1
|
Elsayed B, Elshoeibi AM, Elhadary M, Al-Jubouri AM, Al-Qahtani N, Vranic S, Al-Saady R. Molecular and immunohistochemical markers in appendiceal mucinous neoplasms: A systematic review and comparative analysis with ovarian mucinous neoplasms and colorectal adenocarcinoma. Histol Histopathol 2025; 40:621-633. [PMID: 39743929 DOI: 10.14670/hh-18-830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
INTRODUCTION Appendiceal mucinous neoplasms (AMNs) represent a rare and diagnostically challenging group of tumors. This systematic review aims to summarize the reported molecular and immunohistochemical markers (IHC) associated with AMNs and compare them with ovarian mucinous neoplasms (OMNs) and colorectal adenocarcinoma (CRC). METHODS A comprehensive search was performed in PubMed/MEDLINE/PMC, Scopus, Embase, and Web of Science databases to identify studies looking at IHC and molecular markers in AMNs. Chi-squared and Fisher's exact tests were utilized to compare the marker expression across different tumor types. RESULTS We identified 27 articles reporting several potential biomarkers for distinguishing between different subtypes of AMNs. Mutations in KRAS, GNAS, and RNF43 emerged as notable biomarkers, with KRAS mutations being the most prevalent across all subtypes. Additionally, p53 IHC overexpression was associated with higher tumor grades. When comparing AMNs with OMNs, we observed a higher prevalence of CK20, CDX2, SATB2, and MUC2 IHC expression, as well as KRAS and GNAS mutations, in AMNs. Conversely, CK7 and PAX8 IHC expression were more prevalent in OMNs. Comparing AMNs with CRCs, we found a higher prevalence of TOPO1 and PTEN IHC expression, as well as KRAS and GNAS mutations, in AMNs. Conversely, nuclear β-catenin IHC expression, as well as TP53, APC, and PIK3CA mutations, were more prevalent in CRCs. CONCLUSION This systematic review identified possible markers for distinguishing AMNs and differentiating between AMNs, OMNs, or CRCs.
Collapse
Affiliation(s)
- Basel Elsayed
- College of Medicine, QU Health, Qatar University, Doha, Qatar.
| | | | | | | | - Noof Al-Qahtani
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Semir Vranic
- Department of Pathology, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Rafif Al-Saady
- Department of Pathology, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
2
|
Raut P, Mathivanan P, Batra SK, Ponnusamy MP. Contract to kill: GNAS mutation. Mol Cancer 2025; 24:70. [PMID: 40050874 PMCID: PMC11887407 DOI: 10.1186/s12943-025-02247-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/24/2025] [Indexed: 03/09/2025] Open
Abstract
The mutation in Gsα-coding GNAS exons, popular as gsp oncogene, is the most frequent mutation across all heterotrimeric G proteins involved in oncogenesis. GNAS R201, the most frequently mutated, followed by Q227, are found predominantly across various neoplasms and cancers such as IPMN, pituitary, thyroid, appendiceal, colorectal, etc. This review emphasizes the pivotal significance of the gsp oncogene and its ramifications underpinning the sustained addiction to GNAS mutation. Recent studies delineating the mechanistic intricacies that provide solid evidence of the profound impact of oncogenic GNAS on tumor formation, progression, and maintenance are highlighted. We have leveraged the discoveries of Gsα as an ideal neoantigen candidate for vaccine therapy, allele-specific inhibitors, and cyclic peptide-based small molecular inhibitors for G proteins and explored the therapeutic potential to target oncogenic GNAS directly. Alternative therapeutic modalities and patient-centric studies to mitigate the impact of GNAS mutations are also discussed. The exposition of novel studies and strategies designed to address the potential challenges inherent in these approaches of targeting the activating mutations of GNAS, along with probable avenues for further investigation, are highlighted. This review aims to reverberate the current understanding of the oncogenic potential of GNAS, the genomic and biological landscape of GNAS-driven neoplasms and cancers, and potential therapeutic strategies against them.
Collapse
Affiliation(s)
- Pratima Raut
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Poompozhil Mathivanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
3
|
Evans J, Shivok K, Chen HH, Gorgov E, Bowne WB, Jain A, Lavu H, Yeo CJ, Nevler A. Correlation of GNAS Mutational Status with Oncologic Outcomes in Patients with Resected Intraductal Papillary Mucinous Neoplasms. Cancers (Basel) 2025; 17:705. [PMID: 40002298 PMCID: PMC11852742 DOI: 10.3390/cancers17040705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/09/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Intraductal papillary mucinous neoplasms (IPMNs) are pre-malignant pancreatic lesions that may progress to invasive pancreatic ductal adenocarcinoma (PDAC). IPMN-associated invasive carcinoma (iIPMN) has been associated with more favorable survival outcomes compared to non-iIPMN-derived PDAC. Here, we aim to investigate the genetic landscape of IPMNs to assess their relevance to oncologic outcomes. Methods: This retrospective study used a large single-institution prospectively maintained database. Patients who underwent curative-intent pancreatic resection between 2016 and 2022 with histologically confirmed diagnosis of IPMN were included. Demographic, pathologic, molecular, and oncologic outcome data were recorded. Kaplan-Meier survival analyses were performed. PDAC data from public genetic databases were used for mutational correlation analysis. p-value ≤ 0.05 was considered as significant. Results: A total of thirty-nine patients with resected IPMN with complete clinical and sequencing data were identified and included in the final cohort. The male-to-female distribution was 21:18, and the mean age was 70.1 ± 9.1 years. GNAS mutations occurred in 23.1% of patients, and 89.7% of patients had iIPMN. In iIPMN patients, GNAS mutation was strongly associated with improved disease-free survival: all GNAS-mutant patients survived to follow-up with significantly fewer recurrences than in GNAS wild-type (WT) patients (p = 0.013). Mutated GNAS closely co-occurred with wild-type KRAS (p < 0.001), and further analysis of large genomic PDAC datasets validated this finding (OR 3.47, p < 0.0001). Conclusions: Our study suggests prognostic value of mutational status in malignant resected IPMNs. WT GNAS, mutant P53, and mutant KRAS each correlate with recurrence and decreased survival. Further studies are required to validate these preliminary observations.
Collapse
Affiliation(s)
- Julia Evans
- Sidney Kimmel Medical College, Philadelphia, PA 19107, USA; (J.E.); (K.S.); (H.H.C.)
| | - Kylee Shivok
- Sidney Kimmel Medical College, Philadelphia, PA 19107, USA; (J.E.); (K.S.); (H.H.C.)
| | - Hui Hsuan Chen
- Sidney Kimmel Medical College, Philadelphia, PA 19107, USA; (J.E.); (K.S.); (H.H.C.)
| | - Eliyahu Gorgov
- Jefferson Pancreas, Biliary and Related Cancer Center, Sidney Kimmel Cancer Center, Philadelphia, PA 19107, USA (C.J.Y.)
| | - Wilbur B. Bowne
- Jefferson Pancreas, Biliary and Related Cancer Center, Sidney Kimmel Cancer Center, Philadelphia, PA 19107, USA (C.J.Y.)
| | - Aditi Jain
- Jefferson Pancreas, Biliary and Related Cancer Center, Sidney Kimmel Cancer Center, Philadelphia, PA 19107, USA (C.J.Y.)
| | - Harish Lavu
- Jefferson Pancreas, Biliary and Related Cancer Center, Sidney Kimmel Cancer Center, Philadelphia, PA 19107, USA (C.J.Y.)
| | - Charles J. Yeo
- Jefferson Pancreas, Biliary and Related Cancer Center, Sidney Kimmel Cancer Center, Philadelphia, PA 19107, USA (C.J.Y.)
| | - Avinoam Nevler
- Jefferson Pancreas, Biliary and Related Cancer Center, Sidney Kimmel Cancer Center, Philadelphia, PA 19107, USA (C.J.Y.)
| |
Collapse
|
4
|
Corradi C, Gentiluomo M, Adsay V, Sainz J, Camisa PR, Wlodarczyk B, Crippa S, Tavano F, Capurso G, Campa D. Multi-omic markers of intraductal papillary mucinous neoplasms progression into pancreatic cancer. Semin Cancer Biol 2025; 109:25-43. [PMID: 39733817 DOI: 10.1016/j.semcancer.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most lethal and common form of pancreatic cancer, it has no specific symptoms, and most of the patients are diagnosed when the disease is already at an advanced stage. Chemotherapy typically has only a modest effect, making surgery the most effective treatment option. However, only a small percentage of patients are amenable to surgery. One viable strategy to reduce PDAC death burden associated with the disease is to focus on precursor lesions and identify markers able to predict who will evolve into PDAC. While most PDACs are believed to be preceded by pancreatic intraepithelial neoplasms (PanINs), 5-10 % arise from Intraductal papillary mucinous neoplasms (IPMNs), which are mass-forming cystic lesions that are very common in the general population. IPMNs offer an invaluable model of pancreatic carcinogenesis for researchers to analyse, as well as a target population for PDAC early detection by clinicians. The evolution of IPMN into cancer is a complex and multistep process, therefore the identification of individual markers will not be the solution. In recent years, multiple omics technologies have been instrumental to identify possible biomarkers of IPMN progression and carcinogenesis. The only foreseeable strategy will be to integrate multi-omics data, alongside clinical and morphological features, into a progression score or signature using either standard epidemiologic tools or artificial intelligence. The aim of this manuscript is to review the current knowledge on genetic biomarkers and to briefly mention also additional omics, such as metabolomics, the exposome, the miRNome and epigenomics of IPMNs.
Collapse
Affiliation(s)
| | | | - Volkan Adsay
- Department of Pathology, Koç University School of Medicine and Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Juan Sainz
- Department of Biochemistry and Molecular Biology, University of Granada, Granada, Spain
| | - Paolo Riccardo Camisa
- Division of Pancreatic Surgery and Transplantation, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Barbara Wlodarczyk
- Department of Digestive Tract Diseases, Medical University of Lodz, Lodz, Poland
| | - Stefano Crippa
- Division of Pancreatic Surgery and Transplantation, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Francesca Tavano
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Italy
| | - Gabriele Capurso
- Vita-Salute San Raffaele University, Milan, Italy; Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy.
| |
Collapse
|
5
|
Ying H, Kimmelman AC, Bardeesy N, Kalluri R, Maitra A, DePinho RA. Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev 2025; 39:36-63. [PMID: 39510840 PMCID: PMC11789498 DOI: 10.1101/gad.351863.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) poses a grim prognosis for patients. Recent multidisciplinary research efforts have provided critical insights into its genetics and tumor biology, creating the foundation for rational development of targeted and immune therapies. Here, we review the PDAC genomic landscape and the role of specific oncogenic events in tumor initiation and progression, as well as their contributions to shaping its tumor biology. We further summarize and synthesize breakthroughs in single-cell and metabolic profiling technologies that have illuminated the complex cellular composition and heterotypic interactions of the PDAC tumor microenvironment, with an emphasis on metabolic cross-talk across cancer and stromal cells that sustains anabolic growth and suppresses tumor immunity. These conceptual advances have generated novel immunotherapy regimens, particularly cancer vaccines, which are now in clinical testing. We also highlight the advent of KRAS targeted therapy, a milestone advance that has transformed treatment paradigms and offers a platform for combined immunotherapy and targeted strategies. This review provides a perspective summarizing current scientific and therapeutic challenges as well as practice-changing opportunities for the PDAC field at this major inflection point.
Collapse
Affiliation(s)
- Haoqiang Ying
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA;
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Alec C Kimmelman
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, New York 10016, USA
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, New York 10016, USA
| | - Nabeel Bardeesy
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts 02114, USA
- The Cancer Program, Broad Institute, Cambridge, Massachusetts 02142, USA
| | - Raghu Kalluri
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, University of Texas Health Science Center, Houston, Texas 77030, USA
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Department of Bioengineering, Rice University, Houston, Texas 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Anirban Maitra
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, University of Texas Health Science Center, Houston, Texas 77030, USA
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Sheikh Ahmed Pancreatic Cancer Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ronald A DePinho
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, University of Texas Health Science Center, Houston, Texas 77030, USA;
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
6
|
Nagarajan Y, Chandrasekaran N, Deepa Parvathi V. Functionalized Nanomaterials In Pancreatic Cancer Theranostics And Molecular Imaging. ChemistryOpen 2025; 14:e202400232. [PMID: 39434498 PMCID: PMC11726697 DOI: 10.1002/open.202400232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/13/2024] [Indexed: 10/23/2024] Open
Abstract
Pancreatic cancer (PC) is one of the most fatal malignancies in the world. This lethality persists due to lack of effective and efficient treatment strategies. Pancreatic ductal adenocarcinoma (PDAC) is an aggressive epithelial malignancy which has a high incidence rate and contributes to overall cancer fatalities. As of 2022, pancreatic cancer contributes to about 3 % of all cancers globally. Over the years, research has characterised germline predisposition, the origin cell, precursor lesions, genetic alterations, structural alterations, transcriptional changes, tumour heterogeneity, metastatic progression, and the tumour microenvironment, which has improved the understanding of PDAC carcinogenesis. By using molecular-based target therapies, these fundamental advancements support primary prevention, screening, early detection, and treatment. The focus of this review is the use of targeted nanoparticles as an alternative to conventional pancreatic cancer treatment due to the various side effects of the latter. The principles of nanoparticle based cancer therapy is efficient targeting of tumour cells via enhanced permeability and retention (EPR) effects and decrease the chemotherapy side effects due to their non-specificity. To increase the efficiency of existing therapies and modify target nanoparticles, several molecular markers of pancreatic cancer cells have been identified. Thus pancreatic cancer cells can be detected using appropriately functionalized nanoparticles with specific signalling molecules. Once cancer has been identified, these nanoparticles can kill the tumour by inducing hyperthermia, medication delivery, immunotherapy or gene therapy. As potent co-delivery methods for adjuvants and tumor-associated antigens; nanoparticles (NPs) have demonstrated significant promise as delivery vehicles in cancer therapy. This ensures the precise internalization of the functionalized nanoparticle and thus also activates the immune system effectively against tumor cells. This review also discusses the immunological factors behind the uptake of functionalized nanoparticles in cancer therapies. Theranostics, which combine imaging and therapeutic chemicals in a single nanocarrier, are the next generation of medicines. Pancreatic cancer treatment may be revolutionised by the development of a tailored nanocarrier with diagnostic, therapeutic, and imaging capabilities. It is extremely difficult to incorporate various therapeutic modalities into a single nanocarrier without compromising the individual functionalities. Surface modification of nanocarriers with antibodies or proteins will enable to attain multifunctionality which increases the efficiency of pancreatic cancer therapy.
