1
|
Faried A, Hadi EJ, Agustina H. Poor diagnostic value of isocitrate dehydrogenase 1 R132H immunohistochemistry for determination of isocitrate dehydrogenase 1 status in patients with glioblastoma. Surg Neurol Int 2025; 16:140. [PMID: 40353177 PMCID: PMC12065504 DOI: 10.25259/sni_881_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 03/15/2025] [Indexed: 05/14/2025] Open
Abstract
Background The World Health Organization (WHO) classification of central nervous system (CNS) tumors is a major advance toward improving the diagnosis of adult brain tumors. Despite the promise of isocitrate dehydrogenase (IDH) mutations as an important biomarker for glioblastoma, not all institutions have ready access to mutation detection polymerase chain reaction (PCR) methods, and deoxyribonucleic acid (DNA) sequencing may be problematic in very small biopsies. However, a simultaneous evaluation of IDH1 status by DNA sequencing and immunohistochemistry (IHC) to determine the sensitivity and specificity of both methods, along with their predictive value, was unavailable. Methods This retrospective study included 33 patients who underwent surgical resection or biopsy, January 2016-December 2019. The diagnosis of glioblastoma was established. Surgically resected tumor tissues were fixated in 10%-formaldehyde preserved in paraffin-embedded blocks. Glioblastoma was classified according to the 2021 WHO classification of CNS tumors. The enrolled patients were followed up to obtain the overall survival rate (median follow-up time, 30 months). Results Thirty-three patients (14 male; 19 female), mean age of 44.74 ± 15.49 years. Eight had WHO Grade II, 2 with WHO Grade III, and 23 with WHO Grade IV. The sensitivity and specificity of IDH1 IHC were 81.82% (P = 0.0007), a positive predictive value of 90.00% (69.90-98.22%), and a negative predictive value of 69.23% (42.37-87.32%). The survival rate was significantly higher in IDH1 mutant than wild-type IDH1, whether based on IHC or PCR (P = 0.0014). Conclusion IDH1 status evaluation is crucial to predicting the survival rate and important for guiding the treatment decision for patients with glioblastoma. Despite the lesser sensitivity and specificity of IHC in comparison to DNA sequencing in this study, larger prospective studies are needed to validate our preliminary finding.
Collapse
Affiliation(s)
- Ahmad Faried
- Department of Neurosurgery, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Edward Jaya Hadi
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Hasrayati Agustina
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
2
|
Alcicek S, Simicic D, Blair L, Saint-Germain M, Zöllner HJ, Davies-Jenkins CW, Holdhoff M, Laterra J, Bettegowda C, Schreck KC, Lin DD, Barker PB, Kamson DO, Oeltzschner G. Pitfalls in 2HG detection with TE-optimized MRS at 3T. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.31.25324828. [PMID: 40236436 PMCID: PMC11998809 DOI: 10.1101/2025.03.31.25324828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Background and Purpose In-vivo magnetic resonance spectroscopy (MRS) of 2-hydroxyglutarate (2HG) may provide diagnostic and monitoring biomarkers in isocitrate dehydrogenase (IDH)-mutated glioma. A previous meta-analysis has shown good diagnostic accuracy of TE-optimized PRESS for IDH-mutated glioma, but most studies feature IDH-wildtype glioma as a comparison. However, when considering newly identified brain lesions that may mimic glioma, full characterization of its diagnostic utility should also consider the accuracy of 2HG measurement in non-tumor tissue. Therefore, we tested how well TE-optimized 2HG levels distinguish between IDH-mutated glioma and non-tumor tissue, in this case, normal-appearing brain. We further examined the impact of different spectral modeling strategies (baseline stiffness, macromolecule inclusion, and basis set composition). Materials and Methods 48 patients with diagnosed/suspected IDH-mutated glioma were enrolled. 3T MRS data were acquired from tumor and contralateral non-tumor tissue with PRESS localization (TE = 97 ms, optimized for 2HG detection) and analyzed with 'LCModel' software. Receiver operating characteristic analysis evaluated 2HG estimates' ability to distinguish IDH-mutated glioma from non-tumor brain tissue. Modeling interactions between 2HG and other metabolites were evaluated to identify reasons for potential false-positive 2HG detection. Results TE-optimized PRESS distinguished IDH-mutated glioma from non-tumor tissue with lower sensitivity (range 0.76-0.62) and specificity (0.85-0.78) than literature suggests for IDH-mutated vs. IDH-wildtype glioma. Strong negative correlations between gamma-aminobutyric acid (GABA) and 2HG persisted across all modeling strategies and may lead to false-positive 2HG detection in non-tumor tissue. We further present a cautionary example from a patient on a ketogenic diet, showing that the ketone body acetone can interfere with 2HG detection. Conclusions Spectral overlap with GABA and acetone can lead to false-positive 2HG detection in non-tumor tissue. Clinicians need to be mindful of these pitfalls when interpreting 2HG estimates.
Collapse
Affiliation(s)
- Seyma Alcicek
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute of Neuroradiology, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
- University Cancer Center Frankfurt (UCT), Frankfurt/Main, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Germany and German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Germany
| | - Dunja Simicic
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lindsay Blair
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Max Saint-Germain
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Helge J. Zöllner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher W. Davies-Jenkins
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthias Holdhoff
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - John Laterra
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Karisa C. Schreck
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Doris D. Lin
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Peter B. Barker
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - David O. Kamson
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Ritter Z, Oeltzschner G, Solnes LB, Liu G, Kamson DO. Diagnostic and theranostic opportunities in Neuro-oncology. ADVANCES IN ONCOLOGY 2024; 4:111-124. [PMID: 40248613 PMCID: PMC12001827 DOI: 10.1016/j.yao.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Theranostics, the interlinking of diagnostic and therapeutic procedures, can be particularly valuable in neuro-oncology, addressing the challenges posed by the blood-brain and brain-tumor barriers. While it is traditionally associated with nuclear medicine, advances in MR imaging techniques have opened new theranostic frontiers. This review covers the present challenges in neuro-oncology and how these could be overcome utilizing radioligand-based molecular radiotherapy as well as how label-free theranostics employing methods such as chemical exchange saturation transfer (CEST) and MR spectroscopy could advance the field.
