Bastos
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Av. Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil; (V.C.B.); (J.G.V.); (T.d.S.F.P.); (F.L.-L.); (T.E.C.G.); (W.H.d.C.)
| | - Jéssica Gardone Vitório
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Av. Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil; (V.C.B.); (J.G.V.); (T.d.S.F.P.); (F.L.-L.); (T.E.C.G.); (W.H.d.C.)
| | - Filipe Fideles Duarte-Andrade
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Av. Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil; (V.C.B.); (J.G.V.); (T.d.S.F.P.); (F.L.-L.); (T.E.C.G.); (W.H.d.C.)
| | - Thaís dos Santos Fontes Pereira
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Av. Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil; (V.C.B.); (J.G.V.); (T.d.S.F.P.); (F.L.-L.); (T.E.C.G.); (W.H.d.C.)
| | - Flávia Leite-Lima
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Av. Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil; (V.C.B.); (J.G.V.); (T.d.S.F.P.); (F.L.-L.); (T.E.C.G.); (W.H.d.C.)
| | - Thaís Ellen Chaves Gomes
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Av. Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil; (V.C.B.); (J.G.V.); (T.d.S.F.P.); (F.L.-L.); (T.E.C.G.); (W.H.d.C.)
| | - Yuri Abner Rocha Lebron
- Department of Sanitation and Environmental Engineering, School of Engineering, Universidade Federal de Minas Gerais (UFMG), Av. Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil; (Y.A.R.L.); (V.R.M.); (L.V.d.S.S.); (L.C.L.)
| | - Victor Rezende Moreira
- Department of Sanitation and Environmental Engineering, School of Engineering, Universidade Federal de Minas Gerais (UFMG), Av. Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil; (Y.A.R.L.); (V.R.M.); (L.V.d.S.S.); (L.C.L.)
| | - Monique Sedlmaier França
- Graduate Program in Health Sciences, Faculty of Medical Sciences of Minas Gerais (FCMMG), Alameda Ezequiel Dias, 275, Belo Horizonte 30130-110, Minas Gerais, Brazil;
| | - Lucilaine Valéria de Souza Santos
- Department of Sanitation and Environmental Engineering, School of Engineering, Universidade Federal de Minas Gerais (UFMG), Av. Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil; (Y.A.R.L.); (V.R.M.); (L.V.d.S.S.); (L.C.L.)
| | - Liséte Celina Lange
- Department of Sanitation and Environmental Engineering, School of Engineering, Universidade Federal de Minas Gerais (UFMG), Av. Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil; (Y.A.R.L.); (V.R.M.); (L.V.d.S.S.); (L.C.L.)
| | - Adriana Nori de Macedo
- Department of Chemistry, Exact Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Av. Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil;
| | | | - Hélder Antônio Rebelo Pontes
- Departament of Oral Pathology, João de Barros Barreto University Hospital, Universidade Federal do Pará, Belém 66063-023, Pará, Brazil;
| | - Marina Gonçalves Diniz
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Av. Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil; (M.G.D.); (C.C.G.)
| | - Carolina Cavaliéri Gomes
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Av. Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil; (M.G.D.); (C.C.G.)
| | - Wagner Henriques de Castro
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Av. Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil; (V.C.B.); (J.G.V.); (T.d.S.F.P.); (F.L.-L.); (T.E.C.G.); (W.H.d.C.)
| | - Gisele André Baptista Canuto
- Department of Analytical Chemistry, Institute of Chemistry, Universidade Federal da Bahia (UFBA), R. Barão de Jeremoabo, 147, Salvador 40170-115, Bahia, Brazil;
| | - Ricardo Santiago Gomez
- Graduate Program in Health Sciences, Faculty of Medical Sciences of Minas Gerais (FCMMG), Alameda Ezequiel Dias, 275, Belo Horizonte 30130-110, Minas Gerais, Brazil;
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Av. Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil; (V.C.B.); (J.G.V.); (T.d.S.F.P.); (F.L.-L.); (T.E.C.G.); (W.H.d.C.)
| |
Collapse
|
13
|
An J, Kwon H, Oh SY, Kim YJ. Association between breast cancer risk factors and blood microbiome in patients with breast cancer. Sci Rep 2025; 15:6115. [PMID: 39972005 PMCID: PMC11840066 DOI: 10.1038/s41598-025-90180-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/11/2025] [Indexed: 02/21/2025] Open
Abstract
This study investigated the relationship between risk factors for breast cancer (BC) and the microbiome by comparing the microbiomes of BC patients with fatty liver disease to those with a normal liver. Bacterial extracellular vesicles were collected from each blood sample, and next-generation sequencing was performed. The analysis identified specific microbiome profiles shared among groups with hyperglycaemia, hyperlipidaemia, and high body mass index (BMI), which were then compared with functional biomarkers. In particular, the genus Faecalibacterium was a specific bacterium found in the groups with high concentrations of low-density lipoprotein cholesterol, high BMI, and fatty liver disease. Therefore, when the prognosis of patients with BC was analysed based on Faecalibacterium presence, it was confirmed that patients' prognoses tended to deteriorate. In this study, BC risk factors, such as hyperglycaemia, hyperlipidaemia, fatty liver, and high BMI, were interconnected through the microbiome. This provides insights into how the risk factors for BC are linked and their impact on the microbiome and human health.
Collapse
Affiliation(s)
- Jeongshin An
- Institute of Convergence Medicine Research, Ewha Womans University Mokdong Hospital, Ewha Womans University School of Medicine, 1071 Anyangcheon-Ro, Yangcheon-Gu, Seoul, 07985, Republic of Korea.
- Department of Surgery, Ewha Womans University Mokdong Hospital, Ewha Womans University School of Medicine, 1071 Anyangcheon-Ro, Yangcheon-Gu, Seoul, 07985, Republic of Korea.
| | - Hyungju Kwon
- Department of Surgery, Ewha Womans University Mokdong Hospital, Ewha Womans University School of Medicine, 1071 Anyangcheon-Ro, Yangcheon-Gu, Seoul, 07985, Republic of Korea
| | - Se-Young Oh
- Institute of Convergence Medicine Research, Ewha Womans University Mokdong Hospital, Ewha Womans University School of Medicine, 1071 Anyangcheon-Ro, Yangcheon-Gu, Seoul, 07985, Republic of Korea
| | - Young Ju Kim
- Department of Obstetrics and Gynecology, Ewha Medical Institute and College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea
| |
Collapse
|
14
|
Xiong X. Causal Association Between Multidimensional Plasma Lipid Composition and Pediatric Asthma: A Mendelian Randomization Study. Pediatr Pulmonol 2025; 60:e27508. [PMID: 39981675 DOI: 10.1002/ppul.27508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/13/2025] [Accepted: 01/25/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND Asthma is the most common chronic disease among children and poses a major threat to their health. Observational studies have shown lipid disorders in children with asthma. However, it was not possible to determine whether there is a causal link between the two. Therefore, the aim of this study was to assess the causal relationship between serum liposomes and asthma in children. METHODS We used large-scale publicly available genome-wide association study summary statistics to elucidate causal associations between plasma liposomes and children using a two-sample Mendelian randomization (MR) approach. The IVW method was used as the primary analysis method, and tests such as the Cochran Q test, MR-Egger intercept, and leave-one-out method were utilized to explore whether there was heterogeneity and pleiotropy in the MR results. In addition, Steiger's test and reverse MR analysis were performed to test the directionality of the MR results. RESULTS Our MR results identified a causal link between six plasma liposomes and childhood asthma. Among them, negative association between Diacylglycerol (16:0_18:2) (OR = 0.952, 95%CI = 0.913-0.992, p = 0.018), Triacylglycerol (52:4) (OR = 0.949, 95%CI = 0.905-0.994, p = 0.028), Phosphatidylcholine (18:2_20:3) (OR = 0.915, 95%CI = 0.843-0.993, p = 0.034), sterol ester (27:1/22:6) (OR = 0.929, 95% CI = 0.869-0.994, p = 0.031) and childhood asthma. There is a positive association between Phosphatidylcholine (16:0_22:5) (OR = 1.061, 95%CI = 1.006-1.120, p = 0.030), sterol ester (27:1/20:4) (OR = 1.046, 95% CI = 1.021-1.072, p = 0.0003) and pediatric asthma. A series of sensitivity tests also demonstrate the robustness of the results. CONCLUSION This MR study identified a causal link between some plasma liposomes and childhood asthma. This will provide new perspectives on the prevention and treatment of childhood asthma in the future.