Collapse
Affiliation(s)
- Yoghalakshmi Nagarajan
- Department of Biomedical SciencesFaculty of Biomedical Sciences & TechnologySri Ramachandra Institute of Higher Education and Research (SRIHER)Tamil NaduChennai600116India
| | - Natarajan Chandrasekaran
- Senior Professor & Former DirectorCentre for NanobiotechnologyVellore Institute of Technology (VIT)Vellore Campus, Tiruvalam roadTamil NaduKatpadiVellore 632014
| | - Venkatachalam Deepa Parvathi
- Department of Biomedical SciencesFaculty of Biomedical Sciences & TechnologySri Ramachandra Institute of Higher Education and Research (SRIHER)Tamil NaduChennai600116India
| |
Collapse
|
7
|
Makino Y, Rajapakshe KI, Chellakkan Selvanesan B, Okumura T, Date K, Dutta P, Abou-Elkacem L, Sagara A, Min J, Sans M, Yee N, Siemann MJ, Enriquez J, Smith P, Bhattacharya P, Kim M, Dede M, Hart T, Maitra A, Thege FI. Metabolic reprogramming by mutant GNAS creates an actionable dependency in intraductal papillary mucinous neoplasms of the pancreas. Gut 2024; 74:75-88. [PMID: 39277181 PMCID: PMC12014225 DOI: 10.1136/gutjnl-2024-332412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND Oncogenic 'hotspot' mutations of KRAS and GNAS are two major driver alterations in intraductal papillary mucinous neoplasms (IPMNs), which are bona fide precursors to pancreatic ductal adenocarcinoma. We previously reported that pancreas-specific Kras G12D and Gnas R201C co-expression in p48Cre; KrasLSL-G12D; Rosa26LSL-rtTA; Tg (TetO-GnasR201C) mice ('Kras;Gnas' mice) caused development of cystic lesions recapitulating IPMNs. OBJECTIVE We aim to unveil the consequences of mutant Gnas R201C expression on phenotype, transcriptomic profile and genomic dependencies. DESIGN We performed multimodal transcriptional profiling (bulk RNA sequencing, single-cell RNA sequencing and spatial transcriptomics) in the 'Kras;Gnas' autochthonous model and tumour-derived cell lines (Kras;Gnas cells), where Gnas R201C expression is inducible. A genome-wide CRISPR/Cas9 screen was conducted to identify potential vulnerabilities in KrasG12D;GnasR201C co-expressing cells. RESULTS Induction of Gnas R201C-and resulting G(s)alpha signalling-leads to the emergence of a gene signature of gastric (pyloric type) metaplasia in pancreatic neoplastic epithelial cells. CRISPR screening identified the synthetic essentiality of glycolysis-related genes Gpi1 and Slc2a1 in Kras G12D;Gnas R201C co-expressing cells. Real-time metabolic analyses in Kras;Gnas cells and autochthonous Kras;Gnas model confirmed enhanced glycolysis on Gnas R201C induction. Induction of Gnas R201C made Kras G12D expressing cells more dependent on glycolysis for their survival. Protein kinase A-dependent phosphorylation of the glycolytic intermediate enzyme 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) was a driver of increased glycolysis on Gnas R201C induction. CONCLUSION Multiple orthogonal approaches demonstrate that Kras G12D and Gnas R201C co-expression results in a gene signature of gastric pyloric metaplasia and glycolytic dependency during IPMN pathogenesis. The observed metabolic reprogramming may provide a potential target for therapeutics and interception of IPMNs.
Collapse
Affiliation(s)
- Yuki Makino
- Translational Molecular Pathology, UTMDACC, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, UTMDACC, Houston, Texas, USA
| | - Kimal I Rajapakshe
- Translational Molecular Pathology, UTMDACC, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, UTMDACC, Houston, Texas, USA
| | - Benson Chellakkan Selvanesan
- Translational Molecular Pathology, UTMDACC, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, UTMDACC, Houston, Texas, USA
| | - Takashi Okumura
- Translational Molecular Pathology, UTMDACC, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, UTMDACC, Houston, Texas, USA
| | - Kenjiro Date
- Translational Molecular Pathology, UTMDACC, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, UTMDACC, Houston, Texas, USA
| | | | - Lotfi Abou-Elkacem
- Translational Molecular Pathology, UTMDACC, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, UTMDACC, Houston, Texas, USA
| | - Akiko Sagara
- Translational Molecular Pathology, UTMDACC, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, UTMDACC, Houston, Texas, USA
| | - Jimin Min
- Translational Molecular Pathology, UTMDACC, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, UTMDACC, Houston, Texas, USA
| | - Marta Sans
- Translational Molecular Pathology, UTMDACC, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, UTMDACC, Houston, Texas, USA
| | - Nathaniel Yee
- Translational Molecular Pathology, UTMDACC, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, UTMDACC, Houston, Texas, USA
| | - Megan J Siemann
- Translational Molecular Pathology, UTMDACC, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, UTMDACC, Houston, Texas, USA
| | - Jose Enriquez
- Cancer Systems Imaging, UTMDACC, Houston, Texas, USA
| | | | | | - Michael Kim
- Surgical Oncology, UTMDACC, Houston, Texas, USA
| | - Merve Dede
- Bioinformatics & Computational Biology, UTMDACC, Houston, Texas, USA
| | - Traver Hart
- Bioinformatics & Computational Biology, UTMDACC, Houston, Texas, USA
- Department of Cancer Biology, UTMDACC, Houston, Texas, USA
| | - Anirban Maitra
- Translational Molecular Pathology, UTMDACC, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, UTMDACC, Houston, Texas, USA
| | - Fredrik Ivar Thege
- Translational Molecular Pathology, UTMDACC, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, UTMDACC, Houston, Texas, USA
| |
Collapse
|
8
|
Lorenzo D, Aguilera Munoz L, Vedie AL, Prat F, Dokmak S, Sauvanet A, Maire F, de Mestier L, Copin P, Dioguardi Burgio M, Couvelard A, Haumaitre C, Cros J, Rebours V. Mural nodules and prevalence of high-grade dysplasia in branch duct intraductal papillary mucinous neoplasm of the pancreas undergoing resection. Br J Surg 2024; 111:znae292. [PMID: 39612583 DOI: 10.1093/bjs/znae292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/23/2024] [Accepted: 10/25/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND A mural module (MN) within a branch-duct intraductal papillary mucinous neoplasm (BD-IPMN) could be a potential target for local treatment. The main aim was to describe the location of the highest grade of dysplasia relative to the mural module to assess the relevance of local treatment. METHODS Observational study of patients who underwent a pancreatic resection for suspected high-risk IPMN because of a mural module within a BD-IPMN (2012-2022). All patients had preoperative imaging confirming the enhancing mural module. The mural module was considered as a theoretical appropriate target for local destruction if no cancer or high-grade dysplasia (HGD) was described elsewhere than in the mural module. RESULTS Eighty-two patients (male: 44 (54%); mean age: 65 ± 9.2 years) were included. The mean size of BD-IPMN containing the mural module was 32 ± 14.8 mm. The mural module mean diameter was 10.5 ± 5.6 mm, and the main pancreatic duct (MPD) mean diameter was 5.2 ± 3.6 mm. Six patients presented invasive carcinoma (7%), 37 had HGD (45%), and 39 (48%) had exclusively low-grade dysplasia. The mural module was dysplastic in 70 cases (85%). The mural module was considered a relevant target for local ablation in 45 patients (55%), whereas 37 patients (45%) had HGD/invasive carcinoma distant from the mural module. HGD was exclusively present in the mural module in 6/82 patients (7%). Factors independently associated with 'relevant indication for local treatment' were female gender (P = 0.004; OR = 5.2, 95% c.i. 1.7 to 15.9) and MPD < 5 mm (P < 0.0001; OR = 8.6, 95% c.i. 2.7 to 26.8). CONCLUSION In resected pancreata, BD-IPMN mural modules are associated with HGD distant from the mural module almost half of cases. The findings question the safety of local treatment, supporting pancreatectomy as the best approach.
Collapse
Affiliation(s)
- Diane Lorenzo
- Department of Digestive Endoscopy, Université Paris Cité, Beaujon University Hospital (APHP), Clichy, France
- Centre of Research on Inflammation (CRI), INSERM U1149, Paris, France
| | - Lina Aguilera Munoz
- Centre of Research on Inflammation (CRI), INSERM U1149, Paris, France
- Department of Pancreatology and Digestive Oncology, Université Paris Cité, Beaujon University Hospital (APHP), CRMR PaRaDis Pancreatic Rare Diseases, Clichy, France
| | - Anne-Laure Vedie
- Department of Pancreatology and Digestive Oncology, Université Paris Cité, Beaujon University Hospital (APHP), CRMR PaRaDis Pancreatic Rare Diseases, Clichy, France
| | - Frédéric Prat
- Department of Digestive Endoscopy, Université Paris Cité, Beaujon University Hospital (APHP), Clichy, France
- Centre of Research on Inflammation (CRI), INSERM U1149, Paris, France
| | - Safi Dokmak
- Department of Hepatobiliary and Pancreatic Surgery, Université Paris Cité, Beaujon University Hospital (APHP), Clichy, France
| | - Alain Sauvanet
- Department of Hepatobiliary and Pancreatic Surgery, Université Paris Cité, Beaujon University Hospital (APHP), Clichy, France
| | - Frédérique Maire
- Department of Pancreatology and Digestive Oncology, Université Paris Cité, Beaujon University Hospital (APHP), CRMR PaRaDis Pancreatic Rare Diseases, Clichy, France
| | - Louis de Mestier
- Centre of Research on Inflammation (CRI), INSERM U1149, Paris, France
- Department of Pancreatology and Digestive Oncology, Université Paris Cité, Beaujon University Hospital (APHP), CRMR PaRaDis Pancreatic Rare Diseases, Clichy, France
| | - Pauline Copin
- Department of Radiology, Hôpital Beaujon, AP-HP.Nord, Clichy, France
| | - Marco Dioguardi Burgio
- Centre of Research on Inflammation (CRI), INSERM U1149, Paris, France
- Department of Radiology, Hôpital Beaujon, AP-HP.Nord, Clichy, France
| | - Anne Couvelard
- Centre of Research on Inflammation (CRI), INSERM U1149, Paris, France
- Department of Pathology, Université Paris Cité, Bichat University Hospital (APHP), Paris, France
| | - Cécile Haumaitre
- Centre of Research on Inflammation (CRI), INSERM U1149, Paris, France
| | - Jérôme Cros
- Centre of Research on Inflammation (CRI), INSERM U1149, Paris, France
- Department of Pathology, Université Paris Cité, FHU MOSAIC, Beaujon University Hospital (APHP), Clichy, France
| | - Vinciane Rebours
- Centre of Research on Inflammation (CRI), INSERM U1149, Paris, France
- Department of Pancreatology and Digestive Oncology, Université Paris Cité, Beaujon University Hospital (APHP), CRMR PaRaDis Pancreatic Rare Diseases, Clichy, France
| |
Collapse
|
9
|
Moris D, Liapis I, Gupta P, Ziogas IA, Karachaliou GS, Dimitrokallis N, Nguyen B, Radkani P. An Overview for Clinicians on Intraductal Papillary Mucinous Neoplasms (IPMNs) of the Pancreas. Cancers (Basel) 2024; 16:3825. [PMID: 39594780 PMCID: PMC11593033 DOI: 10.3390/cancers16223825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Currently, there is no reliable method of discerning between low-risk and high-risk intraductal papillary mucinous neoplasms (IPMNs). Operative resection is utilized in an effort to resect those lesions with high-grade dysplasia (HGD) prior to the development of invasive disease. The current guidelines recommend resection for IPMN that involve the main pancreatic duct. Resecting lesions with HGD before their progression to invasive disease and the avoidance of resection in those patients with low-grade dysplasia is the optimal clinical scenario. Therefore, the importance of developing preoperative models able to discern HGD in IPMN patients cannot be overstated. Low-risk patients should be managed with nonsurgical treatment options (typically MRI surveillance), while high-risk patients would undergo resection, hopefully prior to the formation of invasive disease. Current research is evolving in multiple directions. First, there is an ongoing effort to identify reliable markers for predicting malignant transformation of IPMN, mainly focusing on genomic and transcriptomic data from blood, tissue, and cystic fluid. Also, multimodal models of combining biomarkers with clinical and radiographic data seem promising for providing robust and accurate answers of risk levels for IPMN patients.
Collapse
Affiliation(s)
- Dimitrios Moris
- MedStar Georgetown Transplant Institute, Washington, DC 20007, USA; (P.G.); (B.N.); (P.R.)
| | - Ioannis Liapis
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Piyush Gupta
- MedStar Georgetown Transplant Institute, Washington, DC 20007, USA; (P.G.); (B.N.); (P.R.)
| | - Ioannis A. Ziogas
- Department of Surgery, University of Colorado School of Medicine, Aurora, CO 80045, USA;
| | - Georgia-Sofia Karachaliou
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA;
| | - Nikolaos Dimitrokallis
- 1st Department of Surgery & Organ Transplant Unit, Evangelismos General Hospital, 10676 Athens, Greece;
| | - Brian Nguyen
- MedStar Georgetown Transplant Institute, Washington, DC 20007, USA; (P.G.); (B.N.); (P.R.)
| | - Pejman Radkani
- MedStar Georgetown Transplant Institute, Washington, DC 20007, USA; (P.G.); (B.N.); (P.R.)
| |
Collapse
|
10
|
Johannet P, Abdelfattah S, Wilde C, Patel S, Walch H, Rousseau B, Argiles G, Artz O, Patel M, Arfe A, Cercek A, Yaeger R, Ganesh K, Schultz N, Diaz LA, Foote MB. Molecular and Clinicopathologic Impact of GNAS Variants Across Solid Tumors. J Clin Oncol 2024; 42:3847-3857. [PMID: 39121438 PMCID: PMC11540749 DOI: 10.1200/jco.24.00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/15/2024] [Accepted: 06/03/2024] [Indexed: 08/11/2024] Open
Abstract
PURPOSE The molecular drivers underlying mucinous tumor pathogenicity are poorly understood. GNAS mutations predict metastatic burden and treatment resistance in mucinous appendiceal adenocarcinoma. We investigated the pan-cancer clinicopathologic relevance of GNAS variants. METHODS We assessed 58,043 patients with Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (IMPACT)-sequenced solid tumors to identify oncogenic variants, including GNAS, associated with mucinous tumor phenotype. We then performed comprehensive molecular analyses to compare GNAS-mutant (mut) and wild-type tumors across cancers. Gene expression patterns associated with GNAS-mut tumors were assessed in a The Cancer Genome Atlas cohort. Associations between GNAS variant status and peritoneal metastasis, first-line systemic therapy response, progression-free survival (PFS), and overall survival (OS) were determined using a propensity-matched subcohort of patients with metastatic disease. RESULTS Mucinous tumors were enriched for oncogenic GNAS variants. GNAS was mutated in >1% of small bowel, cervical, colorectal, pancreatic, esophagogastric, hepatobiliary, and GI neuroendocrine cancers. Across these cancers, GNAS-mut tumors exhibited a generally conserved C-to-T mutation-high, aneuploidy-low molecular profile with co-occurring prevalent KRAS variants (65% of GNAS-mut tumors) and fewer TP53 alterations. GNAS-mut tumors exhibited recurrently comutated alternative tumor suppressors (RBM10, INPPL1) and upregulation of MAPK and cell surface modulators. GNAS-mut tumors demonstrate an increased prevalence of peritoneal metastases (odds ratio [OR], 1.7 [95% CI, 1.1 to 2.5]; P = .006), worse response to first-line systemic therapy (OR, 2.2 [95% CI, 1.3 to 3.8]; P = .003), and shorter PFS (median, 5.6 v 7.0 months; P = .047). In a multivariable analysis, GNAS mutated status was independently prognostic of worse OS (hazard ratio, 1.25 [95% CI, 1.01 to 1.56]; adjusted P = .04). CONCLUSION Across the assessed cancers, GNAS-mut tumors exhibit a conserved molecular and clinical phenotype defined by mucinous tumor status, increased peritoneal metastasis, poor response to first-line systemic therapy, and worse survival.