Collapse
Affiliation(s)
- Zsombor Ritter
- The Sidney Kimmel Comprehensive Cancer Center at the Johns Hopkins Hospital, Baltimore, MD
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD
| | - Lilja Bjork Solnes
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Guanshu Liu
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD
| | - David Olayinka Kamson
- The Sidney Kimmel Comprehensive Cancer Center at the Johns Hopkins Hospital, Baltimore, MD
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
4
|
Dowdy T, Larion M. Resolving Challenges in Detection and Quantification of D-2-hydroxyglutarate and L-2-hydroxyglutarate via LC/MS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591335. [PMID: 38903117 PMCID: PMC11188093 DOI: 10.1101/2024.04.26.591335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
D-2-Hydroxyglutarate and L-2-Hydroxyglutarate (D-2HG/L-2HG) are typically metabolites of non-specific enzymatic reactions that are kept in check by the housekeeping enzymes, D-2HG /L-2HG dehydrogenase (D-2HGDH/L-2HGDH). In certain disease states, such as D-2HG or L-2HG aciduria and cancers, accumulation of these biomarkers interferes with oxoglutarate-dependent enzymes that regulate bioenergetic metabolism, histone methylation, post-translational modification, protein expression and others. D-2HG has a complex role in tumorigenesis that drives metabolomics investigations. Meanwhile, L-2HG is produced by non-specific action of malate dehydrogenase and lactate dehydrogenase under acidic or hypoxic environments. Characterization of divergent effects of D-2HG/L-2HG on the activity of specific enzymes in diseased metabolism depends on their accurate quantification via mass spectrometry. Despite advancements in high-resolution quadrupole time-of-flight mass spectrometry (HR-QTOF-MS), challenges are typically encountered when attempting to resolve of isobaric and isomeric metabolites such as D-2HG/L-2HG for quantitative analysis. Herein, available D-2HG/L-2HG derivatization and liquid chromatography (LC) MS quantification methods were examined. The outcome led to the development of a robust, high-throughput HR-QTOF-LC/MS approach that permits concomitant quantification of the D-2HG and L-2HG enantiomers with the benefit to quantify the dysregulation of other intermediates within interconnecting pathways. Calibration curve was obtained over the linear range of 0.8-104 nmol/mL with r 2 ≥ 0.995 for each enantiomer. The LC/MS-based assay had an overall precision with intra-day CV % ≤ 8.0 and inter-day CV % ≤ 6.3 across the quality control level for commercial standard and pooled biological samples; relative error % ≤ 2.7 for accuracy; and resolution, R s = 1.6 between 2HG enantiomers (m/z 147.030), D-2HG and L-2HG (at retention time of 5.82 min and 4.75 min, respectively) following chiral derivatization with diacetyl-L-tartaric anhydride (DATAN). Our methodology was applied to disease relevant samples to illustrate the implications of proper enantioselective quantification of both D-2HG and L-2HG. The stability of the method allows scaling to large cohorts of clinical samples in the future.
Collapse
|
5
|
Balaji E V, Satarker S, Kumar BH, Pandey S, Birangal SR, Nayak UY, Pai KSR. In-silico lead identification of the pan-mutant IDH1 and IDH2 inhibitors to target glioblastoma. J Biomol Struct Dyn 2024; 42:3764-3789. [PMID: 37227789 DOI: 10.1080/07391102.2023.2215884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
Glioblastoma (GBM) is an aggressive malignant type of brain tumor. Targeting one single intracellular pathway might not alleviate the disease, rather it activates the other molecular pathways that lead to the worsening of the disease condition. Therefore, in this study, we attempted to target both isocitrate dehydrogenase 1 (IDH1) and IDH2, which are one of the most commonly mutated proteins in GBM and other cancer types. Here, standard precision and extra precision docking, IFD, MM-GBSA, QikProp, and molecular dynamics (MD) simulation were performed to identify the potential dual inhibitor for IDH1 and IDH2 from the enamine database containing 59,161 ligands. Upon docking the ligands with IDH1 (PDB: 6VEI) and IDH2 (PDB: 6VFZ), the top eight ligands were selected, based on the XP Glide score. These ligands produced favourable MMGBSA scores and ADME characteristics. Finally, the top four ligands 12953, 44825, 51295, and 53210 were subjected to MD analysis. Interestingly, 53210 showed maximum interaction with Gln 277 for 99% in IDH1 and Gln 316 for 100% in IDH2, which are the crucial amino acids for the inhibitory function of IDH1 and IDH2 to target GBM. Therefore, the present study attempts to identify the novel molecules which could possess a pan-inhibitory action on both IDH1 and IDH that could be crucial in the management of GBM. Yet further evaluation involving in vitro and in vivo studies is warranted to support the data in our current study.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vignesh Balaji E
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - B Harish Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Samyak Pandey
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sumit Raosaheb Birangal
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
6
|
Xi Z, Huang H, Hu J, Yu Y, Ma X, Xu M, Ming J, Li L, Zhang H, Chen H, Huang T. LINC00571 drives tricarboxylic acid cycle metabolism in triple-negative breast cancer through HNRNPK/ILF2/IDH2 axis. J Exp Clin Cancer Res 2024; 43:22. [PMID: 38238853 PMCID: PMC10795234 DOI: 10.1186/s13046-024-02950-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/09/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Triple-negative breast cancer is a complex breast malignancy subtype characterized by poor prognosis. The pursuit of effective therapeutic approaches for this subtype is considerably challenging. Notably, recent research has illuminated the key role of the tricarboxylic acid cycle in cancer metabolism and the complex landscape of tumor development. Concurrently, an emerging body of evidence underscores the noteworthy role that long non-coding RNAs play in the trajectory of breast cancer development. Despite this growing recognition, the exploration of whether long non-coding RNAs can influence breast cancer progression by modulating the tricarboxylic acid cycle has been limited. Moreover, the underlying mechanisms orchestrating these interactions have not been identified. METHODS The expression levels of LINC00571 and IDH2 were determined through the analysis of the public TCGA dataset, transcriptome sequencing, qRT‒PCR, and Western blotting. The distribution of LINC00571 was assessed using RNA fluorescence in situ hybridization. Alterations in biological effects were evaluated using CCK-8, colony formation, EdU, cell cycle, and apoptosis assays and a tumor xenograft model. To elucidate the interaction between LINC00571, HNRNPK, and ILF2, RNA pull-down, mass spectrometry, coimmunoprecipitation, and RNA immunoprecipitation assays were performed. The impacts of LINC00571 and IDH2 on tricarboxylic acid cycle metabolites were investigated through measurements of the oxygen consumption rate and metabolite levels. RESULTS This study revealed the complex interactions between a novel long non-coding RNA (LINC00571) and tricarboxylic acid cycle metabolism. We validated the tumor-promoting role of LINC00571. Mechanistically, LINC00571 facilitated the interaction between HNRNPK and ILF2, leading to reduced ubiquitination and degradation of ILF2, thereby stabilizing its expression. Furthermore, ILF2 acted as a transcription factor to enhance the expression of its downstream target gene IDH2. CONCLUSIONS Our study revealed that the LINC00571/HNRNPK/ILF2/IDH2 axis promoted the progression of triple-negative breast cancer by regulating tricarboxylic acid cycle metabolites. This discovery provides a novel theoretical foundation and new potential targets for the clinical treatment of triple-negative breast cancer.