Collapse
Affiliation(s)
- Xiaoqin Xiong
- Department of Pediatrics, Children Hematological Oncology and Birth Defects Laboratory, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, China
| |
Collapse
|
15
|
Liu Z, Solano-Aguilar G, Lakshman S, Urban JF, Zhang M, Chen P, Yu LL, Sun J. Metabolic pathway and network analysis integration for discovering the biomarkers in pig feces after a controlled fruit-vegetable dietary intervention. Food Chem 2024; 461:140836. [PMID: 39154458 DOI: 10.1016/j.foodchem.2024.140836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/24/2024] [Accepted: 08/09/2024] [Indexed: 08/20/2024]
Abstract
This study aimed to establish a strategy for identifying dietary intake biomarkers using a non-targeted metabolomic approach, including metabolic pathway and network analysis. The strategy was successfully applied to identify dietary intake biomarkers in fecal samples from pigs fed two doses of a polyphenol-rich fruit and vegetable (FV) diet following the Dietary Guidelines for Americans (DGA) recommendations. Potential biomarkers were identified among dietary treatment groups using liquid chromatography-high resolution mass spectrometry (LC-HRMS) based on a non-targeted metabolomic approach with metabolic pathway and network analysis. Principal component analysis (PCA) results showed significant differences in fecal metabolite profiles between the control and two FV intervention groups, indicating a diet-induced differential fecal metabolite profile after FV intervention. Metabolites from common flavonoids, e.g., (epi)catechin and protocatechuic acid, or unique flavonoids, e.g., 5,3',4'-trihydroxy-3-methoxy-6,7-methylenedioxyflavone and 3,5,3',4'-tetrahydroxy-6,7-methylenedioxyflavone, were identified as highly discriminating factors, confirming their potential as fecal markers for the FV dietary intervention. Microbiota pathway prediction using targeted flavonoids provided valuable and reliable biomarker exploration with high confidence. A correlation network analysis between these discriminatory ion features was applied to find connections to possible dietary biomarkers, further validating these biomarkers with biochemical insights. This study demonstrates that integrating metabolic pathways and network analysis with a non-targeted metabolomic approach is highly effective for rapid and accurate identification and prediction of fecal biomarkers under controlled dietary conditions in animal studies. This approach can also be utilized to study microbial metabolisms in human clinical research.
Collapse
Affiliation(s)
- Zhihao Liu
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Gloria Solano-Aguilar
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Sukla Lakshman
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Joseph F Urban
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Mengliang Zhang
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Pei Chen
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Liangli Lucy Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Jianghao Sun
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA.
| |
Collapse
|
16
|
Xiao M, Wang T, Tang C, He M, Li Y, Li X. Evaluation of Lipid Changes During the Drying Process of Cordyceps sinensis by Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS)-Based Lipidomics Technique. J Fungi (Basel) 2024; 10:855. [PMID: 39728352 DOI: 10.3390/jof10120855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
Comprehensive analysis of the lipid content in Cordyceps sinensis samples is essential for optimizing their effective use. Understanding the lipid profile can significantly enhance the application of this valuable fungus across various fields, including nutrition and medicine. However, to date, there is limited knowledge regarding the effects of different drying methods on the quality of lipids present in Cordyceps sinensis. In this study, we employed a broadly targeted lipidomic strategy to conduct a comprehensive analysis of the lipid composition in Cordyceps sinensis subjected to various drying methods. A comprehensive analysis identified a total of 765 distinct lipid species from fresh Cordyceps sinensis (FC), vacuum-freeze-dried Cordyceps sinensis (VG), oven-dried Cordyceps sinensis (OG), and air-dried Cordyceps sinensis (AG). Among these, glycerophospholipids (GP) were the most abundant, followed by glycerides (GL) and sphingolipids (SP). In this study, a total of 659 lipids demonstrated statistically significant differences, as indicated by a p-value (p) < 1. Among these lipids, triglycerides (TG) exhibited the highest concentration, followed by several others, including ceramide-ascorbic acid (Cer-AS), phosphatidylethanolamine (PE), lysophosphatidylcholine (LPC), and phosphatidylserine (PS). OG was the fastest drying method; however, PCA and OPLS-DA analyses indicated that the most significant changes in the lipids of Cordyceps sinensis were observed under the OG method. Specifically, 517 differentially accumulated lipids were significantly down-regulated, while only 10 lipids were significantly up-regulated. This disparity may be attributed to the degradation and oxidation of lipids. The metabolic pathways of glycerolipid, glycerophospholipid, and cholesterol are critical during the drying process of Cordyceps sinensis. This study provides valuable insights that can enhance quality control and offer guidelines for the appropriate storage of this medicinal fungus.
Collapse
Affiliation(s)
- Mengjun Xiao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China
| | - Tao Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China
| | - Chuyu Tang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China
| | - Min He
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China
| | - Yuling Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China
| | - Xiuzhang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China
| |
Collapse
|
17
|
Chen S, Tang Q, Hu M, Song S, Wu X, Zhou Y, Yang Z, Liao S, Zhou L, Wang Q, Liu H, Yang M, Chen Z, Zhao W, He S, Zhou Z. Loss of Carbamoyl Phosphate Synthetase 1 Potentiates Hepatocellular Carcinoma Metastasis by Reducing Aspartate Level. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402703. [PMID: 39387452 PMCID: PMC11615744 DOI: 10.1002/advs.202402703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/01/2024] [Indexed: 10/15/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal cancers worldwide. Numerous studies have shown that metabolic reprogramming is crucial for the development of HCC. Carbamoyl phosphate synthase 1 (CPS1), a rate-limiting enzyme in urea cycle, is an abundant protein in normal hepatocytes, however, lacking systemic research in HCC. It is found that CPS1 is low-expressed in HCC tissues and circulating tumor cells, negatively correlated with HCC stage and prognosis. Further study reveals that CPS1 is a double-edged sword. On the one hand, it inhibits the activity of phosphatidylcholine-specific phospholipase C to block the biosynthesis of diacylglycerol (DAG), leading to the downregulation of the DAG/protein kinase C pathway to inhibit invasion and metastasis of cancer cells. On the other hand, CPS1 promotes cell proliferation by increasing intracellular S-adenosylmethionin to enhance the m6A modification of solute carrier family 1 member 3 mRNA, a key transporter for aspartate intake. Finally, CPS1 overexpressing adeno-associated virus can dampen HCC progression. Collectively, this results uncovered that CPS1 is a switch between HCC proliferation and metastasis by increasing intracellular aspartate level.
Collapse
Affiliation(s)
- Siyuan Chen
- Department of GastroenterologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Qin Tang
- Department of GastroenterologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Manqiu Hu
- Department of GastroenterologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Sijie Song
- Department of GastroenterologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Xiaohong Wu
- Department of GastroenterologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - You Zhou
- Department of GastroenterologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Zihan Yang
- Department of Biomedical Sciencesand Tung Biomedical Sciences CenterCity University of Hong Kong83 Tat Chee AvenueKowloonHong Kong SAR999077P. R. China
| | - Siqi Liao
- Department of GastroenterologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Li Zhou
- Department of GastroenterologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Qingliang Wang
- Department of PathologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Hongtao Liu
- Department of GastroenterologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Mengsu Yang
- Department of Biomedical Sciencesand Tung Biomedical Sciences CenterCity University of Hong Kong83 Tat Chee AvenueKowloonHong Kong SAR999077P. R. China
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesInstitute for BiotechnologyCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNY11439USA
| | - Wei Zhao
- School of Clinical MedicineThe First Affiliated HospitalChengdu Medical CollegeSichuan610500P. R. China
- Department of Clinical BiochemistrySchool of Laboratory MedicineChengdu Medical CollegeSichuan610500P. R. China
| | - Song He
- Department of GastroenterologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Zhihang Zhou
- Department of GastroenterologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| |
Collapse
|
18
|
Li Q, Zhang C, Ren Y, Qiao L, Xu S, Li K, Liu Y. A novel platelets-related gene signature for predicting prognosis, immune features and drug sensitivity in gastric cancer. Front Immunol 2024; 15:1477427. [PMID: 39606245 PMCID: PMC11599260 DOI: 10.3389/fimmu.2024.1477427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
Background Platelets can dynamically regulate tumor development and progression. Nevertheless, research on the predictive value and specific roles of platelets in gastric cancer (GC) is limited. This research aims to establish a predictive platelets-related gene signature in GC with prognostic and therapeutic implications. Methods We downloaded the transcriptome data and clinical materials of GC patients (n=378) from The Cancer Genome Atlas (TCGA) database. Prognostic platelets-related genes screened by univariate Cox regression were included in Least Absolute Shrinkage and Selection Operator (LASSO) analysis to construct a risk model. Kaplan-Meier curves and receiver operating characteristic curves (ROCs) were performed in the TCGA cohort and three independent validation cohorts. A nomogram integrating the risk score and clinicopathological features was constructed. Functional enrichment and tumor microenvironment (TME) analyses were performed. Drug sensitivity prediction was conducted through The Cancer Therapeutics Response Portal (CTRP) database. Finally, the expression of ten signature genes was validated by quantitative real-time PCR (qRT-PCR). Results A ten-gene (SERPINE1, ANXA5, DGKQ, PTPN6, F5, DGKB, PCDH7, GNG11, APOA1, and TF) predictive risk model was finally constructed. Patients were categorized as high- or low-risk using median risk score as the threshold. The area under the ROC curve (AUC) values for the 1-, 2-, and 3-year overall survival (OS) in the training cohort were 0.670, 0.695, and 0.707, respectively. Survival analysis showed a better OS in low-risk patients in the training and validation cohorts. The AUCs of the nomogram for predicting 1-, 2-, and 3-year OS were 0.708, 0.763, and 0.742, respectively. TME analyses revealed a higher M2 macrophage infiltration and an immunosuppressive TME in the high-risk group. Furthermore, High-risk patients tended to be more sensitive to thalidomide, MK-0752, and BRD-K17060750. Conclusion The novel platelets-related genes signature we identified could be used for prognosis and treatment prediction in GC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ying Liu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
19
|
Dong Z, Chen Q, Zhao D, Zhang S, Yu K, Wang G, Wang D. Utilizing Saliva Metabolomics for Diagnosing Gastric Cancer and Exploring the Changes in Saliva Metabolites After Surgery. Onco Targets Ther 2024; 17:933-948. [PMID: 39530041 PMCID: PMC11551007 DOI: 10.2147/ott.s482767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose Gastric cancer (GC) is a disease with high prevalence and mortality, but we lack convenient and accurate methods to screen for this disease. Thus, we aimed to search for some salivary biomarkers and explore changes in metabolites in patients' saliva after radical gastrectomy. Patients and Methods A total of 152 subjects were divided into three groups (healthy group, GC group, and one-week postoperative group). After simple processing, saliva samples were analyzed by liquid chromatography-mass spectrometry. First, we used total ion chromatography and principal component analysis to determine the metabolite profiles. Next, t-test, partial least squares discriminant analysis, support vector machine, and receiver operating characteristics curve analysis were performed to identify biomarkers. Then, Fisher discriminant analysis and hierarchical clustering analysis were performed to determine the discriminating ability of biomarkers. Finally, we established a generalized linear model to predict GC based on biomarkers, and used bootstrapping for internal validation. Results Between the healthy and GC groups, we identified four biomarkers: lactic acid, kynurenic acid, 3-hydroxystachydrine, and S-(1,2,2-trichlorovinyl)-L-cysteine. We used stepwise regression to select five metabolites and develop a model with areas under the curve equal to 0.973 in the training dataset and 0.924 in the validation dataset. Between the GC and one-week postoperative groups, we found two differential metabolites: 19-hydroxyprostaglandin E2 and DG (14:0/0:0/18:2n6). Conclusion Differential metabolites were observed among the three groups. GC could be initially diagnosed on the basis of detection of these biomarkers. Moreover, changes in salivary metabolites in postoperative patients could provide important insights for basic studies.