Collapse
Affiliation(s)
- Paul Johannet
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering, New York, NY
| | - Somer Abdelfattah
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering, New York, NY
| | - Callahan Wilde
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering, New York, NY
| | - Shrey Patel
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering, New York, NY
| | - Henry Walch
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Benoit Rousseau
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering, New York, NY
| | - Guillem Argiles
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering, New York, NY
| | - Oliver Artz
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering, New York, NY
| | - Miteshkumar Patel
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering, New York, NY
| | - Andrea Arfe
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Andrea Cercek
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering, New York, NY
| | - Rona Yaeger
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering, New York, NY
| | - Karuna Ganesh
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering, New York, NY
| | - Nikolaus Schultz
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Luis A. Diaz
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering, New York, NY
| | - Michael B. Foote
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering, New York, NY
| |
Collapse
|
11
|
Lin W, Phatarphekar A, Zhong Y, Liu L, Kwon HB, Gerwick WH, Wang Y, Mehta S, Zhang J. Light-gated integrator for highlighting kinase activity in living cells. Nat Commun 2024; 15:7804. [PMID: 39242543 PMCID: PMC11379911 DOI: 10.1038/s41467-024-51270-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 08/02/2024] [Indexed: 09/09/2024] Open
Abstract
Protein kinases are key signaling nodes that regulate fundamental biological and disease processes. Illuminating kinase signaling from multiple angles can provide deeper insights into disease mechanisms and improve therapeutic targeting. While fluorescent biosensors are powerful tools for visualizing live-cell kinase activity dynamics in real time, new molecular tools are needed that enable recording of transient signaling activities for post hoc analysis and targeted manipulation. Here, we develop a light-gated kinase activity coupled transcriptional integrator (KINACT) that converts dynamic kinase signals into "permanent" fluorescent marks. KINACT enables robust monitoring of kinase activity across scales, accurately recording subcellular PKA activity, highlighting PKA activity distribution in 3D cultures, and identifying PKA activators and inhibitors in high-throughput screens. We further leverage the ability of KINACT to drive signaling effector expression to allow feedback manipulation of the balance of GαsR201C-induced PKA and ERK activation and dissect the mechanisms of oncogenic G protein signaling.
Collapse
Affiliation(s)
- Wei Lin
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
| | | | - Yanghao Zhong
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Longwei Liu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Hyung-Bae Kwon
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William H Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Yingxiao Wang
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
- Shu Chien - Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
12
|
Thompson ED. Neoplastic Progression in Macroscopic Precursor Lesions of the Pancreas. Arch Pathol Lab Med 2024; 148:980-988. [PMID: 38386006 DOI: 10.5858/arpa.2023-0358-ra] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 02/23/2024]
Abstract
CONTEXT.— Macroscopic precursor lesions of the pancreas represent a complex clinical management problem. Molecular characterization of pancreatic cysts has helped to confirm and refine clinical and pathologic classifications of these lesions, inform our understanding of tumorigenesis in the pancreas, and provide opportunities for preoperative diagnosis. OBJECTIVE.— To review the pathologic classification of macroscopic cystic lesions of the pancreas: intraductal papillary mucinous neoplasms (IPMNs), mucinous cystic neoplasms (MCNs), intraductal oncocytic papillary neoplasms (IOPNs), and intraductal tubulopapillary neoplasms (ITPNs), and to describe our current state of understanding of their molecular underpinnings, relationship to invasive carcinomas, and implications for diagnosis and prognostication. DATA SOURCES.— We assessed the current primary literature and current World Health Organization Classification of Digestive System Tumours. CONCLUSIONS.— Macroscopic cystic lesions of the pancreas are morphologically and molecularly diverse. IPMNs and MCNs share mucinous cytoplasm with papillae. MCNs are defined by ovarian-type stroma. IOPNs have granular eosinophilic cytoplasm, prominent nucleoli, and complex, arborizing papillae. ITPNs demonstrate complex, back-to-back tubules and anastomosing papillae and lack prominent intracellular mucin. IPMNs and MCNs are characterized by driver mutations in KRAS/GNAS (IPMNs) and KRAS (MCNs), with later driver events in RNF43, CDKN2A, SMAD4, and TP53. In contrast, IOPNs and ITPNs have recurrent rearrangements in PRKACA/PRKACB and MAPK-associated genes, respectively. The recurrent alterations described in cysts provide an opportunity for diagnosis using aspirated cyst fluid. Molecular characterization of IPMNs shows a striking spatial and mutational heterogeneity, challenging traditional models of neoplastic development and creating challenges to interpretation of cyst fluid sequencing results.
Collapse
Affiliation(s)
- Elizabeth D Thompson
- From the Departments of Pathology and Oncology, Sol Goldman Pancreatic Cancer Research Center, and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
13
|
Nitschke C, Tölle M, Walter P, Meißner K, Goetz M, Kropidlowski J, Berger AW, Izbicki JR, Nickel F, Hackert T, Pantel K, Wikman H, Uzunoglu FG. KRAS and GNAS mutations in cell-free DNA and in circulating epithelial cells in patients with intraductal papillary mucinous neoplasms-an observational pilot study. Mol Oncol 2024. [PMID: 39219164 DOI: 10.1002/1878-0261.13719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/01/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Intraductal papillary mucinous neoplasms (IPMNs) are potential precursor lesions of pancreatic cancer. We assessed the efficacy of screening for KRAS proto-oncogene, GTPase (KRAS), and GNAS complex locus (GNAS) mutations in cell-free DNA (cfDNA)-using digital droplet polymerase chain reaction (ddPCR) and circulating epithelial cell (CEC) detection-as biomarkers for risk stratification in IPMN patients. We prospectively collected plasma samples from 25 resected patients at risk of malignant progression, and 23 under clinical surveillance. Our findings revealed KRAS mutations in 10.4% and GNAS mutations in 18.8% of the overall cohort. Among resected IPMN patients, KRAS and GNAS mutation detection rates were 16.0% and 32.0%, respectively, whereas both rates were 4.0% in conservatively managed IPMN. GNAS mutations in cfDNA were significantly more prevalent in resected IPMN (P = 0.024) compared with IPMN under surveillance. No CECs were detected. The absence of KRAS and GNAS mutations could be a reliable marker for branch duct IPMN without worrisome features. The emergence of GNAS mutations could prompt enhanced imaging surveillance. Neither the presence of established worrisome features nor GNAS or KRAS mutations appear effective in identifying high-grade dysplasia among IPMN patients.
Collapse
Affiliation(s)
- Christine Nitschke
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Germany
- Mildred Scheel Cancer Career Center, Hamburg, Germany
- Institute of Tumor Biology, University Hospital Hamburg-Eppendorf, Germany
| | - Marie Tölle
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Germany
- Institute of Tumor Biology, University Hospital Hamburg-Eppendorf, Germany
| | - Philipp Walter
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Germany
- Institute of Tumor Biology, University Hospital Hamburg-Eppendorf, Germany
| | - Kira Meißner
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Germany
- Institute of Tumor Biology, University Hospital Hamburg-Eppendorf, Germany
| | - Mara Goetz
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Germany
| | | | - Andreas W Berger
- Department of Internal Medicine I, Ulm University, Germany
- Department of Internal Medicine II, Evangelisches Krankenhaus Königin Elisabeth Herzberge, Berlin, Germany
| | - Jakob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Germany
| | - Felix Nickel
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Germany
| | - Thilo Hackert
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Hospital Hamburg-Eppendorf, Germany
| | - Harriet Wikman
- Institute of Tumor Biology, University Hospital Hamburg-Eppendorf, Germany
| | - Faik G Uzunoglu
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Germany
| |
Collapse
|
14
|
Zen Y, Akita M. Neoplastic Progression in Intraductal Papillary Neoplasm of the Bile Duct. Arch Pathol Lab Med 2024; 148:989-996. [PMID: 36800543 DOI: 10.5858/arpa.2022-0407-ra] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2022] [Indexed: 02/19/2023]
Abstract
CONTEXT.— Intraductal papillary neoplasm of the bile duct (IPNB) is classified into types 1 and 2 based on criteria proposed in 2019. Recent studies investigated the clinicopathologic and molecular features of IPNB, which contributed to a more detailed understanding of this undercharacterized neoplasm. OBJECTIVE.— To summarize driver gene mutations, radiologic tumor evolution, and a potentially unique pattern of tumor progression in IPNB. DATA SOURCES.— Data were derived from a literature review and personal clinical and research experiences. CONCLUSIONS.— In contrast to de novo cholangiocarcinoma, type 1 IPNB often has mutations in APC, CTNNB1, STK11, and GNAS. These molecular features are shared with intraductal papillary mucinous neoplasm of the pancreas; however, the frequencies of individual gene abnormalities differ between these 2 neoplasms. A radiologic review of sequential images suggested that type 1 IPNB is a slow-growing neoplasm, with an ∼1-cm increase in size every 2 to 3 years, and remains in a noninvasive state for many years. A similar papillary neoplasm may develop in the biliary tree years after the complete surgical resection of IPNB. The second neoplasm has the same genetic abnormalities as the first neoplasm, indicating intrabiliary implantation rather than multifocal lesions. In contrast to type 1 IPNB, most cases of type 2 IPNB have invasive malignancy at the initial presentation. Type 2 IPNB shares many clinicopathologic and molecular features with de novo cholangiocarcinoma, questioning the distinctness of this tumor entity. The molecular mechanisms underlying malignant transformation in IPNB warrant further study.
Collapse
Affiliation(s)
- Yoh Zen
- From the Institute of Liver Studies, King's College Hospital, London, UK (Zen)
| | - Masayuki Akita
- the Department of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan (Akita)
| |
Collapse
|
15
|
Tavano F, Latiano A, Palmieri O, Gioffreda D, Latiano T, Gentile A, Tardio M, Latiano TP, Gentile M, Terracciano F, Perri F. Duodenal Fluid Analysis as a Rewarding Approach to Detect Low-Abundance Mutations in Biliopancreatic Cancers. Int J Mol Sci 2024; 25:8436. [PMID: 39126005 PMCID: PMC11312909 DOI: 10.3390/ijms25158436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Diagnosis of biliopancreatic cancers by the available serum tumor markers, imaging, and histopathological tissue specimen examination remains a challenge. Circulating cell-free DNA derived from matched pairs of secretin-stimulated duodenal fluid (DF) and plasma from 10 patients with biliopancreatic diseases and 8 control subjects was analyzed using AmpliSeq™ HD technology for Ion Torrent Next-Generation Sequencing to evaluate the potential of liquid biopsy with DF in biliopancreatic cancers. The median cfDNA concentration was greater in DF-derived than in plasma-derived samples. A total of 13 variants were detected: 11 vs. 1 were exclusive for DF relative to the plasma source, and 1 was shared between the two body fluids. According to the four-tier systems, 10 clinical tier-I-II (76.9%), 1 tier-III (7.7%), and 2 tier-IV (15.4%) variants were identified. Notably, the 11 tier-I-III variants were exclusively found in DF-derived cfDNA from five patients with biliopancreatic cancers, and were detected in seven genes (KRAS, TP53, BRAF, CDKN2A, RNF43, GNAS, and PIK3CA); 82% of the tier-I-III variants had a low abundance, with a VAF < 6%. The mutational profiling of DF seems to be a reliable and promising tool for identifying cancer-associated alterations in malignant cancers of the biliopancreatic tract.
Collapse
Affiliation(s)
- Francesca Tavano
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Anna Latiano
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Orazio Palmieri
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Domenica Gioffreda
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Tiziana Latiano
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Annamaria Gentile
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Matteo Tardio
- Department of Surgery, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Tiziana Pia Latiano
- Department of Oncology, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Marco Gentile
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Fulvia Terracciano
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Francesco Perri
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| |
Collapse
|
16
|
Desai R, Huang L, Gonzalez RS, Muthuswamy SK. Oncogenic GNAS Uses PKA-Dependent and Independent Mechanisms to Induce Cell Proliferation in Human Pancreatic Ductal and Acinar Organoids. Mol Cancer Res 2024; 22:440-451. [PMID: 38319286 PMCID: PMC10906748 DOI: 10.1158/1541-7786.mcr-23-0199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/26/2023] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
IMPLICATIONS The study identifies an opportunity to discover a PKA-independent pathway downstream of oncogene GNAS for managing IPMN lesions and their progression to PDAC.
Collapse
Affiliation(s)
- Ridhdhi Desai
- Cancer Research Institute, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Current Address: Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Ling Huang
- Cancer Research Institute, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Current Address: Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Health, Detroit, Michigan
| | - Raul S. Gonzalez
- Cancer Research Institute, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Senthil K. Muthuswamy
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, NIH, Bethesda, MD, MA, 02215, USA
| |
Collapse
|
17
|
Braxton AM, Kiemen AL, Grahn MP, Forjaz A, Parksong J, Mahesh Babu J, Lai J, Zheng L, Niknafs N, Jiang L, Cheng H, Song Q, Reichel R, Graham S, Damanakis AI, Fischer CG, Mou S, Metz C, Granger J, Liu XD, Bachmann N, Zhu Y, Liu Y, Almagro-Pérez C, Jiang AC, Yoo J, Kim B, Du S, Foster E, Hsu JY, Rivera PA, Chu LC, Liu F, Fishman EK, Yuille A, Roberts NJ, Thompson ED, Scharpf RB, Cornish TC, Jiao Y, Karchin R, Hruban RH, Wu PH, Wirtz D, Wood LD. 3D genomic mapping reveals multifocality of human pancreatic precancers. Nature 2024; 629:679-687. [PMID: 38693266 DOI: 10.1038/s41586-024-07359-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/26/2024] [Indexed: 05/03/2024]
Abstract
Pancreatic intraepithelial neoplasias (PanINs) are the most common precursors of pancreatic cancer, but their small size and inaccessibility in humans make them challenging to study1. Critically, the number, dimensions and connectivity of human PanINs remain largely unknown, precluding important insights into early cancer development. Here, we provide a microanatomical survey of human PanINs by analysing 46 large samples of grossly normal human pancreas with a machine-learning pipeline for quantitative 3D histological reconstruction at single-cell resolution. To elucidate genetic relationships between and within PanINs, we developed a workflow in which 3D modelling guides multi-region microdissection and targeted and whole-exome sequencing. From these samples, we calculated a mean burden of 13 PanINs per cm3 and extrapolated that the normal intact adult pancreas harbours hundreds of PanINs, almost all with oncogenic KRAS hotspot mutations. We found that most PanINs originate as independent clones with distinct somatic mutation profiles. Some spatially continuous PanINs were found to contain multiple KRAS mutations; computational and in situ analyses demonstrated that different KRAS mutations localize to distinct cell subpopulations within these neoplasms, indicating their polyclonal origins. The extensive multifocality and genetic heterogeneity of PanINs raises important questions about mechanisms that drive precancer initiation and confer differential progression risk in the human pancreas. This detailed 3D genomic mapping of molecular alterations in human PanINs provides an empirical foundation for early detection and rational interception of pancreatic cancer.