Collapse
Affiliation(s)
- Zihan Xi
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Haohao Huang
- Department of Neurosurgery, General Hospital of Central Theater Command of Chinese People's Liberation Army, Wuhan, 430070, China
- General Hospital Of Central Theater Command and Hubei Key Laboratory of Central Nervous System Tumor and Intervention, Wuhan, China
| | - Jin Hu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yuanhang Yu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xianxiong Ma
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ming Xu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jie Ming
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lei Li
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Hui Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Hengyu Chen
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570216, China.
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
7
|
Wu T, Liu C, Thamizhchelvan AM, Fleischer C, Peng X, Liu G, Mao H. Label-Free Chemically and Molecularly Selective Magnetic Resonance Imaging. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:121-139. [PMID: 37235188 PMCID: PMC10207347 DOI: 10.1021/cbmi.3c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/20/2023] [Accepted: 04/01/2023] [Indexed: 05/28/2023]
Abstract
Biomedical imaging, especially molecular imaging, has been a driving force in scientific discovery, technological innovation, and precision medicine in the past two decades. While substantial advances and discoveries in chemical biology have been made to develop molecular imaging probes and tracers, translating these exogenous agents to clinical application in precision medicine is a major challenge. Among the clinically accepted imaging modalities, magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) exemplify the most effective and robust biomedical imaging tools. Both MRI and MRS enable a broad range of chemical, biological and clinical applications from determining molecular structures in biochemical analysis to imaging diagnosis and characterization of many diseases and image-guided interventions. Using chemical, biological, and nuclear magnetic resonance properties of specific endogenous metabolites and native MRI contrast-enhancing biomolecules, label-free molecular and cellular imaging with MRI can be achieved in biomedical research and clinical management of patients with various diseases. This review article outlines the chemical and biological bases of several label-free chemically and molecularly selective MRI and MRS methods that have been applied in imaging biomarker discovery, preclinical investigation, and image-guided clinical management. Examples are provided to demonstrate strategies for using endogenous probes to report the molecular, metabolic, physiological, and functional events and processes in living systems, including patients. Future perspectives on label-free molecular MRI and its challenges as well as potential solutions, including the use of rational design and engineered approaches to develop chemical and biological imaging probes to facilitate or combine with label-free molecular MRI, are discussed.
Collapse
Affiliation(s)
- Tianhe Wu
- Department
of Radiology and Imaging Sciences, Emory
University School of Medicine, Atlanta, Georgia 30322, United States
| | - Claire Liu
- F.M.
Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland 21205, United States
| | - Anbu Mozhi Thamizhchelvan
- Department
of Radiology and Imaging Sciences, Emory
University School of Medicine, Atlanta, Georgia 30322, United States
| | - Candace Fleischer
- Department
of Radiology and Imaging Sciences, Emory
University School of Medicine, Atlanta, Georgia 30322, United States
| | - Xingui Peng
- Jiangsu
Key Laboratory of Molecular and Functional Imaging, Department of
Radiology, Zhongda Hospital, Medical School
of Southeast University, Nanjing, Jiangsu 210009, China
| | - Guanshu Liu
- F.M.
Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland 21205, United States
- Russell
H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Hui Mao
- Department
of Radiology and Imaging Sciences, Emory
University School of Medicine, Atlanta, Georgia 30322, United States
| |
Collapse
|
8
|
Chang CM, Ramesh KK, Huang V, Gurbani S, Kleinberg LR, Weinberg BD, Shim H, Shu HKG. Mutant Isocitrate Dehydrogenase 1 Expression Enhances Response of Gliomas to the Histone Deacetylase Inhibitor Belinostat. Tomography 2023; 9:942-954. [PMID: 37218937 PMCID: PMC10204413 DOI: 10.3390/tomography9030077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/27/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Histone deacetylase inhibitors (HDACis) are drugs that target the epigenetic state of cells by modifying the compaction of chromatin through effects on histone acetylation. Gliomas often harbor a mutation of isocitrate dehydrogenase (IDH) 1 or 2 that leads to changes in their epigenetic state presenting a hypermethylator phenotype. We postulated that glioma cells with IDH mutation, due to the presence of epigenetic changes, will show increased sensitivity to HDACis. This hypothesis was tested by expressing mutant IDH1 with a point alteration-converting arginine 132 to histidine-within glioma cell lines that contain wild-type IDH1. Glioma cells engineered to express mutant IDH1 produced D-2-hydroxyglutarate as expected. When assessed for response to the pan-HDACi drug belinostat, mutant IDH1-expressing glioma cells were subjected to more potent inhibition of growth than the corresponding control cells. Increased sensitivity to belinostat correlated with the increased induction of apoptosis. Finally, a phase I trial assessing the addition of belinostat to standard-of-care therapy for newly diagnosed glioblastoma patients included one patient with a mutant IDH1 tumor. This mutant IDH1 tumor appeared to display greater sensitivity to the addition of belinostat than the other cases with wild-type IDH tumors based on both standard magnetic resonance imaging (MRI) and advanced spectroscopic MRI criteria. These data together suggest that IDH mutation status within gliomas may serve as a biomarker of response to HDACis.
Collapse
Affiliation(s)
- Chi-Ming Chang
- Department of Radiation Oncology, Emory University, Atlanta, GA 30322, USA
| | - Karthik K. Ramesh
- Department of Radiation Oncology, Emory University, Atlanta, GA 30322, USA
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Vicki Huang
- Department of Radiation Oncology, Emory University, Atlanta, GA 30322, USA
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Saumya Gurbani
- Department of Radiation Oncology, Emory University, Atlanta, GA 30322, USA
| | | | - Brent D. Weinberg
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA 30322, USA
| | - Hyunsuk Shim
- Department of Radiation Oncology, Emory University, Atlanta, GA 30322, USA
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA 30322, USA
| | - Hui-Kuo G. Shu
- Department of Radiation Oncology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
9
|
Hong D, Kim Y, Mushti C, Minami N, Wu J, Cherukuri MK, Swenson RE, Vigneron DB, Ronen SM. Monitoring response to a clinically relevant IDH inhibitor in glioma-Hyperpolarized 13C magnetic resonance spectroscopy approaches. Neurooncol Adv 2023; 5:vdad143. [PMID: 38024238 PMCID: PMC10681661 DOI: 10.1093/noajnl/vdad143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Background Mutant isocitrate dehydrogenase (IDHmut) catalyzes 2-hydroxyglutarate (2HG) production and is considered a therapeutic target for IDHmut tumors. However, response is mostly associated with inhibition of tumor growth. Response assessment via anatomic imaging is therefore challenging. Our goal was to directly detect IDHmut inhibition using a new hyperpolarized (HP) 13C magnetic resonance spectroscopy-based approach to noninvasively assess α-ketoglutarate (αKG) metabolism to 2HG and glutamate. Methods We studied IDHmut-expressing normal human astrocyte (NHAIDH1mut) cells and rats with BT257 tumors, and assessed response to the IDHmut inhibitor BAY-1436032 (n ≥ 4). We developed a new 13C Echo Planar Spectroscopic Imaging sequence with an optimized RF pulse to monitor the fate of HP [1-13C]αKG and [5-12C,1-13C]αKG with a 2.5 × 2.5 × 8 mm3 spatial resolution. Results Cell studies confirmed that BAY-1436032-treatment leads to a drop in HP 2HG and an increase in HP glutamate detectable with both HP substrates. Data using HP [5-12C,1-13C]αKG also demonstrated that its conversion to 2HG is detectable without the proximal 1.1% natural abundance [5-13C]αKG signal. In vivo studies showed that glutamate is produced in normal brains but no 2HG is detectable. In tumor-bearing rats, we detected the production of both 2HG and glutamate, and BAY-1436032-treatment led to a drop in 2HG and an increase in glutamate. Using HP [5-12C,1-13C]αKG we detected metabolism with an signal-to-noise ratio of 23 for 2HG and 17 for glutamate. Conclusions Our findings point to the clinical potential of HP αKG, which recently received FDA investigational new drug approval for research, for noninvasive localized imaging of IDHmut status.
