1
|
Cohen AD, Villemagne VL. A brief history of Aβ imaging. Alzheimers Dement 2025; 21:e70291. [PMID: 40407091 PMCID: PMC12100503 DOI: 10.1002/alz.70291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/26/2025]
Abstract
β-Amyloid (Αβ) imaging revolutionized the in vivo assessment of Alzheimer's disease (AD) Αβ pathology and its changes over time, increasing our insights into Aβ deposition in the brain by providing highly accurate, reliable, and reproducible quantitative statements of regional and global Aβ burden in the brain, proving essential for the differential diagnosis, staging, and evaluation of disease-specific anti-Αβ therapeutic approaches. Longitudinal observations, coupled with different disease-specific biomarkers to assess potential downstream effects of Aβ, have confirmed that Αβ deposition in the brain starts decades before the onset of symptoms. Aβ imaging studies continue to refine our understanding of the role of Αβ deposition in AD, and its relation to other imaging and fluid biomarkers. HIGHLIGHTS: Αβ imaging revolutionized the in vivo assessment of Alzheimer's disease Αβ pathology. Αβ imaging has increased our insights into Aβ deposition in the brain by providing highly accurate, reliable, and reproducible quantitative statements of regional and global Αβ burden in the brain. Αβ imaging is essential for the differential diagnosis, staging, and evaluation of disease-specific anti-Αβ therapeutic approaches. Αβ imaging studies continue to refine our understanding of the role of Αβ deposition in Alzheimer's disease, and its relation to other imaging and fluid biomarkers.
Collapse
Affiliation(s)
- Ann D. Cohen
- Department of PsychiatryThe University of PittsburghPittsburghPennsylvaniaUSA
| | | |
Collapse
|
2
|
Busto GU, Hirtz C, Carriere I, Bennys K, Gutierrez LA, Kindermans J, Helmer C, Gabelle A, Lehmann S, Berr C. A six-year risk assessment for dementia and Alzheimer's disease in the general population through immunoprecipitation-mass spectrometry plasma amyloid quantification. J Prev Alzheimers Dis 2025:100186. [PMID: 40254499 DOI: 10.1016/j.tjpad.2025.100186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/13/2025] [Accepted: 04/13/2025] [Indexed: 04/22/2025]
Abstract
BACKGROUND Identifying individuals at risk for dementia and Alzheimer's disease (AD) in the general population (GP) is increasingly essential due to new diagnostic criteria and opportunities for effective interventions. Plasma-based biomarkers (pBB) offer a promising approach for detecting positive amyloid profile. However, their effectiveness in predicting clinical dementia and AD risk at the GP level remains largely unexplored. OBJECTIVES To assess the risk of clinical dementia and AD using pBB amyloid biomarkers in GP using the most up-to-date proteomic techniques. DESIGN Case-cohort study randomly selected from a prospective cohort. SETTING The three-city community-living study. PARTICIPANTS Over 65 years recruited from the electoral rolls of three French cities. MEASUREMENTS pBB amyloid levels (Aβ42, Aβ40 and APP669-711) were measured in the plasma using the mass spectrometry-based (IPMS)-Shimadzu modified technology. Patients were monitored for up to 6 years for incident dementia and AD according to DSM-IV and NINCDS/ADRDA criteria. Cox proportional hazard models adjusted for multiple covariables, including age and renal function, were used to estimate hazard ratios. RESULTS Plasma samples from 327 participants were analyzed with a mean age 83 years (80-87), 64.8 % females and a median follow-up time of 2.7 years (0.8-4.8) and including 121 incident dementia cases. Our findings indicate that the Aβ42/Aβ40 ratio, along with a composite score that encompasses APP669-711 and Aβ40/Aβ42 ratios, serves as significant predictors of clinical dementia [HR(95 %CI) = 3.52 (1.69-7.32), p-value<0.001 and 4.34 (2.06-9.17), p-value<0.001, respectively] and AD risk over a six-year period, while also accounting for age and sex interactions. Furthermore, elevated Aβ40 levels correlate with an increased risk of developing dementia (HR=2.56, 95 % CI 1.22-5.35, p = 0.01) and AD (HR=2.60, 95 %CI 1.06-6.36, p = 0.04), and our study confirms that Aβ42 concentrations are significantly influenced by renal function. CONCLUSIONS This research advances the potential application of plasma amyloid biomarkers for assessing the risk of clinical dementia and AD in the general population within short period of time, positioning it as a valuable tool alongside existing plasma PT217 biomarkers or using ratio of both of them.
Collapse
Affiliation(s)
- Germain U Busto
- INM, University of Montpellier, INSERM, 80 Av. Augustin Fliche, 34000, Montpellier, France; Memory Resource and Research Center, Department of Neurology, University of Montpellier Hospital, 80 avenue Augustin Fliche, 34295, Montpellier, France
| | - Christophe Hirtz
- INM, University of Montpellier, INSERM, 80 Av. Augustin Fliche, 34000, Montpellier, France; University of Montpellier, IRMB, CHU Montpellier, 80 avenue Augustin Fliche, 34295, Montpellier, France
| | - Isabelle Carriere
- INM, University of Montpellier, INSERM, 80 Av. Augustin Fliche, 34000, Montpellier, France
| | - Karim Bennys
- INM, University of Montpellier, INSERM, 80 Av. Augustin Fliche, 34000, Montpellier, France; Memory Resource and Research Center, Department of Neurology, University of Montpellier Hospital, 80 avenue Augustin Fliche, 34295, Montpellier, France
| | - Laure-Anne Gutierrez
- INM, University of Montpellier, INSERM, 80 Av. Augustin Fliche, 34000, Montpellier, France
| | - Jana Kindermans
- University of Montpellier, IRMB, CHU Montpellier, 80 avenue Augustin Fliche, 34295, Montpellier, France
| | - Catherine Helmer
- University of Bordeaux, INSERM UMR U1219, Bordeaux Population Health (BPH) Research Centre, 146 rue Léo-Saignat. 33076, Bordeaux, France
| | - Audrey Gabelle
- INM, University of Montpellier, INSERM, 80 Av. Augustin Fliche, 34000, Montpellier, France; Memory Resource and Research Center, Department of Neurology, University of Montpellier Hospital, 80 avenue Augustin Fliche, 34295, Montpellier, France
| | - Sylvain Lehmann
- INM, University of Montpellier, INSERM, 80 Av. Augustin Fliche, 34000, Montpellier, France; University of Montpellier, IRMB, CHU Montpellier, 80 avenue Augustin Fliche, 34295, Montpellier, France.
| | - Claudine Berr
- INM, University of Montpellier, INSERM, 80 Av. Augustin Fliche, 34000, Montpellier, France
| |
Collapse
|
3
|
Lu F, Mai Z, Zhang L, Luo H, Wang L, Li S, Zhong M. Differential Expression of Disulfidptosis-Related Genes in Spinal Cord Injury and Their Role in the Immune Microenvironment. Mol Neurobiol 2025:10.1007/s12035-025-04931-4. [PMID: 40237950 DOI: 10.1007/s12035-025-04931-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 04/07/2025] [Indexed: 04/18/2025]
Abstract
Spinal cord injury (SCI) often results in severe sensory, motor, and autonomic dysfunction, with limited treatment options due to complex underlying mechanisms. Disulfidptosis, a recently discovered form of cell death driven by disulfide bond accumulation, has been linked to various diseases, but its role in SCI remains unexplored. This study investigates the involvement of disulfidptosis-related genes (DRGs) in SCI to identify potential diagnostic markers and therapeutic targets. Using SCI datasets from the Gene Expression Omnibus (GEO), we conducted differential gene expression analysis, identifying key disulfidptosis-related differentially expressed genes (DRDEGs). Further analysis through gene set enrichment (GSEA) and Bayesian pathway enrichment highlighted significant involvement in pathways such as NF-κB, PI3K/Akt, and MAPK, with an emphasis on nephrin family interactions. Three core DRDEGs-HK2, Map3k8, and S100a6-were identified, and a diagnostic model built on these genes demonstrated strong predictive performance (AUC: 0.896 in training, 0.850 in validation). Additionally, real-time PCR (qRT-PCR) in an animal model validated the elevated expression of these DRDEGs in SCI samples. This research provides novel insights into disulfidptosis in SCI, suggesting these genes as promising targets for improved diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Feng Lu
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, No. 128 Jinling Road, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zifeng Mai
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, No. 128 Jinling Road, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Longfei Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, No. 128 Jinling Road, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Hao Luo
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, No. 128 Jinling Road, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Lifeng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, No. 128 Jinling Road, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Shihong Li
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, No. 128 Jinling Road, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Maolin Zhong
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, No. 128 Jinling Road, Ganzhou, Jiangxi, China.
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China.
| |
Collapse
|
4
|
Vermeulen RJ, Andersson V, Banken J, Hannink G, Govers TM, Rovers MM, Rikkert MGMO. Limited generalizability and high risk of bias in multivariable models predicting conversion risk from mild cognitive impairment to dementia: A systematic review. Alzheimers Dement 2025; 21:e70069. [PMID: 40189799 PMCID: PMC11972987 DOI: 10.1002/alz.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/12/2024] [Accepted: 02/09/2025] [Indexed: 04/10/2025]
Abstract
Prediction models have been developed to identify mild cognitive impairment (MCI) cases likely to convert to dementia. This systematic review summarizes multi-source prediction models for MCI to dementia conversion. PubMed and Embase were searched for model development and validation studies from inception up to January 18 2024. Models were assessed for included predictors, predictive performance, risk of bias, and generalizability. 62 studies were included: 41 machine learning models, 11 regression models, and 5 disease state indexes. The number of predictors in the models ranged from 2 to 60; magnetic resonance imaging (MRI) and cognitive scores were the most common sources. Performance measures indicate reasonable predictive capabilities (area under the curve [AUC] range: 0.58-0.98, accuracy range: 66.1-96.3%); however, most studies are at high risk of bias and 47 studies lack external validation. Currently, no highly valid prediction model is available for MCI to dementia conversion risk due to limited generalizability and high risk of bias in most studies. HIGHLIGHTS: Numerous models have been developed to predict the likelihood of conversion to dementia in individuals with MCI. Prediction models seem to have a reasonably good performance in predicting conversion to dementia, however, external validation and generalizability is often lacking. There is no prediction model available with a low risk for bias and that has been externally validated to accurately predict the risk of MCI to dementia conversion. For MCI to dementia conversion prediction models, more emphasis should be directed towards external validation, generalizability, and clinical applicability.
Collapse
Affiliation(s)
| | | | - Jimmy Banken
- Department of Medical ImagingRadboud University Medical CentreNijmegenThe Netherlands
| | - Gerjon Hannink
- Department of Medical ImagingRadboud University Medical CentreNijmegenThe Netherlands
| | - Tim Martin Govers
- Department of Medical ImagingRadboud University Medical CentreNijmegenThe Netherlands
| | | | | |
Collapse
|
5
|
Jobin B, Magdamo C, Delphus D, Runde A, Reineke S, Soto AA, Ergun B, Mukhija S, Albers AD, Albers MW. The AROMHA brain health test is a remote olfactory assessment to screen for cognitive impairment. Sci Rep 2025; 15:9290. [PMID: 40128240 PMCID: PMC11933705 DOI: 10.1038/s41598-025-92826-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 03/03/2025] [Indexed: 03/26/2025] Open
Abstract
Cost-effective, noninvasive screening methods for preclinical Alzheimer's disease (AD) and other neurocognitive disorders remain an unmet need. The olfactory neural circuits develop AD pathological changes prior to symptom onset. To probe these vulnerable circuits, we developed the digital remote AROMHA Brain Health Test (ABHT), an at-home odor identification, discrimination, memory, and intensity assessment. The ABHT was self-administered among cognitively normal (CN) English and Spanish speakers (n = 127), participants with subjective cognitive complaints (SCC; n = 34), and mild cognitive impairment (MCI; n = 19). Self-administered tests took place remotely at home under unobserved (among interested CN participants) and observed modalities (CN, SCC, and MCI), as well as in-person with a research assistant present (CN, SCC, and MCI). Olfactory performance was similar across observed and unobserved remote self-administration and between English and Spanish speakers. Odor memory, identification, and discrimination scores decreased with age, and olfactory identification and discrimination were lower in the MCI group compared to CN and SCC groups, independent of age, sex, and education. The ABHT revealed age-related olfactory decline, and discriminated CN older adults from those with cognitive impairment. Replication of our results in other populations would support the use of the ABHT to identify and monitor individuals at risk for developing dementia.
Collapse
Affiliation(s)
- Benoît Jobin
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02129, USA
- Department of Psychology, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Colin Magdamo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Daniela Delphus
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Andreas Runde
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02129, USA
| | | | | | - Beyzanur Ergun
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Sasha Mukhija
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Alefiya Dhilla Albers
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02129, USA.
- Department of Psychology, Endicott College, Beverly, MA, 01915, USA.
| | - Mark W Albers
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02129, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
- , 114 16th Street, Room 2003, Charlestown, MA, 02129, USA.
| |
Collapse
|
6
|
Jarchow M, Driscoll I, Breidenbach BM, Cook N, Gallagher CL, Johnson SC, Asthana S, Hermann BP, Sager MA, Blennow K, Zetterberg H, Carlsson CM, Kollmorgen G, Quijano-Rubio C, Cook DB, Dubal DB, Okonkwo OC. Older more fit KL-VS heterozygotes have more favorable AD-relevant biomarker profiles. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.27.25323056. [PMID: 40093256 PMCID: PMC11908295 DOI: 10.1101/2025.02.27.25323056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
INTRODUCTION While hallmarked by the accumulation of β-amyloid plaques (Aβ) and neurofibrillary tangles (tau) in the brain, Alzheimer's disease (AD) is a multifactorial disorder that involves additional pathological events, including neuroinflammation, neurodegeneration and synaptic dysfunction. AD-associated biomolecular changes seem to be attenuated in carriers of the functionally advantageous variant of the KLOTHO gene (KL-VSHET). Independently, better cardiorespiratory fitness (CRF) is associated with better health outcomes, both in general and specifically with regard to AD pathology. Here we investigate whether the relationships between CRF (peak oxygen consumption (VO2peak)) and cerebrospinal fluid (CSF) core AD biomarkers and those of neuroinflammation, neurodegeneration, and synaptic dysfunction differ for KL-VSHET compared to non-carriers (KL-VSNC). METHODS The cohort, enriched for AD risk, consisted of cognitively unimpaired adults (N=136; MeanAGE(SD)=62.5(6.7)) from the Wisconsin Registry for Alzheimer's Prevention and the Wisconsin Alzheimer's Disease Research Center. Covariate-adjusted (age, sex, parental AD history, APOE4+ status, and age difference between CSF sampling and exercise test) linear models examined the interaction between VO2peak and KLOTHO genotype on core AD biomarker levels in CSF [phosphorylated tau 181 (pTau181), Aβ42/Aβ40, pTau181/Aβ42]. Analyses were repeated for CSF biomarkers of neurodegeneration [total tau (tTau), α-synuclein (α-syn), neurofilament light polypeptide (NfL)], synaptic dysfunction [neurogranin (Ng)], and neuroinflammation [glial fibrillary acidic protein (GFAP), soluble triggering receptor expressed in myeloid cells (sTREM2), chitinase-3-like protein 1 (YKL-40), interleukin 6 (IL-6), S100 calcium-binding protein B (S100B)]. RESULTS The interaction between VO2peak and KL-VSHET was significant for tTau (P=0.05), pTau181 (P=0.03), Ng (P=0.02), sTREM2 (P=0.03), and YKL-40 (P=0.03), such that lower levels of each biomarker were observed for KL-VSHET who were more fit. No significant KL-VSxVO2peak interactions were observed for Aβ42/Aβ40, pTau181/Aβ42, α-syn, NfL, GFAP, IL-6 or S100B (all Ps>0.09). CONCLUSIONS We report a synergistic relationship between KL-VSHET and CRF with regard to pTau181, tTau, Ng, sTREM2 and YKL-40, suggesting a protective role for both KL-VSHET and better cardiovascular fitness against unfavorable AD-related changes. Their potentially shared biological mechanisms will require future investigations.