Collapse
Affiliation(s)
- Alicia M Braxton
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Ashley L Kiemen
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mia P Grahn
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - André Forjaz
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jeeun Parksong
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jaanvi Mahesh Babu
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiaying Lai
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Lily Zheng
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Noushin Niknafs
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Liping Jiang
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haixia Cheng
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qianqian Song
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rebecca Reichel
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah Graham
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexander I Damanakis
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Catherine G Fischer
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephanie Mou
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cameron Metz
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Julie Granger
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiao-Ding Liu
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Niklas Bachmann
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yutong Zhu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - YunZhou Liu
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Cristina Almagro-Pérez
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ann Chenyu Jiang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jeonghyun Yoo
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Bridgette Kim
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Scott Du
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Eli Foster
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jocelyn Y Hsu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Paula Andreu Rivera
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Linda C Chu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fengze Liu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elliot K Fishman
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alan Yuille
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Nicholas J Roberts
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth D Thompson
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert B Scharpf
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Toby C Cornish
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Yuchen Jiao
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, China.
| | - Rachel Karchin
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ralph H Hruban
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pei-Hsun Wu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Denis Wirtz
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Laura D Wood
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
18
|
Abdelrahim M, Esmail A, Kasi A, Esnaola NF, Xiu J, Baca Y, Weinberg BA. Comparative molecular profiling of pancreatic ductal adenocarcinoma of the head versus body and tail. NPJ Precis Oncol 2024; 8:85. [PMID: 38582894 PMCID: PMC10998911 DOI: 10.1038/s41698-024-00571-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/29/2024] [Indexed: 04/08/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) of the head (H) and body/tail (B/T) differ in embryonic origin, cell composition, blood supply, lymphatic and venous drainage, and innervation. We aimed to compare the molecular and tumor immune microenvironment (TIME) profiles of PDAC of the H vs. B/T. A total of 3499 PDAC samples were analyzed via next-generation sequencing (NGS) of RNA (whole transcriptome, NovaSeq), DNA (NextSeq, 592 genes or NovaSeq, whole exome sequencing), and immunohistochemistry (Caris Life Sciences, Phoenix, AZ). Significance was determined as p values adjusted for multiple corrections (q) of <0.05. Anatomic subsites of PDAC tumors were grouped by primary tumor sites into H (N = 2058) or B/T (N = 1384). There were significantly more metastatic tumors profiled from B/T vs. H (57% vs. 44%, p < 0.001). KRAS mutations (93.8% vs. 90.2%), genomic loss of heterozygosity (12.7% vs. 9.1%), and several copy number alterations (FGF3, FGF4, FGF19, CCND1, ZNF703, FLT4, MUTYH, TNFRS14) trended higher in B/T when compared to H (p < 0.05 but q > 0.05). Expression analysis of immuno-oncology (IO)-related genes showed significantly higher expression of CTLA4 and PDCD1 in H (q < 0.05, fold change 1.2 and 1.3) and IDO1 and PDCD1LG2 expression trended higher in B/T (p < 0.05, fold change 0.95). To our knowledge, this is one of the largest cohorts of PDAC tumors subjected to broad molecular profiling. Differences in IO-related gene expression and TIME cell distribution suggest that response to IO therapies may differ in PDAC arising from H vs. B/T. Subtle differences in the genomic profiles of H vs. B/T tumors were observed.
Collapse
Affiliation(s)
- Maen Abdelrahim
- Section of GI Oncology, Houston Methodist Neal Cancer Center and Cockrell Center for Advanced Therapeutics, Houston Methodist Hospital, Houston, TX, USA
| | - Abdullah Esmail
- Section of GI Oncology, Houston Methodist Neal Cancer Center and Cockrell Center for Advanced Therapeutics, Houston Methodist Hospital, Houston, TX, USA
| | - Anup Kasi
- University of Kansas Medical Center, Kansas City, KS, USA
| | - Nestor F Esnaola
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | | | | | - Benjamin A Weinberg
- Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
19
|
Lin W, Phatarphekar A, Zhong Y, Liu L, Kwon HB, Gerwick WH, Wang Y, Mehta S, Zhang J. Light-gated Integrator for Highlighting Kinase Activity in Living Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585554. [PMID: 38562887 PMCID: PMC10983958 DOI: 10.1101/2024.03.18.585554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Protein kinases are key signaling nodes that regulate fundamental biological and disease processes. Illuminating kinase signaling from multiple angles can provide deeper insights into disease mechanisms and improve therapeutic targeting. While fluorescent biosensors are powerful tools for visualizing live-cell kinase activity dynamics in real time, new molecular tools are needed that enable recording of transient signaling activities for post hoc analysis and targeted manipulation. Here, we develop a light-gated kinase activity coupled transcriptional integrator (KINACT) that converts dynamic kinase signals into "permanent" fluorescent marks. KINACT enables robust monitoring of kinase activity across scales, accurately recording subcellular PKA activity, highlighting PKA signaling heterogeneity in 3D cultures, and identifying PKA activators and inhibitors in high-throughput screens. We further leverage the ability of KINACT to drive signaling effector expression to allow feedback manipulation of the balance of GαsR201C-induced PKA and ERK activation and dissect the mechanisms of oncogenic G protein signaling.
Collapse
Affiliation(s)
- Wei Lin
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | | | - Yanghao Zhong
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Longwei Liu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Hyung-Bae Kwon
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William H. Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Yingxiao Wang
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
20
|
Hu Y, Jones D, Esnakula AK, Krishna SG, Chen W. Molecular Pathology of Pancreatic Cystic Lesions with a Focus on Malignant Progression. Cancers (Basel) 2024; 16:1183. [PMID: 38539517 PMCID: PMC10969285 DOI: 10.3390/cancers16061183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 11/11/2024] Open
Abstract
The malignant progression of pancreatic cystic lesions (PCLs) remains understudied with a knowledge gap, yet its exploration is pivotal for effectively stratifying patient risk and detecting cancer at its earliest stages. Within this review, we delve into the latest discoveries on the molecular level, revealing insights into the IPMN molecular landscape and revised progression model, associated histologic subtypes, and the role of inflammation in the pathogenesis and malignant progression of IPMN. Low-grade PCLs, particularly IPMNs, can develop into high-grade lesions or invasive carcinoma, underscoring the need for long-term surveillance of these lesions if they are not resected. Although KRAS and GNAS remain the primary oncogenic drivers of neoplastic development in IPMNs, additional genes that are important in tumorigenesis have been recently identified by whole exome sequencing. A more complete understanding of the genes involved in the molecular progression of IPMN is critical for effective monitoring to minimize the risk of malignant progression. Complicating these strategies, IPMNs are also frequently multifocal and multiclonal, as demonstrated by comparative molecular analysis. Algorithms for preoperative cyst sampling and improved radiomic techniques are emerging to model this spatial and temporal genetic heterogeneity better. Here, we review the molecular pathology of PCLs, focusing on changes associated with malignant progression. Developing models of molecular risk stratification in PCLs which can complement radiologic and clinical features, facilitate the early detection of pancreatic cancer, and enable the development of more personalized surveillance and management strategies are summarized.
Collapse
Affiliation(s)
- Yan Hu
- James Molecular Laboratory, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (Y.H.); (D.J.)
| | - Dan Jones
- James Molecular Laboratory, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (Y.H.); (D.J.)
| | - Ashwini K. Esnakula
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Somashekar G. Krishna
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Wei Chen
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| |
Collapse
|
21
|
Adsay NV, Basturk O. Dysplasia and Early Carcinoma of the Gallbladder and Bile Ducts: Terminology, Classification, and Significance. Gastroenterol Clin North Am 2024; 53:85-108. [PMID: 38280752 DOI: 10.1016/j.gtc.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
Most precursor lesions and early cancerous changes in the gallbladder and bile ducts present as clinically/grossly inapparent lesions. Low-grade dysplasia is difficult to define and clinically inconsequential by itself; however, extra sampling is required to exclude accompanying significant lesions. For high-grade dysplasia ('carcinoma in situ'), a complete sampling is necessary to rule out invasion. Tumoral intramucosal neoplasms (ie, intracholecystic and intraductal neoplasia) form radiologically/grossly visible masses, and they account for (present in the background of) about 5% to 10% of invasive cancers of the region. These reveal a spectrum of papilla/tubule formation, cell lineages, and dysplastic transformation. Some subtypes such as intracholecystic tubular non-mucinous neoplasm of the gallbladder (almost never invasive) and intraductal oncocytic or intraductal tubulopapillary neoplasms of the bile ducts (may have a protracted clinical course even when invasive) are to be noted separately. Other types of intracholecystic/intraductal neoplasia have a high frequency of invasive carcinoma and progressive behavior, which often culminates in mortality.
Collapse
Affiliation(s)
- N Volkan Adsay
- Department of Pathology, Koc University School of Medicine, Koç Üniversitesi Hastanesi, Davutpaşa Cd. No:4, Zeytinburnu, İstanbul 34010, Turkey.
| | - Olca Basturk
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
22
|
Turner KM, Wilson GC, Patel SH, Ahmad SA. ASO Practice Guidelines Series: Management of Resectable, Borderline Resectable, and Locally Advanced Pancreas Cancer. Ann Surg Oncol 2024; 31:1884-1897. [PMID: 37980709 DOI: 10.1245/s10434-023-14585-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/29/2023] [Indexed: 11/21/2023]
Abstract
Pancreatic adenocarcinoma is an aggressive disease marked by high rates of both local and distant failure. In the minority of patients with potentially resectable disease, multimodal treatment paradigms have allowed for prolonged survival in an increasingly larger pool of well-selected patients. Therefore, it is critical for surgical oncologists to be abreast of current guideline recommendations for both surgical management and multimodal therapy for pancreas cancer. We discuss these guidelines, as well as the underlying data supporting these positions, to offer surgical oncologists a framework for managing patients with pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Kevin M Turner
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Gregory C Wilson
- Division of Surgical Oncology, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Sameer H Patel
- Division of Surgical Oncology, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Syed A Ahmad
- Division of Surgical Oncology, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
23
|
Basturk O, Adsay NV. Early Cancerous Lesions of the Pancreas and Ampulla: Current Concepts and Challenges. Gastroenterol Clin North Am 2024; 53:57-84. [PMID: 38280751 PMCID: PMC10823180 DOI: 10.1016/j.gtc.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
Owing to the increased use of advanced imaging techniques, mass-forming (cystic/intraductal) preinvasive neoplasms are being detected much more frequently and they have rapidly become one of the main focuses of interests in medical field. These neoplasms have very distinctive clinical and radiographic findings, exhibit a spectrum of dysplastic transformation, from low-grade dysplasia to high-grade dysplasia, and may be associated with an invasive carcinoma. Accounting for about 5% to 10% of pancreatic ductal adenocarcinomas, they provide a curable target subset in an otherwise biologically dismal pancreas cancer category.
Collapse
Affiliation(s)
- Olca Basturk
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - N Volkan Adsay
- Department of Pathology, Koc University School of Medicine, Davutpaşa Cd. No:4, Zeytinburnu, Istanbul 34010, Turkey.
| |
Collapse
|
24
|
Schramm M, Neppl C. [Challenges of cytopathological pancreas diagnostics]. PATHOLOGIE (HEIDELBERG, GERMANY) 2024; 45:19-27. [PMID: 38052744 DOI: 10.1007/s00292-023-01277-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/23/2023] [Indexed: 12/07/2023]
Abstract
The cytologic diagnostics of solid and cystic pancreatic lesions with endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) is an integral part of the clinical workup and the decision of a surgical versus a conservative approach. Cystic lesions are increasingly being diagnosed due to improved imaging and represent numerous neoplastic as well as non-neoplastic epithelial and non-epithelial entities, which differ in biological behavior and prognosis. In particular, the differentiation of mucinous and non-mucinous cysts is significant for further clinical management. Regressive cellular changes, gastrointestinal contaminants, and overlapping morphologic changes of reactively altered ductal epithelial cells and cells of well-differentiated neoplasms and preneoplasms are special challenges of cytological diagnostics. For a uniform cytological classification of findings, an internationally developed seven-level classification system has been published and co-published by the World Health Organization (WHO). This classification system takes into account both morphological findings and further procedures on cytological material such as next-generation sequencing and immunocytochemistry and is based on the WHO classification for pancreatic tumors. Against this background, important cytologic diagnostic criteria of various solid and cystic lesions relevant in clinical practice are presented in this article, considering diagnostic possibilities and pitfalls as well as differential diagnoses.
Collapse
Affiliation(s)
- Martin Schramm
- Institut für Pathologie und Funktionsbereich Zytopathologie, Medizinische Fakultät und Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Deutschland.
| | - Christina Neppl
- Institut für Pathologie und Funktionsbereich Zytopathologie, Medizinische Fakultät und Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Deutschland
| |
Collapse
|
25
|
Schroder PM, Biesterveld BE, Al-Adra DP. Premalignant Lesions in the Kidney Transplant Candidate. Semin Nephrol 2024; 44:151495. [PMID: 38490902 DOI: 10.1016/j.semnephrol.2024.151495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
End-stage kidney disease patients who are referred for transplant undergo an extensive evaluation process to ensure their health prior to transplant due in part to the shortage of available organs. Although management and surveillance guidelines exist for malignancies identified in the transplant and waitlist populations, less is written about the management of premalignant lesions in this population. This review covers the less common premalignant lesions (intraductal papillary mucinous neoplasm, gastrointestinal stromal tumor, thymoma, and pancreatic neuroendocrine tumor) that can be found in the transplant candidate population. High-level evidence for the management of these rarer premalignant lesions in the transplant population is lacking, and this review extrapolates evidence from the general population and should not be a substitute for a multidisciplinary discussion with medical and surgical oncologists.
Collapse
Affiliation(s)
- Paul M Schroder
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Ben E Biesterveld
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - David P Al-Adra
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI.
| |
Collapse
|
26
|
Xi B, Liu S, Zhu Y, Zhang D, Zhang Y, Liu A. Case report: Genetic analysis of a novel intronic inversion variant in the SPTB gene associated with hereditary spherocytosis. Front Genet 2023; 14:1309040. [PMID: 38111681 PMCID: PMC10726134 DOI: 10.3389/fgene.2023.1309040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/20/2023] [Indexed: 12/20/2023] Open
Abstract
Background: Hereditary spherocytosis (HS) is a congenital haemolytic anaemia attributed to dysregulation or abnormal quantities of erythrocyte membrane proteins. Currently, the most common erythrocytic gene, spectrin β (SPTB), variants are located in exons and give rise to mRNA defects. However, the genetic characteristics and pathogenic mechanisms of SPTB intronic variants are not completely understood. This study aimed to analyse a rare intronic inversion variant in the SPTB gene associated with HS, and explore the impact of the variant on SPTB mRNA splicing. Method: The clinical manifestations of the patient were summarised and analysed for spherocytosis phenotype diagnosis. The pathogenic variant was identified in the proband using targeted next-generation and Sanger sequencing. RNA sequencing was performed to analyse whether SPTB gene splicing and expression were affected. Results: Targeted next-generation sequencing identified a novel disease-associated intronic inversion variant of the SPTB gene in the proband. The inversion variant was located between intron 19 and 20, and contained the entire exon 20 and partial sequences of adjacent introns. Sanger sequencing confirmed that the intronic inversion variant only appeared in the genome of the proband, not in his parents. RNA sequencing revealed that the variant could result in the skipping of exon 20 and reduced expression of SPTB mRNA. Conclusion: This study identifies a rare intronic inversion variant in the SPTB gene associated with hereditary spherocytosis. The pathogenic variant can lead to exon 20 skipping and decreased SPTB gene expression. This finding has not been previously reported in any literature. This study can expand the intronic variant spectrum of the SPTB gene, deepen our understanding of HS pathogenesis, and contribute to the genetic diagnosis and clinical management of patients.