Collapse
Affiliation(s)
- Donghyun Hong
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Yaewon Kim
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | | | - Noriaki Minami
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Jing Wu
- National Cancer Institute, NIH, Bethesda, Maryland, USA
| | | | - Rolf E Swenson
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- Brain Tumor Research Center, UCSF, San Francisco, California, USA
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- Brain Tumor Research Center, UCSF, San Francisco, California, USA
| |
Collapse
|
10
|
Branzoli F, Deelchand DK, Liserre R, Poliani PL, Nichelli L, Sanson M, Lehéricy S, Marjańska M. The influence of cystathionine on neurochemical quantification in brain tumor in vivo MR spectroscopy. Magn Reson Med 2022; 88:537-545. [PMID: 35381117 PMCID: PMC9232981 DOI: 10.1002/mrm.29252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/15/2022] [Accepted: 03/10/2022] [Indexed: 11/10/2022]
Abstract
PURPOSE To evaluate the ability of the PRESS sequence (TE = 97 ms, optimized for 2-hydroxyglutarate detection) to detect cystathionine in gliomas and the effect of the omission of cystathionine on the quantification of the full neurochemical profile. METHODS Twenty-three subjects with a glioma were retrospectively included based on the availability of both MEGA-PRESS and PRESS acquisitions at 3T, and the presence of the cystathionine signal in the edited MR spectrum. In eight subjects, the PRESS acquisition was performed also in normal tissue. Metabolite quantification was performed using LCModel and simulated basis sets. The LCModel analysis for the PRESS data was performed with and without cystathionine. RESULTS All subjects with glioma had detectable cystathionine levels >1 mM with Cramér-Rao lower bounds (CRLB) <15%. The mean cystathionine concentrations were 3.49 ± 1.17 mM for MEGA-PRESS and 2.20 ± 0.80 mM for PRESS data. Cystathionine concentrations showed a significant correlation between the two MRS methods (r = 0.58, p = .004), and it was not detectable in normal tissue. Using PRESS, 19 metabolites were quantified with CRLB <50% for more than half of the subjects. The metabolites that were significantly (p < .0028) and mostly affected by the omission of cystathionine were aspartate, betaine, citrate, γ-aminobutyric acid (GABA), and serine. CONCLUSIONS Cystathionine was detectable by PRESS in all the selected gliomas, while it was not detectable in normal tissue. The omission from the spectral analysis of cystathionine led to severe biases in the quantification of other neurochemicals that may play key roles in cancer metabolism.
Collapse
Affiliation(s)
- Francesca Branzoli
- Paris Brain Institute - Institut du Cerveau (ICM), Center for Neuroimaging Research (CENIR), F-75013, Paris, France
- Sorbonne University, UMR S 1127, Inserm U 1127, CNRS UMR 7225, ICM, F-75013, Paris, France
| | - Dinesh K. Deelchand
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Roberto Liserre
- Department of Radiology, Neuroradiology Unit, ASST Spedali Civili University Hospital, Brescia, Italy
| | - Pietro Luigi Poliani
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Lucia Nichelli
- Sorbonne University, UMR S 1127, Inserm U 1127, CNRS UMR 7225, ICM, F-75013, Paris, France
- Department of neuroradiology, Pitié Salpêtrière Hospital, AP-HP, F-75013, Paris, France
| | - Marc Sanson
- Sorbonne University, UMR S 1127, Inserm U 1127, CNRS UMR 7225, ICM, F-75013, Paris, France
- Department of neurology 2, Pitié-Salpêtrière Hospital, AP-HP, F-75013, Paris, France
- Onconeurotek tumor bank, ICM, F-75013, Paris, France
| | - Stéphane Lehéricy
- Paris Brain Institute - Institut du Cerveau (ICM), Center for Neuroimaging Research (CENIR), F-75013, Paris, France
- Sorbonne University, UMR S 1127, Inserm U 1127, CNRS UMR 7225, ICM, F-75013, Paris, France
- Department of neuroradiology, Pitié Salpêtrière Hospital, AP-HP, F-75013, Paris, France
| | - Małgorzata Marjańska
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
11
|
Autry AW, Lafontaine M, Jalbert L, Phillips E, Phillips JJ, Villanueva-Meyer J, Berger MS, Chang SM, Li Y. Spectroscopic imaging of D-2-hydroxyglutarate and other metabolites in pre-surgical patients with IDH-mutant lower-grade gliomas. J Neurooncol 2022; 159:43-52. [PMID: 35672531 PMCID: PMC9325821 DOI: 10.1007/s11060-022-04042-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/20/2022] [Indexed: 11/01/2022]
Abstract
Abstract
Purpose
Prognostically favorable IDH-mutant gliomas are known to produce oncometabolite D-2-hydroxyglutarate (2HG). In this study, we investigated metabolite-based features of patients with grade 2 and 3 glioma using 2HG-specific in vivo MR spectroscopy, to determine their relationship with image-guided tissue pathology and predictive role in progression-free survival (PFS).
Methods
Forty-five patients received pre-operative MRIs that included 3-D spectroscopy optimized for 2HG detection. Spectral data were reconstructed and quantified to compare metabolite levels according to molecular pathology (IDH1R132H, 1p/19q, and p53); glioma grade; histological subtype; and T2 lesion versus normal-appearing white matter (NAWM) ROIs. Levels of 2HG were correlated with other metabolites and pathological parameters (cellularity, MIB-1) from image-guided tissue samples using Pearson’s correlation test. Metabolites predictive of PFS were evaluated with Cox proportional hazards models.