Collapse
Affiliation(s)
- Mackenzie Jarchow
- Wisconsin Alzheimer’s Disease Research Center, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Ira Driscoll
- Wisconsin Alzheimer’s Disease Research Center, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer’s Institute Madison, WI, USA
| | - Brianne M. Breidenbach
- Wisconsin Alzheimer’s Disease Research Center, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer’s Institute Madison, WI, USA
| | - Noah Cook
- Wisconsin Alzheimer’s Disease Research Center, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Catherine L. Gallagher
- Geriatric Research Education and Clinical Center, William S. Middleton VA Hospital, Madison, WI, USA
- Department of Neurology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Sterling C. Johnson
- Wisconsin Alzheimer’s Disease Research Center, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer’s Institute Madison, WI, USA
| | - Sanjay Asthana
- Wisconsin Alzheimer’s Disease Research Center, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer’s Institute Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton VA Hospital, Madison, WI, USA
| | - Bruce P. Hermann
- Wisconsin Alzheimer’s Disease Research Center, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer’s Institute Madison, WI, USA
- Department of Neurology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Mark A. Sager
- Wisconsin Alzheimer’s Disease Research Center, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer’s Institute Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, China
| | - Henrik Zetterberg
- Wisconsin Alzheimer’s Disease Research Center, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Roche Diagnostics GmbH, Penzberg, Germany
| | - Cynthia M. Carlsson
- Wisconsin Alzheimer’s Disease Research Center, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer’s Institute Madison, WI, USA
- Department of Neurology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | - Dane B. Cook
- Research Service, William S. Middleton VA Hospital, Madison, WI, USA
- Department of Kinesiology, School of Education, University of Wisconsin-Madison, Madison, WI, USA
| | - Dena B. Dubal
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Ozioma C. Okonkwo
- Wisconsin Alzheimer’s Disease Research Center, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer’s Institute Madison, WI, USA
| |
Collapse
|
7
|
Suzuki Y, Sudo T, Mochizuki H, Shimoda N. Relationship between Anxiety Concerning Dementia Onset and Subjective Memory Impairment in Frail Older Individuals. Dement Geriatr Cogn Dis Extra 2025; 15:1-7. [PMID: 39816218 PMCID: PMC11731900 DOI: 10.1159/000542445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/20/2024] [Indexed: 01/18/2025] Open
Abstract
Introduction This study aimed to clarify the relationship between anxiety about the possibility of developing dementia (dementia onset anxiety) and subjective memory impairment in frail older individuals who require long-term care and are experiencing declining cognitive function. Methods This study included 30 frail older individuals requiring long-term care who completed the Everyday Memory Checklist (EMC), which was simultaneously performed by an occupational therapist (OT). Individuals were divided into two groups: with and without anxiety about dementia onset. We examined the relationship between the presence of anxiety about dementia onset and assessment scores on EMC by the individuals and by the OT. Results Approximately 40% of participants expressed anxiety about developing dementia. No significant differences existed between the two groups in terms of age, sex, number of years of education, number of ongoing medical conditions under treatment, types of oral medications, Mini-Mental State-Japanese scores, and total functional independence measure scores. Self-assessed EMC scores by the individuals showed a significant difference between the two groups (p = 0.012, φ = 0.41), while no significant difference in the OT-assessed EMC scores. Conclusion Despite similar levels of objective cognitive decline and objective everyday memory impairment, individuals with anxiety about developing dementia have more severe subjective memory impairment than those without such anxiety.
Collapse
Affiliation(s)
- Yukiko Suzuki
- Occupational Therapy Major, Kyorin University, Tokyo, Japan
| | - Takayuki Sudo
- Department of Rehabilitation, Chiba Prefectural University of Health Sciences, Chiba, Japan
| | | | - Nobuaki Shimoda
- Department of Rehabilitation, Faculty of Health Sciences, Tokyo Kasei University, Saitama, Japan
| |
Collapse
|
8
|
Chen X, Juarez A, Mason S, Kobayashi S, Baker SL, Harrison TM, Landau SM, Jagust WJ. Longitudinal relationships between Aβ and tau to executive function and memory in cognitively normal older adults. Neurobiol Aging 2025; 145:32-41. [PMID: 39490245 DOI: 10.1016/j.neurobiolaging.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/08/2024] [Accepted: 10/13/2024] [Indexed: 11/05/2024]
Abstract
The early accumulation of AD pathology such as Aβ and tau in cognitively normal older people is predictive of cognitive decline, but it has been difficult to dissociate the cognitive effects of these two proteins. Early Aβ and tau target distinct brain regions that have different functional roles. Here, we assessed specific longitudinal pathology-cognition associations in seventy-six cognitively normal older adults from the Berkeley Aging Cohort Study who underwent longitudinal PiB PET, FTP PET, and cognitive assessments. Using linear mixed-effects models to estimate longitudinal changes and residual approach to characterizing cognitive domain-specific associations, we found that Aβ accumulation, especially in frontal/parietal regions, was associated with faster decline in executive function, not memory, whereas tau accumulation, especially in left entorhinal/parahippocampal regions, was associated with faster decline in memory, not executive function, supporting an "Aβ-executive function, tau-memory" double-dissociation in cognitively normal older people. These specific relationships between accumulating pathology and domain-specific cognitive decline may be due to the particular vulnerabilities of the frontal-parietal executive network to Aβ and temporal memory network to tau.
Collapse
Affiliation(s)
- Xi Chen
- Department of Neuroscience, University of California Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Alexis Juarez
- Department of Neuroscience, University of California Berkeley, Berkeley, CA 94720, USA
| | - Suzanne Mason
- Department of Neuroscience, University of California Berkeley, Berkeley, CA 94720, USA
| | - Sarah Kobayashi
- Department of Neuroscience, University of California Berkeley, Berkeley, CA 94720, USA
| | - Suzanne L Baker
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Theresa M Harrison
- Department of Neuroscience, University of California Berkeley, Berkeley, CA 94720, USA
| | - Susan M Landau
- Department of Neuroscience, University of California Berkeley, Berkeley, CA 94720, USA
| | - William J Jagust
- Department of Neuroscience, University of California Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
9
|
Boza-Calvo C, Faustin A, Zhang Y, Briggs AQ, Bernard MA, Bubu OM, Rao JA, Gurin L, Tall SO, Osorio RS, Marsh K, Shao Y, Masurkar AV. Two-Year Longitudinal Outcomes of Subjective Cognitive Decline in Hispanics Compared to Non-hispanic Whites. J Geriatr Psychiatry Neurol 2025; 38:23-31. [PMID: 39043156 DOI: 10.1177/08919887241263097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
BACKGROUND Subjective cognitive decline (SCD), considered a preclinical dementia stage, is less understood in Hispanics, a high-risk group for dementia. We investigated SCD to mild cognitive impairment (MCI) progression risk, as well as baseline and longitudinal features of depressive symptoms, SCD complaints, and objective cognitive performance among Hispanics compared to non-Hispanic Whites (NHW). METHODS Hispanic (n = 23) and NHW (n = 165) SCD participants were evaluated at baseline and 2-year follow-up. Evaluations assessed function, depressive symptoms, SCD, and objective cognitive performance. RESULTS Hispanics were at increased risk of progression to MCI (OR: 6.10, 95% CI 1.09-34.20, P = .040). Hispanic participants endorsed more depressive symptoms at baseline (P = .048) that worsened more longitudinally (OR: 3.16, 95% CI 1.18-8.51, P = .023). Hispanic participants had increased SCD complaints on the Brief Cognitive Rating Scale (BCRS) (β = .40 SE: .17, P = .023), and in specific BCRS domains: concentration (β = .13, SE: .07, P = .047), past memory (β = .13, SE: .06, P = .039) and functional abilities (β = .10, SE: .05, P = .037). In objective cognitive performance, Hispanic ethnicity associated with decline in MMSE (β = -.27, SE: .13, P = .039), MoCA (β = -.80 SE: .34, P = .032), Trails A (β = 2.75, SE: .89, P = .002), Trails B (β = 9.18, SE: 2.71, P = .001) and Guild Paragraph Recall Delayed (β = -.80 SE: .28, P = .005). Conclusions: Hispanic ethnicity associated with a significantly increased risk of 2-year progression of SCD to MCI compared to NHW. This increased risk associated with increased depressive symptoms, distinctive SCD features, and elevated amnestic and non-amnestic objective cognitive decline. This supports further research to refine the assessment of preclinical dementia in this high-risk group.
Collapse
Affiliation(s)
- Carolina Boza-Calvo
- Centro de Investigación en Hematología y Trastornos Afines (CIHATA), Universidad de Costa Rica, San José, Costa Rica
- Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica
- NYU Alzheimer's Disease Research Center, NY, USA
| | - Arline Faustin
- NYU Alzheimer's Disease Research Center, NY, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Yian Zhang
- NYU Alzheimer's Disease Research Center, NY, USA
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Anthony Q Briggs
- NYU Alzheimer's Disease Research Center, NY, USA
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Mark A Bernard
- NYU Alzheimer's Disease Research Center, NY, USA
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Omonigho M Bubu
- NYU Alzheimer's Disease Research Center, NY, USA
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
- Center for Sleep and Brain Health, New York, NY, USA
| | - Julia A Rao
- NYU Alzheimer's Disease Research Center, NY, USA
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Lindsey Gurin
- NYU Alzheimer's Disease Research Center, NY, USA
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Sakina Ouedraogo Tall
- NYU Alzheimer's Disease Research Center, NY, USA
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Ricardo S Osorio
- NYU Alzheimer's Disease Research Center, NY, USA
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
- Center for Sleep and Brain Health, New York, NY, USA
| | - Karyn Marsh
- NYU Alzheimer's Disease Research Center, NY, USA
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Yongzhao Shao
- NYU Alzheimer's Disease Research Center, NY, USA
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Arjun V Masurkar
- NYU Alzheimer's Disease Research Center, NY, USA
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
10
|
Kantarci K, Kapoor E, Geske JR, Castillo A, Fields JA, Kara F, Knyazhanskaya EE, Schwarz CG, Senjem ML, Bailey KR, Lowe V, LeBrasseur NK, Rocca WA, Mielke MM. Premenopausal bilateral oophorectomy and Alzheimer's disease imaging biomarkers later in life. Alzheimers Dement 2024. [PMID: 39711285 DOI: 10.1002/alz.14469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION Premenopausal bilateral oophorectomy (PBO) before the age of 46 years is associated with an increased risk of dementia. We investigated the long-term effects of PBO performed before age 50 years on amyloid beta (Aβ), tau, and neurodegeneration imaging biomarkers of Alzheimer's disease (AD). METHODS Mayo Clinic Cohort Study of Oophorectomy and Aging-2 participants were divided into early PBO (< 46 years; n = 61), and late PBO (46-49 years; n = 51) groups and were compared to referent women who did not undergo PBO (n = 119). RESULTS Early PBO was associated with thinner entorhinal cortex (p = 0.014), higher tau load at higher levels of Aβ load (Pp = 0.005), higher Aβ load (p = 0.026), and smaller temporal lobe cortical thickness (p = 0.022), only at older ages compared to the referent group. DISCUSSION PBO before the age of 46 years is associated with entorhinal cortex thinning, elevated tau at higher Aβ levels, along with an AD-like pattern of atrophy at older ages. CLINICAL TRIALS REGISTRATION NCT03821857 sex-specific effects of endocrine disruption on aging and AD. HIGHLIGHTS Premenopausal bilateral oophorectomy (PBO) before the ages of 46 (early PBO) years and ages 46 to 49 (late PBO) years was studied. Early PBO was associated with reduced entorhinal cortex thickness later in life. Early PBO was associated with greater amyloid beta (Aβ) load at older ages. Early PBO was associated with greater Alzheimer's disease pattern of atrophy at older ages. Early PBO was associated with higher tau load at higher Aβ levels.
Collapse
Affiliation(s)
- Kejal Kantarci
- Department of Radiology, Division of Neuroradiology, Mayo Clinic, Rochester, Minnesota, USA
- Mayo Clinic Women's Health Research Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Ekta Kapoor
- Mayo Clinic Women's Health Research Center, Mayo Clinic, Rochester, Minnesota, USA
- Department of Internal Medicine, Division of Endocrinology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jennifer R Geske
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Anna Castillo
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Julie A Fields
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Firat Kara
- Department of Radiology, Division of Neuroradiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Christopher G Schwarz
- Department of Radiology, Division of Neuroradiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew L Senjem
- Department of Radiology, Division of Neuroradiology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Information Technology, Mayo Clinic, Rochester, Minnesota, USA
| | - Kent R Bailey
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Val Lowe
- Department of Radiology, Division of Neuroradiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Nathan K LeBrasseur
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
| | - Walter A Rocca
- Mayo Clinic Women's Health Research Center, Mayo Clinic, Rochester, Minnesota, USA
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Michelle M Mielke
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
11
|
Ahmad SR, Zeyaullah M, Khan MS, AlShahrani AM, Altijani AAG, Ali H, Dawria A, Mohieldin A, Alam MS, Mohamed AOA. Pharmacogenomics for neurodegenerative disorders - a focused review. Front Pharmacol 2024; 15:1478964. [PMID: 39759457 PMCID: PMC11695131 DOI: 10.3389/fphar.2024.1478964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/30/2024] [Indexed: 01/07/2025] Open
Abstract
Neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) are characterized by the progressive degeneration of neuronal structure and function, leading to severe cognitive and motor impairments. These conditions present significant challenges to healthcare systems, and traditional treatments often fail to account for genetic variability among patients, resulting in inconsistent therapeutic outcomes. Pharmacogenomics aims to tailor medical treatments based on an individual's genetic profile, thereby improving therapeutic efficacy and reducing adverse effects. This focused review explores the genetic factors influencing drug responses in neurodegenerative diseases and the potential of pharmacogenomics to revolutionize their treatment. Key genetic markers, such as the APOE ε4 allele in AD and the CYP2D6 polymorphisms in PD, are highlighted for their roles in modulating drug efficacy. Additionally, advancements in pharmacogenomic tools, including genome-wide association studies (GWAS), next-generation sequencing (NGS), and CRISPR-Cas9, are discussed for their contributions to personalized medicine. The application of pharmacogenomics in clinical practice and its prospects, including ethical and data integration challenges, are also examined.
Collapse
Affiliation(s)
- S. Rehan Ahmad
- Hiralal Mazumdar Memorial College for Women, West Bengal State University, Kolkata, India
| | - Md. Zeyaullah
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Mohammad Suhail Khan
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Abdullah M. AlShahrani
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Abdelrhman A. Galaleldin Altijani
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Haroon Ali
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Adam Dawria
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Ali Mohieldin
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Mohammad Shane Alam
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Awad Osman Abdalla Mohamed
- Department of Anaesthesia Technology, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University (KKU), Abha, Saudi Arabia
| |
Collapse
|
12
|
Fox JM, Harvey DJ, Randhawa J, Chan M, Weakley A, Gavett B, Olichney J, DeCarli C, Whitmer RA, Farias ST. Subjective cognitive complaints and future risk of dementia and cognitive impairment, which matters most. NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2024:1-12. [PMID: 39693246 DOI: 10.1080/13825585.2024.2443059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024]
Abstract
Many older adults report subjective cognitive decline (SCD); however, the specific types of complaints most strongly associated with early disease detection remain unclear. This study examines which complaints from the Everyday Cognition Scales (ECog) are associated with progression from normal cognition to mild cognitive impairment (MCI)/dementia. 415 older adults were monitored annually for 5 years, on average. Cox proportional hazards models assessed associations between ECog complaints and progression to MCI/dementia. Follow-up models included depression as a covariate. Numerous Memory (5 items), Language (3 items), Visuospatial (1 item), Planning (2 items), and Organization (1 item) complaints were associated with diagnostic progression. After covarying for depression, remembering appointments and understanding spoken instructions remained significant predictors of diagnostic progression. While previous work has focused largely on memory-based SCD complaints, the current findings support a wider assessment of complaints may be useful in identifying those at risk for a neurodegenerative disease.
Collapse
Affiliation(s)
- Jaclyn M Fox
- Davis Department of Neurology, University of California, Sacramento, USA
| | - Danielle J Harvey
- Davis Department of Public Health Sciences, University of California, Sacramento, USA
| | - Jagnoor Randhawa
- Davis Department of Neurology, University of California, Sacramento, USA
| | - Michelle Chan
- Davis Department of Neurology, University of California, Sacramento, USA
| | - Alyssa Weakley
- Davis Department of Neurology, University of California, Sacramento, USA
| | - Brandon Gavett
- Davis Department of Neurology, University of California, Sacramento, USA
| | - John Olichney
- Davis Department of Neurology, University of California, Sacramento, USA
| | - Charles DeCarli
- Davis Department of Neurology, University of California, Sacramento, USA
| | - Rachel A Whitmer
- Davis Department of Neurology, University of California, Sacramento, USA
- Davis Department of Public Health Sciences, University of California, Sacramento, USA
| | | |
Collapse
|
13
|
Zeller CJ, Wunderlin M, Wicki K, Teunissen CE, Nissen C, Züst MA, Klöppel S. Multi-night acoustic stimulation is associated with better sleep, amyloid dynamics, and memory in older adults with cognitive impairment. GeroScience 2024; 46:6157-6172. [PMID: 38744792 PMCID: PMC11493878 DOI: 10.1007/s11357-024-01195-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
Sleep is a potential early, modifiable risk factor for cognitive decline and dementia. Impaired slow wave sleep (SWS) is pronounced in individuals with cognitive impairment (CI). Cognitive decline and impairments of SWS are bi-directionally linked in a vicious cycle. SWS can be enhanced non-invasively using phase-locked acoustic stimulation (PLAS), potentially breaking this vicious cycle. Eighteen healthy older adults (HC, agemean±sd, 68.3 ± 5.1) and 16 older adults (agemean±sd, 71.9 ± 3.9) with CI (Montreal Cognitive Assessment ≤ 25) underwent one baseline (sham-PLAS) night and three consecutive stimulation nights (real-PLAS). EEG responses and blood-plasma amyloid beta Aβ42/Aβ40 ratio were measured pre- and post-intervention, as was episodic memory. The latter was again evaluated 1 week and 3 months after the intervention. In both groups, PLAS induced a significant electrophysiological response in both voltage- and time-frequency analyses, and memory performance improved in association with the magnitude of this response. In the CI group, both electrophysiological and associated memory effects were delayed compared to the healthy group. After 3 intervention nights, electrophysiological response to PLAS was no longer different between CI and HC groups. Only in the CI sample, stronger electrophysiological responses were significantly associated with improving post-intervention Aβ42/Aβ40 ratios. PLAS seems to improve SWS electrophysiology, memory, and amyloid dynamics in older adults with CI. However, effects on memory require more time to unfold compared to healthy older adults. This indicates that PLAS may become a potential tool to ameliorate cognitive decline, but longer interventions are necessary to compensate for declining brain integrity. This study was pre-registered (clinicaltrials.gov: NCT04277104).