Collapse
Affiliation(s)
- Zhenhua Dong
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, Jilin Province, 130000, People’s Republic of China
| | - Qirui Chen
- Undergraduate of Clinical Medicine, Jilin University, Changchun, Jilin, 130000, People’s Republic of China
| | - Dingliang Zhao
- Second Urology Department, The First Hospital of Jilin University, Changchun, Jilin Province, 130000, People’s Republic of China
| | - Shaopeng Zhang
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, Jilin Province, 130000, People’s Republic of China
| | - Kai Yu
- Urology Department, The First Hospital of Jilin University, Changchun, Jilin Province, 130000, People’s Republic of China
| | - Gaojun Wang
- Undergraduate of Clinical Medicine, Jilin University, Changchun, Jilin, 130000, People’s Republic of China
| | - Daguang Wang
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, Jilin Province, 130000, People’s Republic of China
| |
Collapse
|
20
|
Kumar P, Kumar R, Kumar P, Kushwaha S, Kumari S, Yadav N, Srikrishna S. LC-Orbitrap HRMS-Based Proteomics Reveals Novel Mitochondrial Dynamics Regulatory Proteins Associated with RasV12-Induced Glioblastoma (GBM) of Drosophila. J Proteome Res 2024; 23:5030-5047. [PMID: 39413821 DOI: 10.1021/acs.jproteome.4c00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Glioblastoma multiforme (GBM) is the most prevalent and aggressive brain tumor found in adult humans with a poor prognosis and average survival of 14-15 months. In order to have a comprehensive understanding of proteome and identify novel therapeutic targets, this study focused mainly on the differentially abundant proteins (DAPs) of RasV12-induced GBM. RasV12 is a constitutively active Ras mutant form essential for tumor progression by continuously activating signaling pathways leading to uncontrolled tumor growth. This study used a transgenic Drosophila model with RasV12 overexpression using the repo-GAL4 driver line, specifically in glial cells, to study GBM. The high-resolution mass spectrometry (HRMS)-based proteomic analysis of the GBM larval central nervous system identified three novel DAPs specific to mitochondria. These DAPs, probable maleylacetoacetate isomerase 2 (Q9VHD2), bifunctional methylene tetrahydrofolate dehydrogenase (Q04448), and glutamine synthetase1 (P20477), identified through HRMS were further validated by qRT-PCR. The protein-protein interaction analysis revealed interactions between RasV12 and DAPs, with functional links to mitochondrial dynamics regulators such as Drp1, Marf, Parkin, and HtrA2. Notably, altered expressions of Q9VHD2, P20477, and Q04448 were observed during GBM progression, which offers new insights into the involvement of mitochondrial dynamic regulators in RasV12-induced GBM pathophysiology.
Collapse
Affiliation(s)
- Pradeep Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Rohit Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Prabhat Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sunaina Kushwaha
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sandhya Kumari
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Neha Yadav
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Saripella Srikrishna
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
21
|
Zhang Q, Wang W, Shang S, Li X, Zhao T, Zhang P, Wu D, Zhou K, Lu X. Unveiling the immune-modulating power of THz-FEL irradiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 259:113017. [PMID: 39226855 DOI: 10.1016/j.jphotobiol.2024.113017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/03/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024]
Abstract
As terahertz (THz) technology advances, the interaction between THz radiation and the living body, particularly its effects on the immune system, has attracted extensive attention but remains poorly understood. This study firstly elucidated that exposure to 3 THz-FEL radiation markedly suppressed contact hypersensitivity reactions in mice induced by DNFB, as evidenced by a reduction in ear thickness and a discernible recovery in the Th1/Th2 cell balance. 3 THz irradiation led to cellular stress in the irradiated skin locale, increasing the levels of IL-4 and IL-10 and modulating the activity and migration of dendritic cells and mast cells. Furthermore, THz irradiation precipitated a rapid alteration in the skin lipidome, altering several categories of bioactive lipids. These findings offer new insights into the immunomodulatory effects of THz radiation on living organisms and the potential underlying mechanisms, with implications for the development of therapeutic approaches in managing skin allergic diseases.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Weijun Wang
- China Academy of Engineering Physics, Institute of Applied Electronics, Mianyang 621900, Sichuan, China; National Key Laboratory of Science and Technology on Advanced Laser and High Power Microwave, Mianyang 621900, Sichuan, China
| | - Sen Shang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Xu Li
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Tingting Zhao
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Peng Zhang
- China Academy of Engineering Physics, Institute of Applied Electronics, Mianyang 621900, Sichuan, China; National Key Laboratory of Science and Technology on Advanced Laser and High Power Microwave, Mianyang 621900, Sichuan, China
| | - Dai Wu
- China Academy of Engineering Physics, Institute of Applied Electronics, Mianyang 621900, Sichuan, China; National Key Laboratory of Science and Technology on Advanced Laser and High Power Microwave, Mianyang 621900, Sichuan, China
| | - Kui Zhou
- China Academy of Engineering Physics, Institute of Applied Electronics, Mianyang 621900, Sichuan, China; National Key Laboratory of Science and Technology on Advanced Laser and High Power Microwave, Mianyang 621900, Sichuan, China.
| | - Xiaoyun Lu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| |
Collapse
|
22
|
Huber T, Horioka-Duplix M, Chen Y, Saca VR, Ceraudo E, Chen Y, Sakmar TP. The role of signaling pathways mediated by the GPCRs CysLTR1/2 in melanocyte proliferation and senescence. Sci Signal 2024; 17:eadp3967. [PMID: 39288219 PMCID: PMC11920964 DOI: 10.1126/scisignal.adp3967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024]
Abstract
In contrast with sun exposure-induced melanoma, rarer melanocytic tumors and neoplasms with low mutational burden present opportunities to study isolated signaling mechanisms. These include uveal melanoma and blue nevi, which are often driven by mutations within the G protein-coupled signaling cascade downstream of cysteinyl leukotriene receptor 2. Here, we review how the same mutations within this pathway drive the growth of melanocytes in one tissue but can inhibit the growth of those in another, exemplifying the role of the tissue environment in the delicate balance between uncontrolled cell growth and senescence.
Collapse
Affiliation(s)
- Thomas Huber
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
| | - Mizuho Horioka-Duplix
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065, USA
| | - Yuanhuang Chen
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065, USA
| | - Victoria R Saca
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065, USA
| | - Emilie Ceraudo
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
23
|
Cai Q, Yang J, Shen H, Xu W. Cancer-associated adipocytes in the ovarian cancer microenvironment. Am J Cancer Res 2024; 14:3259-3279. [PMID: 39113876 PMCID: PMC11301307 DOI: 10.62347/xzri9189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024] Open
Abstract
The tumor microenvironment (TME) plays a critical role in high energy metabolism during tumorigenesis, progression and metastasis. Among them, adipocytes, as an important component of the TME, can transform into cancer-associated adipocytes (CAAs) through dedifferentiation via interactions with tumor cells. These CAAs provide nutrients, growth factors, cytokines and metabolites to the tumor and later transdifferentiate into other stromal cells at a later stage to alter tumor growth, metastasis and the drug response and ultimately influence the treatment and prognosis of ovarian cancer. This review outlines the physiological functions of CAAs and discusses the progress in the use of CAAs as therapeutic targets in ovarian cancer.