Results
Quantifiable levels of 2HG in 39/42 (93%) IDH+ and 1/3 (33%) IDH– patients indicated a 91.1% apparent detection accuracy. Myo-inositol/total choline (tCho) showed reduced values in astrocytic (1p/19q-wildtype), p53-mutant, and grade 3 (vs. 2) IDH-mutant gliomas (p < 0.05), all of which exhibited higher proportions of astrocytomas. Compared to NAWM, T2 lesions displayed elevated 2HG+ γ-aminobutyric acid (GABA)/total creatine (tCr) (p < 0.001); reduced glutamate/tCr (p < 0.001); increased myo-inositol/tCr (p < 0.001); and higher tCho/tCr (p < 0.001). Levels of 2HG at sampled tissue locations were significantly associated with tCho (R = 0.62; p = 0.002), total NAA (R = − 0.61; p = 0.002) and cellularity (R = 0.37; p = 0.04) but not MIB-1. Increasing levels of 2HG/tCr (p = 0.0007, HR 5.594) and thresholding (≥ 0.905, median value; p = 0.02) predicted adverse PFS.
Conclusion
In vivo 2HG detection can reasonably be achieved on clinical scanners and increased levels may signal adverse PFS.
Collapse
|
12
|
Morrison MA, Lupo JM. 7-T Magnetic Resonance Imaging in the Management of Brain Tumors. Magn Reson Imaging Clin N Am 2021; 29:83-102. [PMID: 33237018 DOI: 10.1016/j.mric.2020.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This article provides an overview of the current status of ultrahigh-field 7-T magnetic resonance (MR) imaging in neuro-oncology, specifically for the management of patients with brain tumors. It includes a discussion of areas across the pretherapeutic, peritherapeutic, and posttherapeutic stages of patient care where 7-T MR imaging is currently being exploited and holds promise. This discussion includes existing technical challenges, barriers to clinical integration, as well as our impression of the future role of 7-T MR imaging as a clinical tool in neuro-oncology.
Collapse
Affiliation(s)
- Melanie A Morrison
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Janine M Lupo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA.
| |
Collapse
|
13
|
Petridis PD, Horenstein C, Pereira B, Wu P, Samanamud J, Marie T, Boyett D, Sudhakar T, Sheth SA, McKhann GM, Sisti MB, Bruce JN, Canoll P, Grinband J. BOLD Asynchrony Elucidates Tumor Burden in IDH-Mutated Gliomas. Neuro Oncol 2021; 24:78-87. [PMID: 34214170 DOI: 10.1093/neuonc/noab154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Gliomas comprise the most common type of primary brain tumor, are highly invasive, and often fatal. IDH-mutated gliomas are particularly challenging to image and there is currently no clinically accepted method for identifying the extent of tumor burden in these neoplasms. This uncertainty poses a challenge to clinicians who must balance the need to treat the tumor while sparing healthy brain from iatrogenic damage. The purpose of this study was to investigate the feasibility of using resting-state blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) to detect glioma-related asynchrony in vascular dynamics for distinguishing tumor from healthy brain. METHODS Twenty-four stereotactically localized biopsies were obtained during open surgical resection from ten treatment-naïve patients with IDH-mutated gliomas who received standard of care preoperative imaging as well as echo-planar resting-state BOLD fMRI. Signal intensity for BOLD asynchrony and standard of care imaging was compared to cell counts of total cellularity (H&E), tumor density (IDH1 & Sox2), cellular proliferation (Ki67), and neuronal density (NeuN), for each corresponding sample. RESULTS BOLD asynchrony was directly related to total cellularity (H&E, p = 4 x 10 -5), tumor density (IDH1, p = 4 x 10 -5; Sox2, p = 3 x 10 -5), cellular proliferation (Ki67, p = 0.002), and as well as inversely related to neuronal density (NeuN, p = 1 x 10 -4). CONCLUSIONS Asynchrony in vascular dynamics, as measured by resting-state BOLD fMRI, correlates with tumor burden and provides a radiographic delineation of tumor boundaries in IDH-mutated gliomas.
Collapse
Affiliation(s)
- Petros D Petridis
- Vagelos College of Physicians & Surgeons, Columbia University, New York, New York USA.,Department of Psychiatry, New York University, New York, New York, USA
| | - Craig Horenstein
- Department of Radiology, School of Medicine at Hofstra/Northwell, Manhasset, New York USA
| | - Brianna Pereira
- Vagelos College of Physicians & Surgeons, Columbia University, New York, New York USA
| | - Peter Wu
- Vagelos College of Physicians & Surgeons, Columbia University, New York, New York USA
| | - Jorge Samanamud
- Department of Neurological Surgery, Columbia University, New York, New York USA
| | - Tamara Marie
- Department of Pediatrics Oncology, Columbia University, New York, New York USA
| | - Deborah Boyett
- Department of Neurological Surgery, Columbia University, New York, New York USA
| | - Tejaswi Sudhakar
- Department of Neurological Surgery, Columbia University, New York, New York USA
| | - Sameer A Sheth
- Department of Neurological Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Guy M McKhann
- Department of Neurological Surgery, Columbia University, New York, New York USA
| | - Michael B Sisti
- Department of Neurological Surgery, Columbia University, New York, New York USA
| | - Jeffrey N Bruce
- Department of Neurological Surgery, Columbia University, New York, New York USA
| | - Peter Canoll
- Department of Pathology & Cell Biology, Columbia University, New York, New York USA
| | - Jack Grinband
- Department of Radiology, Columbia University, New York, New York, USA.,Department of Psychiatry, Columbia University, New York, New York, USA
| |
Collapse
|
14
|
García-Cañaveras JC, Lahoz A. Tumor Microenvironment-Derived Metabolites: A Guide to Find New Metabolic Therapeutic Targets and Biomarkers. Cancers (Basel) 2021; 13:3230. [PMID: 34203535 PMCID: PMC8268968 DOI: 10.3390/cancers13133230] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022] Open
Abstract
Metabolic reprogramming is a hallmark of cancer that enables cancer cells to grow, proliferate and survive. This metabolic rewiring is intrinsically regulated by mutations in oncogenes and tumor suppressors, but also extrinsically by tumor microenvironment factors (nutrient and oxygen availability, cell-to-cell interactions, cytokines, hormones, etc.). Intriguingly, only a few cancers are driven by mutations in metabolic genes, which lead metabolites with oncogenic properties (i.e., oncometabolites) to accumulate. In the last decade, there has been rekindled interest in understanding how dysregulated metabolism and its crosstalk with various cell types in the tumor microenvironment not only sustains biosynthesis and energy production for cancer cells, but also contributes to immune escape. An assessment of dysregulated intratumor metabolism has long since been exploited for cancer diagnosis, monitoring and therapy, as exemplified by 18F-2-deoxyglucose positron emission tomography imaging. However, the efficient delivery of precision medicine demands less invasive, cheaper and faster technologies to precisely predict and monitor therapy response. The metabolomic analysis of tumor and/or microenvironment-derived metabolites in readily accessible biological samples is likely to play an important role in this sense. Here, we review altered cancer metabolism and its crosstalk with the tumor microenvironment to focus on energy and biomass sources, oncometabolites and the production of immunosuppressive metabolites. We provide an overview of current pharmacological approaches targeting such dysregulated metabolic landscapes and noninvasive approaches to characterize cancer metabolism for diagnosis, therapy and efficacy assessment.