Collapse
Affiliation(s)
- Céline J Zeller
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, 3000, Bern 60, Switzerland
- Graduate School for Health Sciences, University of Bern, 3012, Bern, Switzerland
| | - Marina Wunderlin
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, 3000, Bern 60, Switzerland
| | - Korian Wicki
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, 3000, Bern 60, Switzerland
- Graduate School for Health Sciences, University of Bern, 3012, Bern, Switzerland
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, Netherlands
| | - Christoph Nissen
- Division of Psychiatric Specialties, Department of Psychiatry, Geneva University Hospitals (HUG), 1201, Geneva, Switzerland
- Department of Psychiatry, University of Geneva, 1201, Geneva, Switzerland
| | - Marc A Züst
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, 3000, Bern 60, Switzerland.
| | - Stefan Klöppel
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, 3000, Bern 60, Switzerland
| |
Collapse
|
14
|
Wicker A, Shriram J, Decourt B, Sabbagh MN. Passive Anti-amyloid Beta Monoclonal Antibodies: Lessons Learned over Past 20 Years. Neurol Ther 2024; 13:1571-1595. [PMID: 39378014 PMCID: PMC11541067 DOI: 10.1007/s40120-024-00664-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/16/2024] [Indexed: 11/07/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that significantly impairs cognitive and functional abilities, placing a substantial burden on both patients and caregivers. Current symptomatic treatments fail to halt the progression of AD, highlighting the urgent need for more effective disease-modifying therapies (DMTs). DMTs under development are classified as either passive or active on the basis of their mechanisms of eliciting an immune response. While this review will touch on active immunotherapies, we primarily focus on anti-amyloid beta monoclonal antibodies (mAbs), a form of passive immunotherapy, discussing their multifaceted role in AD treatment and the critical factors influencing their therapeutic efficacy. With two mAbs now approved and prescribed in the clinical setting, it is crucial to reflect on the lessons learned from trials of earlier mAbs that have shaped their development and contributed to their current success. These insights can then guide the creation of even more effective mAbs, ultimately enhancing therapeutic outcomes for patients with AD while minimizing adverse events.
Collapse
Affiliation(s)
- Alexandra Wicker
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Jahnavi Shriram
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Boris Decourt
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Roseman University of Health Sciences, Las Vegas, NV, USA
| | - Marwan Noel Sabbagh
- Alzheimer's and Memory Disorders Division, Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA.
| |
Collapse
|
15
|
Aisen PS, Donohue MC, Raman R, Rafii MS, Petersen RC, for the Alzheimer's Disease Neuroimaging Initiative. The Alzheimer's Disease Neuroimaging Initiative Clinical Core. Alzheimers Dement 2024; 20:7361-7368. [PMID: 39136045 PMCID: PMC11485391 DOI: 10.1002/alz.14167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 10/18/2024]
Abstract
The Alzheimer's Disease Neuroimaging Initiative (ADNI) Clinical Core is responsible for coordination of all clinical activities at the ADNI sites, including project management, regulatory oversight, and site management and monitoring, as well as the collection of all clinical data and management of all study data. The Clinical Core is also charged with determining the clinical classifications and criteria for enrollment in evolving AD trials and enabling the ongoing characterization of the cross-sectional features and longitudinal trajectories of the ADNI cohorts with application of these findings to optimal clinical trial designs. More than 2400 individuals have been enrolled in the cohorts since the inception of ADNI, facilitating refinement of our understanding of the AD trajectory and allowing academic and industry investigators to model therapeutic trials across the disease spectrum from the presymptomatic stage through dementia. HIGHLIGHTS: Since 2004, the Alzheimer's Disease Neuroimaging Initiative (ADNI) Clinical Core has overseen the enrollment of > 2400 participants with mild cognitive impairment, mild Alzheimer's disease (AD) dementia, and normal cognition. The longitudinal dataset has elucidated the full cognitive and clinical trajectory of AD from its presymptomatic stage through the onset of dementia. The ADNI data have supported the design of most major trials in the field.
Collapse
Affiliation(s)
- Paul S. Aisen
- Alzheimer's Therapeutic Research InstituteUniversity of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Michael C. Donohue
- Alzheimer's Therapeutic Research InstituteUniversity of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Rema Raman
- Alzheimer's Therapeutic Research InstituteUniversity of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Michael S. Rafii
- Alzheimer's Therapeutic Research InstituteUniversity of Southern CaliforniaSan DiegoCaliforniaUSA
| | | | | |
Collapse
|
16
|
Guo S, Zhu W, Bian Y, Li Z, Zheng H, Li W, Yang Y, Ji X, Zhang B. Developing diagnostic biomarkers for Alzheimer's disease based on histone lactylation-related gene. Heliyon 2024; 10:e37807. [PMID: 39315143 PMCID: PMC11417585 DOI: 10.1016/j.heliyon.2024.e37807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
Background Research underscores the significant influence of histone lactylation pathways in the progression of Alzheimer's disease (AD), though the molecular mechanisms associated with histone lactylation-related genes (HLRGs) in AD are still insufficiently investigated. Methods This study employed datasets GSE85426 and GSE97760 to identify candidate genes by intersecting weighted gene co-expression network analysis (WGCNA) module genes with AD-control differentially expressed genes (DEGs). Subsequently, machine learning refined key genes, validated by receiver operating characteristic (ROC) curve performance. Gene-set enrichment analysis (GSEA) explored the molecular mechanisms of these diagnostic markers. Concurrently, the association between the diagnostic genes and both differential immune cells and immune responses was examined. Furthermore, a ceRNA and gene-drug network was developed. Finally, the expression of the selected genes was validated using brain tissues from AD model mice. Results This study identified five genes (ARID5B, NSMCE4A, SESN1, THADA, and XPA) with significant diagnostic utility, primarily enriched in olfactory transduction and N-glycan biosynthesis pathways. Correlation analysis demonstrated a strong positive association between all diagnostic genes and naive B cells. The ceRNA regulatory network comprised 7 miRNAs, 2 mRNAs, and 25 lncRNAs. Additionally, 33 drugs targeting the diagnostic genes were predicted. Following expression validation through training and validation sets, three genes (ARID5B, SESN1, XPA) were ultimately confirmed as biomarkers for this study. RT-qPCR and Western blot analyses revealed upregulated expression of ARID5B, SESN1, and XPA in the cerebral tissue of AD model mice. Conclusion Three histone lactylation-linked genes (ARID5B, SESN1, XPA) were identified as potential AD biomarkers, indicating a strong association with disease progression.
Collapse
Affiliation(s)
- Shaobo Guo
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Department of Geriatric, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Wenhui Zhu
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Department of Geriatric, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Yuting Bian
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Department of Geriatric, Nanjing, China
- Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Zhikai Li
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Department of Geriatric, Nanjing, China
- Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Heng Zheng
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Department of Geriatric, Nanjing, China
- Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, China
- Zhenjiang Hospital of Chinese Traditional And Western Medicine, Zhenjiang, China
| | - Wenlong Li
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Department of Geriatric, Nanjing, China
- Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, China
- Liyang Hospital of Chinese Medicine, Liyang, China
| | - Yi Yang
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Department of Geriatric, Nanjing, China
- Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Xuzheng Ji
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Department of Geriatric, Nanjing, China
- Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Biao Zhang
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Department of Geriatric, Nanjing, China
- Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
17
|
Jobin B, Magdamo C, Delphus D, Runde A, Reineke S, Soto AA, Ergun B, Albers AD, Albers MW. AROMHA Brain Health Test: A Remote Olfactory Assessment as a Screen for Cognitive Impairment. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.03.24311283. [PMID: 39211882 PMCID: PMC11361214 DOI: 10.1101/2024.08.03.24311283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Cost-effective, noninvasive screening methods for preclinical Alzheimer's disease (AD) and other neurocognitive disorders remain an unmet need. The olfactory neural circuits develop AD pathological changes prior to symptom onset. To probe these vulnerable circuits, we developed the digital remote AROMHA Brain Health Test (ABHT), an at-home odor identification, discrimination, memory, and intensity assessment. The ABHT was self-administered among cognitively normal (CN) English and Spanish speakers (n=127), participants with subjective cognitive complaints (SCC; n=34), and mild cognitive impairment (MCI; n=19). Self-administered tests took place remotely at home under unobserved (among interested CN participants) and observed modalities (CN, SCC, and MCI), as well as in-person with a research assistant present (CN, SCC, and MCI). Olfactory performance was similar across observed and unobserved remote self-administration and between English and Spanish speakers. Odor memory, identification, and discrimination scores decreased with age, and olfactory identification and discrimination were lower in the MCI group compared to CN and SCC groups, independent of age, sex, and education. The ABHT revealed age-related olfactory decline, and discriminated CN older adults from those with cognitive impairment. Replication of our results in other populations would support the use of the ABHT to identify and monitor individuals at risk for developing dementia.
Collapse
|
18
|
Driscoll IF, Lose S, Ma Y, Bendlin BB, Gallagher C, Johnson SC, Asthana S, Hermann B, Sager MA, Blennow K, Zetterberg H, Carlsson C, Kollmorgen G, Quijano‐Rubio C, Dubal D, Okonkwo OC. KLOTHO KL-VS heterozygosity is associated with diminished age-related neuroinflammation, neurodegeneration, and synaptic dysfunction in older cognitively unimpaired adults. Alzheimers Dement 2024; 20:5347-5356. [PMID: 39030746 PMCID: PMC11350058 DOI: 10.1002/alz.13912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/12/2024] [Accepted: 04/27/2024] [Indexed: 07/22/2024]
Abstract
INTRODUCTION We examined whether the aging suppressor KLOTHO gene's functionally advantageous KL-VS variant (KL-VS heterozygosity [KL-VSHET]) confers resilience against deleterious effects of aging indexed by cerebrospinal fluid (CSF) biomarkers of neuroinflammation (interleukin-6 [IL-6], S100 calcium-binding protein B [S100B], triggering receptor expressed on myeloid cells [sTREM2], chitinase-3-like protein 1 [YKL-40], glial fibrillary acidic protein [GFAP]), neurodegeneration (total α-synuclein [α-Syn], neurofilament light chain protein), and synaptic dysfunction (neurogranin [Ng]). METHODS This Alzheimer disease risk-enriched cohort consisted of 454 cognitively unimpaired adults (Mage = 61.5 ± 7.75). Covariate-adjusted multivariate regression examined relationships between age (mean-split[age ≥ 62]) and CSF biomarkers (Roche/NeuroToolKit), and whether they differed between KL-VSHET (N = 122) and non-carriers (KL-VSNC; N = 332). RESULTS Older age was associated with a poorer biomarker profile across all analytes (Ps ≤ 0.03). In age-stratified analyses, KL-VSNC exhibited this same pattern (Ps ≤ 0.05) which was not significant for IL-6, S100B, Ng, and α-Syn (Ps ≥ 0.13) in KL-VSHET. Although age-related differences in GFAP, sTREM2, and YKL-40 were evident for both groups (Ps ≤ 0.01), the effect magnitude was markedly stronger for KL-VSNC. DISCUSSION Higher levels of neuroinflammation, neurodegeneration, and synaptic dysfunction in older adults were attenuated in KL-VSHET. HIGHLIGHTS Older age was associated with poorer profiles across all cerebrospinal fluid biomarkers of neuroinflammation, neurodegeneration, and synaptic dysfunction. KLOTHO KL-VS non-carriers exhibit this same pattern, which is does not significantly differ between younger and older KL-VS heterozygotes for interleukin-6, S100 calcium-binding protein B, neurogranin, and total α-synuclein. Although age-related differences in glial fibrillary acidic protein, triggering receptor expressed on myeloid cells, and chitinase-3-like protein 1 are evident for both KL-VS groups, the magnitude of the effect is markedly stronger for KL-VS non-carriers. Higher levels of neuroinflammation, neurodegeneration, and synaptic dysfunction in older adults are attenuated in KL-VS heterozygotes.
Collapse
Affiliation(s)
- Ira Frahmand Driscoll
- Wisconsin Alzheimer's Disease Research Center and Department of GeriatricsUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Sarah Lose
- Wisconsin Alzheimer's Disease Research Center and Department of GeriatricsUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Yue Ma
- Wisconsin Alzheimer's Disease Research Center and Department of GeriatricsUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Barbara B. Bendlin
- Wisconsin Alzheimer's Disease Research Center and Department of GeriatricsUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteMadisonWisconsinUSA
- Geriatric Research Education and Clinical CenterWilliam S. Middleton VA HospitalMadisonWisconsinUSA
| | - Catherine Gallagher
- Geriatric Research Education and Clinical CenterWilliam S. Middleton VA HospitalMadisonWisconsinUSA
- Department of NeurologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Sterling C. Johnson
- Wisconsin Alzheimer's Disease Research Center and Department of GeriatricsUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteMadisonWisconsinUSA
| | - Sanjay Asthana
- Wisconsin Alzheimer's Disease Research Center and Department of GeriatricsUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteMadisonWisconsinUSA
- Geriatric Research Education and Clinical CenterWilliam S. Middleton VA HospitalMadisonWisconsinUSA
| | - Bruce Hermann
- Wisconsin Alzheimer's Disease Research Center and Department of GeriatricsUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteMadisonWisconsinUSA
- Department of NeurologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Mark A. Sager
- Wisconsin Alzheimer's Disease Research Center and Department of GeriatricsUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteMadisonWisconsinUSA
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologySahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalGöteborgSweden
- Paris Brain InstituteICMPitié‐Salpêtrière HospitalSorbonne UniversityParisFrance
- Neurodegenerative Disorder Research CenterDivision of Life Sciences and Medicineand Department of NeurologyInstitute on Aging and Brain DisordersUniversity of Science and Technology of China and First Affiliated Hospital of USTCHefeiPR China
| | - Henrik Zetterberg
- Wisconsin Alzheimer's Disease Research Center and Department of GeriatricsUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologySahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalGöteborgSweden
- Department of Neurodegenerative DiseaseUCL Institute of Neurology, Queen SquareLondonUK
- UK Dementia Research Institute at UCLLondonUK
- Hong Kong Center for Neurodegenerative DiseasesClear Water BayHong KongPR China
| | - Cynthia Carlsson
- Wisconsin Alzheimer's Disease Research Center and Department of GeriatricsUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteMadisonWisconsinUSA
- Geriatric Research Education and Clinical CenterWilliam S. Middleton VA HospitalMadisonWisconsinUSA
| | | | | | - Dena Dubal
- Department of Neurology and Weill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Ozioma C. Okonkwo
- Wisconsin Alzheimer's Disease Research Center and Department of GeriatricsUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteMadisonWisconsinUSA
- Geriatric Research Education and Clinical CenterWilliam S. Middleton VA HospitalMadisonWisconsinUSA
| |
Collapse
|
19
|
Lerch O, Ferreira D, Stomrud E, van Westen D, Tideman P, Palmqvist S, Mattsson-Carlgren N, Hort J, Hansson O, Westman E. Predicting progression from subjective cognitive decline to mild cognitive impairment or dementia based on brain atrophy patterns. Alzheimers Res Ther 2024; 16:153. [PMID: 38970077 PMCID: PMC11225196 DOI: 10.1186/s13195-024-01517-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 06/24/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disorder where pathophysiological changes begin decades before the onset of clinical symptoms. Analysis of brain atrophy patterns using structural MRI and multivariate data analysis are an effective tool in identifying patients with subjective cognitive decline (SCD) at higher risk of progression to AD dementia. Atrophy patterns obtained from models trained to classify advanced AD versus normal subjects, may not be optimal for subjects at an early stage, like SCD. In this study, we compared the accuracy of the SCD progression prediction using the 'severity index' generated using a standard classification model trained on patients with AD dementia versus a new model trained on β-amyloid (Aβ) positive patients with amnestic mild cognitive impairment (aMCI). METHODS We used structural MRI data of 504 patients from the Swedish BioFINDER-1 study cohort (cognitively normal (CN), Aβ-negative = 220; SCD, Aβ positive and negative = 139; aMCI, Aβ-positive = 106; AD dementia = 39). We applied multivariate data analysis to create two predictive models trained to discriminate CN individuals from either individuals with Aβ positive aMCI or AD dementia. Models were applied to individuals with SCD to classify their atrophy patterns as either high-risk "disease-like" or low-risk "CN-like". Clinical trajectory and model accuracy were evaluated using 8 years of longitudinal data. RESULTS In predicting progression from SCD to MCI or dementia, the standard, dementia-based model, reached 100% specificity but only 10.6% sensitivity, while the new, aMCI-based model, reached 72.3% sensitivity and 60.9% specificity. The aMCI-based model was superior in predicting progression from SCD to MCI or dementia, reaching a higher receiver operating characteristic area under curve (AUC = 0.72; P = 0.037) in comparison with the dementia-based model (AUC = 0.57). CONCLUSION When predicting conversion from SCD to MCI or dementia using structural MRI data, prediction models based on individuals with milder levels of atrophy (i.e. aMCI) may offer superior clinical value compared to standard dementia-based models.
Collapse
Affiliation(s)
- Ondrej Lerch
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, 15006, Czech Republic.
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, 14183, Sweden.