Collapse
Affiliation(s)
- Qiuling Cai
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu UniversityZhenjiang, Jiangsu, China
| | - Jing Yang
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu UniversityZhenjiang, Jiangsu, China
| | - Huiling Shen
- Department of Oncology, The First Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, China
| | - Wenlin Xu
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu UniversityZhenjiang, Jiangsu, China
| |
Collapse
|
24
|
Rubenzucker S, Manke MC, Lehmann R, Assinger A, Borst O, Ahrends R. A Targeted, Bioinert LC-MS/MS Method for Sensitive, Comprehensive Analysis of Signaling Lipids. Anal Chem 2024; 96:9643-9652. [PMID: 38795073 PMCID: PMC11170558 DOI: 10.1021/acs.analchem.4c01388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/27/2024]
Abstract
Signaling lipids are key players in cellular processes. Despite their importance, no method currently allows their comprehensive monitoring in one analytical run. Challenges include a wide dynamic range, isomeric and isobaric species, and unwanted interaction along the separation path. Herein, we present a sensitive and robust targeted liquid chromatography-mass spectrometry (LC-MS/MS) approach to overcome these challenges, covering a broad panel of 17 different signaling lipid classes. It involves a simple one-phase sample extraction and lipid analysis using bioinert reversed-phase liquid chromatography coupled to targeted mass spectrometry. The workflow shows excellent sensitivity and repeatability in different biological matrices, enabling the sensitive and robust monitoring of 388 lipids in a single run of only 20 min. To benchmark our workflow, we characterized the human plasma signaling lipidome, quantifying 307 endogenous molecular lipid species. Furthermore, we investigated the signaling lipidome during platelet activation, identifying numerous regulations along important lipid signaling pathways. This highlights the potential of the presented method to investigate signaling lipids in complex biological systems, enabling unprecedentedly comprehensive analysis and direct insight into signaling pathways.
Collapse
Affiliation(s)
- Stefanie Rubenzucker
- Department
of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria
- Vienna
Doctoral School in Chemistry, University
of Vienna, 1090 Vienna, Austria
| | - Mailin-Christin Manke
- DFG
Heisenberg Group Cardiovascular Thromboinflammation and Translational
Thrombocardiology, University of Tübingen, 72076 Tübingen, Germany
- Department
of Cardiology and Angiology, University
of Tübingen, 72076 Tübingen, Germany
| | - Rainer Lehmann
- Institute
for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic
Laboratory Medicine, University Hospital
Tübingen, 72076 Tübingen, Germany
| | - Alice Assinger
- Department
of Vascular Biology and Thrombosis Research, Centre of Physiology
and Pharmacology, Medical University of
Vienna, 1090 Vienna, Austria
| | - Oliver Borst
- DFG
Heisenberg Group Cardiovascular Thromboinflammation and Translational
Thrombocardiology, University of Tübingen, 72076 Tübingen, Germany
- Department
of Cardiology and Angiology, University
of Tübingen, 72076 Tübingen, Germany
| | - Robert Ahrends
- Department
of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
25
|
Yang W, Feng R, Peng G, Wang Z, Cen M, Jing Y, Feng W, Long T, Liu Y, Li Z, Huang K, Chang G. Glycoursodeoxycholic Acid Alleviates Arterial Thrombosis via Suppressing Diacylglycerol Kinases Activity in Platelet. Arterioscler Thromb Vasc Biol 2024; 44:1283-1301. [PMID: 38572646 DOI: 10.1161/atvbaha.124.320728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Glycoursodeoxycholic acid (GUDCA) has been acknowledged for its ability to regulate lipid homeostasis and provide benefits for various metabolic disorders. However, the impact of GUDCA on arterial thrombotic events remains unexplored. The objective of this study is to examine the effects of GUDCA on thrombogenesis and elucidate its underlying mechanisms. METHODS Plasma samples from patients with arterial thrombotic events and diet-induced obese mice were collected to determine the GUDCA concentrations using mass spectrometry. Multiple in vivo murine thrombosis models and in vitro platelet functional assays were conducted to comprehensively evaluate the antithrombotic effects of GUDCA. Moreover, lipidomic analysis was performed to identify the alterations of intraplatelet lipid components following GUDCA treatment. RESULTS Plasma GUDCA level was significantly decreased in patients with arterial thrombotic events and negatively correlated with thrombotic propensity in diet-induced obese mice. GUDCA exhibited prominent suppressing effects on platelet reactivity as evidenced by the attenuation of platelet activation, secretion, aggregation, spreading, and retraction (P<0.05). In vivo, GUDCA administration robustly alleviated thrombogenesis (P<0.05) without affecting hemostasis. Mechanistically, GUDCA inhibited DGK (diacylglycerol kinase) activity, leading to the downregulation of the phosphatidic acid-mediated signaling pathway. Conversely, phosphatidic acid supplementation was sufficient to abolish the antithrombotic effects of GUDCA. More importantly, long-term oral administration of GUDCA normalized the enhanced DGK activity, thereby remarkably alleviating the platelet hyperreactivity as well as the heightened thrombotic tendency in diet-induced obese mice (P<0.05). CONCLUSIONS Our study implicated that GUDCA reduces platelet hyperreactivity and improves thrombotic propensity by inhibiting DGKs activity, which is a potentially effective prophylactic approach and promising therapeutic agent for arterial thrombotic events.
Collapse
Affiliation(s)
- Wenchao Yang
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (W.Y., R.F., G.P., Z.W., Y.J., W.F., T.L., Y.L., Z.L, K.H., G.C.)
| | - Ruijia Feng
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (W.Y., R.F., G.P., Z.W., Y.J., W.F., T.L., Y.L., Z.L, K.H., G.C.)
| | - Guiyan Peng
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (W.Y., R.F., G.P., Z.W., Y.J., W.F., T.L., Y.L., Z.L, K.H., G.C.)
| | - Zhecun Wang
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (W.Y., R.F., G.P., Z.W., Y.J., W.F., T.L., Y.L., Z.L, K.H., G.C.)
| | - Meifeng Cen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, China (M.C.)
| | - Yexiang Jing
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (W.Y., R.F., G.P., Z.W., Y.J., W.F., T.L., Y.L., Z.L, K.H., G.C.)
| | - Weiqi Feng
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (W.Y., R.F., G.P., Z.W., Y.J., W.F., T.L., Y.L., Z.L, K.H., G.C.)
| | - Ting Long
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (W.Y., R.F., G.P., Z.W., Y.J., W.F., T.L., Y.L., Z.L, K.H., G.C.)
| | - Yunchong Liu
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (W.Y., R.F., G.P., Z.W., Y.J., W.F., T.L., Y.L., Z.L, K.H., G.C.)
| | - Zilun Li
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (W.Y., R.F., G.P., Z.W., Y.J., W.F., T.L., Y.L., Z.L, K.H., G.C.)
| | - Kan Huang
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (W.Y., R.F., G.P., Z.W., Y.J., W.F., T.L., Y.L., Z.L, K.H., G.C.)
| | - Guangqi Chang
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (W.Y., R.F., G.P., Z.W., Y.J., W.F., T.L., Y.L., Z.L, K.H., G.C.)
| |
Collapse
|
26
|
Szlasa W, Sauer N, Baczyńska D, Ziętek M, Haczkiewicz-Leśniak K, Karpiński P, Fleszar M, Fortuna P, Kulus MJ, Piotrowska A, Kmiecik A, Barańska A, Michel O, Novickij V, Tarek M, Kasperkiewicz P, Dzięgiel P, Podhorska-Okołów M, Saczko J, Kulbacka J. Pulsed electric field induces exocytosis and overexpression of MAGE antigens in melanoma. Sci Rep 2024; 14:12546. [PMID: 38822068 PMCID: PMC11143327 DOI: 10.1038/s41598-024-63181-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/27/2024] [Indexed: 06/02/2024] Open
Abstract
Nanosecond pulsed electric field (nsPEF) has emerged as a promising approach for inducing cell death in melanoma, either as a standalone treatment or in combination with chemotherapeutics. However, to date, there has been a shortage of studies exploring the impact of nsPEF on the expression of cancer-specific molecules. In this investigation, we sought to assess the effects of nsPEF on melanoma-specific MAGE (Melanoma Antigen Gene Protein Family) expression. To achieve this, melanoma cells were exposed to nsPEF with parameters set at 8 kV/cm, 200 ns duration, 100 pulses, and a frequency of 10 kHz. We also aimed to comprehensively describe the consequences of this electric field on melanoma cells' invasion and proliferation potential. Our findings reveal that following exposure to nsPEF, melanoma cells release microvesicles containing MAGE antigens, leading to a simultaneous increase in the expression and mRNA content of membrane-associated antigens such as MAGE-A1. Notably, we observed an unexpected increase in the expression of PD-1 as well. While we did not observe significant differences in the cells' proliferation or invasion potential, a remarkable alteration in the cells' metabolomic and lipidomic profiles towards a less aggressive phenotype was evident. Furthermore, we validated these results using ex vivo tissue cultures and 3D melanoma culture models. Our study demonstrates that nsPEF can elevate the expression of membrane-associated proteins, including melanoma-specific antigens. The mechanism underlying the overexpression of MAGE antigens involves the initial release of microvesicles containing MAGE antigens, followed by a gradual increase in mRNA levels, ultimately resulting in elevated expression of MAGE antigens post-experiment. These findings shed light on a novel method for modulating cancer cells to overexpress cancer-specific molecules, thereby potentially enhancing their sensitivity to targeted anticancer therapy.