Collapse
Affiliation(s)
- Bixin Xi
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Siying Liu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongbing Zhu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dedong Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Zhang
- Department of Gynaecology, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aiguo Liu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
27
|
Mou L, Tang M, Zhu L, Lin W, Gu Y. Spectrum of variants in a large Chinese Gitelman syndrome cohort. Clin Genet 2023; 104:674-678. [PMID: 37702302 DOI: 10.1111/cge.14422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/14/2023]
Abstract
Gitelman syndrome (GS) is caused by SLC12A3 biallelic variants. A previous study showed that large rearrangements (LRGs) of SLC12A3 accounted for the low sensitivity of genetic testing. However, a systematic screening for LRGs in Chinese GS patients is lacking. Massively parallel sequencing (MPS) and multiplex ligation-dependent probe amplification (MLPA) were performed to sequence the genomic DNA of patients with clinically diagnosed GS. Of 165 index cases, MPS identified 151 cases with two or more affected alleles and 14 cases with one variant allele. LRGs were detected by MLPA in 20 out of 27 cases, including 15 cases with suspected LRGs by MPS. Among these 20 cases with LRGs, the results of MPS and MLPA were identical in only 8 cases. Additional LRGs in 6 cases were detected by MLPA alone. In 6 cases, E4_E6del was identified by MPS, while E4_E5del and Intron6del were identified by MLPA. Among the 102 distinct variants, 30 are novel. LRGs were found in 20 cases (12.1%). LRGs were found in 12.1% of our Chinese GS patients cohort. We show that MPS and MLPA are two complementary techniques with the ability to improve the diagnostic yield of GS.
Collapse
Affiliation(s)
- Lijun Mou
- Department of Nephrology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengyue Tang
- Department of Human Genetics, Institute of Genetics, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Lina Zhu
- Department of Nephrology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wanbing Lin
- Department of Nephrology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Gu
- Department of Human Genetics, Institute of Genetics, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
28
|
Kato H, Ellis H, Bardeesy N. KRAS Wild-Type Pancreatic Cancer: Decoding Genomics, Unlocking Therapeutic Potential. Clin Cancer Res 2023; 29:4527-4529. [PMID: 37695631 PMCID: PMC10872803 DOI: 10.1158/1078-0432.ccr-23-2221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023]
Abstract
In a landscape dominated by pivotal KRAS mutations, there has been limited exploration of KRAS wild-type pancreatic cancer. A recent study highlights other mitogen-activated kinase pathway alterations as alternative drivers in these tumors, which holds the key to unlocking a realm of targeted therapies for patients with this understudied cancer subtype. See related article by Singh et al., p. 4627.
Collapse
Affiliation(s)
- Hiroyuki Kato
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
| | - Haley Ellis
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
| | - Nabeel Bardeesy
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
| |
Collapse
|
29
|
Evrard C, Ingrand P, Rochelle T, Martel M, Tachon G, Flores N, Randrian V, Ferru A, Haineaux PA, Goujon JM, Karayan-Tapon L, Tougeron D. Circulating tumor DNA in unresectable pancreatic cancer is a strong predictor of first-line treatment efficacy: The KRASCIPANC prospective study. Dig Liver Dis 2023; 55:1562-1572. [PMID: 37308396 DOI: 10.1016/j.dld.2023.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/08/2023] [Accepted: 03/27/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND There is no robust predictor of response to chemotherapy (CT) in unresectable pancreatic adenocarcinomas (UPA). The objective of the KRASCIPANC study was to analyze the kinetics of cell-free DNA (cfDNA)/circulating tumor DNA (ctDNA) as a predictor of response to CT in UPA. METHODS Blood samples were collected just before first CT and at day 28. The primary endpoint was the kinetics of KRAS-mutated ctDNA by digital droplet PCR between D0 and D28 as a predictor of progression-free survival (PFS). RESULTS We analyzed 65 patients with a KRAS-mutated tumor. A high level of cfDNA and KRAS-mutated ctDNA at D0, as well as the presence of KRAS-mutated ctDNA at D28, were strongly associated with lower centralized disease control rate (cDCR), shorter cPFS and OS in multivariate analysis. A score combining cfDNA level at diagnosis ≥ or <30 ng/mL and presence or not of KRAS-mutated ctDNA at D28 was an optimal predictor of cDCR (OR=30.7, IC95% 4.31-218 P=.001), PFS (HR=6.79, IC95% 2.76-16.7, P<.001) and OS (HR=9.98, IC95% 4.14-24.1, P<.001). CONCLUSION A combined score using cfDNA level at diagnosis and KRAS-mutated ctDNA at D28 is strongly associated with patient survival/response to chemotherapy in UPA. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04560270.
Collapse
Affiliation(s)
- Camille Evrard
- Medical Oncology Department, Poitiers University Hospital, Poitiers 86000, France; ProDicET, UR 24144, University of Poitiers, Poitiers 86000, France.
| | - Pierre Ingrand
- Department of Statistics, Faculty of Medicine, University of Poitiers, Poitiers 86000, France
| | - Tristan Rochelle
- Cancer Biology Department, Poitiers University Hospital, Poitiers 86000, France
| | - Marine Martel
- Cancer Biology Department, Poitiers University Hospital, Poitiers 86000, France
| | - Gaëlle Tachon
- Cancer Biology Department, Poitiers University Hospital, Poitiers 86000, France; Cancer Biology Department, Centre Léon Bérard, Lyon 69000, France
| | - Nicolas Flores
- Department of Imaging, University Hospital of Poitiers, Poitiers 86000, France
| | - Violaine Randrian
- ProDicET, UR 24144, University of Poitiers, Poitiers 86000, France; Hepato-Gastroenterology Department, Poitiers University Hospital, Poitiers, France
| | - Aurélie Ferru
- Medical Oncology Department, Poitiers University Hospital, Poitiers 86000, France
| | - Paul-Arthur Haineaux
- Hepato-Gastroenterology Department, Poitiers University Hospital, Poitiers, France; Hepato-Gastroenterology Department, Poitiers University Hospital, Châtellerault Hospital, Poitiers 86106, France
| | - Jean-Michel Goujon
- Department of Pathology, Poitiers University Hospital, Poitiers 86000, France
| | - Lucie Karayan-Tapon
- ProDicET, UR 24144, University of Poitiers, Poitiers 86000, France; Cancer Biology Department, Poitiers University Hospital, Poitiers 86000, France
| | - David Tougeron
- ProDicET, UR 24144, University of Poitiers, Poitiers 86000, France; Hepato-Gastroenterology Department, Poitiers University Hospital, Poitiers, France.
| |
Collapse
|
30
|
Cui Y, Miao Y, Cao L, Guo L, Cui Y, Yan C, Zeng Z, Xu M, Han T. Activation of melanocortin-1 receptor signaling in melanoma cells impairs T cell infiltration to dampen antitumor immunity. Nat Commun 2023; 14:5740. [PMID: 37714844 PMCID: PMC10504282 DOI: 10.1038/s41467-023-41101-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/23/2023] [Indexed: 09/17/2023] Open
Abstract
Inhibition of T cell infiltration dampens antitumor immunity and causes resistance to immune checkpoint blockade (ICB) therapy. By in vivo CRISPR screening in B16F10 melanoma in female mice, here we report that loss of melanocortin-1 receptor (MC1R) in melanoma cells activates antitumor T cell response and overcomes resistance to ICB. Depletion of MC1R from another melanocytic melanoma model HCmel1274 also enhances ICB efficacy. By activating the GNAS-PKA axis, MC1R inhibits interferon-gamma induced CXCL9/10/11 transcription, thus impairing T cell infiltration into the tumor microenvironment. In human melanomas, high MC1R expression correlates with reduced CXCL9/10/11 expression, impaired T cell infiltration, and poor patient prognosis. Whereas MC1R activation is restricted to melanoma, GNAS activation by hotspot mutations is observed across diverse cancer types and is associated with reduced CXCL9/10/11 expression. Our study implicates MC1R as a melanoma immunotherapy target and suggests GNAS-PKA signaling as a pan-cancer oncogenic pathway inhibiting antitumor T cell response.
Collapse
Affiliation(s)
- Yazhong Cui
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, 100730, Beijing, China
- National Institute of Biological Sciences, 102206, Beijing, China
| | - Yang Miao
- National Institute of Biological Sciences, 102206, Beijing, China
- PTN Joint Graduate Program, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Longzhi Cao
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, 100730, Beijing, China
- National Institute of Biological Sciences, 102206, Beijing, China
| | - Lifang Guo
- Department of Thoracic Surgery, Beijing Chaoyang Hospital, Capital Medical University, 100020, Beijing, China
| | - Yue Cui
- National Institute of Biological Sciences, 102206, Beijing, China
- Graduate Program, School of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Chuanzhe Yan
- National Institute of Biological Sciences, 102206, Beijing, China
- PTN Joint Graduate Program, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Zhi Zeng
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, 100730, Beijing, China
- National Institute of Biological Sciences, 102206, Beijing, China
| | - Mo Xu
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, 100730, Beijing, China.
- National Institute of Biological Sciences, 102206, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 102206, Beijing, China.
| | - Ting Han
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, 100730, Beijing, China.
- National Institute of Biological Sciences, 102206, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 102206, Beijing, China.
| |
Collapse
|
31
|
Ye M, Zhang B, Han X, Wei X, Wang Y, Cao W, Wu J, Chen C, Sun X, Sun K, Li H, Zhang Q, Liang T. Low-Pass Genomic Sequencing Reveals Novel Subtypes of Pancreatic Cystic Neoplasms. Ann Surg Oncol 2023; 30:5804-5812. [PMID: 37249723 DOI: 10.1245/s10434-023-13676-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/08/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND Over the years, the detection rate of pancreatic cystic neoplasms (PCNs) has significantly increased; however, the differential diagnosis and identification of high-risk PCNs remain challenging. We sought to investigate whether chromosomal instability (CIN) features in cell-free DNA in the cystic fluid of PCNs could help to identify high-risk PCNs. METHODS Pancreatic cystic fluid samples from 102 patients with PCNs were intraoperatively collected for detection of CIN using an ultrasensitive chromosomal aneuploidy detector. Clinical and imaging data were retrospectively collected, and statistical analysis was performed to assess the potential role of CIN in clinical practice. RESULTS CIN was investigated in a total of 100 patients. Sixteen of 26 serous cystic cystadenomas (SCAs) harbored deletions of chr3p and/or chr6p, whereas low rates of CIN were detected in mucinous cystic neoplasms. Most malignant PCNs presented with more than one type of CIN; amplification of chr1q and chr8q found in nine and seven of 11 malignant PCNs (81.8% and 63.6%), respectively, could aid in distinguishing high-risk IPMNs from low-risk ones, with a higher sensitivity than imaging. A combination of the mural nodule imaging feature and amplification of chr1q and chr8q achieved a sensitivity of 70.0% and a specificity of 82.4% in identifying high-risk IPMNs. CONCLUSIONS Our work revealed the distinct CIN signature of different types of PCNs. Deletions of chr3p and chr6p defined a subtype of SCAs. Gains of chr1q and chr8q were associated with insidious malignant PCNs and helped identify high-risk IPMNs.
Collapse
Affiliation(s)
- Mao Ye
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Bo Zhang
- Department of General Surgery, Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xu Han
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaobao Wei
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yangyang Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wanyue Cao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiangchao Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cao Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xu Sun
- Department of General Surgery, Huzhou Central Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Ke Sun
- Zhejiang University Cancer Center, Hangzhou, China
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haijun Li
- Department of General Surgery, Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China.
- Zhejiang University Cancer Center, Hangzhou, China.
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang Province, China.
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China.
- Zhejiang University Cancer Center, Hangzhou, China.
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
32
|
Giansante V, Stati G, Sancilio S, Guerra E, Alberti S, Di Pietro R. The Dual Role of Necroptosis in Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2023; 24:12633. [PMID: 37628814 PMCID: PMC10454309 DOI: 10.3390/ijms241612633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Pancreatic cancer (PC) is the seventh leading cause of cancer-related death. PC incidence has continued to increase by about 1% each year in both men and women. Although the 5-year relative survival rate of PC has increased from 3% to 12%, it is still the lowest among cancers. Hence, novel therapeutic strategies are urgently needed. Challenges in PC-targeted therapeutic strategies stem from the high PC heterogeneity and from the poorly understood interplay between cancer cells and the surrounding microenvironment. Signaling pathways that drive PC cell growth have been the subject of intense scrutiny and interest has been attracted by necroptosis, a distinct type of programmed cell death. In this review, we provide a historical background on necroptosis and a detailed analysis of the ongoing debate on the role of necroptosis in PC malignant progression.
Collapse
Affiliation(s)
- Valentina Giansante
- Department of Medicine and Aging Sciences, Section of Biomorphology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Gianmarco Stati
- Department of Medicine and Aging Sciences, Section of Biomorphology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Silvia Sancilio
- Department of Medicine and Aging Sciences, Section of Biomorphology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Emanuela Guerra
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technologies (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Saverio Alberti
- Unit of Medical Genetics, Department of Biomedical Sciences, University of Messina, 98122 Messina, Italy
| | - Roberta Di Pietro
- Department of Medicine and Aging Sciences, Section of Biomorphology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
33
|
Papadopoulos N, Hruban RH. Molecular Mechanisms of Cystic Neoplasia‐. THE PANCREAS 2023:630-637. [DOI: 10.1002/9781119876007.ch82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
34
|
Siddappa PK, Park WG. Pancreatic Cyst Fluid Analysis. Gastrointest Endosc Clin N Am 2023; 33:599-612. [PMID: 37245938 DOI: 10.1016/j.giec.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Pancreatic cyst fluid analysis can help diagnose pancreatic cyst type and the risk of high-grade dysplasia and cancer. Recent evidence from molecular analysis of cyst fluid has revolutionized the field with multiple markers showing promise in accurate diagnosis and prognostication of pancreatic cysts. The availability of multi-analyte panels has great potential for more accurate prediction of cancer.
Collapse
Affiliation(s)
- Pradeep K Siddappa
- Division of Gastroenterology & Hepatology, Stanford University, Stanford, CA, USA
| | - Walter G Park
- Division of Gastroenterology & Hepatology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
35
|
Taylor K, Zou J, Magalhaes M, Oliva M, Spreafico A, Hansen AR, McDade SS, Coyle VM, Lawler M, Elimova E, Bratman SV, Siu LL. Circulating tumour DNA kinetics in recurrent/metastatic head and neck squamous cell cancer patients. Eur J Cancer 2023; 188:29-38. [PMID: 37182343 DOI: 10.1016/j.ejca.2023.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023]
Abstract
PURPOSE Immune checkpoint blockade (ICB) has become a standard of care in the treatment of recurrent/metastatic head and neck squamous cell cancer (R/M HNSCC). However, only a subset of patients benefit from treatment. Quantification of plasma circulating tumour DNA (ctDNA) levels and on-treatment kinetics may permit real-time assessment of disease burden under selective pressures of treatment. PATIENTS AND METHODS R/M HNSCC patients treated with systemic therapy, platinum-based chemotherapy (CT) or ICB, underwent serial liquid biopsy sampling. Biomarkers tested included ctDNA measured by CAncer Personalized Profiling by deep Sequencing (CAPP-Seq) and markers of host inflammation measured by neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR). RESULTS Among 53 eligible patients, 16 (30%) received CT, 30 (57%) ICB [anti-PD1/L1] monotherapy and 7 (13%) combination immunotherapy (IO). Median progression-free survival (PFS) and overall survival (OS) were 2.8 months (95% CI, 1.3-4.3) and 8.2 months (95% CI, 5.6-10.8), respectively. Seven (13%) patients experienced a partial response and 21 (40%) derived clinical benefit. At baseline, median ctDNA variant allele frequency (VAF) was 4.3%. Baseline ctDNA abundance was not associated with OS (p = 0.56) nor PFS (p = 0.54). However, a change in ctDNA VAF after one cycle of treatment (ΔVAF (T1-2)) was predictive of both PFS (p< 0.01) and OS (p< 0.01). Additionally, decrease in ΔVAF identified patients with longer OS despite early radiological progression, 8.2 vs 4.6 months, hazard ratio 0.44 (95% CI, 0.19-0.87) p = 0.03. After incorporating NLR and PLR into multivariable Cox models, ctDNA ∆VAF retained an association with OS. CONCLUSIONS Early dynamic changes in ctDNA abundance, after one cycle of treatment, compared to baseline predicted both OS and PFS in R/M HNSCC patients on systemic therapy.