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, 14183, Sweden
- Department of Radiology, Mayo Clinic, Rochester, MN, 55902, USA
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, 20502, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, 21428, Sweden
| | - Danielle van Westen
- Diagnostic Radiology, Institution for Clinical Sciences Lund, Lund University, Lund, 22184, Sweden
| | - Pontus Tideman
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, 20502, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, 21428, Sweden
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, 20502, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, 21428, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, 20502, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, 21428, Sweden
| | - Jakub Hort
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, 15006, Czech Republic
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, 20502, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, 21428, Sweden
| | - Eric Westman
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, 14183, Sweden
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE58AF, UK
| |
Collapse
|
20
|
Burak MF, Stanley TL, Lawson EA, Campbell SL, Lynch L, Hasty AH, Domingos AI, Dixit VD, Hotamışlıgil GS, Sheedy FJ, Dixon AE, Brinkley TE, Hill JA, Donath MY, Grinspoon SK. Adiposity, immunity, and inflammation: interrelationships in health and disease: a report from 24th Annual Harvard Nutrition Obesity Symposium, June 2023. Am J Clin Nutr 2024; 120:257-268. [PMID: 38705359 PMCID: PMC11347817 DOI: 10.1016/j.ajcnut.2024.04.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/09/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024] Open
Abstract
The rapidly evolving field of immunometabolism explores how changes in local immune environments may affect key metabolic and cellular processes, including that of adipose tissue. Importantly, these changes may contribute to low-grade systemic inflammation. In turn, chronic low-grade inflammation affecting adipose tissue may exacerbate the outcome of metabolic diseases. Novel advances in our understanding of immunometabolic processes may critically lead to interventions to reduce disease severity and progression. An important example in this regard relates to obesity, which has a multifaceted effect on immunity, activating the proinflammatory pathways such as the inflammasome and disrupting cellular homeostasis. This multifaceted effect of obesity can be investigated through study of downstream conditions using cellular and systemic investigative techniques. To further explore this field, the National Institutes of Health P30 Nutrition Obesity Research Center at Harvard, in partnership with Harvard Medical School, assembled experts to present at its 24th Annual Symposium entitled "Adiposity, Immunity, and Inflammation: Interrelationships in Health and Disease" on 7 June, 2023. This manuscript seeks to synthesize and present key findings from the symposium, highlighting new research and novel disease-specific advances in the field. Better understanding the interaction between metabolism and immunity offers promising preventative and treatment therapies for obesity-related immunometabolic diseases.
Collapse
Affiliation(s)
- Mehmet Furkan Burak
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Molecular Metabolism and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, MA, United States.
| | - Takara L Stanley
- Metabolism Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Division of Pediatric Endocrinology, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MA, United States
| | - Elizabeth A Lawson
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Sophia L Campbell
- Metabolism Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Lydia Lynch
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, VA Tennessee Valley Healthcare System, Nashville, TN, United States
| | - Ana I Domingos
- Department of Physiology, Anatomy & Genetics, Oxford University, Oxford, United Kingdom
| | - Vishwa D Dixit
- Department of Pathology, Department of Comparative Medicine, Department of Immunobiology, Yale School of Medicine, and Yale Center for Research on Aging, New Haven, CT, United States
| | - Gökhan S Hotamışlıgil
- Department of Molecular Metabolism and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Broad Institute of Harvard and MIT, Cambridge, MA, United States
| | - Frederick J Sheedy
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Anne E Dixon
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - Tina E Brinkley
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Joseph A Hill
- Division of Cardiology, Department of Internal Medicine, Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Marc Y Donath
- Department of Biomedicine, University of Basel, Basel, Switzerland; Clinic of Endocrinology, Diabetes & Metabolism, University Hospital Basel, Basel, Switzerland
| | - Steven K Grinspoon
- Metabolism Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
21
|
Wang J, Huang Y, Bei C, Yang H, Lin Z, Xu L. Causal associations of antioxidants with Alzheimer's disease and cognitive function: a Mendelian randomisation study. J Epidemiol Community Health 2024; 78:424-430. [PMID: 38589220 DOI: 10.1136/jech-2023-221184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 03/09/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND Circulating antioxidants are associated with a lower risk of Alzheimer's disease (AD) in observational studies, suggesting potential target areas for intervention. However, whether the associations are causal remains unclear. Here, we studied the causality between antioxidants and AD or cognitive function using two-sample Mendelian randomisation (MR). METHODS Single nucleotide polymorphisms strongly (p<5×10-8) associated with antioxidants (vitamin A, vitamin C, zinc, selenium, β-carotene and urate) and outcomes (AD, cognitive performance and reaction time) were obtained from the largest and most recent genome-wide association studies (GWAS). MR inverse variance weighting (IVW) and MR pleiotropy residual sum and outlier test (MR-PRESSO) were used for data analysis. RESULTS Higher genetically determined selenium level was associated with 5% higher risk of AD (OR 1.047, 95% CI 1.005 to 1.091, p=0.028) using IVW. Higher genetically determined urate level was associated with worse cognitive performance (β=-0.026, 95% CI -0.044 to -0.008, p=0.005) using MR-PRESSO. No association between the other antioxidants and AD, cognitive performance and reaction time was found. Similar results were found in the sensitivity analyses. CONCLUSION Our results suggest that lifelong exposure to higher selenium may be associated with a higher risk of AD, and higher urate levels could be associated with worse cognitive performance. Further analyses using larger GWAS of antioxidants are warranted to confirm these observations. Our results suggest that caution is needed in the interpretation of traditional observational evidence on the neuroprotective effects of antioxidants.
Collapse
Affiliation(s)
- Jiao Wang
- School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yingyue Huang
- School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Chunhua Bei
- School of Public Health, Guilin Medical University, Guilin, Guangxi, China
| | - Huiling Yang
- Eastern-fusion Master Studio of Hezhou, Hezhou, China
| | - Zihong Lin
- Hezhou Research Institute of Longevity Health Science, Hezhou, China
| | - Lin Xu
- School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, China
- School of Public Health, The University of Hong Kong Li Ka Shing Faculty of Medicine, Hong Kong, China
| |
Collapse
|
22
|
Yang HS, Yau WYW, Carlyle BC, Trombetta BA, Zhang C, Shirzadi Z, Schultz AP, Pruzin JJ, Fitzpatrick CD, Kirn DR, Rabin JS, Buckley RF, Hohman TJ, Rentz DM, Tanzi RE, Johnson KA, Sperling RA, Arnold SE, Chhatwal JP. Plasma VEGFA and PGF impact longitudinal tau and cognition in preclinical Alzheimer's disease. Brain 2024; 147:2158-2168. [PMID: 38315899 PMCID: PMC11146430 DOI: 10.1093/brain/awae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/08/2023] [Accepted: 12/21/2023] [Indexed: 02/07/2024] Open
Abstract
Vascular dysfunction is increasingly recognized as an important contributor to the pathogenesis of Alzheimer's disease. Alterations in vascular endothelial growth factor (VEGF) pathways have been implicated as potential mechanisms. However, the specific impact of VEGF proteins in preclinical Alzheimer's disease and their relationships with other Alzheimer's disease and vascular pathologies during this critical early period remain to be elucidated. We included 317 older adults from the Harvard Aging Brain Study, a cohort of individuals who were cognitively unimpaired at baseline and followed longitudinally for up to 12 years. Baseline VEGF family protein levels (VEGFA, VEGFC, VEGFD, PGF and FLT1) were measured in fasting plasma using high-sensitivity immunoassays. Using linear mixed effects models, we examined the interactive effects of baseline plasma VEGF proteins and amyloid PET burden (Pittsburgh Compound-B) on longitudinal cognition (Preclinical Alzheimer Cognitive Composite-5). We further investigated if effects on cognition were mediated by early neocortical tau accumulation (flortaucipir PET burden in the inferior temporal cortex) or hippocampal atrophy. Lastly, we examined the impact of adjusting for baseline cardiovascular risk score or white matter hyperintensity volume. Baseline plasma VEGFA and PGF each showed a significant interaction with amyloid burden on prospective cognitive decline. Specifically, low VEGFA and high PGF were associated with greater cognitive decline in individuals with elevated amyloid, i.e. those on the Alzheimer's disease continuum. Concordantly, low VEGFA and high PGF were associated with accelerated longitudinal tau accumulation in those with elevated amyloid. Moderated mediation analyses confirmed that accelerated tau accumulation fully mediated the effects of low VEGFA and partially mediated (31%) the effects of high PGF on faster amyloid-related cognitive decline. The effects of VEGFA and PGF on tau and cognition remained significant after adjusting for cardiovascular risk score or white matter hyperintensity volume. There were concordant but non-significant associations with longitudinal hippocampal atrophy. Together, our findings implicate low VEGFA and high PGF in accelerating early neocortical tau pathology and cognitive decline in preclinical Alzheimer's disease. Additionally, our results underscore the potential of these minimally-invasive plasma biomarkers to inform the risk of Alzheimer's disease progression in the preclinical population. Importantly, VEGFA and PGF appear to capture distinct effects from vascular risks and cerebrovascular injury. This highlights their potential as new therapeutic targets, in combination with anti-amyloid and traditional vascular risk reduction therapies, to slow the trajectory of preclinical Alzheimer's disease and delay or prevent the onset of cognitive decline.
Collapse
Affiliation(s)
- Hyun-Sik Yang
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Wai-Ying Wendy Yau
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Becky C Carlyle
- Harvard Medical School, Boston, MA 02115, USA
- Alzheimer’s Clinical and Translational Research Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Physiology, Anatomy and Genetics, Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3PT, UK
| | - Bianca A Trombetta
- Alzheimer’s Clinical and Translational Research Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Can Zhang
- Harvard Medical School, Boston, MA 02115, USA
- Alzheimer’s Clinical and Translational Research Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Zahra Shirzadi
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Aaron P Schultz
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Jeremy J Pruzin
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, Banner Alzheimer’s Institute, Phoenix, AZ 85006, USA
| | | | - Dylan R Kirn
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Jennifer S Rabin
- Harquail Centre for Neuromodulation and Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Department of Medicine, Rehabilitation Sciences Institute, University of Toronto, Toronto, ON M5G 1V7, Canada
| | - Rachel F Buckley
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Dorene M Rentz
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Rudolph E Tanzi
- Harvard Medical School, Boston, MA 02115, USA
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Keith A Johnson
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Reisa A Sperling
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Steven E Arnold
- Harvard Medical School, Boston, MA 02115, USA
- Alzheimer’s Clinical and Translational Research Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Jasmeer P Chhatwal
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
23
|
Hossain MF, Husna AU, Kharel M. Use of lecanemab for the treatment of Alzheimer's disease: A systematic review. Brain Behav 2024; 14:e3592. [PMID: 38867460 PMCID: PMC11169267 DOI: 10.1002/brb3.3592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024] Open
Abstract
PURPOSE The US Food and Drug Administration authorized lecanemab for the therapeutic use of Alzheimer's disease (AD) in January 2023. To assess the effectiveness and safety of lecanemab in treating AD, we thoroughly examined the studies that are currently accessible. METHOD Preferred Reporting Items for Systematic Reviews and Meta-Analysis recommendations were followed. In order to find relevant studies on lecanemab, we carried out a thorough literature search utilizing the electronic databases MEDLINE via PubMed, Cochrane, Web of Science, EBSCOhost, and Scopus. Excluding any research using experimental animals, we looked at lecanemab's effectiveness and side effects in treating AD in human clinical trials. Three randomized controlled studies were included. FINDINGS According to studies, lecanemab lessens clinical deterioration and reduces brain amyloid-beta plaques (difference,.45; 95% confidence interval,.67 to.23; p < .001). Participants who received lecanemab saw a greater frequency of amyloid-related imaging abnormalities (ARIA)-H (17.3% vs. 9.0%) and ARIA-E (12.6% vs. 1.7%), which is a significant adverse outcome. CONCLUSION Lecanemab has been shown to have an impact on the two primary pathophysiologic indicators of AD (Aβ and tau). There are still a lot of unresolved issues related to lecanemab. Future research on the effectiveness and safety of lecanemab is advised in order to determine that the advantages of this medication exceed the disadvantages.
Collapse
Affiliation(s)
| | - Ashma Ul Husna
- Mercy Health St. Elizabeth Youngstown HospitalYoungstownOhioUSA
| | - Manish Kharel
- Department of MedicineKathmandu Medical CollegeKathmanduNepal
| |
Collapse
|
24
|
Molina‐Henry DP, Raman R, Liu A, Langford O, Johnson K, Shum LK, Glover CM, Dhadda S, Irizarry M, Jimenez‐Maggiora G, Braunstein JB, Yarasheski K, Venkatesh V, West T, Verghese PB, Rissman RA, Aisen P, Grill JD, Sperling RA. Racial and ethnic differences in plasma biomarker eligibility for a preclinical Alzheimer's disease trial. Alzheimers Dement 2024; 20:3827-3838. [PMID: 38629508 PMCID: PMC11180863 DOI: 10.1002/alz.13803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 06/18/2024]
Abstract
INTRODUCTION In trials of amyloid-lowering drugs for Alzheimer's disease (AD), differential eligibility may contribute to under-inclusion of racial and ethnic underrepresented groups. We examined plasma amyloid beta 42/40 and positron emission tomography (PET) amyloid eligibility for the ongoing AHEAD Study preclinical AD program (NCT04468659). METHODS Univariate logistic regression models were used to examine group differences in plasma and PET amyloid screening eligibility. RESULTS Of 4905 participants screened at time of analysis, 1724 were plasma eligible to continue in screening: 13.3% Hispanic Black, 24.7% Hispanic White, 20.8% non-Hispanic (NH) Asian, 24.7% NH Black, and 38.9% NH White. Plasma eligibility differed across groups in models controlling for covariates (odds ratio from 1.9 to 4.0 compared to the NH White reference group, P < 0.001). Among plasma eligible participants, PET eligibility did not differ by group. DISCUSSION These results suggest that prevalence of brain amyloid pathology differed, but that eligibility based on plasma was equally effective across racial and ethnic group members. HIGHLIGHTS Plasma amyloid eligibility is lower in underrepresented racial and ethnic groups. In plasma eligible adults, positron emission tomography eligibility rates are similar across race and ethnicity. Plasma biomarker tests may be similarly effective across racial and ethnic groups.
Collapse
Affiliation(s)
- Doris Patricia Molina‐Henry
- Alzheimer's Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
- Present address:
Alzheimer's Therapeutic Research InstituteKeck School of Medicine of the University of Southern California, 9860 Mesa Rim Rd, San Diego, CA, 92121
| | - Rema Raman
- Alzheimer's Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Andy Liu
- Alzheimer's Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Oliver Langford
- Alzheimer's Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Keith Johnson
- Massachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Brigham and Women's HospitalBostonMassachusettsUSA
| | - Leona K. Shum
- Alzheimer's Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Crystal M. Glover
- Rush Alzheimer's Disease CenterChicagoIllinoisUSA
- Department of Psychiatry and Behavioral SciencesRush University Medical CollegeChicagoIllinoisUSA
- Department of Neurological SciencesRush Medical CollegeChicagoIllinoisUSA
| | | | | | - Gustavo Jimenez‐Maggiora
- Alzheimer's Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
| | | | | | | | - Tim West
- C2N DiagnosticsSt. LouisMissouriUSA
| | | | - Robert A. Rissman
- Department of Physiology and NeuroscienceAlzheimer's Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Paul Aisen
- Alzheimer's Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Joshua D. Grill
- Institute for Memory Impairments and Neurological DisordersUniversity of California IrvineIrvineCaliforniaUSA
| | - Reisa A. Sperling
- Massachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Brigham and Women's HospitalBostonMassachusettsUSA
| |
Collapse
|
25
|
Liu Q, Wang F, Tan L, Liu L, Hu X. Art therapies and cognitive function in elderly with subjective cognitive decline: a protocol for a network meta-analysis. BMJ Open 2024; 14:e079146. [PMID: 38643016 PMCID: PMC11033635 DOI: 10.1136/bmjopen-2023-079146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/18/2024] [Indexed: 04/22/2024] Open
Abstract
INTRODUCTION Subjective cognitive decline means a decline in the subjective perception of self-cognitive function, which is likely to evolve into mild cognitive impairment and dementia. The number of elderly with subjective cognitive decline has increased, bringing huge burdens and challenges to caregivers and society. With the increase in research on art therapies, some of them have gradually been proven to be effective for cognitive function. Therefore, this study aims to summarise the evidence and identify the best art therapy for elderly with subjective cognitive decline. METHODS AND ANALYSIS We will include published randomised controlled trials written in English and Chinese if the intervention is one of the art therapies and applied in people aged 60 and above with subjective cognitive decline. Eight electronic databases, including the Cochrane Central Register of Controlled Trials, PubMed, Web of Science, Elsevier, China BioMedical Literature Database, China National Knowledge Infrastructure, VIP Database and Wanfang Database, will be searched from January 2013 to December 2023. Art therapies will mainly include music therapy, reminiscence therapy, painting therapy, dance therapy, reading therapy, horticultural therapy, museum therapy, calligraphy therapy and so on. The outcome will be cognitive function. Study selection, data extraction and quality assessment will be performed by two reviewers. The risk of bias will be evaluated according to the Cochrane Collaboration's risk-of-bias tool, and the evidence quality will be assessed with the Grading of Recommendations Assessment, Development and Evaluation. Standard pairwise meta-analysis and Bayesian network meta-analysis will be conducted. The probabilities of each art therapy will be ranked based on the surface under the cumulative ranking curve. ETHICS AND DISSEMINATION Ethical approval is not required for reviewing published studies. To provide important evidence for clinicians and guideline developers, the findings of this study will be submitted to a peer-reviewed journal. PROSPERO REGISTRATION NUMBER CRD42023443773.