Collapse
Affiliation(s)
- Wojciech Szlasa
- Medical University Hospital, Borowska 213, 50-556, Wrocław, Poland.
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland.
| | - Natalia Sauer
- Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Marcin Ziętek
- Department of Surgical Oncology, Wroclaw Comprehensive Cancer Center, Wroclaw, Poland
| | | | - Paweł Karpiński
- Department of Genetics, Wroclaw Medical University, Wroclaw, Poland
| | - Mariusz Fleszar
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
- Omics Research Center, Wroclaw Medical University, Wrocław, Poland
| | - Paulina Fortuna
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
- Omics Research Center, Wroclaw Medical University, Wrocław, Poland
| | - Michał J Kulus
- Division of Ultrastructural Research, Faculty of Medicine, Wroclaw Medical University, 50-368, Wroclaw, Poland
| | - Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw, Poland
| | - Alicja Kmiecik
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw, Poland
| | - Agnieszka Barańska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw, Poland
| | - Olga Michel
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Vitalij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, 03227, Vilnius, Lithuania
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių 5, 08410, Vilnius, Lithuania
| | - Mounir Tarek
- Université de Lorraine, CNRS, LPCT, 54000, Nancy, France
| | - Paulina Kasperkiewicz
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw, Poland
| | - Marzenna Podhorska-Okołów
- Division of Ultrastructural Research, Faculty of Medicine, Wroclaw Medical University, 50-368, Wroclaw, Poland
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių 5, 08410, Vilnius, Lithuania
| |
Collapse
|
27
|
Yang F, Wen X, Xie S, He X, Qu G, Zhang X, Sun S, Luo Z, Liu Z, Lin Q. Characterization of lipid composition and nutritional quality of yak ghee at different altitudes: A quantitative lipidomic analysis. Food Chem X 2024; 21:101166. [PMID: 38322764 PMCID: PMC10844969 DOI: 10.1016/j.fochx.2024.101166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/15/2024] [Accepted: 01/27/2024] [Indexed: 02/08/2024] Open
Abstract
Efficient and comprehensive analysis of lipid profiles in yak ghee samples collected from different elevations is crucial for optimal utilization of these resources. Unfortunately, such research is relatively rare. Yak ghee collected from three locations at different altitudes (S2: 2986 m; S5: 3671 m; S6: 4508 m) were analyzed by quantitative lipidomic. Our analysis identified a total of 176 lipids, and 147 s lipid of them were upregulated and 29 lipids were downregulated. These lipids have the potential to serve as biomarkers for distinguishing yak ghee from different altitudes. Notably, S2 exhibited higher levels of fatty acids (21:1) and branched fatty acid esters of hydroxy fatty acids (14:0/18:0), while S5 showed increased levels of phosphatidylserine (O-20:0/19:1) and glycerophosphoric acid (19:0/22:1). S6 displayed higher levels of triacylglycerol (17:0/20:5/22:3), ceramide alpha-hydroxy fatty acid-sphingosine (d17:3/34:2), and acyl glucosylceramides (16:0-18:0-18:1). Yak ghee exhibited a high content of neutralizing glycerophospholipids and various functional lipids, including sphingolipids and 21 newly discovered functional lipids. Our findings provide insights into quantitative changes in yak ghee lipids during different altitudes, development of yak ghee products, and screening of potential biomarkers.
Collapse
Affiliation(s)
- Feiyan Yang
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha Engineering Research Center of Food Storage and Preservation, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xin Wen
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha Engineering Research Center of Food Storage and Preservation, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Siwei Xie
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha Engineering Research Center of Food Storage and Preservation, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xudong He
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha Engineering Research Center of Food Storage and Preservation, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Guangfan Qu
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha Engineering Research Center of Food Storage and Preservation, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xueying Zhang
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha Engineering Research Center of Food Storage and Preservation, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Shuguo Sun
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha Engineering Research Center of Food Storage and Preservation, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Zhang Luo
- College of Food Science, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, Tibet, China
| | - Zhendong Liu
- College of Food Science, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, Tibet, China
| | - Qinlu Lin
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha Engineering Research Center of Food Storage and Preservation, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| |
Collapse
|
28
|
Fan S, Kang B, Li S, Li W, Chen C, Chen J, Deng L, Chen D, Zhou J. Exploring the multifaceted role of RASGRP1 in disease: immune, neural, metabolic, and oncogenic perspectives. Cell Cycle 2024; 23:722-746. [PMID: 38865342 PMCID: PMC11229727 DOI: 10.1080/15384101.2024.2366009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/25/2023] [Indexed: 06/14/2024] Open
Abstract
RAS guanyl releasing protein 1 (RASGRP1) is a guanine nucleotide exchange factor (GEF) characterized by the presence of a RAS superfamily GEF domain. It functions as a diacylglycerol (DAG)-regulated nucleotide exchange factor, specifically activating RAS through the exchange of bound GDP for GTP. Activation of RAS by RASGRP1 has a wide range of downstream effects at the cellular level. Thus, it is not surprising that many diseases are associated with RASGRP1 disorders. Here, we present an overview of the structure and function of RASGRP1, its crucial role in the development, expression, and regulation of immune cells, and its involvement in various signaling pathways. This review comprehensively explores the relationship between RASGRP1 and various diseases, elucidates the underlying molecular mechanisms of RASGRP1 in each disease, and identifies potential therapeutic targets. This study provides novel insights into the role of RASGRP1 in insulin secretion and highlights its potential as a therapeutic target for diabetes. The limitations and challenges associated with studying RASGRP1 in disease are also discussed.
Collapse
Affiliation(s)
- Shangzhi Fan
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases,Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Bo Kang
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases,Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Shaoqian Li
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases,Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weiyi Li
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases,Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Canyu Chen
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases,Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jixiang Chen
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases,Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Lijing Deng
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases,Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Danjun Chen
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases,Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jiecan Zhou
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases,Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
29
|
Kazanietz MG, Cooke M. Protein kinase C signaling "in" and "to" the nucleus: Master kinases in transcriptional regulation. J Biol Chem 2024; 300:105692. [PMID: 38301892 PMCID: PMC10907189 DOI: 10.1016/j.jbc.2024.105692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/03/2024] Open
Abstract
PKC is a multifunctional family of Ser-Thr kinases widely implicated in the regulation of fundamental cellular functions, including proliferation, polarity, motility, and differentiation. Notwithstanding their primary cytoplasmic localization and stringent activation by cell surface receptors, PKC isozymes impel prominent nuclear signaling ultimately impacting gene expression. While transcriptional regulation may be wielded by nuclear PKCs, it most often relies on cytoplasmic phosphorylation events that result in nuclear shuttling of PKC downstream effectors, including transcription factors. As expected from the unique coupling of PKC isozymes to signaling effector pathways, glaring disparities in gene activation/repression are observed upon targeting individual PKC family members. Notably, specific PKCs control the expression and activation of transcription factors implicated in cell cycle/mitogenesis, epithelial-to-mesenchymal transition and immune function. Additionally, PKCs isozymes tightly regulate transcription factors involved in stepwise differentiation of pluripotent stem cells toward specific epithelial, mesenchymal, and hematopoietic cell lineages. Aberrant PKC expression and/or activation in pathological conditions, such as in cancer, leads to profound alterations in gene expression, leading to an extensive rewiring of transcriptional networks associated with mitogenesis, invasiveness, stemness, and tumor microenvironment dysregulation. In this review, we outline the current understanding of PKC signaling "in" and "to" the nucleus, with significant focus on established paradigms of PKC-mediated transcriptional control. Dissecting these complexities would allow the identification of relevant molecular targets implicated in a wide spectrum of diseases.