Collapse
Affiliation(s)
- Kirsty Taylor
- Division of Medical Oncology & Haematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Jinfeng Zou
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Marcos Magalhaes
- Division of Medical Oncology & Haematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Marc Oliva
- Division of Medical Oncology & Haematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Anna Spreafico
- Division of Medical Oncology & Haematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Aaron R Hansen
- Division of Medical Oncology & Haematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Simon S McDade
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Vicky M Coyle
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Mark Lawler
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Elena Elimova
- Division of Medical Oncology & Haematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Scott V Bratman
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Lillian L Siu
- Division of Medical Oncology & Haematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
36
|
Søreide K. Burgeoning rise in intraductal papillary mucinous neoplasia (IPMN) - a blessing in disguise. Scand J Gastroenterol 2023; 58:1101-1104. [PMID: 37022179 DOI: 10.1080/00365521.2023.2197095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 04/07/2023]
Affiliation(s)
- Kjetil Søreide
- Department of Gastrointestinal Surgery, Stavanger University Hospital, Stavanger, Norway
- Gastrointestinal Translational Research Group, Laboratory for Molecular Medicine, Stavanger University Hospital, Stavanger, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- SAFER Surgery, Surgical Research Group, Stavanger University Hospital, Stavanger, Norway
| |
Collapse
|
37
|
Triantopoulou C, Gourtsoyianni S, Karakaxas D, Delis S. Intraductal Papillary Mucinous Neoplasm of the Pancreas: A Challenging Diagnosis. Diagnostics (Basel) 2023; 13:2015. [PMID: 37370909 DOI: 10.3390/diagnostics13122015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/31/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Intraductal papillary mucinous neoplasm of the pancreas (IPMN) was classified as a distinct entity from mucinous cystic neoplasm by the WHO in 1995. It represents a mucin-producing tumor that originates from the ductal epithelium and can evolve from slight dysplasia to invasive carcinoma. In addition, different aspects of tumor progression may be seen in the same lesion. Three types are recognized, the branch duct variant, the main duct variant, which shows a much higher prevalence for malignancy, and the mixed-type variant, which combines branch and main duct characteristics. Advances in cross-sectional imaging have led to an increased rate of IPMN detection. The main imaging characteristic of IPMN is the dilatation of the pancreatic duct without the presence of an obstructing lesion. The diagnosis of a branch duct IPMN is based on the proof of its communication with the main pancreatic duct on MRI-MRCP examination. Early identification by imaging of the so-called worrisome features or predictors for malignancy is an important and challenging task. In this review, we will present recent imaging advances in the diagnosis and characterization of different types of IPMNs, as well as imaging tools available for early recognition of worrisome features for malignancy. A critical appraisal of current IPMN management guidelines from both a radiologist's and surgeon's perspective will be made. Special mention is made of complications that might arise during the course of IPMNs as well as concomitant pancreatic neoplasms including pancreatic adenocarcinoma and pancreatic endocrine neoplasms. Finally, recent research on prognostic and predictive biomarkers including radiomics will be discussed.
Collapse
Affiliation(s)
| | - Sofia Gourtsoyianni
- 1st Department of Radiology, School of Medicine, National and Kapodistrian University of Athens, Areteion Hospital, 11528 Athens, Greece
| | - Dimitriοs Karakaxas
- Department of Surgery, Konstantopouleio General Hospital, 14233 Athens, Greece
| | - Spiros Delis
- Department of Surgery, Konstantopouleio General Hospital, 14233 Athens, Greece
| |
Collapse
|
38
|
Lo EK, Mears BM, Maurer HC, Idrizi A, Hansen KD, Thompson ED, Hruban RH, Olive KP, Feinberg AP. Comprehensive DNA Methylation Analysis Indicates That Pancreatic Intraepithelial Neoplasia Lesions Are Acinar-Derived and Epigenetically Primed for Carcinogenesis. Cancer Res 2023; 83:1905-1916. [PMID: 36989344 PMCID: PMC10239363 DOI: 10.1158/0008-5472.can-22-4052] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/21/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is believed to arise from the accumulation of a series of somatic mutations and is also frequently associated with pancreatic intraepithelial neoplasia (PanIN) lesions. However, there is still debate as to whether the cell type-of-origin of PanINs and PDACs in humans is acinar or ductal. As cell type identity is maintained epigenetically, DNA methylation changes during pancreatic neoplasia can provide a compelling perspective to examine this question. Here, we performed laser-capture microdissection on surgically resected specimens from 18 patients to isolate, with high purity, DNA for whole-genome bisulfite sequencing from four relevant cell types: acini, nonneoplastic ducts, PanIN lesions, and PDAC lesions. Differentially methylated regions (DMR) were identified using two complementary analytical approaches: bsseq, which identifies any DMRs but is particularly useful for large block-like DMRs, and informME, which profiles the potential energy landscape across the genome and is particularly useful for identifying differential methylation entropy. Both global methylation profiles and block DMRs clearly implicated an acinar origin for PanINs. At the gene level, PanIN lesions exhibited an intermediate acinar-ductal phenotype resembling acinar-to-ductal metaplasia. In 97.6% of PanIN-specific DMRs, PanIN lesions had an intermediate methylation level between normal and PDAC, which suggests from an information theory perspective that PanIN lesions are epigenetically primed to progress to PDAC. Thus, epigenomic analysis complements histopathology to define molecular progression toward PDAC. The shared epigenetic lineage between PanIN and PDAC lesions could provide an opportunity for prevention by targeting aberrantly methylated progression-related genes. SIGNIFICANCE Analysis of DNA methylation landscapes provides insights into the cell-of-origin of PanIN lesions, clarifies the role of PanIN lesions as metaplastic precursors to human PDAC, and suggests potential targets for chemoprevention.
Collapse
Affiliation(s)
- Emily K.W. Lo
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brian M. Mears
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - H. Carlo Maurer
- Department of Internal Medicine II, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Adrian Idrizi
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kasper D. Hansen
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Elizabeth D. Thompson
- Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Baltimore, MD, USA
| | - Ralph H. Hruban
- Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Baltimore, MD, USA
| | - Kenneth P. Olive
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Andrew P. Feinberg
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, MD, USA
| |
Collapse
|
39
|
Park JK, Hwang JW. Research progress and future directions on intraductal papillary mucinous neoplasm: A bibliometric and visualized analysis of over 30 years of research. Medicine (Baltimore) 2023; 102:e33568. [PMID: 37058017 PMCID: PMC10101262 DOI: 10.1097/md.0000000000033568] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/29/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Malignant change from low-grade dysplasia to high-grade dysplasia and invasive carcinoma following an adenoma-carcinoma sequence is becoming more common in intraductal papillary mucinous neoplasm (IPMN) of the pancreas. The aim of this study is to analyze their main characteristics and recent research trends in IPMNs and consequently create better understandings of the current situation and trends. METHODS A comprehensive search was performed in The Science Citation Index Expanded of the Web of Science. All articles between 1990 and 2021 were searched. VOS viewer (Leiden University, Leiden, Netherlands) was used for a qualitative and quantitative analysis of keywords, constituting maps based on co-occurrence matrix. RESULTS A total of 1658 eligible articles were screened among the 3950 identified articles for this subject. Finally, 879 articles were included in this study. Many articles on IPMN have been published in Japan and South Korea. Tanaka published the highest number of articles (n = 26, citations = 11,143). The Pancreas published the highest number of articles. (n = 100, citations = 2533). These articles were grouped into 4 clusters including basic research, disease overview, management/prognosis and malignant IPMN by using bibliometric keywords network analysis. Overlay visualization demonstrates, a trend of the studies has been changed from basic research or disease to management or prognosis. CONCLUSIONS In this study, we found and highlight the most cited and influential articles related to IPMN. Plus, this study analyzed global research trends in IPMN over the past 30 years and provides insight into the features and research hotspots of the articles in IPMN research.
Collapse
Affiliation(s)
- Jae Keun Park
- Department of Internal Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Ji Woong Hwang
- Department of Surgery, Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine, Gwangmyeong, Republic of Korea
| |
Collapse
|
40
|
Foote MB, Walch H, Chatila W, Vakiani E, Chandler C, Steinruecke F, Nash GM, Stadler Z, Chung S, Yaeger R, Braghrioli MI, Shia J, Kemel Y, Maio A, Sheehan M, Rousseau B, Argilés G, Berger M, Solit D, Schultz N, Diaz LA, Cercek A. Molecular Classification of Appendiceal Adenocarcinoma. J Clin Oncol 2023; 41:1553-1564. [PMID: 36493333 PMCID: PMC10043565 DOI: 10.1200/jco.22.01392] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/09/2022] [Accepted: 10/11/2022] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Appendiceal adenocarcinomas (ACs) are rare, histologically diverse malignancies treated as colorectal cancers despite having distinct biology and clinical behavior. To guide clinical decision making, we defined molecular subtypes of AC associated with patient survival, metastatic burden, and chemotherapy response. PATIENTS AND METHODS A comprehensive molecular analysis was performed in patients with AC to define molecular subtypes. Associations between molecular subtype and overall survival, intraoperative peritoneal cancer index, and first-line chemotherapy response were assessed adjusting for histopathologic and clinical variables using multivariable Cox proportional hazards, linear regression, and logistic regression models. RESULTS We defined distinct molecular lineages of mucinous appendiceal adenocarcinoma (MAAP) from co-occurring mutations in GNAS, RAS, and TP53. Of 164 MAAP tumors, 24 were RAS-mutant (mut) predominant (RAS-mut/GNAS-wild-type [wt]/TP53-wt) with significantly decreased mutations and chromosomal alterations compared with tumors with GNAS mutations (GNAS-mut predominant) or TP53 mutations (TP53-mut predominant). No patient with RAS-mut predominant subtype metastatic MAAP died of cancer, and overall survival in this subgroup was significantly improved compared with patients with GNAS-mut (P = .05) and TP53-mut (P = .004) predominant subtypes. TP53-mut predominant subtypes were highly aneuploid; increased tumor aneuploidy was independently (P = .001) associated with poor prognosis. The findings retained significance in patients with any metastatic AC. RAS-mut predominant metastases exhibited reduced peritoneal tumor bulk (P = .04) and stromal invasion (P < .001) compared with GNAS-mut or TP53-mut predominant tumors, respectively. Patients with RAS-mut predominant MAAP responded more to first-line chemotherapy (50%) compared with patients with GNAS-mut predominant tumors (6%, P = .03). CONCLUSION AC molecular patterns identify distinct molecular subtypes: a clinically indolent RAS-mut/GNAS-wt/TP53-wt subtype; a chemotherapy-resistant GNAS-mut predominant subtype; and an aggressive, highly aneuploid TP53-mut predominant subtype. Each subtype exhibits conserved clinical behavior irrespective of histopathology.
Collapse
Affiliation(s)
- Michael B. Foote
- Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Henry Walch
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Walid Chatila
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Efsevia Vakiani
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Chris Chandler
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Felix Steinruecke
- Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Garrett M. Nash
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Zsofia Stadler
- Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sebastian Chung
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Rona Yaeger
- Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Maria Ignez Braghrioli
- Division of Medical Oncology, Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - Jinru Shia
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Yelena Kemel
- Niehaus Center for Inherited Cancer Genomics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Anna Maio
- Niehaus Center for Inherited Cancer Genomics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Margaret Sheehan
- Niehaus Center for Inherited Cancer Genomics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Benoit Rousseau
- Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Guillem Argilés
- Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael Berger
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - David Solit
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nikolaus Schultz
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Luis A. Diaz
- Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Andrea Cercek
- Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
41
|
Sawai H, Kiriyama Y, Kuzuya H, Fujii Y, Ueno S, Koide S, Kurimoto M, Yamao K, Matsuo Y, Morimoto M, Koide H, Kamiya A. Adenosquamous carcinoma coexisting with intraductal papillary mucinous neoplasm of the pancreas: a case report. J Med Case Rep 2023; 17:72. [PMID: 36859393 PMCID: PMC9979475 DOI: 10.1186/s13256-023-03798-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 01/31/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Adenosquamous carcinoma of the pancreas is a rare variant, with a worse prognosis than pancreatic ductal adenocarcinoma; moreover, it has characteristic clinical and histopathological features. Studies have mentioned the differentiation of intraductal papillary mucinous neoplasms into mucinous/tubular adenocarcinomas; however, their transdifferentiation into adenosquamous carcinoma remains unclear. CASE PRESENTATION An 80-year-old Japanese woman was referred to our hospital for further examination of multiple pancreatic cysts. Enhanced computed tomography after close follow-up for 6 years revealed a new nodule with poor enhancement on the pancreatic body. Distal pancreatectomy and splenectomy were performed. Histopathological examination revealed an adenosquamous carcinoma with coexisting intraductal papillary mucinous neoplasms; moreover, the intraductal papillary mucinous neoplasms lacked continuity with the adenosquamous carcinoma. Immunohistochemical analysis revealed squamous cell carcinoma and differentiation from adenocarcinoma to squamous cell carcinoma. Gene mutation analysis revealed KRASG12D and KRASG12R mutations in adenosquamous carcinoma components and intraductal papillary mucinous neoplasm lesions, respectively, with none showing the mutation of GNAS codon 201. The final histopathological diagnosis was adenosquamous carcinoma with coexisting intraductal papillary mucinous neoplasms of the pancreas. CONCLUSIONS This is the rare case of adenosquamous carcinoma with coexisting intraductal papillary mucinous neoplasms of the pancreas. To investigate the underlying transdifferentiation pathway of intraductal papillary mucinous neoplasms into this rare subtype of pancreatic cancer, we explored gene mutation differences as a clinicopathological parameter.