Collapse
Affiliation(s)
- Qian Liu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Fang Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Lixia Tan
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Li Liu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Xiuying Hu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
26
|
Asadie M, Miri A, Badri T, Hosseini Nejad J, Gharechahi J. Dysregulated AEBP1 and COLEC12 Genes in Late-Onset Alzheimer's Disease: Insights from Brain Cortex and Peripheral Blood Analysis. J Mol Neurosci 2024; 74:37. [PMID: 38568322 DOI: 10.1007/s12031-024-02212-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by memory and cognitive impairment, often accompanied by alterations in mood, confusion, and, ultimately, a state of acute mental disturbance. The cerebral cortex is considered a promising area for investigating the underlying causes of AD by analyzing transcriptional patterns, which could be complemented by investigating blood samples obtained from patients. We analyzed the RNA expression profiles of three distinct areas of the brain cortex, including the frontal cortex (FC), temporal cortex (TC), and entorhinal cortex (EC) in patients with AD. Functional enrichment analysis was performed on the differentially expressed genes (DEGs) across the three regions. The two genes with the most significant expression changes in the EC region were selected for assessing mRNA expression levels in the peripheral blood of late-onset AD patients using quantitative PCR (qPCR). We identified eight shared DEGs in these regions, including AEBP1 and COLEC12, which exhibited prominent changes in expression. Functional enrichment analysis uncovered a significant association of these DEGs with the transforming growth factor-β (TGF-β) signaling pathway and processes related to angiogenesis. Importantly, we established a robust connection between the up-regulation of AEBP1 and COLEC12 in both the brain and peripheral blood. Furthermore, we have demonstrated the potential of AEBP1 and COLEC12 genes as effective diagnostic tools for distinguishing between late-onset AD patients and healthy controls. This study unveils the intricate interplay between AEBP1 and COLEC12 in AD and underscores their potential as markers for disease detection and monitoring.
Collapse
Affiliation(s)
- Mohamadreza Asadie
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Miri
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Taleb Badri
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Javad Hosseini Nejad
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Javad Gharechahi
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Sekimitsu S, Shweikh Y, Shareef S, Zhao Y, Elze T, Segrè A, Wiggs J, Zebardast N. Association of retinal optical coherence tomography metrics and polygenic risk scores with cognitive function and future cognitive decline. Br J Ophthalmol 2024; 108:599-606. [PMID: 36990674 DOI: 10.1136/bjo-2022-322762] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/15/2023] [Indexed: 03/31/2023]
Abstract
PURPOSE To evaluate the potential of retinal optical coherence tomography (OCT) measurements and polygenic risk scores (PRS) to identify people at risk of cognitive impairment. METHODS Using OCT images from 50 342 UK Biobank participants, we examined associations between retinal layer thickness and genetic risk for neurodegenerative disease and combined these metrics with PRS to predict baseline cognitive function and future cognitive deterioration. Multivariate Cox proportional hazard models were used to predict cognitive performance. P values for retinal thickness analyses are false-discovery-rate-adjusted. RESULTS Higher Alzheimer's disease PRS was associated with a thicker inner nuclear layer (INL), chorio-scleral interface (CSI) and inner plexiform layer (IPL) (all p<0.05). Higher Parkinson's disease PRS was associated with thinner outer plexiform layer (p<0.001). Worse baseline cognitive performance was associated with thinner retinal nerve fibre layer (RNFL) (aOR=1.038, 95% CI (1.029 to 1.047), p<0.001) and photoreceptor (PR) segment (aOR=1.035, 95% CI (1.019 to 1.051), p<0.001), ganglion cell complex (aOR=1.007, 95% CI (1.002 to 1.013), p=0.004) and thicker ganglion cell layer (aOR=0.981, 95% CI (0.967 to 0.995), p=0.009), IPL (aOR=0.976, 95% CI (0.961 to 0.992), p=0.003), INL (aOR=0.923, 95% CI (0.905 to 0.941), p<0.001) and CSI (aOR=0.998, 95% CI (0.997 to 0.999), p<0.001). Worse future cognitive performance was associated with thicker IPL (aOR=0.945, 95% CI (0.915 to 0.999), p=0.045) and CSI (aOR=0.996, 95% CI (0.993 to 0.999) 95% CI, p=0.014). Prediction of cognitive decline was significantly improved with the addition of PRS and retinal measurements. CONCLUSIONS AND RELEVANCE Retinal OCT measurements are significantly associated with genetic risk of neurodegenerative disease and may serve as biomarkers predictive of future cognitive impairment.
Collapse
Affiliation(s)
| | - Yusrah Shweikh
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
- Sussex Eye Hospital, University Hospitals Sussex NHS Foundation Trust, Sussex, UK
| | - Sarah Shareef
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Yan Zhao
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Tobias Elze
- Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Ayellet Segrè
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Janey Wiggs
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Nazlee Zebardast
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| |
Collapse
|
28
|
Duzel E, Schöttler M, Sommer H, Griebe M. Protocol: Prospective evaluation of feasibility, added value and satisfaction of remote digital self-assessment for mild cognitive impairment in routine care with the neotivCare app. BMJ Open 2024; 14:e081159. [PMID: 38479732 PMCID: PMC10936487 DOI: 10.1136/bmjopen-2023-081159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/29/2024] [Indexed: 11/02/2024] Open
Abstract
INTRODUCTION Timely diagnosis of mild cognitive impairment (MCI) in Alzheimer's disease is crucial for early interventions, but its implementation is often challenging due to the complexity and time burden of required cognitive assessments. To address these challenges, the usability of new unsupervised digital remote assessment tools needs to be validated in a care context. METHODS AND ANALYSIS This multicentric healthcare research evaluation survey, re.cogni.ze, aims to evaluate physician satisfaction with a remote digital assessment solution (neotivCare) in primary and specialised routine care in Germany. Over a period of 22 months, physicians in different regions of Germany will recommend the application (app) to approximately 1000 patients for a 12-week self-assessment of cognition. The primary endpoint is the evaluation of physicians' and patients' overall satisfaction with neotivCare and with neuropsychological questionnaires/standard procedures using a Likert scale, while secondary endpoints include user-friendliness, qualitative assessment of acceptance and potential improvements on medical routine services. The study also aims to evaluate the proportion of physicians or patients attributing added value to neotivCare compared with standard paper-pencil tests. The study results will provide insights into the feasibility, efficiency and acceptance of new digital tools for MCI diagnosis in routine care. The re.cogni.ze survey will thus provide proof-of-concept information for the implementation of remote digital cognitive assessment apps for MCI into medical routine care. ETHICS AND DISSEMINATION This study was approved by the ethics committee of the State Medical Association (Landesärztekammer) Baden-Württemberg, (F-2021-161) as the leading committee and nine ethics committees local to the participating healthcare professionals (Lower Saxony, North Rhine, Westphalia-Lippe, Hesse, Bremen, Berlin, University of Göttingen, Charite, University of Rostock). The results can be shared (upon reasonable quest) to improve routine clinical processes and holistic approaches.
Collapse
Affiliation(s)
- Emrah Duzel
- German Center for Neurodegenerative Diseases, Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | | | | | - Martin Griebe
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
29
|
Kourti M, Metaxas A. A systematic review and meta-analysis of tau phosphorylation in mouse models of familial Alzheimer's disease. Neurobiol Dis 2024; 192:106427. [PMID: 38307366 DOI: 10.1016/j.nbd.2024.106427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024] Open
Abstract
Transgenic models of familial Alzheimer's disease (AD) serve as valuable tools for probing the molecular mechanisms associated with amyloid-beta (Aβ)-induced pathology. In this meta-analysis, we sought to evaluate levels of phosphorylated tau (p-tau) and explore potential age-related variations in tau hyperphosphorylation, within mouse models of AD. The PubMed and Scopus databases were searched for studies measuring soluble p-tau in 5xFAD, APPswe/PSEN1de9, J20 and APP23 mice. Data were extracted and analyzed using standardized procedures. For the 5xFAD model, the search yielded 36 studies eligible for meta-analysis. Levels of p-tau were higher in 5xFAD mice relative to control, a difference that was evident in both the carboxy-terminal (CT) and proline-rich (PR) domains of tau. Age negatively moderated the relationship between genotype and CT phosphorylated tau in studies using hybrid mice, female mice, and preparations from the neocortex. For the APPswe/PSEN1de9 model, the search yielded 27 studies. Analysis showed tau hyperphosphorylation in transgenic vs. control animals, evident in both the CT and PR regions of tau. Age positively moderated the relationship between genotype and PR domain phosphorylated tau in the neocortex of APPswe/PSEN1de9 mice. A meta-analysis was not performed for the J20 and APP23 models, due to the limited number of studies measuring p-tau levels in these mice (<10 studies). Although tau is hyperphosphorylated in both 5xFAD and APPswe/PSEN1de9 mice, the effects of ageing on p-tau are contingent upon the model being examined. These observations emphasize the importance of tailoring model selection to the appropriate disease stage when considering the relationship between Aβ and tau, and suggest that there are optimal intervention points for the administration of both anti-amyloid and anti-tau therapies.
Collapse
Affiliation(s)
- Malamati Kourti
- School of Sciences, Department of Life Sciences, European University Cyprus, 2404 Egkomi, Nicosia, Cyprus; Angiogenesis and Cancer Drug Discovery Group, Basic and Translational Cancer Research Centre, Department of Life Sciences, European University Cyprus, 2404 Egkomi, Nicosia, Cyprus.
| | - Athanasios Metaxas
- School of Sciences, Department of Life Sciences, European University Cyprus, 2404 Egkomi, Nicosia, Cyprus; Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
30
|
Rissman RA, Langford O, Raman R, Donohue MC, Abdel‐Latif S, Meyer MR, Wente‐Roth T, Kirmess KM, Ngolab J, Winston CN, Jimenez‐Maggiora G, Rafii MS, Sachdev P, West T, Yarasheski KE, Braunstein JB, Irizarry M, Johnson KA, Aisen PS, Sperling RA, for the AHEAD 3‐45 Study team. Plasma Aβ42/Aβ40 and phospho-tau217 concentration ratios increase the accuracy of amyloid PET classification in preclinical Alzheimer's disease. Alzheimers Dement 2024; 20:1214-1224. [PMID: 37932961 PMCID: PMC10916957 DOI: 10.1002/alz.13542] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 11/08/2023]
Abstract
INTRODUCTION Incorporating blood-based Alzheimer's disease biomarkers such as tau and amyloid beta (Aβ) into screening algorithms may improve screening efficiency. METHODS Plasma Aβ, phosphorylated tau (p-tau)181, and p-tau217 concentration levels from AHEAD 3-45 study participants were measured using mass spectrometry. Tau concentration ratios for each proteoform were calculated to normalize for inter-individual differences. Receiver operating characteristic (ROC) curve analysis was performed for each biomarker against amyloid positivity, defined by > 20 Centiloids. Mixture of experts analysis assessed the value of including tau concentration ratios into the existing predictive algorithm for amyloid positron emission tomography status. RESULTS The area under the receiver operating curve (AUC) was 0.87 for Aβ42/Aβ40, 0.74 for phosphorylated variant p-tau181 ratio (p-tau181/np-tau181), and 0.92 for phosphorylated variant p-tau217 ratio (p-tau217/np-tau217). The Plasma Predicted Centiloid (PPC), a predictive model including p-tau217/np-tau217, Aβ42/Aβ40, age, and apolipoprotein E improved AUC to 0.95. DISCUSSION Including plasma p-tau217/np-tau217 along with Aβ42/Aβ40 in predictive algorithms may streamline screening preclinical individuals into anti-amyloid clinical trials. CLINICALTRIALS gov Identifier: NCT04468659 HIGHLIGHTS: The addition of plasma phosphorylated variant p-tau217 ratio (p-tau217/np-tau217) significantly improved plasma biomarker algorithms for identifying preclinical amyloid positron emission tomography positivity. Prediction performance at higher NAV Centiloid levels was improved with p-tau217/np-tau217. All models generated for this study are incorporated into the Plasma Predicted Centiloid (PPC) app for public use.
Collapse
Affiliation(s)
- Robert A. Rissman
- Department of NeurosciencesUniversity of California San DiegoLa JollaCaliforniaUSA
- Alzheimer's Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
- VA San Diego Healthcare SystemSan DiegoCaliforniaUSA
| | - Oliver Langford
- Alzheimer's Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Rema Raman
- Alzheimer's Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Michael C. Donohue
- Alzheimer's Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Sara Abdel‐Latif
- Alzheimer's Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
| | | | | | | | - Jennifer Ngolab
- Alzheimer's Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Charisse N. Winston
- Department of NeurosciencesUniversity of California San DiegoLa JollaCaliforniaUSA
- Alzheimer's Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Gustavo Jimenez‐Maggiora
- Alzheimer's Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Michael S. Rafii
- Alzheimer's Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
| | | | - Tim West
- C2N DiagnosticsSt. LouisMissouriUSA
| | | | | | | | - Keith A. Johnson
- Brigham and Women's Hospital, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Paul S. Aisen
- Alzheimer's Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Reisa A. Sperling
- Brigham and Women's Hospital, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | | |
Collapse
|
31
|
Chen Z, Chen K, Li Y, Geng D, Li X, Liang X, Lu H, Ding S, Xiao Z, Ma X, Zheng L, Ding D, Zhao Q, Yang L, for the Alzheimer's Disease Neuroimaging Initiative. Structural, static, and dynamic functional MRI predictors for conversion from mild cognitive impairment to Alzheimer's disease: Inter-cohort validation of Shanghai Memory Study and ADNI. Hum Brain Mapp 2024; 45:e26529. [PMID: 37991144 PMCID: PMC10789213 DOI: 10.1002/hbm.26529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/06/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023] Open
Abstract
Mild cognitive impairment (MCI) is a critical prodromal stage of Alzheimer's disease (AD), and the mechanism underlying the conversion is not fully explored. Construction and inter-cohort validation of imaging biomarkers for predicting MCI conversion is of great challenge at present, due to lack of longitudinal cohorts and poor reproducibility of various study-specific imaging indices. We proposed a novel framework for inter-cohort MCI conversion prediction, involving comparison of structural, static, and dynamic functional brain features from structural magnetic resonance imaging (sMRI) and resting-state functional MRI (fMRI) between MCI converters (MCI_C) and non-converters (MCI_NC), and support vector machine for construction of prediction models. A total of 218 MCI patients with 3-year follow-up outcome were selected from two independent cohorts: Shanghai Memory Study cohort for internal cross-validation, and Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort for external validation. In comparison with MCI_NC, MCI_C were mainly characterized by atrophy, regional hyperactivity and inter-network hypo-connectivity, and dynamic alterations characterized by regional and connectional instability, involving medial temporal lobe (MTL), posterior parietal cortex (PPC), and occipital cortex. All imaging-based prediction models achieved an area under the curve (AUC) > 0.7 in both cohorts, with the multi-modality MRI models as the best with excellent performances of AUC > 0.85. Notably, the combination of static and dynamic fMRI resulted in overall better performance as relative to static or dynamic fMRI solely, supporting the contribution of dynamic features. This inter-cohort validation study provides a new insight into the mechanisms of MCI conversion involving brain dynamics, and paves a way for clinical use of structural and functional MRI biomarkers in future.
Collapse
Affiliation(s)
- Zhihan Chen
- Department of Radiology, Huashan HospitalFudan UniversityShanghaiChina
- Academy for Engineering & TechnologyFudan UniversityShanghaiChina
| | - Keliang Chen
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
| | - Yuxin Li
- Department of Radiology, Huashan HospitalFudan UniversityShanghaiChina
- Institute of Functional and Molecular Medical ImagingFudan UniversityShanghaiChina
| | - Daoying Geng
- Department of Radiology, Huashan HospitalFudan UniversityShanghaiChina
- Academy for Engineering & TechnologyFudan UniversityShanghaiChina
- Institute of Functional and Molecular Medical ImagingFudan UniversityShanghaiChina
| | - Xiantao Li
- Department of Critical Care MedicineHuashan Hospital, Fudan UniversityShanghaiChina
| | - Xiaoniu Liang
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
| | - Huimeng Lu
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
| | - Saineng Ding
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
| | - Zhenxu Xiao
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
| | - Xiaoxi Ma
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
| | - Li Zheng
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
| | - Ding Ding
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
| | - Qianhua Zhao
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
- National Center for Neurological DisordersHuashan Hospital, Fudan UniversityShanghaiChina
- MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
- National Clinical Research Center for Aging and MedicineHuashan Hospital, Fudan UniversityShanghaiChina
| | - Liqin Yang
- Department of Radiology, Huashan HospitalFudan UniversityShanghaiChina
- Institute of Functional and Molecular Medical ImagingFudan UniversityShanghaiChina
| | | |
Collapse
|
32
|
Gillespie NA, Elman JA, McKenzie RE, Tu XM, Xian H, Reynolds CA, Panizzon MS, Lyons MJ, Eglit GML, Neale MC, Rissman RA, Franz C, Kremen WS. The heritability of blood-based biomarkers related to risk of Alzheimer's disease in a population-based sample of early old-age men. Alzheimers Dement 2024; 20:356-365. [PMID: 37622539 PMCID: PMC10843753 DOI: 10.1002/alz.13407] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 08/26/2023]
Abstract
INTRODUCTION Despite their increased application, the heritability of Alzheimer's disease (AD)-related blood-based biomarkers remains unexplored. METHODS Plasma amyloid beta 40 (Aβ40), Aβ42, the Aβ42/40 ratio, total tau (t-tau), and neurofilament light (NfL) data came from 1035 men 60 to 73 years of age (μ = 67.0, SD = 2.6). Twin models were used to calculate heritability and the genetic and environmental correlations between them. RESULTS Additive genetics explained 44% to 52% of Aβ42, Aβ40, t-tau, and NfL. The Aβ42/40 ratio was not heritable. Aβ40 and Aβ42 were genetically near identical (rg = 0.94). Both Aβ40 and Aβ42 were genetically correlated with NfL (rg = 0.35 to 0.38), but genetically unrelated to t-tau. DISCUSSION Except for Aβ42/40, plasma biomarkers are heritable. Aβ40 and Aβ42 share mostly the same genetic influences, whereas genetic influences on plasma t-tau and NfL are largely unique in early old-age men. The absence of genetic associations between the Aβs and t-tau is not consistent with the amyloid cascade hypothesis.