Collapse
Affiliation(s)
- Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
30
|
Weckerly CC, Rahn TA, Ehrlich M, Wills RC, Pemberton JG, Airola MV, Hammond GRV. Nir1-LNS2 is a novel phosphatidic acid biosensor that reveals mechanisms of lipid production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582557. [PMID: 38464273 PMCID: PMC10925316 DOI: 10.1101/2024.02.28.582557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Despite various roles of phosphatidic acid (PA) in cellular functions such as lipid homeostasis and vesicular trafficking, there is a lack of high-affinity tools to study PA in live cells. After analysis of the predicted structure of the LNS2 domain in the lipid transfer protein Nir1, we suspected that this domain could serve as a novel PA biosensor. We created a fluorescently tagged Nir1-LNS2 construct and then performed liposome binding assays as well as pharmacological and genetic manipulations of HEK293A cells to determine how specific lipids affect the interaction of Nir1-LNS2 with membranes. We found that Nir1-LNS2 bound to both PA and PIP2 in vitro. Interestingly, only PA was necessary and sufficient to localize Nir1-LNS2 to membranes in cells. Nir1-LNS2 also showed a heightened responsiveness to PA when compared to biosensors using the Spo20 PA binding domain (PABD). Nir1-LNS2's high sensitivity revealed a modest but discernible contribution of PLD to PA production downstream of muscarinic receptors, which has not been visualized with previous Spo20-based probes. In summary, Nir1-LNS2 emerges as a versatile and sensitive biosensor, offering researchers a new powerful tool for real-time investigation of PA dynamics in live cells.
Collapse
Affiliation(s)
- Claire C Weckerly
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Taylor A Rahn
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Max Ehrlich
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rachel C Wills
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Joshua G Pemberton
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, USA
| | - Michael V Airola
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Gerald R V Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
31
|
Jung S, Silva S, Dallal CM, LeBlanc E, Paris K, Shepherd J, Snetselaar LG, Van Horn L, Zhang Y, Dorgan JF. Untargeted serum metabolomic profiles and breast density in young women. Cancer Causes Control 2024; 35:323-334. [PMID: 37737303 DOI: 10.1007/s10552-023-01793-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 09/06/2023] [Indexed: 09/23/2023]
Abstract
PURPOSE OF THE STUDY Breast density is an established risk factor for breast cancer. However, little is known about metabolic influences on breast density phenotypes. We conducted untargeted serum metabolomics analyses to identify metabolic signatures associated with breast density phenotypes among young women. METHODS In a cross-sectional study of 173 young women aged 25-29 who participated in the Dietary Intervention Study in Children 2006 Follow-up Study, 449 metabolites were measured in fasting serum samples using ultra-high-performance liquid chromatography-tandem mass spectrometry. Multivariable-adjusted mixed-effects linear regression identified metabolites associated with magnetic resonance imaging measured breast density phenotypes: percent dense breast volume (%DBV), absolute dense breast volume (ADBV), and absolute non-dense breast volume (ANDBV). Metabolite results were corrected for multiple comparisons using a false discovery rate adjusted p-value (q). RESULTS The amino acids valine and leucine were significantly inversely associated with %DBV. For each 1 SD increase in valine and leucine, %DBV decreased by 20.9% (q = 0.02) and 18.4% (q = 0.04), respectively. ANDBV was significantly positively associated with 16 lipid and one amino acid metabolites, whereas no metabolites were associated with ADBV. Metabolite set enrichment analysis also revealed associations of distinct metabolic signatures with %DBV, ADBV, and ANDBV; branched chain amino acids had the strongest inverse association with %DBV (p = 0.002); whereas, diacylglycerols and phospholipids were positively associated with ANDBV (p ≤ 0.002), no significant associations were observed for ADBV. CONCLUSION Our results suggest an inverse association of branched chain amino acids with %DBV. Larger studies in diverse populations are needed.
Collapse
Affiliation(s)
- Seungyoun Jung
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, South Korea
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, South Korea
| | - Sarah Silva
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Cher M Dallal
- Department of Epidemiology and Biostatistics, School of Public Health, University of Maryland, College Park, MD, USA
| | - Erin LeBlanc
- Kaiser Permanente Center for Health Research, Portland, OR, USA
| | - Kenneth Paris
- Department of Pediatrics, Louisiana State University School of Medicine, New Orleans, LA, USA
| | - John Shepherd
- University of Hawaii Cancer Center, Honolulu, HI, USA
| | | | - Linda Van Horn
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yuji Zhang
- Division of Cancer Epidemiology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, 660 West Redwood St., Howard Hall, Room 102E, Baltimore, MD, 21201, USA
| | - Joanne F Dorgan
- Division of Cancer Epidemiology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, 660 West Redwood St., Howard Hall, Room 102E, Baltimore, MD, 21201, USA.
| |
Collapse
|
32
|
Villani A, Fontana A, Panebianco C, Ferro C, Copetti M, Pavlovic R, Drago D, Fiorentini C, Terracciano F, Bazzocchi F, Canistro G, Pisati F, Maiello E, Latiano TP, Perri F, Pazienza V. A powerful machine learning approach to identify interactions of differentially abundant gut microbial subsets in patients with metastatic and non-metastatic pancreatic cancer. Gut Microbes 2024; 16:2375483. [PMID: 38972056 PMCID: PMC11229760 DOI: 10.1080/19490976.2024.2375483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 06/28/2024] [Indexed: 07/09/2024] Open
Abstract
Pancreatic cancer has a dismal prognosis, as it is often diagnosed at stage IV of the disease and is characterized by metastatic spread. Gut microbiota and its metabolites have been suggested to influence the metastatic spread by modulating the host immune system or by promoting angiogenesis. To date, the gut microbial profiles of metastatic and non-metastatic patients need to be explored. Taking advantage of the 16S metagenomic sequencing and the PEnalized LOgistic Regression Analysis (PELORA) we identified clusters of bacteria with differential abundances between metastatic and non-metastatic patients. An overall increase in Gram-negative bacteria in metastatic patients compared to non-metastatic ones was identified using this method. Furthermore, to gain more insight into how gut microbes can predict metastases, a machine learning approach (iterative Random Forest) was performed. Iterative Random Forest analysis revealed which microorganisms were characterized by a different level of relative abundance between metastatic and non-metastatic patients and established a functional relationship between the relative abundance and the probability of having metastases. At the species level, the following bacteria were found to have the highest discriminatory power: Anaerostipes hadrus, Coprobacter secundus, Clostridium sp. 619, Roseburia inulinivorans, Porphyromonas and Odoribacter at the genus level, and Rhodospirillaceae, Clostridiaceae and Peptococcaceae at the family level. Finally, these data were intertwined with those from a metabolomics analysis on fecal samples of patients with or without metastasis to better understand the role of gut microbiota in the metastatic process. Artificial intelligence has been applied in different areas of the medical field. Translating its application in the field of gut microbiota analysis may help fully exploit the potential information contained in such a large amount of data aiming to open up new supportive areas of intervention in the management of cancer.
Collapse
Affiliation(s)
- Annacandida Villani
- Division of Gastroenterology, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Andrea Fontana
- Biostatistic Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Concetta Panebianco
- Division of Gastroenterology, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Carmelapia Ferro
- Division of Gastroenterology, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Massimiliano Copetti
- Biostatistic Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Radmila Pavlovic
- Proteomics and Metabolomics Facility (ProMeFa), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Denise Drago
- Proteomics and Metabolomics Facility (ProMeFa), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carla Fiorentini
- Scientific Direction, Association for Research on Integrative Oncological Therapies (ARTOI), Roma, Italy
| | - Fulvia Terracciano
- Division of Gastroenterology, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Francesca Bazzocchi
- Abdominal Surgery Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Giuseppe Canistro
- Abdominal Surgery Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | | | - Evaristo Maiello
- Oncology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Tiziana Pia Latiano
- Oncology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Francesco Perri
- Division of Gastroenterology, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Valerio Pazienza
- Division of Gastroenterology, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| |
Collapse
|
33
|
Azbazdar Y, Tejeda-Munoz N, Monka JC, Dayrit A, Binder G, Ozhan G, De Robertis EM. Addition of exogenous diacylglycerol enhances Wnt/β-catenin signaling through stimulation of macropinocytosis. iScience 2023; 26:108075. [PMID: 37860772 PMCID: PMC10582480 DOI: 10.1016/j.isci.2023.108075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/22/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023] Open
Abstract
Activation of Wnt signaling triggers macropinocytosis and drives many tumors. We now report that the exogenous addition of the second messenger lipid sn-1,2 DAG to the culture medium rapidly induces macropinocytosis. This is accompanied by potentiation of the effects of added Wnt3a recombinant protein or the glycogen synthase kinase 3 (GSK3) inhibitor lithium chloride (LiCl, which mimics Wnt signaling) in luciferase transcriptional reporter assays. In a colorectal carcinoma cell line in which mutation of adenomatous polyposis coli (APC) causes constitutive Wnt signaling, DAG addition increased levels of nuclear β-catenin, and this increase was partially inhibited by an inhibitor of macropinocytosis. DAG also expanded multivesicular bodies marked by the tetraspan protein CD63. In an in vivo situation, microinjection of DAG induced Wnt-like twinned body axes when co-injected with small amounts of LiCl into Xenopus embryos. These results suggest that the DAG second messenger plays a role in Wnt-driven cancer progression.