Collapse
Affiliation(s)
- Hirozumi Sawai
- Department of Surgery, Narita Memorial Hospital, Hanei-Honmachi 134, Toyohashi, Aichi, 4418029, Japan.
| | - Yuka Kiriyama
- Department of Pathology, Narita Memorial Hospital, Toyohashi, Aichi, Japan
| | - Hiromasa Kuzuya
- Department of Surgery, Narita Memorial Hospital, Hanei-Honmachi 134, Toyohashi, Aichi, 4418029, Japan
| | - Yoshiaki Fujii
- Department of Surgery, Narita Memorial Hospital, Hanei-Honmachi 134, Toyohashi, Aichi, 4418029, Japan
| | - Shuhei Ueno
- Department of Surgery, Narita Memorial Hospital, Hanei-Honmachi 134, Toyohashi, Aichi, 4418029, Japan
| | - Shuji Koide
- Department of Surgery, Narita Memorial Hospital, Hanei-Honmachi 134, Toyohashi, Aichi, 4418029, Japan
| | - Masaaki Kurimoto
- Department of Surgery, Narita Memorial Hospital, Hanei-Honmachi 134, Toyohashi, Aichi, 4418029, Japan
| | - Kenji Yamao
- Department of Gastroenterology, Narita Memorial Hospital, Toyohashi, Aichi, Japan
| | - Yoichi Matsuo
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho-Cho, Mizuho-Ku, Nagoya, Aichi, 467-8601, Japan
| | - Mamoru Morimoto
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho-Cho, Mizuho-Ku, Nagoya, Aichi, 467-8601, Japan
| | - Hajime Koide
- Department of Surgery, Narita Memorial Hospital, Hanei-Honmachi 134, Toyohashi, Aichi, 4418029, Japan
| | - Atsushi Kamiya
- Department of Surgery, Narita Memorial Hospital, Hanei-Honmachi 134, Toyohashi, Aichi, 4418029, Japan
| |
Collapse
|
42
|
Braxton AM, Kiemen AL, Grahn MP, Forjaz A, Babu JM, Zheng L, Jiang L, Cheng H, Song Q, Reichel R, Graham S, Damanakis AI, Fischer CG, Mou S, Metz C, Granger J, Liu XD, Bachmann N, Almagro-Pérez C, Jiang AC, Yoo J, Kim B, Du S, Foster E, Hsu JY, Rivera PA, Chu LC, Liu F, Niknafs N, Fishman EK, Yuille A, Roberts NJ, Thompson ED, Scharpf RB, Cornish TC, Jiao Y, Karchin R, Hruban RH, Wu PH, Wirtz D, Wood LD. Three-dimensional genomic mapping of human pancreatic tissue reveals striking multifocality and genetic heterogeneity in precancerous lesions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.525553. [PMID: 36747709 PMCID: PMC9900989 DOI: 10.1101/2023.01.27.525553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Pancreatic intraepithelial neoplasia (PanIN) is a precursor to pancreatic cancer and represents a critical opportunity for cancer interception. However, the number, size, shape, and connectivity of PanINs in human pancreatic tissue samples are largely unknown. In this study, we quantitatively assessed human PanINs using CODA, a novel machine-learning pipeline for 3D image analysis that generates quantifiable models of large pieces of human pancreas with single-cell resolution. Using a cohort of 38 large slabs of grossly normal human pancreas from surgical resection specimens, we identified striking multifocality of PanINs, with a mean burden of 13 spatially separate PanINs per cm3 of sampled tissue. Extrapolating this burden to the entire pancreas suggested a median of approximately 1000 PanINs in an entire pancreas. In order to better understand the clonal relationships within and between PanINs, we developed a pipeline for CODA-guided multi-region genomic analysis of PanINs, including targeted and whole exome sequencing. Multi-region assessment of 37 PanINs from eight additional human pancreatic tissue slabs revealed that almost all PanINs contained hotspot mutations in the oncogene KRAS, but no gene other than KRAS was altered in more than 20% of the analyzed PanINs. PanINs contained a mean of 13 somatic mutations per region when analyzed by whole exome sequencing. The majority of analyzed PanINs originated from independent clonal events, with distinct somatic mutation profiles between PanINs in the same tissue slab. A subset of the analyzed PanINs contained multiple KRAS mutations, suggesting a polyclonal origin even in PanINs that are contiguous by rigorous 3D assessment. This study leverages a novel 3D genomic mapping approach to describe, for the first time, the spatial and genetic multifocality of human PanINs, providing important insights into the initiation and progression of pancreatic neoplasia.
Collapse
Affiliation(s)
- Alicia M Braxton
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ashley L Kiemen
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Mia P Grahn
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - André Forjaz
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Jaanvi Mahesh Babu
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Lily Zheng
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University, Baltimore, MD
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD
| | - Liping Jiang
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China
| | - Haixia Cheng
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China
| | - Qianqian Song
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China
| | - Rebecca Reichel
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sarah Graham
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Alexander I Damanakis
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Catherine G Fischer
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Stephanie Mou
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Cameron Metz
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Julie Granger
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Xiao-Ding Liu
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Niklas Bachmann
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Cristina Almagro-Pérez
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Ann Chenyu Jiang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Jeonghyun Yoo
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Bridgette Kim
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Scott Du
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Eli Foster
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Jocelyn Y Hsu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Paula Andreu Rivera
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Linda C Chu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Fengze Liu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Noushin Niknafs
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Elliot K Fishman
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Alan Yuille
- Department of Computer Science, Johns Hopkins University, Baltimore, MD
| | - Nicholas J Roberts
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Elizabeth D Thompson
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Robert B Scharpf
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Toby C Cornish
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO
| | - Yuchen Jiao
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD
| | - Rachel Karchin
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD
| | - Ralph H Hruban
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Pei-Hsun Wu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Denis Wirtz
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Laura D Wood
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
43
|
Liu J, Mroczek M, Mach A, Stępień M, Aplas A, Pronobis-Szczylik B, Bukowski S, Mielczarek M, Gajewska E, Topolski P, Król ZJ, Szyda J, Dobosz P. Genetics, Genomics and Emerging Molecular Therapies of Pancreatic Cancer. Cancers (Basel) 2023; 15:779. [PMID: 36765737 PMCID: PMC9913594 DOI: 10.3390/cancers15030779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 02/01/2023] Open
Abstract
The number of cases of pancreatic cancers in 2019 in Poland was 3852 (approx. 2% of all cancers). The course of the disease is very fast, and the average survival time from the diagnosis is 6 months. Only <2% of patients live for 5 years from the diagnosis, 8% live for 2 years, and almost half live for only about 3 months. A family predisposition to pancreatic cancer occurs in about 10% of cases. Several oncogenes in which somatic changes lead to the development of tumours, including genes BRCA1/2 and PALB2, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1, are involved in pancreatic cancer. Between 4% and 10% of individuals with pancreatic cancer will have a mutation in one of these genes. Six percent of patients with pancreatic cancer have NTRK pathogenic fusion. The pathogenesis of pancreatic cancer can in many cases be characterised by homologous recombination deficiency (HRD)-cell inability to effectively repair DNA. It is estimated that from 24% to as many as 44% of pancreatic cancers show HRD. The most common cause of HRD are inactivating mutations in the genes regulating this DNA repair system, mainly BRCA1 and BRCA2, but also PALB2, RAD51C and several dozen others.
Collapse
Affiliation(s)
- Jakub Liu
- Biostatistics Group, Wroclaw University of Environmental and Life Sciences, 51-631 Wroclaw, Poland
| | - Magdalena Mroczek
- Centre for Cardiovascular Genetics and Gene Diagnostics, Foundation for People with Rare Diseases, Wagistrasse 25, 8952 Schlieren, Switzerland
| | - Anna Mach
- Department of Psychiatry, Medical University of Warsaw, 00-665 Warsaw, Poland
- Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, 02-507 Warsaw, Poland
| | - Maria Stępień
- Department of Infectious Diseases, Doctoral School, Medical University of Lublin, 20-059 Lublin, Poland
| | - Angelika Aplas
- Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, 02-507 Warsaw, Poland
| | - Bartosz Pronobis-Szczylik
- Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, 02-507 Warsaw, Poland
| | - Szymon Bukowski
- Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, 02-507 Warsaw, Poland
| | - Magda Mielczarek
- Biostatistics Group, Wroclaw University of Environmental and Life Sciences, 51-631 Wroclaw, Poland
- National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland
| | - Ewelina Gajewska
- Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, 02-507 Warsaw, Poland
| | - Piotr Topolski
- Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, 02-507 Warsaw, Poland
| | - Zbigniew J. Król
- Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, 02-507 Warsaw, Poland
| | - Joanna Szyda
- Biostatistics Group, Wroclaw University of Environmental and Life Sciences, 51-631 Wroclaw, Poland
- National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland
| | - Paula Dobosz
- Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, 02-507 Warsaw, Poland
| |
Collapse
|
44
|
Desai R, Muthuswamy S. Oncogenic GNAS uses PKA-dependent and independent mechanisms to induce cell proliferation in human pancreatic ductal and acinar organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.16.524220. [PMID: 36789419 PMCID: PMC9928035 DOI: 10.1101/2023.01.16.524220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Ductal and acinar pancreatic organoids generated from human pluripotent stem cells (hPSCs) are promising models to study pancreatic diseases, including precursor lesions of pancreatic cancer. Genome sequencing studies have revealed that mutations in a G-protein (GNASR201C) are exclusively observed in intraductal papillary mucinous neoplasms (IPMNs), one of the most common cystic pancreatic precancerous lesions. GNASR201C cooperates with oncogenic KRASG12V/D to produce IPMN lesions in mice; however, the biological mechanisms by which oncogenic GNAS affects the ductal and acinar exocrine pancreas are not understood. In this study, we use pancreatic ductal and acinar organoids generated from human embryonic stem cells to investigate mechanisms by which GNASR201C functions. As expected, GNASR201C-induced cell proliferation in acinar organoids was PKA-dependent. Surprisingly, GNASR201C-induced cell proliferation independent of the canonical PKA signaling in short-term and stable, long-term cultures of GNAS-expressing ductal organoids and in an immortalized ductal epithelial cell line, demonstrating that GNASR201C uses PKA-dependent and independent mechanisms to induce cell proliferation in the exocrine pancreas. Co-expression of oncogenic KRASG12V and GNASR201C induced cell proliferation in ductal and acini organoids in a PKA-independent and dependent manner, respectively. Thus, we identify cell lineage-specific roles for PKA signaling driving pre-cancerous lesions and report the development of a human pancreatic ductal organoid model system to investigate mechanisms regulating GNASR201C-induced IPMNs.
Collapse
Affiliation(s)
- Ridhdhi Desai
- Cancer Research Institute, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Current Address: Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Senthil Muthuswamy
- Cancer Research Institute, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Current Address: Laboratory of Cancer Biology and Genetics, National Cancer Institute, NIH, Bethesda, MD, MA, 02215, USsA
| |
Collapse
|
45
|
Henn J, Wyzlic PK, Esposito I, Semaan A, Branchi V, Klinger C, Buhr HJ, Wellner UF, Keck T, Lingohr P, Glowka TR, Manekeller S, Kalff JC, Matthaei H. Surgical treatment for pancreatic cystic lesions-implications from the multi-center and prospective German StuDoQ|Pancreas registry. Langenbecks Arch Surg 2023; 408:28. [PMID: 36640188 PMCID: PMC9840584 DOI: 10.1007/s00423-022-02740-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 10/20/2022] [Indexed: 01/15/2023]
Abstract
PURPOSE The detection of pancreatic cystic lesions (PCL) causes uncertainty for physicians and patients, and international guidelines are based on low evidence. The extent and perioperative risk of resections of PCL in Germany needs comparison with these guidelines to highlight controversies and derive recommendations. METHODS Clinical data of 1137 patients who underwent surgery for PCL between 2014 and 2019 were retrieved from the German StuDoQ|Pancreas registry. Relevant features for preoperative evaluation and predictive factors for adverse outcomes were statistically identified. RESULTS Patients with intraductal papillary mucinous neoplasms (IPMN) represented the largest PCL subgroup (N = 689; 60.6%) while other entities (mucinous cystic neoplasms (MCN), serous cystic neoplasms (SCN), neuroendocrine tumors, pseudocysts) were less frequently resected. Symptoms of pancreatitis were associated with IPMN (OR, 1.8; P = 0.012) and pseudocysts (OR, 4.78; P < 0.001), but likewise lowered the likelihood of MCN (OR, 0.49; P = 0.046) and SCN (OR, 0.15, P = 0.002). A total of 639 (57.2%) patients received endoscopic ultrasound before resection, as recommended by guidelines. Malignancy was histologically confirmed in 137 patients (12.0%), while jaundice (OR, 5.1; P < 0.001) and weight loss (OR, 2.0; P = 0.002) were independent predictors. Most resections were performed by open surgery (N = 847, 74.5%), while distal lesions were in majority treated using minimally invasive approaches (P < 0.001). Severe morbidity was 28.4% (N = 323) and 30d mortality was 2.6% (N = 29). Increased age (P = 0.004), higher BMI (P = 0.002), liver cirrhosis (P < 0.001), and esophageal varices (P = 0.002) were independent risk factors for 30d mortality. CONCLUSION With respect to unclear findings frequently present in PCL, diagnostic means recommended in guidelines should always be considered in the preoperative phase. The therapy of PCL should be decided upon in the light of patient-specific factors, and the surgical strategy needs to be adapted accordingly.
Collapse
Affiliation(s)
- Jonas Henn
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital Bonn, Bonn, Germany
| | - Patricia K Wyzlic
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital Bonn, Bonn, Germany
| | - Irene Esposito
- Institute of Pathology, Heinrich-Heine University, Düsseldorf, Germany
| | - Alexander Semaan
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital Bonn, Bonn, Germany
| | - Vittorio Branchi
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital Bonn, Bonn, Germany
| | - Carsten Klinger
- German Society of General and Visceral Surgery (DGAV), Berlin, Germany
| | - Heinz J Buhr
- German Society of General and Visceral Surgery (DGAV), Berlin, Germany
| | | | - Tobias Keck
- Department of Surgery, UKSH Campus Lübeck, Lübeck, Germany
| | - Philipp Lingohr
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital Bonn, Bonn, Germany
| | - Tim R Glowka
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital Bonn, Bonn, Germany
| | - Steffen Manekeller
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital Bonn, Bonn, Germany
| | - Jörg C Kalff
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital Bonn, Bonn, Germany
| | - Hanno Matthaei
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
46
|
Nakaoka K, Ohno E, Kawabe N, Kuzuya T, Funasaka K, Nakagawa Y, Nagasaka M, Ishikawa T, Watanabe A, Tochio T, Miyahara R, Shibata T, Kawashima H, Hashimoto S, Hirooka Y. Current Status of the Diagnosis of Early-Stage Pancreatic Ductal Adenocarcinoma. Diagnostics (Basel) 2023; 13:215. [PMID: 36673023 PMCID: PMC9857526 DOI: 10.3390/diagnostics13020215] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/15/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) can be treated with surgery, chemotherapy, and radiotherapy. Despite medical progress in each field in recent years, it is still insufficient for managing PDAC, and at present, the only curative treatment is surgery. A typical pancreatic cancer is relatively easy to diagnose with imaging. However, it is often not recommended for surgical treatment at the time of diagnosis due to metastatic spread beyond the pancreas. Even if it is operable, it often recurs during postoperative follow-up. In the case of PDAC with a diameter of 10 mm or less, the 5-year survival rate is as good as 80% or more, and the best index for curative treatment is tumor size. The early detection of pancreatic cancer with a diameter of less than 10 mm or carcinoma in situ is critical. Here, we provide an overview of the current status of diagnostic imaging features and genetic tests for the accurate diagnosis of early-stage PDAC.