Collapse
Affiliation(s)
- Nathan A. Gillespie
- Virginia Institute for Psychiatric and Behaviour GeneticsDepartment of PsychiatryVirginia Commonwealth UniversityRichmondVirginiaUSA
- QIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Jeremy A. Elman
- Department of PsychiatryUniversity of California, San DiegoLa JollaCaliforniaUSA
- Center for Behavior Genetics of AgingUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Ruth E. McKenzie
- Department of PsychologyBoston UniversityBostonMassachusettsUSA
- School of Education and Social PolicyMerrimack CollegeNorth AndoverMassachusettsUSA
| | - Xin M. Tu
- Center for Behavior Genetics of AgingUniversity of California, San DiegoLa JollaCaliforniaUSA
- Department of Family Medicine and Public HealthUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Hong Xian
- Department of Epidemiology and BiostatisticsSaint. Louis UniversitySt. LouisMissouriUSA
- Research Service, VA St. Louis Healthcare SystemSt. LouisMissouriUSA
| | | | - Matthew S. Panizzon
- Department of PsychiatryUniversity of California, San DiegoLa JollaCaliforniaUSA
- Center for Behavior Genetics of AgingUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Michael J. Lyons
- Department of Psychological and Brain SciencesBoston UniversityBostonMassachusettsUSA
| | - Graham M. L. Eglit
- Department of PsychiatryUniversity of California, San DiegoLa JollaCaliforniaUSA
- Sam and Rose Stein Institute for Research on AgingUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Michael C. Neale
- Virginia Institute for Psychiatric and Behaviour GeneticsDepartment of PsychiatryVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Robert A. Rissman
- Department of PsychiatryUniversity of California, San DiegoLa JollaCaliforniaUSA
- Center for Behavior Genetics of AgingUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Carol Franz
- Department of PsychiatryUniversity of California, San DiegoLa JollaCaliforniaUSA
- Center for Behavior Genetics of AgingUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - William S. Kremen
- Department of PsychiatryUniversity of California, San DiegoLa JollaCaliforniaUSA
- Center for Behavior Genetics of AgingUniversity of California, San DiegoLa JollaCaliforniaUSA
- Department of NeurosciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
33
|
Rissman RA, Donohue MC, Langford O, Raman R, Abdel-Latif S, Yaari R, Holdridge KC, Sims JR, Molina-Henry D, Jimenez-Maggiora G, Johnson KA, Aisen PS, Sperling RA. Longitudinal Phospho-tau217 Predicts Amyloid Positron Emission Tomography in Asymptomatic Alzheimer's Disease. J Prev Alzheimers Dis 2024; 11:823-830. [PMID: 39044490 PMCID: PMC11266279 DOI: 10.14283/jpad.2024.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/18/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Blood-based AD biomarkers such as plasma P-tau217 are increasingly used in clinical trials as a screening tool. OBJECTIVES To assess the utility of an electrochemiluminescence (ECL) immunoassay in predicting brain amyloid PET status in cognitively unimpaired individuals. SETTING Plasma samples collected at baseline, week 12, and week 240 or endpoint originated from the Anti-Amyloid Treatment in Asymptomatic Alzheimer's Disease (A4) trial and the companion Longitudinal Evaluation of Amyloid Risk and Neurodegeneration (LEARN) study. PARTICIPANTS Both A4 and LEARN enrolled eligible cognitively unimpaired persons 65 to 85 years. Individuals with elevated brain amyloid PET levels were eligible for the A4 Study, while those without elevated brain amyloid PET levels were eligible for the LEARN Study. INTERVENTION Participants in the A4 Study received intravenous solanezumab (up to 1600 mg) or placebo every 4 weeks. The LEARN Study is an observational study without intervention. MEASUREMENTS Plasma P-tau217 concentration levels from A4 Study participants were measured using an ECL immunoassay. Receiver Operating Characteristic (ROC) curve analysis was performed for each biomarker against amyloid positivity, defined by ≥22 CL and ≥ 33 CL. RESULTS Receiver operating characteristic curve (ROC) analysis indicates high diagnostic value of P-tau217 in individuals with amyloid PET ≥ 20 (Area under the ROC (AUROC): 0.87) and ≥ 33 CL (AUROC: 0.89). Repeated testing with the placebo group taken 12 weeks apart (range: 68 to 143 days) and the LEARN participants taken between 1.4 and 1.75 years resulted in a strong positive correlation (Corr. 0.91 (0.90 to 0.92)). CONCLUSION An ECL immunoassay testing plasma P-tau217 accurately predicts amyloid PET positivity in cognitively unimpaired individuals. Our future analyses aim to determine if use of this assay may reduce the screening burden of preclinical individuals into anti-amyloid clinical trials.
Collapse
Affiliation(s)
- R A Rissman
- Robert Rissman, Ph.D., Department of Physiology and Neuroscience, USC Alzheimer's Therapeutic Research Institute, 9880 Mesa Rim Road, San Diego, CA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Vermeulen RJ, Roudijk B, Govers TM, Rovers MM, Olde Rikkert MGM, Wijnen BFM. Prognostic Information on Progression to Dementia: Quantification of the Impact on Quality of Life. J Alzheimers Dis 2024; 97:1829-1840. [PMID: 38339932 PMCID: PMC10894563 DOI: 10.3233/jad-231037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 02/12/2024]
Abstract
Background The increasing interest in early identification of people at risk of developing dementia, has led to the development of numerous models aimed at estimating the likelihood of progression from mild cognitive impairment (MCI) to dementia. It is important to study both the need for and possible outcomes related with such prediction models, including the impact of risk predictions on perceived quality of life (QoL). Objective This study aimed to quantify the impact that receiving a risk prediction on progression from MCI to dementia has on QoL. Methods A Discrete Choice Experiment (DCE) and Time Trade Off (TTO) study were performed. Participants completed choice tasks related to dementia prognosis while imagining having MCI. We collected DCE data by an online survey, and TTO data via videoconferencing interviews. DCE data were analyzed using a mixed multinomial logit model and were anchored to a health state utility scale using mean observed TTO valuations. Results 296 people participated in the DCE and 42 in the TTO. Moderate and high predicted dementia risks were associated with decrements in utility (-0.05 and -0.18 respectively), compared to no prognostic information. Low predicted risk was associated with an increase in utility (0.06), as well as the availability of medication or lifestyle interventions (0.05 and 0.13 respectively). Conclusions This study shows a significant impact of dementia risk predictions on QoL and highlights the importance of caution when sharing information about expected MCI disease courses.
Collapse
Affiliation(s)
- Robin Jeanna Vermeulen
- Department of Medical Imaging, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Bram Roudijk
- EuroQol Research Foundation, Rotterdam, The Netherlands
| | - Tim Martin Govers
- Department of Medical Imaging, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Maroeska Mariet Rovers
- Department of Medical Imaging, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | | |
Collapse
|
35
|
Rentz DM, Rosenberg PB, Sperling RA, Donohue MC, Raman R, Liu A, Aisen PS. Characterizing Clinical Progression in Cognitively Unimpaired Older Individuals with Brain Amyloid: Results from the A4 Study. J Prev Alzheimers Dis 2024; 11:814-822. [PMID: 39044489 PMCID: PMC11266445 DOI: 10.14283/jpad.2024.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/09/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Clinical Dementia Rating (CDR) global (CDR-G) and sum of box scores (CDR-SB) are commonly used as primary outcome variables to measure progression or treatment effects in symptomatic Alzheimer disease (AD) clinical trials. OBJECTIVES We sought to determine whether the CDR is sensitive to change in pre-symptomatic AD and whether there are specific CDR boxes that are dynamic during the multi-year Anti-Amyloid in Asymptomatic Alzheimer's Disease (A4) secondary prevention study. DESIGN All participants entered the study with a CDR-G of 0. Box scores were examined individually and as composites of cognition (memory, orientation and judgment /problem solving) and function (community affairs and home/ hobbies). A progression in box score was tabulated only when the change occurred at two consecutive visits. SETTING The A4 study took place at 67 sites in Australia, Canada, Japan and the United States. PARTICIPANTS 1,147 individuals, ages 65-85, were randomized to either placebo (n= 583) or solanezumab (n= 564). All participants received a baseline flobetapir PET scan, an annual CDR, and cognitive testing every 6 months with the Primary Alzheimer Cognitive Composite (PACC) over the course of 240 weeks. MEASUREMENTS Generalized estimating equations and generalized least square models were used to explore the modeled mean progression rate in the CDR-G, CDR-SB, individual CDR boxes, and CDR composite scores in the combined solanezumab and placebo groups. Models were refitted to explore the probability of CDR progression in centiloid tertiles of amyloid at baseline (< 46.1 CL, 46.1 to 77.2 CL, > 77.2 CL). All models included effects for age, education, APOEε4 carrier status, baseline amyloid with flobetapir PET, treatment, and time-by-treatment. RESULTS There were no statistical differences between the placebo or solanezumab groups in CDR-G, CDR-SB, specific CDR boxes or CDR composite scores over the course of the trial. Changes in judgment/ problem solving were present at baseline and persisted over time, but progression on the CDR memory box and the CDR cognitive composite quickly predominated. Community affairs and home/ hobbies showed little progression. Personal care remained stable. The probability of cognitive and functional progression in CDR boxes began either at the intermediate or advanced amyloid level (46.1 to 77.2 CL, > 77.2 CL), while amyloid at the lowest level (< 46.1 CL) showed relatively little CDR progression. CONCLUSIONS The findings suggest that the CDR memory box and the CDR cognitive composite progressed over 240 weeks and were associated with intermediate and advanced stages of amyloid at baseline. Functional changes in community affairs and home/hobbies were relatively stable. These finding suggest that specific CDR box score changes may help refine our measurement of expected treatment effects in future AD prevention trials.
Collapse
Affiliation(s)
- D M Rentz
- Dorene M Rentz, PsyD, Department of Neurology, Brigham and Women's Hospital, 60 Fenwood Road, 9016S, Boston, MA 02115, USA ; Telephone: 617-732-2385; FAX: 617-738-9122
| | | | | | | | | | | | | |
Collapse
|
36
|
Li K, Gao Y, Liu M, Chen Y. Advances in Alzheimer's Disease Biomarkers. Curr Alzheimer Res 2024; 21:791-803. [PMID: 39757626 DOI: 10.2174/0115672050366767241223050957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 01/07/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition characterized by gradual onset and complex pathological mechanisms. Clinically, it presents with progressive cognitive decline and behavioral impairments, making it one of the most common causes of dementia. The intricacies of its pathogenesis are not fully understood, and current treatment options are limited, with diagnosis typically occurring at intermediate to advanced stages. The development of new biomarkers offers a crucial avenue for the early diagnosis of AD and improving patient outcomes. Several biomarkers with high specificity have been identified. This article reviews biomarkers related to tau protein, β-amyloid, and blood cells to deepen our understanding of AD and emphasize the advantages and disadvantages of various biomarkers in order to explore further and mine new biomarkers for AD diagnosis.
Collapse
Affiliation(s)
- Kuan Li
- Department of Neurosurgery, The First Affiliated Hospital of Guangzhou Medical University, Guangdong, Guangzhou, China
| | - Yujie Gao
- Department of Neurosurgery, The First Affiliated Hospital of Guangzhou Medical University, Guangdong, Guangzhou, China
| | - Muxi Liu
- Department of Arts and Social Science, Philosophy Faculty, University of Zurich, Zurich, Switzerland
| | - Yizhao Chen
- Department of Neurosurgery, The First Affiliated Hospital of Guangzhou Medical University, Guangdong, Guangzhou, China
| |
Collapse
|
37
|
Lee S, Kim E, Moon CE, Park C, Lim JW, Baek M, Shin MK, Ki J, Cho H, Ji YW, Haam S. Amplified fluorogenic immunoassay for early diagnosis and monitoring of Alzheimer's disease from tear fluid. Nat Commun 2023; 14:8153. [PMID: 38071202 PMCID: PMC10710446 DOI: 10.1038/s41467-023-43995-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Accurate diagnosis of Alzheimer's disease (AD) in its earliest stage can prevent the disease and delay the symptoms. Therefore, more sensitive, non-invasive, and simple screening tools are required for the early diagnosis and monitoring of AD. Here, we design a self-assembled nanoparticle-mediated amplified fluorogenic immunoassay (SNAFIA) consisting of magnetic and fluorophore-loaded polymeric nanoparticles. Using a discovery cohort of 21 subjects, proteomic analysis identifies adenylyl cyclase-associated protein 1 (CAP1) as a potential tear biomarker. The SNAFIA demonstrates a low detection limit (236 aM), good reliability (R2 = 0.991), and a wide analytical range (0.320-1000 fM) for CAP1 in tear fluid. Crucially, in the verification phase with 39 subjects, SNAFIA discriminates AD patients from healthy controls with 90% sensitivity and 100% specificity in under an hour. Utilizing tear fluid as a liquid biopsy, SNAFIA could potentially aid in long-term care planning, improve clinical trial efficiency, and accelerate therapeutic development for AD.
Collapse
Affiliation(s)
- Sojeong Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Eunjung Kim
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
- Department of Bioengineering & Nano-bioengineering, Research Center for Bio Materials and Process Development, Incheon National University, Incheon, 22012, Republic of Korea
| | - Chae-Eun Moon
- Department of Ophthalmology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, 16995, Republic of Korea
| | - Chaewon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jong-Woo Lim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Minseok Baek
- Department of Neurology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, 26426, Republic of Korea
| | - Moo-Kwang Shin
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jisun Ki
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hanna Cho
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea.
| | - Yong Woo Ji
- Department of Ophthalmology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, 16995, Republic of Korea.
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
38
|
Bader I, Bader I, Lopes Alves I, Vállez García D, Vellas B, Dubois B, Boada M, Marquié M, Altomare D, Scheltens P, Vandenberghe R, Hanseeuw B, Schöll M, Frisoni GB, Jessen F, Nordberg A, Kivipelto M, Ritchie CW, Grau-Rivera O, Molinuevo JL, Ford L, Stephens A, Gismondi R, Gispert JD, Farrar G, Barkhof F, Visser PJ, Collij LE. Recruitment of pre-dementia participants: main enrollment barriers in a longitudinal amyloid-PET study. Alzheimers Res Ther 2023; 15:189. [PMID: 37919783 PMCID: PMC10621165 DOI: 10.1186/s13195-023-01332-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/13/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND The mismatch between the limited availability versus the high demand of participants who are in the pre-dementia phase of Alzheimer's disease (AD) is a bottleneck for clinical studies in AD. Nevertheless, potential enrollment barriers in the pre-dementia population are relatively under-reported. In a large European longitudinal biomarker study (the AMYPAD-PNHS), we investigated main enrollment barriers in individuals with no or mild symptoms recruited from research and clinical parent cohorts (PCs) of ongoing observational studies. METHODS Logistic regression was used to predict study refusal based on sex, age, education, global cognition (MMSE), family history of dementia, and number of prior study visits. Study refusal rates and categorized enrollment barriers were compared between PCs using chi-squared tests. RESULTS 535/1856 (28.8%) of the participants recruited from ongoing studies declined participation in the AMYPAD-PNHS. Only for participants recruited from clinical PCs (n = 243), a higher MMSE-score (β = - 0.22, OR = 0.80, p < .05), more prior study visits (β = - 0.93, OR = 0.40, p < .001), and positive family history of dementia (β = 2.08, OR = 8.02, p < .01) resulted in lower odds on study refusal. General study burden was the main enrollment barrier (36.1%), followed by amyloid-PET related burden (PCresearch = 27.4%, PCclinical = 9.0%, X2 = 10.56, p = .001), and loss of research interest (PCclinical = 46.3%, PCresearch = 16.5%, X2 = 32.34, p < .001). CONCLUSIONS The enrollment rate for the AMYPAD-PNHS was relatively high, suggesting an advantage of recruitment via ongoing studies. In this observational cohort, study burden reduction and tailored strategies may potentially improve participant enrollment into trial readiness cohorts such as for phase-3 early anti-amyloid intervention trials. The AMYPAD-PNHS (EudraCT: 2018-002277-22) was approved by the ethical review board of the VU Medical Center (VUmc) as the Sponsor site and in every affiliated site.