Collapse
Affiliation(s)
- Juan C. García-Cañaveras
- Biomarkers and Precision Medicine Unit, Medical Research Institute-Hospital La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Agustín Lahoz
- Biomarkers and Precision Medicine Unit, Medical Research Institute-Hospital La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain
- Analytical Unit, Medical Research Institute-Hospital La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain
| |
Collapse
|
15
|
From Laboratory Studies to Clinical Trials: Temozolomide Use in IDH-Mutant Gliomas. Cells 2021; 10:cells10051225. [PMID: 34067729 PMCID: PMC8157002 DOI: 10.3390/cells10051225] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
In this review, we discuss the use of the alkylating agent temozolomide (TMZ) in the treatment of IDH-mutant gliomas. We describe the challenges associated with TMZ in clinical (drug resistance and tumor recurrence) and preclinical settings (variabilities associated with in vitro models) in treating IDH-mutant glioma. Lastly, we summarize the emerging therapeutic targets that can potentially be used in combination with TMZ.
Collapse
|
16
|
von Knebel Doeberitz N, Maksimovic S, Loi L, Paech D. [Chemical exchange saturation transfer (CEST) : Magnetic resonance imaging in diagnostic oncology]. Radiologe 2021; 61:43-51. [PMID: 33337509 DOI: 10.1007/s00117-020-00786-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Contrast generation by chemical exchange saturation transfer (CEST) is a recently emerging magnetic resonance imaging (MRI) research field with high clinical potential. METHODS This review covers the methodological principles and summarizes the clinical experience of CEST imaging studies in diagnostic oncology performed to date. RESULTS AND CONCLUSION CEST enables the detection of lowly concentrated metabolites, such as peptides and glucose, through selective saturation of metabolite-bound protons and subsequent magnetization transfer to free water. This technology yields additional information about metabolic activity and the tissue microenvironment without the need for conventional contrast agents or radioactive tracers. Various studies, mainly conducted in patients with neuro-oncolgic diseases, suggest that this technology may aid to assess tumor malignancy as well as therapeutic response prior to and in the first follow-up after intervention. KEY POINTS CEST-MRI enables the indirect detection of metabolites without radioactive tracers or contrast agents. Clinical experience exists especially in the setting of neuro-oncologic imaging. In oncologic imaging, CEST-MRI may improve assessment of prognosis and therapy response.
Collapse
Affiliation(s)
- N von Knebel Doeberitz
- Abteilung Radiologie, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Deutschland
| | - S Maksimovic
- Abteilung Radiologie, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Deutschland
| | - L Loi
- Abteilung Radiologie, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Deutschland
| | - D Paech
- Abteilung Radiologie, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Deutschland.
| |
Collapse
|
17
|
Radoul M, Hong D, Gillespie AM, Najac C, Viswanath P, Pieper RO, Costello JF, Luchman HA, Ronen SM. Early Noninvasive Metabolic Biomarkers of Mutant IDH Inhibition in Glioma. Metabolites 2021; 11:metabo11020109. [PMID: 33668509 PMCID: PMC7917625 DOI: 10.3390/metabo11020109] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022] Open
Abstract
Approximately 80% of low-grade glioma (LGGs) harbor mutant isocitrate dehydrogenase 1/2 (IDH1/2) driver mutations leading to accumulation of the oncometabolite 2-hydroxyglutarate (2-HG). Thus, inhibition of mutant IDH is considered a potential therapeutic target. Several mutant IDH inhibitors are currently in clinical trials, including AG-881 and BAY-1436032. However, to date, early detection of response remains a challenge. In this study we used high resolution 1H magnetic resonance spectroscopy (1H-MRS) to identify early noninvasive MR (Magnetic Resonance)-detectable metabolic biomarkers of response to mutant IDH inhibition. In vivo 1H-MRS was performed on mice orthotopically-implanted with either genetically engineered (U87IDHmut) or patient-derived (BT257 and SF10417) mutant IDH1 cells. Treatment with either AG-881 or BAY-1436032 induced a significant reduction in 2-HG. Moreover, both inhibitors led to a significant early and sustained increase in glutamate and the sum of glutamate and glutamine (GLX) in all three models. A transient early increase in N-acetylaspartate (NAA) was also observed. Importantly, all models demonstrated enhanced animal survival following both treatments and the metabolic alterations were observed prior to any detectable differences in tumor volume between control and treated tumors. Our study therefore identifies potential translatable early metabolic biomarkers of drug delivery, mutant IDH inhibition and glioma response to treatment with emerging clinically relevant therapies.
Collapse
Affiliation(s)
- Marina Radoul
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94158, USA; (M.R.); (D.H.); (A.M.G.); (C.N.); (P.V.)
| | - Donghyun Hong
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94158, USA; (M.R.); (D.H.); (A.M.G.); (C.N.); (P.V.)
| | - Anne Marie Gillespie
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94158, USA; (M.R.); (D.H.); (A.M.G.); (C.N.); (P.V.)
| | - Chloé Najac
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94158, USA; (M.R.); (D.H.); (A.M.G.); (C.N.); (P.V.)
| | - Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94158, USA; (M.R.); (D.H.); (A.M.G.); (C.N.); (P.V.)
| | - Russell O. Pieper
- Department of Neurological Surgery, Helen Diller Research Center, University of California, San Francisco, CA 94158, USA; (R.O.P.); (J.F.C.)
- Brain Tumor Research Center, University of California, San Francisco, CA 94158, USA
| | - Joseph F. Costello
- Department of Neurological Surgery, Helen Diller Research Center, University of California, San Francisco, CA 94158, USA; (R.O.P.); (J.F.C.)
| | - Hema Artee Luchman
- Arnie Charbonneau Cancer Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Sabrina M. Ronen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94158, USA; (M.R.); (D.H.); (A.M.G.); (C.N.); (P.V.)
- Brain Tumor Research Center, University of California, San Francisco, CA 94158, USA
- Correspondence: ; Tel.: +1-415-514-4839
| |
Collapse
|
18
|
Viswanath P, Batsios G, Mukherjee J, Gillespie AM, Larson PEZ, Luchman HA, Phillips JJ, Costello JF, Pieper RO, Ronen SM. Non-invasive assessment of telomere maintenance mechanisms in brain tumors. Nat Commun 2021; 12:92. [PMID: 33397920 PMCID: PMC7782549 DOI: 10.1038/s41467-020-20312-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 11/27/2020] [Indexed: 01/29/2023] Open
Abstract
Telomere maintenance is a universal hallmark of cancer. Most tumors including low-grade oligodendrogliomas use telomerase reverse transcriptase (TERT) expression for telomere maintenance while astrocytomas use the alternative lengthening of telomeres (ALT) pathway. Although TERT and ALT are hallmarks of tumor proliferation and attractive therapeutic targets, translational methods of imaging TERT and ALT are lacking. Here we show that TERT and ALT are associated with unique 1H-magnetic resonance spectroscopy (MRS)-detectable metabolic signatures in genetically-engineered and patient-derived glioma models and patient biopsies. Importantly, we have leveraged this information to mechanistically validate hyperpolarized [1-13C]-alanine flux to pyruvate as an imaging biomarker of ALT status and hyperpolarized [1-13C]-alanine flux to lactate as an imaging biomarker of TERT status in low-grade gliomas. Collectively, we have identified metabolic biomarkers of TERT and ALT status that provide a way of integrating critical oncogenic information into non-invasive imaging modalities that can improve tumor diagnosis and treatment response monitoring.