Collapse
Affiliation(s)
- Yagmur Azbazdar
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1662, USA
| | - Nydia Tejeda-Munoz
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1662, USA
- Department of Oncology Science, Health Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Julia C. Monka
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1662, USA
| | - Alex Dayrit
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1662, USA
| | - Grace Binder
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1662, USA
| | - Gunes Ozhan
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir 35430, Türkiye
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir 35340, Türkiye
| | - Edward M. De Robertis
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1662, USA
| |
Collapse
|
34
|
Obata Y, Kurokawa K, Tojima T, Natsume M, Shiina I, Takahashi T, Abe R, Nakano A, Nishida T. Golgi retention and oncogenic KIT signaling via PLCγ2-PKD2-PI4KIIIβ activation in gastrointestinal stromal tumor cells. Cell Rep 2023; 42:113035. [PMID: 37616163 DOI: 10.1016/j.celrep.2023.113035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/19/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023] Open
Abstract
Most gastrointestinal stromal tumors (GISTs) develop due to gain-of-function mutations in the tyrosine kinase gene, KIT. We recently showed that mutant KIT mislocalizes to the Golgi area and initiates uncontrolled signaling. However, the molecular mechanisms underlying its Golgi retention remain unknown. Here, we show that protein kinase D2 (PKD2) is activated by the mutant, which causes Golgi retention of KIT. In PKD2-inhibited cells, KIT migrates from the Golgi region to lysosomes and subsequently undergoes degradation. Importantly, delocalized KIT cannot trigger downstream activation. In the Golgi/trans-Golgi network (TGN), KIT activates the PKD2-phosphatidylinositol 4-kinase IIIβ (PKD2-PI4KIIIβ) pathway through phospholipase Cγ2 (PLCγ2) to generate a PI4P-rich membrane domain, where the AP1-GGA1 complex is aberrantly recruited. Disruption of any factors in this cascade results in the release of KIT from the Golgi/TGN. Our findings show the molecular mechanisms underlying KIT mislocalization and provide evidence for a strategy for inhibition of oncogenic signaling.
Collapse
Affiliation(s)
- Yuuki Obata
- Laboratory of Intracellular Traffic & Oncology, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Kazuo Kurokawa
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Takuro Tojima
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Miyuki Natsume
- Laboratory of Intracellular Traffic & Oncology, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Department of Applied Chemistry, Tokyo University of Science, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Isamu Shiina
- Department of Applied Chemistry, Tokyo University of Science, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Tsuyoshi Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryo Abe
- Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Toshirou Nishida
- National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
35
|
Das J, You Y, Mathukumalli K, Ann J, Lee J, Marquez VE. Activation of Munc13-1 by Diacylglycerol (DAG)-Lactones. Biochemistry 2023; 62:2717-2726. [PMID: 37651159 DOI: 10.1021/acs.biochem.3c00375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Munc13-1 is a key protein necessary for vesicle fusion and neurotransmitter release in the brain. Diacylglycerol (DAG)/phorbol ester binds to its C1 domain in the plasma membrane and activates it. The C1 domain of Munc13-1 and protein kinase C (PKC) are homologous in terms of sequence and structure. In order to identify small-molecule modulators of Munc13-1 targeting the C1 domain, we studied the effect of three DAG-lactones, (R,Z)-(2-(hydroxymethyl)-4-(3-isobutyl-5-methylhexylidene)-5-oxotetrahydrofuran-2-yl)methyl pivalate (JH-131e-153), (E)-(2-(hydroxymethyl)-4-(3-isobutyl-5-methylhexylidene)-5-oxotetrahydrofuran-2-yl)methyl pivalate (AJH-836), and (E)-(2-(hydroxymethyl)-4-(4-nitrobenzylidene)-5-oxotetrahydrofuran-2-yl)methyl 4-(dimethylamino)benzoate (130C037), on Munc13-1 activation using the ligand-induced membrane translocation assay. JH-131e-153 showed higher activation than AJH-836, and 130C037 was not able to activate Munc13-1. To understand the role of the ligand-binding site residues in the activation process, three alanine mutants were generated. For AJH-836, the order of activation was wild-type (WT) Munc13-1 > R592A > W588A > I590A. For JH-131e-153, the order of activation was WT > I590 ≈ R592A ≈ W588A. Overall, the Z isomer of DAG-lactones showed higher potency than the E isomer and Trp-588, Ile-590, and Arg-592 were important for its binding. When comparing the activation of Munc13-1 and PKC, the order of activation for JH-131e-153 was PKCα > Munc13-1 > PKCε and for AJH-836, the order of activation was PKCε > PKCα > Munc13-1. Molecular docking supported higher binding of JH-131e-153 than AJH-836 with the Munc13-1 C1 domain. Our results suggest that DAG-lactones have the potential to modulate neuronal processes via Munc13-1 and can be further developed for therapeutic intervention for neurodegenerative diseases.
Collapse
Affiliation(s)
- Joydip Das
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204, United States
| | - Youngki You
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204, United States
| | - Kavya Mathukumalli
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204, United States
| | - Jihyae Ann
- College of Pharmacy, Seoul National University, Building 143, Room 507, 1 Gwanak-Ro, Gwanak-Gu, Seoul 08826, Korea
| | - Jeewoo Lee
- College of Pharmacy, Seoul National University, Building 143, Room 507, 1 Gwanak-Ro, Gwanak-Gu, Seoul 08826, Korea
| | - Victor E Marquez
- Center for Cancer Research, Chemical Biology Laboratory, NCI-Frederick, 376 Boyles Street, Frederick, Maryland 21702, United States
| |
Collapse
|
36
|
Cooke M, Zhang S, Cornejo Maciel F, Kazanietz MG. Gi/o GPCRs drive the formation of actin-rich tunneling nanotubes in cancer cells via a Gβγ/PKCα/FARP1/Cdc42 axis. J Biol Chem 2023; 299:104983. [PMID: 37390986 PMCID: PMC10374973 DOI: 10.1016/j.jbc.2023.104983] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023] Open
Abstract
The functional association between stimulation of G-protein-coupled receptors (GPCRs) by eicosanoids and actin cytoskeleton reorganization remains largely unexplored. Using a model of human adrenocortical cancer cells, here we established that activation of the GPCR OXER1 by its natural agonist, the eicosanoid 5-oxo-eicosatetraenoic acid, leads to the formation of filopodia-like elongated projections connecting adjacent cells, known as tunneling nanotube (TNT)-like structures. This effect is reduced by pertussis toxin and GUE1654, a biased antagonist for the Gβγ pathway downstream of OXER1 activation. We also observed pertussis toxin-dependent TNT biogenesis in response to lysophosphatidic acid, indicative of a general response driven by Gi/o-coupled GPCRs. TNT generation by either 5-oxo-eicosatetraenoic acid or lysophosphatidic acid is partially dependent on the transactivation of the epidermal growth factor receptor and impaired by phosphoinositide 3-kinase inhibition. Subsequent signaling analysis reveals a strict requirement of phospholipase C β3 and its downstream effector protein kinase Cα. Consistent with the established role of Rho small GTPases in the formation of actin-rich projecting structures, we identified the phosphoinositide 3-kinase-regulated guanine nucleotide exchange factor FARP1 as a GPCR effector essential for TNT formation, acting via Cdc42. Altogether, our study pioneers a link between Gi/o-coupled GPCRs and TNT development and sheds light into the intricate signaling pathways governing the generation of specialized actin-rich elongated structures in response to bioactive signaling lipids.
Collapse
Affiliation(s)
- Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Suli Zhang
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fabiana Cornejo Maciel
- Departament of Human Biochemistry, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina; INBIOMED, CONICET, Buenos Aires, Argentina
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
37
|
Chupak L, Wichroski M, Zheng X, Ding M, Martin S, Allard C, Shi J, Gentles R, Meanwell NA, Fang J, Tenney D, Tokarski J, Cao C, Wee S. Discovery of Potent, Dual-Inhibitors of Diacylglycerol Kinases Alpha and Zeta Guided by Phenotypic Optimization. ACS Med Chem Lett 2023; 14:929-935. [PMID: 37465293 PMCID: PMC10351048 DOI: 10.1021/acsmedchemlett.3c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/01/2023] [Indexed: 07/20/2023] Open
Abstract
We describe a phenotypic screening and optimization strategy to discover compounds that block intracellular checkpoint signaling in T-cells. We identified dual DGKα and ζ inhibitors notwithstanding the modest similarity between α and ζ relative to other DGK isoforms. Optimized compounds produced cytokine release and T-cell proliferation consistent with DGK inhibition and potentiated an immune response in human and mouse T-cells. Additionally, lead inhibitor BMS-502 demonstrated dose-dependent immune stimulation in the mouse OT-1 model, setting the stage for a drug discovery program.