Collapse
Affiliation(s)
- Ilse Bader
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, De Boelelaan 1118, 1081 HZ, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV, Amsterdam, The Netherlands.
| | - Ilona Bader
- Radiology & Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, 1081 HV, The Netherlands
| | - Isadora Lopes Alves
- Radiology & Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, 1081 HV, The Netherlands
- Brain Research Center, 1081 GN, Amsterdam, The Netherlands
| | - David Vállez García
- Radiology & Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, 1081 HV, The Netherlands
| | - Bruno Vellas
- Gérontopole of Toulouse, University Hospital of Toulouse (CHU-Toulouse), 31300, Toulouse, France
- UMR INSERM 1027, University of Toulouse III, 31062, Toulouse, France
| | - Bruno Dubois
- Institute of Memory and Alzheimer's Disease (IM2A) and Brain Institute, Salpetriere Hospital, Sorbonne University, 75013, Paris, France
| | - Mercè Boada
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08028, Barcelona, Spain
- Networking Research Center On Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Marta Marquié
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08028, Barcelona, Spain
- Networking Research Center On Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Daniele Altomare
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, 25123, Brescia, Italy
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, De Boelelaan 1118, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV, Amsterdam, The Netherlands
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Leuven Brain Institute, KU Leuven, 3001, Louvain, Belgium
| | - Bernard Hanseeuw
- Institute of Neuroscience, Université Catholique de Louvain, 1200, Brussels, Belgium
- Department of Neurology, Clinique Universitaires Saint-Luc, 1200, Brussels, Belgium
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, 02155, USA
- WELBIO Department, WEL Research Institute, Avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Michael Schöll
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30, Gothenburg, Sweden
- Dementia Research Centre, Queen Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Giovanni B Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, 1205, Geneva, Switzerland
- Geneva Memory Center, Geneva University Hospitals, 1205, Geneva, Switzerland
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, Germany
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society (NVS), Karolinska Institutet, 171 77, Stockholm, Sweden
- Theme Inflammation, Karolinska University Hospital, Stockholm, 171 77, Sweden
- Theme Aging, Karolinska University Hospital, Stockholm, 171 77, Sweden
| | - Miia Kivipelto
- Kuopio University Hospital, 70210, Kuopio, Finland
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society (NVS), Karolinska Institutet, 171 77, Stockholm, Sweden
- Imperial College London, London, SW7 2AZ, UK
| | | | - Oriol Grau-Rivera
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005, Barcelona, Spain
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005, Barcelona, Spain
- H. Lundbeck A/S, 2500, Copenhagen, Denmark
| | - Lisa Ford
- Janssen Research and Development, Titusville, NJ, 08560, USA
| | | | | | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005, Barcelona, Spain
| | - Gill Farrar
- GE Healthcare, Pharmaceutical Diagnostics, Amersham, HP7 9LL, UK
| | - Frederik Barkhof
- Radiology & Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, 1081 HV, The Netherlands
- Institutes of Neurology and Healthcare Engineering, UCL, London, WC1N 3BG, UK
| | - Pieter Jelle Visser
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, De Boelelaan 1118, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV, Amsterdam, The Netherlands
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Lyduine E Collij
- Radiology & Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, 1081 HV, The Netherlands
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, 221 00, Malmö, Sweden
| |
Collapse
|
39
|
Lisgaras CP, Scharfman HE. High Frequency Oscillations (>250Hz) Outnumber Interictal Spikes in Preclinical Studies of Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564797. [PMID: 37961135 PMCID: PMC10634943 DOI: 10.1101/2023.10.30.564797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Interictal spikes (IIS) and seizures are well-documented in Alzheimer's disease (AD). IIS typically outnumber seizures, supporting their role as a prominent EEG biomarker in AD. In preclinical models, we showed that high frequency oscillations (HFOs>250Hz) also occur, but it is currently unknown how HFOs compare to IIS. Therefore, we asked whether the incidence of HFOs and IIS differed and if they are differentially affected by behavioral state. We used three mouse lines that simulate aspects of AD: Tg2576, presenilin 2 knockout, and Ts65Dn mice. We recorded and quantified HFOs and IIS in the hippocampus during wakefulness, slow-wave sleep, and rapid eye movement sleep. In all three mouse lines, HFOs were more frequent than IIS. High numbers of HFOs correlated with fewer IIS, suggesting for the first time possible competing dynamics among them in AD. Notably, HFOs occurred in more behavioral states than IIS. In summary, HFOs were the most abundant EEG abnormality when compared to IIS, and occurred in all behavioral states, suggesting they are a better biomarker than IIS. These findings pertained to three mouse lines, which is important because they simulate different aspects of AD. We also show that HFOs may inhibit IIS. SHORT SUMMARY Interictal spikes (IIS) and seizures are common in Alzheimer's disease (AD). IIS are more frequent than seizures and occur during earlier disease stages. In preclinical models, we showed that high frequency oscillations (HFOs>250Hz) occur, but a comparison between IIS and HFOs is lacking. Here we used 3 mouse lines with AD features and local field potential recordings to quantify IIS and HFOs. We found that HFOs outnumbered IIS and that their total numbers were inversely correlated with IIS. HFOs occurred during more behavioral states than IIS. Therefore, HFOs were the most abundant EEG abnormality, and this was generalizable across 3 types of preclinical AD.
Collapse
|
40
|
Reas ET, Shadrin A, Frei O, Motazedi E, McEvoy L, Bahrami S, van der Meer D, Makowski C, Loughnan R, Wang X, Broce I, Banks SJ, Fominykh V, Cheng W, Holland D, Smeland OB, Seibert T, Selbæk G, Brewer JB, Fan CC, Andreassen OA, Dale AM, Alzheimer’s Disease Neuroimaging Initiative. Improved multimodal prediction of progression from MCI to Alzheimer's disease combining genetics with quantitative brain MRI and cognitive measures. Alzheimers Dement 2023; 19:5151-5158. [PMID: 37132098 PMCID: PMC10620101 DOI: 10.1002/alz.13112] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/21/2023] [Accepted: 04/04/2023] [Indexed: 05/04/2023]
Abstract
INTRODUCTION There is a pressing need for non-invasive, cost-effective tools for early detection of Alzheimer's disease (AD). METHODS Using data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), Cox proportional models were conducted to develop a multimodal hazard score (MHS) combining age, a polygenic hazard score (PHS), brain atrophy, and memory to predict conversion from mild cognitive impairment (MCI) to dementia. Power calculations estimated required clinical trial sample sizes after hypothetical enrichment using the MHS. Cox regression determined predicted age of onset for AD pathology from the PHS. RESULTS The MHS predicted conversion from MCI to dementia (hazard ratio for 80th versus 20th percentile: 27.03). Models suggest that application of the MHS could reduce clinical trial sample sizes by 67%. The PHS alone predicted age of onset of amyloid and tau. DISCUSSION The MHS may improve early detection of AD for use in memory clinics or for clinical trial enrichment. HIGHLIGHTS A multimodal hazard score (MHS) combined age, genetics, brain atrophy, and memory. The MHS predicted time to conversion from mild cognitive impairment to dementia. MHS reduced hypothetical Alzheimer's disease (AD) clinical trial sample sizes by 67%. A polygenic hazard score predicted age of onset of AD neuropathology.
Collapse
Affiliation(s)
- Emilie T. Reas
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Alexey Shadrin
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway
| | - Oleksandr Frei
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway
- Center for Bioinformatics, Department of Informatics, University of Oslo, PO box 1080, Blindern, 0316 Oslo, Norway
| | - Ehsan Motazedi
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway
| | - Linda McEvoy
- Department of Radiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shahram Bahrami
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway
| | - Dennis van der Meer
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway
| | - Carolina Makowski
- Department of Radiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Robert Loughnan
- University of California, San Diego, La Jolla, California, USA
| | - Xin Wang
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Iris Broce
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Sarah J. Banks
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Vera Fominykh
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway
| | - Weiqiu Cheng
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway
| | - Dominic Holland
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Olav B. Smeland
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway
| | - Tyler Seibert
- Department of Radiology, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - James B. Brewer
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Chun C. Fan
- Population Neuroscience and Genetics Lab, University of California, La Jolla, CA 92093, USA
- Center for Human Development, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ole A. Andreassen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway
| | - Anders M. Dale
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
- Population Neuroscience and Genetics Lab, University of California, La Jolla, CA 92093, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
41
|
Koychev I, Marinov E, Young S, Lazarova S, Grigorova D, Palejev D. Identification of preclinical dementia according to ATN classification for stratified trial recruitment: A machine learning approach. PLoS One 2023; 18:e0288039. [PMID: 37856502 PMCID: PMC10586674 DOI: 10.1371/journal.pone.0288039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 06/19/2023] [Indexed: 10/21/2023] Open
Abstract
INTRODUCTION The Amyloid/Tau/Neurodegeneration (ATN) framework was proposed to identify the preclinical biological state of Alzheimer's disease (AD). We investigated whether ATN phenotype can be predicted using routinely collected research cohort data. METHODS 927 EPAD LCS cohort participants free of dementia or Mild Cognitive Impairment were separated into 5 ATN categories. We used machine learning (ML) methods to identify a set of significant features separating each neurodegeneration-related group from controls (A-T-(N)-). Random Forest and linear-kernel SVM with stratified 5-fold cross validations were used to optimize model whose performance was then tested in the ADNI database. RESULTS Our optimal results outperformed ATN cross-validated logistic regression models by between 2.2% and 8.3%. The optimal feature sets were not consistent across the 4 models with the AD pathologic change vs controls set differing the most from the rest. Because of that we have identified a subset of 10 features that yield results very close or identical to the optimal. DISCUSSION Our study demonstrates the gains offered by ML in generating ATN risk prediction over logistic regression models among pre-dementia individuals.
Collapse
Affiliation(s)
- Ivan Koychev
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Evgeniy Marinov
- Big Data for Smart Society (GATE) Institute, Sofia University, Sofia, Bulgaria
| | - Simon Young
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Sophia Lazarova
- Big Data for Smart Society (GATE) Institute, Sofia University, Sofia, Bulgaria
| | - Denitsa Grigorova
- Big Data for Smart Society (GATE) Institute, Sofia University, Sofia, Bulgaria
- Faculty of Mathematics and Informatics, Sofia University, Sofia, Bulgaria
| | - Dean Palejev
- Big Data for Smart Society (GATE) Institute, Sofia University, Sofia, Bulgaria
- Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
42
|
Lisgaras CP, Scharfman HE. Interictal spikes in Alzheimer's disease: Preclinical evidence for dominance of the dentate gyrus and cholinergic control by the medial septum. Neurobiol Dis 2023; 187:106294. [PMID: 37714307 PMCID: PMC10617404 DOI: 10.1016/j.nbd.2023.106294] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/17/2023] Open
Abstract
Interictal spikes (IIS) are a common type of abnormal electrical activity in Alzheimer's disease (AD) and preclinical models. The brain regions where IIS are largest are not known but are important because such data would suggest sites that contribute to IIS generation. Because hippocampus and cortex exhibit altered excitability in AD models, we asked which areas dominate the activity during IIS along the cortical-CA1-dentate gyrus (DG) dorso-ventral axis. Because medial septal (MS) cholinergic neurons are overactive when IIS typically occur, we also tested the novel hypothesis that silencing the MS cholinergic neurons selectively would reduce IIS. We used mice that simulate aspects of AD: Tg2576 mice, presenilin 2 (PS2) knockout mice and Ts65Dn mice. To selectively silence MS cholinergic neurons, Tg2576 mice were bred with choline-acetyltransferase (ChAT)-Cre mice and offspring were injected in the MS with AAV encoding inhibitory designer receptors exclusively activated by designer drugs (DREADDs). We recorded local field potentials along the cortical-CA1-DG axis using silicon probes during wakefulness, slow-wave sleep (SWS) and rapid eye movement (REM) sleep. We detected IIS in all transgenic or knockout mice but not age-matched controls. IIS were detectable throughout the cortical-CA1-DG axis and occurred primarily during REM sleep. In all 3 mouse lines, IIS amplitudes were significantly greater in the DG granule cell layer vs. CA1 pyramidal layer or overlying cortex. Current source density analysis showed robust and early current sources in the DG, and additional sources in CA1 and the cortex also. Selective chemogenetic silencing of MS cholinergic neurons significantly reduced IIS rate during REM sleep without affecting the overall duration, number of REM bouts, latency to REM sleep, or theta power during REM. Notably, two control interventions showed no effects. Consistent maximal amplitude and strong current sources of IIS in the DG suggest that the DG is remarkably active during IIS. In addition, selectively reducing MS cholinergic tone, at times when MS is hyperactive, could be a new strategy to reduce IIS in AD.
Collapse
Affiliation(s)
- Christos Panagiotis Lisgaras
- Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, and the Neuroscience Institute New York University Langone Health, 550 First Ave., New York, NY 10016, United States of America; Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric Research, New York State Office of Mental Health, 140 Old Orangeburg Road, Bldg. 35, Orangeburg, NY 10962, United States of America.
| | - Helen E Scharfman
- Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, and the Neuroscience Institute New York University Langone Health, 550 First Ave., New York, NY 10016, United States of America; Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric Research, New York State Office of Mental Health, 140 Old Orangeburg Road, Bldg. 35, Orangeburg, NY 10962, United States of America
| |
Collapse
|
43
|
Andrade SM, da Silva-Sauer L, de Carvalho CD, de Araújo ELM, Lima EDO, Fernandes FML, Moreira KLDAF, Camilo ME, Andrade LMMDS, Borges DT, da Silva Filho EM, Lindquist AR, Pegado R, Morya E, Yamauti SY, Alves NT, Fernández-Calvo B, de Souza Neto JMR. Identifying biomarkers for tDCS treatment response in Alzheimer's disease patients: a machine learning approach using resting-state EEG classification. Front Hum Neurosci 2023; 17:1234168. [PMID: 37859768 PMCID: PMC10582524 DOI: 10.3389/fnhum.2023.1234168] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
Background Transcranial direct current stimulation (tDCS) is a promising treatment for Alzheimer's Disease (AD). However, identifying objective biomarkers that can predict brain stimulation efficacy, remains a challenge. The primary aim of this investigation is to delineate the cerebral regions implicated in AD, taking into account the existing lacuna in comprehension of these regions. In pursuit of this objective, we have employed a supervised machine learning algorithm to prognosticate the neurophysiological outcomes resultant from the confluence of tDCS therapy plus cognitive intervention within both the cohort of responders and non-responders to antecedent tDCS treatment, stratified on the basis of antecedent cognitive outcomes. Methods The data were obtained through an interventional trial. The study recorded high-resolution electroencephalography (EEG) in 70 AD patients and analyzed spectral power density during a 6 min resting period with eyes open focusing on a fixed point. The cognitive response was assessed using the AD Assessment Scale-Cognitive Subscale. The training process was carried out through a Random Forest classifier, and the dataset was partitioned into K equally-partitioned subsamples. The model was iterated k times using K-1 subsamples as the training bench and the remaining subsample as validation data for testing the model. Results A clinical discriminating EEG biomarkers (features) was found. The ML model identified four brain regions that best predict the response to tDCS associated with cognitive intervention in AD patients. These regions included the channels: FC1, F8, CP5, Oz, and F7. Conclusion These findings suggest that resting-state EEG features can provide valuable information on the likelihood of cognitive response to tDCS plus cognitive intervention in AD patients. The identified brain regions may serve as potential biomarkers for predicting treatment response and maybe guide a patient-centered strategy. Clinical Trial Registration https://classic.clinicaltrials.gov/ct2/show/NCT02772185?term=NCT02772185&draw=2&rank=1, identifier ID: NCT02772185.
Collapse
Affiliation(s)
- Suellen Marinho Andrade
- Aging and Neuroscience Laboratory, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Leandro da Silva-Sauer
- Aging and Neuroscience Laboratory, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | | | | | - Eloise de Oliveira Lima
- Aging and Neuroscience Laboratory, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Fernanda Maria Lima Fernandes
- Center for Alternative and Renewable Energies (CEAR), Department of Electrical Engineering, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | | | - Maria Eduarda Camilo
- Laboratory of Ergonomics and Health, Department of Physiotherapy, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | | | - Daniel Tezoni Borges
- Department of Physiotherapy, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | | - Ana Raquel Lindquist
- Department of Physiotherapy, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Rodrigo Pegado
- Department of Physiotherapy, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Edgard Morya
- Edmond and Lily Safra International Institute of Neurosciences (IIN-ELS), Macaíba, Rio Grande do Norte, Brazil
| | - Seidi Yonamine Yamauti
- Edmond and Lily Safra International Institute of Neurosciences (IIN-ELS), Macaíba, Rio Grande do Norte, Brazil
| | - Nelson Torro Alves
- Department of Psychology, Federal University of Paraíba, João Pessoa, Brazil
| | - Bernardino Fernández-Calvo
- Department of Psychology, Federal University of Paraíba, João Pessoa, Brazil
- Department of Psychology, Faculty of Educational Sciences and Psychology, University of Cordoba, Córdoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain
| | - José Maurício Ramos de Souza Neto
- Center for Alternative and Renewable Energies (CEAR), Department of Electrical Engineering, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| |
Collapse
|
44
|
Elefante C, Brancati GE, Ismail Z, Ricciardulli S, Beatino MF, Lepri V, Famà A, Ferrari E, Giampietri L, Baldacci F, Ceravolo R, Maremmani I, Lattanzi L, Perugi G. Mild Behavioral Impairment in Psychogeriatric Patients: Clinical Features and Psychopathology Severity. J Clin Med 2023; 12:5423. [PMID: 37629464 PMCID: PMC10455739 DOI: 10.3390/jcm12165423] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
The Mild Behavioral Impairment (MBI) concept was developed to determine whether late-onset persistent neuropsychiatric symptoms (NPSs) may be early manifestations of cognitive decline. Our study aims to investigate the prevalence and differentiating features of MBI with respect to major neurocognitive disorders (MNDs) and primary psychiatric disorders (PPDs). A total of 144 elderly patients who were referred to our psychogeriatric outpatient service were recruited. The severity of mental illness was evaluated by means of the Clinical Global Impression Severity scale, the severity of psychopathology was evaluated by means of the Brief Psychiatric Rating Scale (BPRS), and overall functioning was evaluated by means of the Global Assessment of Functioning scale. The sample included 73 (50.6%) patients with PPDs, 40 (27.8%) patients with MBI, and 31 (21.5%) patients with MNDs. Patients with MNDs reported the greatest severity of mental illness, the highest BPRS Total, Psychosis, Activation, and Negative Symptom scores, and the lowest functioning. Patients with MBI and PPDs had comparable levels of severity of mental illness and overall functioning, but MBI patients reported higher BPRS Total and Negative Symptom scores than PPD patients. Patients with MBI frequently reported specific clinical features, including a higher severity of apathy and motor retardation. These features merit further investigation since they may help the differential diagnosis between MBI and PPDs.