Collapse
Affiliation(s)
- Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
| | - Georgios Batsios
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Joydeep Mukherjee
- Department of Neurological Surgery, Helen Diller Research Center, University of California San Francisco, San Francisco, CA, USA
| | - Anne Marie Gillespie
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - H Artee Luchman
- Department of Cell Biology and Anatomy, Arnie Charbonneau Cancer Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Joanna J Phillips
- Department of Neurological Surgery, Helen Diller Research Center, University of California San Francisco, San Francisco, CA, USA
| | - Joseph F Costello
- Department of Neurological Surgery, Helen Diller Research Center, University of California San Francisco, San Francisco, CA, USA
| | - Russell O Pieper
- Department of Neurological Surgery, Helen Diller Research Center, University of California San Francisco, San Francisco, CA, USA
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
19
|
Yuan BF. Quantitative Analysis of Oncometabolite 2-Hydroxyglutarate. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1280:161-172. [PMID: 33791981 DOI: 10.1007/978-3-030-51652-9_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gain-of-function mutations of isocitrate dehydrogenase 1 and 2 (IDH1/2) were demonstrated to induce the production and accumulation of oncometabolite 2-hydroxyglutarate (2HG). 2HG is a potent competitor of α-ketoglutarate (α-KG) and can inhibit multiple α-KG-dependent dioxygenases that are critical for regulating the metabolic and epigenetic state of cells. The accumulation of 2HG contributes to elevated risk of malignant tumors. 2HG carries an asymmetric carbon atom in its carbon backbone and therefore occurs in two enantiomers, D-2-hydroxyglutarate (D-2HG) and L-2-hydroxyglutarate (L-2HG). Each enantiomer is produced and metabolized in independent biochemical pathway and catalyzed by different enzymes. The accurate diagnosis of 2HG-related diseases relies on determining the configuration of the two enantiomers. Quantitative methods for analysis of D-2HG and L-2HG have been well developed. These analytical strategies mainly include the use of chiral chromatography medium to facilitate chromatographic separation of enantiomers prior to spectroscopy or mass spectrometry analysis and the use of chiral derivatization reagents to convert the enantiomers to diastereomers with differential physical and chemical properties that can improve their chromatographic separation. Here, we summarize and discuss these established methods for analysis of total 2HG as well as the determination of the enantiomers of D-2HG and L-2HG.
Collapse
Affiliation(s)
- Bi-Feng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, China.
| |
Collapse
|
20
|
Valtorta S, Salvatore D, Rainone P, Belloli S, Bertoli G, Moresco RM. Molecular and Cellular Complexity of Glioma. Focus on Tumour Microenvironment and the Use of Molecular and Imaging Biomarkers to Overcome Treatment Resistance. Int J Mol Sci 2020; 21:E5631. [PMID: 32781585 PMCID: PMC7460665 DOI: 10.3390/ijms21165631] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 02/08/2023] Open
Abstract
This review highlights the importance and the complexity of tumour biology and microenvironment in the progression and therapy resistance of glioma. Specific gene mutations, the possible functions of several non-coding microRNAs and the intra-tumour and inter-tumour heterogeneity of cell types contribute to limit the efficacy of the actual therapeutic options. In this scenario, identification of molecular biomarkers of response and the use of multimodal in vivo imaging and in particular the Positron Emission Tomography (PET) based molecular approach, can help identifying glioma features and the modifications occurring during therapy at a regional level. Indeed, a better understanding of tumor heterogeneity and the development of diagnostic procedures can favor the identification of a cluster of patients for personalized medicine in order to improve the survival and their quality of life.
Collapse
Affiliation(s)
- Silvia Valtorta
- Department of Medicine and Surgery and Tecnomed Foundation, University of Milano—Bicocca, 20900 Monza, Italy; (S.V.); (D.S.); (P.R.)
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), 20132 Milan, Italy;
| | - Daniela Salvatore
- Department of Medicine and Surgery and Tecnomed Foundation, University of Milano—Bicocca, 20900 Monza, Italy; (S.V.); (D.S.); (P.R.)
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), 20132 Milan, Italy;
| | - Paolo Rainone
- Department of Medicine and Surgery and Tecnomed Foundation, University of Milano—Bicocca, 20900 Monza, Italy; (S.V.); (D.S.); (P.R.)
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), 20132 Milan, Italy;
| | - Sara Belloli
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), 20132 Milan, Italy;
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR, 20090 Segrate, Italy
| | - Gloria Bertoli
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR, 20090 Segrate, Italy
| | - Rosa Maria Moresco
- Department of Medicine and Surgery and Tecnomed Foundation, University of Milano—Bicocca, 20900 Monza, Italy; (S.V.); (D.S.); (P.R.)
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), 20132 Milan, Italy;
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR, 20090 Segrate, Italy
| |
Collapse
|
21
|
Branzoli F, Marjańska M. Magnetic resonance spectroscopy of isocitrate dehydrogenase mutated gliomas: current knowledge on the neurochemical profile. Curr Opin Neurol 2020; 33:413-421. [PMID: 32657882 PMCID: PMC7526653 DOI: 10.1097/wco.0000000000000833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Magnetic resonance spectroscopy (MRS) may play a key role for the management of patients with glioma. We highlighted the utility of MRS in the noninvasive diagnosis of gliomas with mutations in isocitrate dehydrogenase (IDH) genes, by providing an overview of the neurochemical alterations observed in different glioma subtypes, as well as during treatment and progression, both in vivo and ex vivo. RECENT FINDINGS D-2-hydroxyglutarate (2HG) decrease during anticancer treatments was recently shown to be associated with altered levels of other metabolites, including lactate, glutamate and glutathione, suggesting that tumour treatment leads to a metabolic reprogramming beyond 2HG depletion. In combination with 2HG quantification, cystathionine and glycine seem to be the most promising candidates for higher specific identification of glioma subtypes and follow-up of disease progression and response to treatment. SUMMARY The implementation of advanced MRS methods in the routine clinical practice will allow the quantification of metabolites that are not detectable with conventional methods and may enable immediate, accurate diagnosis of gliomas, which is crucial for planning optimal therapeutic strategies and follow-up examinations. The role of different metabolites as predictors of patient outcome still needs to be elucidated.