Collapse
Affiliation(s)
- Louis Chupak
- Bristol
Myers Squibb Research and Early Development, 100 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Michael Wichroski
- Bristol
Myers Squibb Research and Early Development, 100 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Xiaofan Zheng
- Bristol
Myers Squibb Research and Early Development, 100 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Min Ding
- Bristol
Myers Squibb Research and Early Development, 100 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Scott Martin
- Bristol
Myers Squibb Research and Early Development, 100 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Christopher Allard
- Bristol
Myers Squibb Research and Early Development, 100 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Jianliang Shi
- Bristol
Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey 08543-4000, United
States
| | - Robert Gentles
- Bristol
Myers Squibb Research and Early Development, 100 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Nicholas A. Meanwell
- Bristol
Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey 08543-4000, United
States
| | - Jie Fang
- Bristol
Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey 08543-4000, United
States
| | - Daniel Tenney
- Bristol
Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey 08543-4000, United
States
| | - John Tokarski
- Bristol
Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey 08543-4000, United
States
| | - Carolyn Cao
- Bristol
Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey 08543-4000, United
States
| | - Susan Wee
- Bristol
Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey 08543-4000, United
States
| |
Collapse
|
38
|
Mendez R, Shaikh M, Lemke MC, Yuan K, Libby AH, Bai DL, Ross MM, Harris TE, Hsu KL. Predicting small molecule binding pockets on diacylglycerol kinases using chemoproteomics and AlphaFold. RSC Chem Biol 2023; 4:422-430. [PMID: 37292058 PMCID: PMC10246554 DOI: 10.1039/d3cb00057e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/13/2023] [Indexed: 06/10/2023] Open
Abstract
Diacylglycerol kinases (DGKs) are metabolic kinases involved in regulating cellular levels of diacylglycerol and phosphatidic lipid messengers. The development of selective inhibitors for individual DGKs would benefit from discovery of protein pockets available for inhibitor binding in cellular environments. Here we utilized a sulfonyl-triazole probe (TH211) bearing a DGK fragment ligand for covalent binding to tyrosine and lysine sites on DGKs in cells that map to predicted small molecule binding pockets in AlphaFold structures. We apply this chemoproteomics-AlphaFold approach to evaluate probe binding of DGK chimera proteins engineered to exchange regulatory C1 domains between DGK subtypes (DGKα and DGKζ). Specifically, we discovered loss of TH211 binding to a predicted pocket in the catalytic domain when C1 domains on DGKα were exchanged that correlated with impaired biochemical activity as measured by a DAG phosphorylation assay. Collectively, we provide a family-wide assessment of accessible sites for covalent targeting that combined with AlphaFold revealed predicted small molecule binding pockets for guiding future inhibitor development of the DGK superfamily.
Collapse
Affiliation(s)
- Roberto Mendez
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA +1 434-297-4864
| | - Minhaj Shaikh
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA +1 434-297-4864
| | - Michael C Lemke
- Department of Pharmacology, University of Virginia School of Medicine Charlottesville Virginia 22908 USA
| | - Kun Yuan
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA +1 434-297-4864
| | - Adam H Libby
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA +1 434-297-4864
- University of Virginia Cancer Center, University of Virginia Charlottesville VA 22903 USA
| | - Dina L Bai
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA +1 434-297-4864
| | - Mark M Ross
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA +1 434-297-4864
| | - Thurl E Harris
- Department of Pharmacology, University of Virginia School of Medicine Charlottesville Virginia 22908 USA
| | - Ku-Lung Hsu
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA +1 434-297-4864
- Department of Pharmacology, University of Virginia School of Medicine Charlottesville Virginia 22908 USA
- Department of Molecular Physiology and Biological Physics, University of Virginia Charlottesville Virginia 22908 USA
- University of Virginia Cancer Center, University of Virginia Charlottesville VA 22903 USA
| |
Collapse
|
39
|
Mondal S, Sthanikam Y, Kumar A, Nandy A, Chattopadhyay S, Koner D, Rukmangadha N, Narendra H, Banerjee S. Mass Spectrometry Imaging of Lumpectomy Specimens Deciphers Diacylglycerols as Potent Biomarkers for the Diagnosis of Breast Cancer. Anal Chem 2023; 95:8054-8062. [PMID: 37167069 DOI: 10.1021/acs.analchem.3c01019] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Detecting breast tumor markers with a fast turnaround time from frozen sections should foster intraoperative histopathology in breast-conserving surgery, reducing the need for a second operation. Hence, rapid label-free discrimination of the spatially resolved molecular makeup between cancer and adjacent normal breast tissue is of growing importance. We performed desorption electrospray ionization mass spectrometry imaging (DESI-MSI) of fresh-frozen excision specimens, including cancer and paired adjacent normal sections, obtained from the lumpectomy of 73 breast cancer patients. The results demonstrate that breast cancer tissue posits sharp metabolic upregulation of diacylglycerol, a lipid second messenger that activates protein kinase C for promoting tumor growth. We identified four specific sn-1,2-diacylglycerols that outperformed all other lipids simultaneously mapped by the positive ion mode DESI-MSI for distinguishing cancers from adjacent normal specimens. This result contrasts with several previous DESI-MSI studies that probed metabolic dysregulation of glycerophospholipids, sphingolipids, and free fatty acids for cancer diagnoses. A random forest-based supervised machine learning considering all detected ion signals also deciphered the highest diagnostic potential of these four diacylglycerols with the top four importance scores. This led us to construct a classifier with 100% overall prediction accuracy of breast cancer by using the parsimonious set of four diacylglycerol biomarkers only. The metabolic pathway analysis suggested that increased catabolism of phosphatidylcholine in breast cancer contributes to diacylglycerol overexpression. These results open up opportunities for mapping diacylglycerol signaling in breast cancer in the context of novel therapeutic and diagnostic developments, including the intraoperative assessment of breast cancer margin status.
Collapse
Affiliation(s)
- Supratim Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Yeswanth Sthanikam
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Anubhav Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Abhijit Nandy
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Sutirtha Chattopadhyay
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Debasish Koner
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Nandyala Rukmangadha
- Department of Pathology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517507, India
| | - Hulikal Narendra
- Department of Surgical Oncology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517507, India
| | - Shibdas Banerjee
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| |
Collapse
|
40
|
Leopold J, Prabutzki P, Engel KM, Schiller J. A Five-Year Update on Matrix Compounds for MALDI-MS Analysis of Lipids. Biomolecules 2023; 13:biom13030546. [PMID: 36979481 PMCID: PMC10046246 DOI: 10.3390/biom13030546] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/11/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023] Open
Abstract
Matrix-assisted laser desorption and ionization (MALDI) is a widely used soft-ionization technique of modern mass spectrometry (MS). MALDI enables the analysis of nearly all chemical compounds—including polar and apolar (phospho)lipids—with a minimum extent of fragmentation. MALDI has some particular advantages (such as the possibility to acquire spatially-resolved spectra) and is competitive with the simultaneously developed ESI (electrospray ionization) MS. Although there are still some methodological aspects that need to be elucidated in more detail, it is obvious that the careful selection of an appropriate matrix plays the most important role in (lipid) analysis. Some lipid classes can be detected exclusively if the optimum matrix is used, and the matrix determines the sensitivity by which a particular lipid is detected within a mixture. Since the matrix is, thus, crucial for optimum results, we provide here an update on the progress in the field since our original review in this journal in 2018. Thus, only the development during the last five years is considered, and lipids are sorted according to increasing complexity, starting with free fatty acids and ending with cardiolipins and phosphoinositides.
Collapse
|
41
|
Xu W, Bi H, Peng H, Yang L, He H, Fu G, Liu Y, Wan Y. Fermentative Production of Diacylglycerol by Endophytic Fungi Screened from Taxus chinensis var. mairei. Foods 2023; 12:foods12020399. [PMID: 36673491 PMCID: PMC9857645 DOI: 10.3390/foods12020399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/31/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Diacylglycerol (DAG) production by microbial fermentation has broad development prospects. In the present study, five endophytic fungi which could accumulate DAG were screened from Taxus chinensis var. mairei by using potato dextrose agar plate and flask cultivation in potato dextrose broth culture medium. The strains were biologically identified based on morphological features and semi-quantitative PCR. The identification results indicated that the five strains belonged to different genera: Fusarium annulatum (F. annulatum, coded as MLP41), Trichoderma dorotheae (T. dorotheae, coded as MLG23), Colletotrichum aeschynomenes (C. aeschynomenes, coded as MLY23), Pestalotiopsis scoparia (P. scoparia, coded as MLY31W), and Penicillium cataractarum (P. cataractarum, coded as MLGP11). The crude lipids from the strains and their corresponding triacylglycerol, 1,2-DAG, and 1,3-DAG fractions separated via thin-layer chromatography were mainly composed of palmitic acid, stearic acid, oleic acid, and linoleic acid, which in total accounted for higher than 94% of the content. The effects of fermentation conditions on the DAG productivity were discussed, and the yields of DAG were determined based on the 1H NMR spectra of crude lipids. The highest total DAG yields of F. annulatum, T. dorotheae, C. aeschynomenes, P. scoparia, and P. cataractarum were 112.28, 126.42, 189.87, 105.61, and 135.56 mg/L, respectively. C. aeschynomenes had the strongest potential to produce DAG. The results showed that this may be a new promising route for the production of DAG via fermentation by specific endophytic fungi, such as C. aeschynomenes.
Collapse
Affiliation(s)
- Wenqiang Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Haoran Bi
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Hong Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
- Correspondence: ; Tel.: +86-791-88333816
| | - Ling Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Hongwei He
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Guiming Fu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Yin Wan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| |
Collapse
|