Collapse
Affiliation(s)
- Camilla Elefante
- Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (C.E.); (G.E.B.); (S.R.); (M.F.B.); (V.L.); (G.P.)
| | - Giulio Emilio Brancati
- Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (C.E.); (G.E.B.); (S.R.); (M.F.B.); (V.L.); (G.P.)
| | - Zahinoor Ismail
- Departments of Psychiatry, Clinical Neurosciences, Community Health Sciences, and Pathology and Laboratory Medicine, Hotchkiss Brain Institute & O’Brien Institute for Public Health, University of Calgary, Calgary, AB T2N 1N4, Canada;
- College of Health and Medicine, University of Exeter, Exeter EX4 4QG, UK
| | - Sara Ricciardulli
- Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (C.E.); (G.E.B.); (S.R.); (M.F.B.); (V.L.); (G.P.)
| | - Maria Francesca Beatino
- Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (C.E.); (G.E.B.); (S.R.); (M.F.B.); (V.L.); (G.P.)
| | - Vittoria Lepri
- Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (C.E.); (G.E.B.); (S.R.); (M.F.B.); (V.L.); (G.P.)
| | - Antonella Famà
- Psychiatry Unit, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy; (A.F.); (E.F.); (L.L.)
| | - Elisabetta Ferrari
- Psychiatry Unit, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy; (A.F.); (E.F.); (L.L.)
| | - Linda Giampietri
- Neurology Unit, Santa Chiara University Hospital, 56126 Pisa, Italy; (L.G.); (F.B.); (R.C.)
| | - Filippo Baldacci
- Neurology Unit, Santa Chiara University Hospital, 56126 Pisa, Italy; (L.G.); (F.B.); (R.C.)
| | - Roberto Ceravolo
- Neurology Unit, Santa Chiara University Hospital, 56126 Pisa, Italy; (L.G.); (F.B.); (R.C.)
| | - Icro Maremmani
- Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (C.E.); (G.E.B.); (S.R.); (M.F.B.); (V.L.); (G.P.)
- G. De Lisio Institute of Behavioral Sciences, 56127 Pisa, Italy
- Addiction Medicine, Saint Camillus International University of Health and Medical Sciences (UniCamillus), 00131 Rome, Italy
| | - Lorenzo Lattanzi
- Psychiatry Unit, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy; (A.F.); (E.F.); (L.L.)
| | - Giulio Perugi
- Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (C.E.); (G.E.B.); (S.R.); (M.F.B.); (V.L.); (G.P.)
- G. De Lisio Institute of Behavioral Sciences, 56127 Pisa, Italy
| |
Collapse
|
45
|
Lisgaras CP, Scharfman HE. Interictal Spikes in Alzheimer's Disease: Preclinical Evidence for Dominance of the Dentate Gyrus and Cholinergic Control by Medial Septum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.537999. [PMID: 37163065 PMCID: PMC10168266 DOI: 10.1101/2023.04.24.537999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
HIGHLIGHTS Interictal spikes (IIS) occur in 3 mouse lines with Alzheimer's disease featuresIIS in all 3 mouse lines were most frequent during rapid eye movement (REM) sleepThe dentate gyrus showed larger IIS and earlier current sources vs. CA1 or cortexChemogenetic silencing of medial septum (MS) cholinergic neurons reduced IIS during REMMS silencing did not change REM latency, duration, number of bouts or theta power. Interictal spikes (IIS) are a common type of abnormal electrical activity in Alzheimer's disease (AD) and preclinical models. The brain regions where IIS are largest are not known but are important because such data would suggest sites that contribute to IIS generation. Because hippocampus and cortex exhibit altered excitability in AD models, we asked which areas dominate the activity during IIS along the cortical-CA1-dentate gyrus (DG) dorso-ventral axis. Because medial septal (MS) cholinergic neurons are overactive when IIS typically occur, we also tested the novel hypothesis that silencing the MS cholinergic neurons selectively would reduce IIS.We used mice that simulate aspects of AD: Tg2576 mice, presenilin 2 (PS2) knockout mice and Ts65Dn mice. To selectively silence MS cholinergic neurons, Tg2576 mice were bred with choline-acetyltransferase (ChAT)-Cre mice and offspring were injected in the MS with AAV encoding inhibitory designer receptors exclusively activated by designer drugs (DREADDs). We recorded local field potentials along the cortical-CA1-DG axis using silicon probes during wakefulness, slow-wave sleep (SWS) and rapid eye movement (REM) sleep.We detected IIS in all transgenic or knockout mice but not age-matched controls. IIS were detectable throughout the cortical-CA1-DG axis and occurred primarily during REM sleep. In all 3 mouse lines, IIS amplitudes were significantly greater in the DG granule cell layer vs. CA1 pyramidal layer or overlying cortex. Current source density analysis showed robust and early current sources in the DG, and additional sources in CA1 and the cortex also. Selective chemogenetic silencing of MS cholinergic neurons significantly reduced IIS rate during REM sleep without affecting the overall duration, number of REM bouts, latency to REM sleep, or theta power during REM. Notably, two control interventions showed no effects.Consistent maximal amplitude and strong current sources of IIS in the DG suggest that the DG is remarkably active during IIS. In addition, selectively reducing MS cholinergic tone, at times when MS is hyperactive, could be a new strategy to reduce IIS in AD.
Collapse
|
46
|
Kantarci K. Toward imaging of alpha-synuclein with PET. Cell 2023; 186:3327-3329. [PMID: 37541192 DOI: 10.1016/j.cell.2023.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 08/06/2023]
Abstract
Development of radiopharmaceuticals for in vivo positron emission tomography imaging of alpha-synuclein aggregates has the potential to revolutionize Lewy body disease diagnosis and treatment. Reporting in this issue of Cell, Xiang et al. developed a high-affinity positron emission tomography tracer for alpha-synuclein.
Collapse
Affiliation(s)
- Kejal Kantarci
- Department of Radiology, Division of Neuroradiology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
47
|
Lin Y, Lin A, Cai L, Huang W, Yan S, Wei Y, Ruan X, Fang W, Dai X, Cheng J, Zhang J, Chen W, Ye Q, Chen X, Zhang J. ACSS2-dependent histone acetylation improves cognition in mouse model of Alzheimer's disease. Mol Neurodegener 2023; 18:47. [PMID: 37438762 PMCID: PMC10339567 DOI: 10.1186/s13024-023-00625-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/15/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Nuclear acetyl-CoA pools govern histone acetylation that controls synaptic plasticity and contributes to cognitive deterioration in patients with Alzheimer's disease (AD). Nuclear acetyl-CoA pools are generated partially from local acetate that is metabolized by acetyl-CoA synthetase 2 (ACSS2). However, the underlying mechanism of histone acetylation dysregulation in AD remains poorly understood. METHODS We detected ACSS2 expression and histone acetylation levels in the brains of AD patients and 5 × FAD mice. When we altered ACSS2 expression by injecting adeno-associated virus into the dorsal hippocampus of 5 × FAD mice and replenished ACSS2 substrate (acetate), we observed changes in cognitive function by Morris water maze. We next performed RNA-seq, ChIP-qPCR, and electrophysiology to study molecular mechanism underlying ACSS2-mediated spatial learning and memory in 5 × FAD mice. RESULTS We reported that ACSS2 expression and histone acetylation (H3K9, H4K12) were reduced in the hippocampus and prefrontal cortex of 5 × FAD mice. Reduced ACSS2 levels were also observed in the temporal cortex of AD patients. 5 × FAD mice exhibited a low enrichment of acetylated histones on the promoters of NMDARs and AMPARs, together with impaired basal and activity-dependent synaptic plasticity, all of which were rescued by ACSS2 upregulation. Moreover, acetate replenishment enhanced ac-H3K9 and ac-H4K12 in 5 × FAD mice, leading to an increase of NMDARs and AMPARs and a restoration of synaptic plasticity and cognitive function in an ACSS2-dependent manner. CONCLUSION ACSS2 is a key molecular switch of cognitive impairment and that targeting ACSS2 or acetate administration may serve as a novel therapeutic strategy for the treatment of intermediate or advanced AD. Nuclear acetyl-CoA pools are generated partly from local acetate that is metabolized by acetyl-CoA synthetase 2 (ACSS2). Model depicts that ACSS2 expression is downregulated in the brains of 5×FAD model mice and AD patients. Of note, ACSS2 downregulation mediates a reduction in ionotropic glutamate receptor expression through histone acetylation, which exacerbates synaptic plasticity impairment in AD. These deficits can be rescued by ACSS2 upregulation or acetate supplementation (GTA, an FDA-approved food additive), which may serve as a promising therapeutic strategy for AD treatment.
Collapse
Affiliation(s)
- Yingbin Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
- Present Address: Department of Neurology and Neurosurgery, Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Anlan Lin
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Lili Cai
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Weibin Huang
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
- Present Address: Department of Neurology and Neurosurgery, Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Shanzhi Yan
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Yuanxiang Wei
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xinglin Ruan
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Wenting Fang
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Xiaoman Dai
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Jinbo Cheng
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jie Zhang
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Wanjin Chen
- Present Address: Department of Neurology and Neurosurgery, Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Qinyong Ye
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Xiaochun Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Jing Zhang
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| |
Collapse
|
48
|
Pistollato F, Campia I, Daskalopoulos EP, Bernasconi C, Desaintes C, Di Virgilio S, Kyriakopoulou C, Whelan M, Deceuninck P. Gauging innovation and health impact from biomedical research: survey results and interviews with recipients of EU-funding in the fields of Alzheimer's disease, breast cancer and prostate cancer. Health Res Policy Syst 2023; 21:66. [PMID: 37386455 DOI: 10.1186/s12961-023-00981-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/05/2023] [Indexed: 07/01/2023] Open
Abstract
Biomedical research on Alzheimer's disease (AD), breast cancer (BC) and prostate cancer (PC) has globally improved our understanding of the etiopathological mechanisms underlying the onset of these diseases, often with the goal to identify associated genetic and environmental risk factors and develop new medicines. However, the prevalence of these diseases and failure rate in drug development remain high. Being able to retrospectively monitor the major scientific breakthroughs and impact of such investment endeavors is important to re-address funding strategies if and when needed. The EU has supported research into those diseases via its successive framework programmes for research, technological development and innovation. The European Commission (EC) has already undertaken several activities to monitor research impact. As an additional contribution, the EC Joint Research Centre (JRC) launched in 2020 a survey addressed to former and current participants of EU-funded research projects in the fields of AD, BC and PC, with the aim to understand how EU-funded research has contributed to scientific innovation and societal impact, and how the selection of the experimental models may have underpinned the advances made. Further feedback was also gathered through in-depth interviews with some selected survey participants representative of the diverse pre-clinical models used in the EU-funded projects. A comprehensive analysis of survey replies, complemented with the information derived from the interviews, has recently been published in a Synopsis report. Here we discuss the main findings of this analysis and propose a set of priority actions that could be considered to help improving the translation of scientific innovation of biomedical research into societal impact.
Collapse
Affiliation(s)
- Francesca Pistollato
- European Commission, Joint Research Centre (JRC), Directorate F-Health, Consumers and Reference Materials, Via E. Fermi 2749, 21027, Ispra, VA, Italy
| | - Ivana Campia
- European Commission, Joint Research Centre (JRC), Directorate F-Health, Consumers and Reference Materials, Via E. Fermi 2749, 21027, Ispra, VA, Italy
| | - Evangelos P Daskalopoulos
- European Commission, Joint Research Centre (JRC), Directorate F-Health, Consumers and Reference Materials, Via E. Fermi 2749, 21027, Ispra, VA, Italy
| | - Camilla Bernasconi
- European Commission, Joint Research Centre (JRC), Directorate F-Health, Consumers and Reference Materials, Via E. Fermi 2749, 21027, Ispra, VA, Italy
| | | | - Sergio Di Virgilio
- European Commission, DG Research & Innovation (DG RTD), Brussels, Belgium
| | | | - Maurice Whelan
- European Commission, Joint Research Centre (JRC), Directorate F-Health, Consumers and Reference Materials, Via E. Fermi 2749, 21027, Ispra, VA, Italy
| | - Pierre Deceuninck
- European Commission, Joint Research Centre (JRC), Directorate F-Health, Consumers and Reference Materials, Via E. Fermi 2749, 21027, Ispra, VA, Italy.
| |
Collapse
|
49
|
Diaz-Galvan P, Lorenzon G, Mohanty R, Mårtensson G, Cavedo E, Lista S, Vergallo A, Kantarci K, Hampel H, Dubois B, Grothe MJ, Ferreira D, Westman E. Differential response to donepezil in MRI subtypes of mild cognitive impairment. Alzheimers Res Ther 2023; 15:117. [PMID: 37353809 PMCID: PMC10288762 DOI: 10.1186/s13195-023-01253-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 06/01/2023] [Indexed: 06/25/2023]
Abstract
BACKGROUND Donepezil is an approved therapy for the treatment of Alzheimer's disease (AD). Results across clinical trials have been inconsistent, which may be explained by design-methodological issues, the pathophysiological heterogeneity of AD, and diversity of included study participants. We investigated whether response to donepezil differs in mild cognitive impaired (MCI) individuals demonstrating different magnetic resonance imaging (MRI) subtypes. METHODS From the Hippocampus Study double-blind, randomized clinical trial, we included 173 MCI individuals (donepezil = 83; placebo = 90) with structural MRI data, at baseline and at clinical follow-up assessments (6-12-month). Efficacy outcomes were the annualized percentage change (APC) in hippocampal, ventricular, and total grey matter volumes, as well as in the AD cortical thickness signature. Participants were classified into MRI subtypes as typical AD, limbic-predominant, hippocampal-sparing, or minimal atrophy at baseline. We primarily applied a subtyping approach based on continuous scale of two subtyping dimensions. We also used the conventional categorical subtyping approach for comparison. RESULTS Donepezil-treated MCI individuals showed slower atrophy rates compared to the placebo group, but only if they belonged to the minimal atrophy or hippocampal-sparing subtypes. Importantly, only the continuous subtyping approach, but not the conventional categorical approach, captured this differential response. CONCLUSIONS Our data suggest that individuals with MCI, with hippocampal-sparing or minimal atrophy subtype, may have improved benefit from donepezil, as compared with MCI individuals with typical or limbic-predominant patterns of atrophy. The newly proposed continuous subtyping approach may have advantages compared to the conventional categorical approach. Future research is warranted to demonstrate the potential of subtype stratification for disease prognosis and response to treatment. TRIAL REGISTRATION ClinicalTrial.gov NCT00403520. Submission Date: November 21, 2006.
Collapse
Affiliation(s)
| | - Giulia Lorenzon
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden
| | - Rosaleena Mohanty
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden
| | - Gustav Mårtensson
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden
| | - Enrica Cavedo
- Alzheimer Precision Medicine (APM), Sorbonne University, AP-HP, Pitié-Salpêtrière Hospital, Boulevard de L'hôpital, Paris, France
| | - Simone Lista
- Alzheimer Precision Medicine (APM), Sorbonne University, AP-HP, Pitié-Salpêtrière Hospital, Boulevard de L'hôpital, Paris, France
| | - Andrea Vergallo
- Alzheimer Precision Medicine (APM), Sorbonne University, AP-HP, Pitié-Salpêtrière Hospital, Boulevard de L'hôpital, Paris, France
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Harald Hampel
- Alzheimer Precision Medicine (APM), Sorbonne University, AP-HP, Pitié-Salpêtrière Hospital, Boulevard de L'hôpital, Paris, France
| | - Bruno Dubois
- Alzheimer Precision Medicine (APM), Sorbonne University, AP-HP, Pitié-Salpêtrière Hospital, Boulevard de L'hôpital, Paris, France
| | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío, CSIC, Sevilla, Spain
- Wallenberg Center for Molecular and Translational Medicine, Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Daniel Ferreira
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden
| | - Eric Westman
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden.
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK.
| |
Collapse
|
50
|
Guo H, Wu Y, Fu G, Li J, Zhu J. Correlation between ankle-brachial index and subtle cognitive decline. Brain Behav 2023; 13:e3019. [PMID: 37089025 PMCID: PMC10275525 DOI: 10.1002/brb3.3019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/22/2023] [Accepted: 04/04/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND Subtle cognitive decline (SCD) is considered the early stage of Alzheimer's disease (AD) and is of great clinical significance for the prevention and treatment of AD. The ankle-brachial index (ABI) has been reported to be associated with cognitive impairment; however, there are few studies on the relationship between ABI and SCD. METHODS From August 2019 to April 2021, subjects were recruited to participate in a cognitive function test at the Shanghai Sixth People's Hospital. Based on the test results, 217 patients with SCD were selected as the experimental group and 259 patients with normal cognitive function were selected as the control group. The data of the two groups were compared, and the correlation between the ABI and cognitive decline was analyzed. RESULTS There were significant differences in age, sex, smoking status, hypertension, diabetes, triglycerides, serum creatinine, and ABI (p < .05)between the two groups. Logistic regression analysis showed that age, hypertension, diabetes, and ABI influenced cognitive decline(p < .05). After correcting for other factors, ABI was independently related to cognitive decline. Pearson's correlation analysis showed that a low ABI (<0.9) had a significant effect on memory and visual space of the cognitive domain (p < . 05). CONCLUSIONS ABI is significantly associated with SCD and may be a critical tool to predict early cognitive decline.
Collapse
Affiliation(s)
- Hui‐Feng Guo
- Department of GerontologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiP. R. China
| | - Yi Wu
- The International Peace Maternity and Child Health Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Guo‐Xiang Fu
- Shanghai Tenth People's HospitalTongji UniversityShanghaiP. R. China
| | - Jie Li
- Department of GerontologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiP. R. China
| | - Jie‐Hua Zhu
- Department of GerontologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiP. R. China
| |
Collapse
|