Collapse
Affiliation(s)
- Kazunori Nakaoka
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Eizaburo Ohno
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Naoto Kawabe
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Teiji Kuzuya
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Kohei Funasaka
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Yoshihito Nakagawa
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Mitsuo Nagasaka
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Takuya Ishikawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya 464-0813, Aichi, Japan
| | - Ayako Watanabe
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Takumi Tochio
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Toyoake 470-1101, Aichi, Japan
| | - Ryoji Miyahara
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Tomoyuki Shibata
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Hiroki Kawashima
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya 464-0813, Aichi, Japan
| | - Senju Hashimoto
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Yoshiki Hirooka
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| |
Collapse
|
47
|
Montañez-Miranda C, Perszyk RE, Harbin NH, Okalova J, Ramineni S, Traynelis SF, Hepler JR. Functional Assessment of Cancer-Linked Mutations in Sensitive Regions of Regulators of G Protein Signaling Predicted by Three-Dimensional Missense Tolerance Ratio Analysis. Mol Pharmacol 2023; 103:21-37. [PMID: 36384958 PMCID: PMC10955721 DOI: 10.1124/molpharm.122.000614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/04/2022] [Accepted: 10/18/2022] [Indexed: 11/18/2022] Open
Abstract
Regulators of G protein signaling (RGS) proteins modulate G protein-coupled receptor (GPCR) signaling by acting as negative regulators of G proteins. Genetic variants in RGS proteins are associated with many diseases, including cancers, although the impact of these mutations on protein function is uncertain. Here we analyze the RGS domains of 15 RGS protein family members using a novel bioinformatic tool that measures the missense tolerance ratio (MTR) using a three-dimensional (3D) structure (3DMTR). Subsequent permutation analysis can define the protein regions that are most significantly intolerant (P < 0.05) in each dataset. We further focused on RGS14, RGS10, and RGS4. RGS14 exhibited seven significantly tolerant and seven significantly intolerant residues, RGS10 had six intolerant residues, and RGS4 had eight tolerant and six intolerant residues. Intolerant and tolerant-control residues that overlap with pathogenic cancer mutations reported in the COSMIC cancer database were selected to define the functional phenotype. Using complimentary cellular and biochemical approaches, proteins were tested for effects on GPCR-Gα activation, Gα binding properties, and downstream cAMP levels. Identified intolerant residues with reported cancer-linked mutations RGS14-R173C/H and RGS4-K125Q/E126K, and tolerant RGS14-S127P and RGS10-S64T resulted in a loss-of-function phenotype in GPCR-G protein signaling activity. In downstream cAMP measurement, tolerant RGS14-D137Y and RGS10-S64T and intolerant RGS10-K89M resulted in change of function phenotypes. These findings show that 3DMTR identified intolerant residues that overlap with cancer-linked mutations cause phenotypic changes that negatively impact GPCR-G protein signaling and suggests that 3DMTR is a potentially useful bioinformatics tool for predicting functionally important protein residues. SIGNIFICANCE STATEMENT: Human genetic variant/mutation information has expanded rapidly in recent years, including cancer-linked mutations in regulator of G protein signaling (RGS) proteins. However, experimental testing of the impact of this vast catalogue of mutations on protein function is not feasible. We used the novel bioinformatics tool three-dimensional missense tolerance ratio (3DMTR) to define regions of genetic intolerance in RGS proteins and prioritize which cancer-linked mutants to test. We found that 3DMTR more accurately classifies loss-of-function mutations in RGS proteins than other databases thereby offering a valuable new research tool.
Collapse
Affiliation(s)
- Carolina Montañez-Miranda
- Department of Pharmacology and Chemical Biology (C.M.-M., R.E.P., N.H.H., S.R., S.F.T., J.R.H.) and Aflac Cancer and Blood Disorders Center, Department of Pediatrics (J.O.), Emory University School of Medicine, Atlanta, Georgia
| | - Riley E Perszyk
- Department of Pharmacology and Chemical Biology (C.M.-M., R.E.P., N.H.H., S.R., S.F.T., J.R.H.) and Aflac Cancer and Blood Disorders Center, Department of Pediatrics (J.O.), Emory University School of Medicine, Atlanta, Georgia
| | - Nicholas H Harbin
- Department of Pharmacology and Chemical Biology (C.M.-M., R.E.P., N.H.H., S.R., S.F.T., J.R.H.) and Aflac Cancer and Blood Disorders Center, Department of Pediatrics (J.O.), Emory University School of Medicine, Atlanta, Georgia
| | - Jennifer Okalova
- Department of Pharmacology and Chemical Biology (C.M.-M., R.E.P., N.H.H., S.R., S.F.T., J.R.H.) and Aflac Cancer and Blood Disorders Center, Department of Pediatrics (J.O.), Emory University School of Medicine, Atlanta, Georgia
| | - Suneela Ramineni
- Department of Pharmacology and Chemical Biology (C.M.-M., R.E.P., N.H.H., S.R., S.F.T., J.R.H.) and Aflac Cancer and Blood Disorders Center, Department of Pediatrics (J.O.), Emory University School of Medicine, Atlanta, Georgia
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology (C.M.-M., R.E.P., N.H.H., S.R., S.F.T., J.R.H.) and Aflac Cancer and Blood Disorders Center, Department of Pediatrics (J.O.), Emory University School of Medicine, Atlanta, Georgia
| | - John R Hepler
- Department of Pharmacology and Chemical Biology (C.M.-M., R.E.P., N.H.H., S.R., S.F.T., J.R.H.) and Aflac Cancer and Blood Disorders Center, Department of Pediatrics (J.O.), Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
48
|
Raut P, Nimmakayala RK, Batra SK, Ponnusamy MP. Clinical and Molecular Attributes and Evaluation of Pancreatic Cystic Neoplasm. Biochim Biophys Acta Rev Cancer 2023; 1878:188851. [PMID: 36535512 PMCID: PMC9898173 DOI: 10.1016/j.bbcan.2022.188851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Intraductal papillary mucinous neoplasms (IPMNs) and mucinous cystic neoplasms (MCNs) are all considered "Pancreatic cystic neoplasms (PCNs)" and show a varying risk of developing into pancreatic ductal adenocarcinoma (PDAC). These lesions display different molecular characteristics, mutations, and clinical manifestations. A lack of detailed understanding of PCN subtype characteristics and their molecular mechanisms limits the development of efficient diagnostic tools and therapeutic strategies for these lesions. Proper in vivo mouse models that mimic human PCNs are also needed to study the molecular mechanisms and for therapeutic testing. A comprehensive understanding of the current status of PCN biology, mechanisms, current diagnostic methods, and therapies will help in the early detection and proper management of patients with these lesions and PDAC. This review aims to describe all these aspects of PCNs, specifically IPMNs, by describing the future perspectives.
Collapse
Affiliation(s)
- Pratima Raut
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Rama Krishna Nimmakayala
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| |
Collapse
|
49
|
Paniccia A, Polanco PM, Boone BA, Wald AI, McGrath K, Brand RE, Khalid A, Kubiliun N, O'Broin-Lennon AM, Park WG, Klapman J, Tharian B, Inamdar S, Fasanella K, Nasr J, Chennat J, Das R, DeWitt J, Easler JJ, Bick B, Singh H, Fairley KJ, Sarkaria S, Sawas T, Skef W, Slivka A, Tavakkoli A, Thakkar S, Kim V, Vanderveldt HD, Richardson A, Wallace MB, Brahmbhatt B, Engels M, Gabbert C, Dugum M, El-Dika S, Bhat Y, Ramrakhiani S, Bakis G, Rolshud D, Millspaugh G, Tielleman T, Schmidt C, Mansour J, Marsh W, Ongchin M, Centeno B, Monaco SE, Ohori NP, Lajara S, Thompson ED, Hruban RH, Bell PD, Smith K, Permuth JB, Vandenbussche C, Ernst W, Grupillo M, Kaya C, Hogg M, He J, Wolfgang CL, Lee KK, Zeh H, Zureikat A, Nikiforova MN, Singhi AD. Prospective, Multi-Institutional, Real-Time Next-Generation Sequencing of Pancreatic Cyst Fluid Reveals Diverse Genomic Alterations That Improve the Clinical Management of Pancreatic Cysts. Gastroenterology 2023; 164:117-133.e7. [PMID: 36209796 PMCID: PMC9844531 DOI: 10.1053/j.gastro.2022.09.028] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 08/22/2022] [Accepted: 09/16/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Next-generation sequencing (NGS) of pancreatic cyst fluid is a useful adjunct in the assessment of patients with pancreatic cyst. However, previous studies have been retrospective or single institutional experiences. The aim of this study was to prospectively evaluate NGS on a multi-institutional cohort of patients with pancreatic cyst in real time. METHODS The performance of a 22-gene NGS panel (PancreaSeq) was first retrospectively confirmed and then within a 2-year timeframe, PancreaSeq testing was prospectively used to evaluate endoscopic ultrasound-guided fine-needle aspiration pancreatic cyst fluid from 31 institutions. PancreaSeq results were correlated with endoscopic ultrasound findings, ancillary studies, current pancreatic cyst guidelines, follow-up, and expanded testing (Oncomine) of postoperative specimens. RESULTS Among 1933 PCs prospectively tested, 1887 (98%) specimens from 1832 patients were satisfactory for PancreaSeq testing. Follow-up was available for 1216 (66%) patients (median, 23 months). Based on 251 (21%) patients with surgical pathology, mitogen-activated protein kinase/GNAS mutations had 90% sensitivity and 100% specificity for a mucinous cyst (positive predictive value [PPV], 100%; negative predictive value [NPV], 77%). On exclusion of low-level variants, the combination of mitogen-activated protein kinase/GNAS and TP53/SMAD4/CTNNB1/mammalian target of rapamycin alterations had 88% sensitivity and 98% specificity for advanced neoplasia (PPV, 97%; NPV, 93%). Inclusion of cytopathologic evaluation to PancreaSeq testing improved the sensitivity to 93% and maintained a high specificity of 95% (PPV, 92%; NPV, 95%). In comparison, other modalities and current pancreatic cyst guidelines, such as the American Gastroenterology Association and International Association of Pancreatology/Fukuoka guidelines, show inferior diagnostic performance. The sensitivities and specificities of VHL and MEN1/loss of heterozygosity alterations were 71% and 100% for serous cystadenomas (PPV, 100%; NPV, 98%), and 68% and 98% for pancreatic neuroendocrine tumors (PPV, 85%; NPV, 95%), respectively. On follow-up, serous cystadenomas with TP53/TERT mutations exhibited interval growth, whereas pancreatic neuroendocrine tumors with loss of heterozygosity of ≥3 genes tended to have distant metastasis. None of the 965 patients who did not undergo surgery developed malignancy. Postoperative Oncomine testing identified mucinous cysts with BRAF fusions and ERBB2 amplification, and advanced neoplasia with CDKN2A alterations. CONCLUSIONS PancreaSeq was not only sensitive and specific for various pancreatic cyst types and advanced neoplasia arising from mucinous cysts, but also reveals the diversity of genomic alterations seen in pancreatic cysts and their clinical significance.
Collapse
Affiliation(s)
- Alessandro Paniccia
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Patricio M Polanco
- Department of Clinical Sciences, Surgery, University of Texas Southwestern, Dallas, Texas
| | - Brian A Boone
- Department of Surgery, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Abigail I Wald
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Kevin McGrath
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Randall E Brand
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Asif Khalid
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| | - Nisa Kubiliun
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Anne Marie O'Broin-Lennon
- The Sol Goldman Pancreatic Cancer Research Center, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Walter G Park
- Department of Medicine, Stanford University, Stanford, California
| | - Jason Klapman
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Benjamin Tharian
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Sumant Inamdar
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Kenneth Fasanella
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - John Nasr
- Department of Medicine, Wheeling Hospital, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Jennifer Chennat
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Rohit Das
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - John DeWitt
- Department of Gastroenterology and Hepatology, Indiana University Health Medical Center, Indianapolis, Indiana
| | - Jeffrey J Easler
- Department of Gastroenterology and Hepatology, Indiana University Health Medical Center, Indianapolis, Indiana
| | - Benjamin Bick
- Department of Gastroenterology and Hepatology, Indiana University Health Medical Center, Indianapolis, Indiana
| | - Harkirat Singh
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Kimberly J Fairley
- Department of Medicine, Section of Gastroenterology & Hepatology, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Savreet Sarkaria
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Tarek Sawas
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Wasseem Skef
- Department of Medicine, Division of Gastroenterology and Hepatology, Loma Linda University Medical Center, Loma Linda, California
| | - Adam Slivka
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Anna Tavakkoli
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Shyam Thakkar
- Department of Medicine, Section of Gastroenterology & Hepatology, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Victoria Kim
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | | | | | - Michael B Wallace
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida; Sheikh Shakhbout Medical City, Abu Dhabi, United Arab Emirates
| | - Bhaumik Brahmbhatt
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida
| | - Megan Engels
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida
| | - Charles Gabbert
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Mohannad Dugum
- Digestive Health Center, Essentia Health-Duluth Clinic, Duluth, Minnesota
| | - Samer El-Dika
- Department of Medicine, Stanford University, Stanford, California
| | - Yasser Bhat
- Department of Gastroenterology, Palo Alto Medical Foundation (PAMF), Mountain View, California
| | - Sanjay Ramrakhiani
- Department of Gastroenterology, Palo Alto Medical Foundation (PAMF), Mountain View, California
| | | | | | | | - Thomas Tielleman
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Carl Schmidt
- Department of Surgery, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - John Mansour
- Department of Clinical Sciences, Surgery, University of Texas Southwestern, Dallas, Texas
| | - Wallis Marsh
- Department of Surgery, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Melanie Ongchin
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Barbara Centeno
- Department of Pathology, Moffitt Cancer Center, Tampa, Florida
| | - Sara E Monaco
- Department of Pathology, Geisinger Medical Center, Danville, Pennsylvania
| | - N Paul Ohori
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Sigfred Lajara
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Elizabeth D Thompson
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Ralph H Hruban
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Phoenix D Bell
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Katelyn Smith
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Jennifer B Permuth
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Christopher Vandenbussche
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Wayne Ernst
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Maria Grupillo
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Cihan Kaya
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Melissa Hogg
- Department of Surgery, NorthShore University Health System, Chicago, Illinois
| | - Jin He
- The Sol Goldman Pancreatic Cancer Research Center, Department of Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Christopher L Wolfgang
- The Sol Goldman Pancreatic Cancer Research Center, Department of Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland; Department of Surgery, NYU Langone Health, New York, New York
| | - Kenneth K Lee
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Herbert Zeh
- Department of Clinical Sciences, Surgery, University of Texas Southwestern, Dallas, Texas
| | - Amer Zureikat
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Marina N Nikiforova
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.
| | - Aatur D Singhi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.
| |
Collapse
|
50
|
Chen W, Ahmed N, Krishna SG. Pancreatic Cystic Lesions: A Focused Review on Cyst Clinicopathological Features and Advanced Diagnostics. Diagnostics (Basel) 2022; 13:65. [PMID: 36611356 PMCID: PMC9818257 DOI: 10.3390/diagnostics13010065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Macroscopic, endomicroscopic, and histologic findings and correlation are an integral part of the diagnostic evaluation of pancreatic cystic lesions (PCLs), as complementing morphologic features seen by different specialties are combined to contribute to a final diagnosis. However, malignancy risk stratification of PCLs with worrisome features can still be challenging even after endoscopic ultrasound guided-fine needle aspiration (EUS-FNA) with cytological evaluation. This review aims to summarize cyst clinicopathological features from the pathologists' perspective, coupled with knowledge from advanced diagnostics-confocal laser endomicroscopy and cyst fluid molecular analysis, to demonstrate the state-of-art risk stratification of PCLs. This review includes illustrative photos of surgical specimens, endomicroscopic and histologic images, and a summary of cyst fluid molecular markers.
Collapse
Affiliation(s)
- Wei Chen
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Nehaal Ahmed
- School of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Somashekar G. Krishna
- Division of Gastroenterology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|