Collapse
Affiliation(s)
- Francesca Branzoli
- Institut du Cerveau - ICM, Centre de Neuroimagerie de Recherche - CENIR
- ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Małgorzata Marjańska
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
22
|
Wenger KJ, Steinbach JP, Bähr O, Pilatus U, Hattingen E. Lower Lactate Levels and Lower Intracellular pH in Patients with IDH-Mutant versus Wild-Type Gliomas. AJNR Am J Neuroradiol 2020; 41:1414-1422. [PMID: 32646946 DOI: 10.3174/ajnr.a6633] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 05/03/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND PURPOSE Preclinical evidence points toward a metabolic reprogramming in isocitrate dehydrogenase (IDH) mutated tumor cells with down-regulation of the expression of genes that encode for glycolytic metabolism. We noninvasively investigated lactate and Cr concentrations, as well as intracellular pH using 1H/phosphorus 31 (31P) MR spectroscopy in a cohort of patients with gliomas. MATERIALS AND METHODS Thirty prospectively enrolled, mostly untreated patients with gliomas met the spectral quality criteria (World Health Organization II [n = 7], III [n = 16], IV [n = 7]; IDH-mutant [n = 23]; IDH wild-type [n = 7]; 1p/19q codeletion [n = 9]). MR imaging protocol included 3D 31P chemical shift imaging and 1H single-voxel spectroscopy (point-resolved spectroscopy sequence at TE = 30 ms and TE = 97 ms with optimized echo spacing for detection of 2-hydroxyglutarate) from the tumor area. Values for absolute metabolite concentrations were calculated (phantom replacement method). Intracellular pH was determined from 31P chemical shift imaging. RESULTS At TE = 97 ms, lactate peaks can be fitted with little impact of lipid/macromolecule contamination. We found a significant difference in lactate concentrations, lactate/Cr ratios, and intracellular pH when comparing tumor voxels of patients with IDH-mutant with those of patients with IDH wild-type gliomas, with reduced lactate levels and near-normal intracellular pH in patients with IDH-mutant gliomas. We additionally found evidence for codependent effects of 1p/19q codeletion and IDH mutations with regard to lactate concentrations for World Health Organization tumor grades II and III, with lower lactate levels in patients exhibiting the codeletion. There was no statistical significance when comparing lactate concentrations between IDH-mutant World Health Organization II and III gliomas. CONCLUSIONS We found indirect evidence for metabolic reprogramming in IDH-mutant tumors with significantly lower lactate concentrations compared with IDH wild-type tumors and a near-normal intracellular pH.
Collapse
Affiliation(s)
- K J Wenger
- From the Departments of Neuroradiology (K.J.W., U.P., E.H.) .,German Cancer Consortium Partner Site (K.J.W., J.P.S., O.B., U.P., E.H.), Frankfurt am Main/Mainz, Germany.,German Cancer Research Center (K.J.W., J.P.S., O.B., U.P., E.H.), Heidelberg, Germany
| | - J P Steinbach
- Neurooncology (J.P.S., O.B.), University Hospital Frankfurt, Frankfurt am Main, Germany.,German Cancer Consortium Partner Site (K.J.W., J.P.S., O.B., U.P., E.H.), Frankfurt am Main/Mainz, Germany.,German Cancer Research Center (K.J.W., J.P.S., O.B., U.P., E.H.), Heidelberg, Germany
| | - O Bähr
- Neurooncology (J.P.S., O.B.), University Hospital Frankfurt, Frankfurt am Main, Germany.,German Cancer Consortium Partner Site (K.J.W., J.P.S., O.B., U.P., E.H.), Frankfurt am Main/Mainz, Germany.,German Cancer Research Center (K.J.W., J.P.S., O.B., U.P., E.H.), Heidelberg, Germany
| | - U Pilatus
- From the Departments of Neuroradiology (K.J.W., U.P., E.H.).,German Cancer Consortium Partner Site (K.J.W., J.P.S., O.B., U.P., E.H.), Frankfurt am Main/Mainz, Germany.,German Cancer Research Center (K.J.W., J.P.S., O.B., U.P., E.H.), Heidelberg, Germany
| | - E Hattingen
- From the Departments of Neuroradiology (K.J.W., U.P., E.H.).,German Cancer Consortium Partner Site (K.J.W., J.P.S., O.B., U.P., E.H.), Frankfurt am Main/Mainz, Germany.,German Cancer Research Center (K.J.W., J.P.S., O.B., U.P., E.H.), Heidelberg, Germany
| |
Collapse
|
23
|
Molloy AR, Najac C, Viswanath P, Lakhani A, Subramani E, Batsios G, Radoul M, Gillespie AM, Pieper RO, Ronen SM. MR-detectable metabolic biomarkers of response to mutant IDH inhibition in low-grade glioma. Theranostics 2020; 10:8757-8770. [PMID: 32754276 PMCID: PMC7392019 DOI: 10.7150/thno.47317] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/17/2020] [Indexed: 12/14/2022] Open
Abstract
Mutations in isocitrate dehydrogenase 1 (IDH1mut) are reported in 70-90% of low-grade gliomas and secondary glioblastomas. IDH1mut catalyzes the reduction of α-ketoglutarate (α-KG) to 2-hydroxyglutarate (2-HG), an oncometabolite which drives tumorigenesis. Inhibition of IDH1mut is therefore an emerging therapeutic approach, and inhibitors such as AG-120 and AG-881 have shown promising results in phase 1 and 2 clinical studies. However, detection of response to these therapies prior to changes in tumor growth can be challenging. The goal of this study was to identify non-invasive clinically translatable metabolic imaging biomarkers of IDH1mut inhibition that can serve to assess response. Methods: IDH1mut inhibition was confirmed using an enzyme assay and 1H- and 13C- magnetic resonance spectroscopy (MRS) were used to investigate the metabolic effects of AG-120 and AG-881 on two genetically engineered IDH1mut-expressing cell lines, NHAIDH1mut and U87IDH1mut. Results:1H-MRS indicated a significant decrease in steady-state 2-HG following treatment, as expected. This was accompanied by a significant 1H-MRS-detectable increase in glutamate. However, other metabolites previously linked to 2-HG were not altered. 13C-MRS also showed that the steady-state changes in glutamate were associated with a modulation in the flux of glutamine to both glutamate and 2-HG. Finally, hyperpolarized 13C-MRS was used to show that the flux of α-KG to both glutamate and 2-HG was modulated by treatment. Conclusion: In this study, we identified potential 1H- and 13C-MRS-detectable biomarkers of response to IDH1mut inhibition in gliomas. Although further studies are needed to evaluate the utility of these biomarkers in vivo, we expect that in addition to a 1H-MRS-detectable drop in 2-HG, a 1H-MRS-detectable increase in glutamate, as well as a hyperpolarized 13C-MRS-detectable change in [1-13C] α-KG flux, could serve as metabolic imaging biomarkers of response to treatment.
Collapse
Affiliation(s)
- Abigail R Molloy
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Chloé Najac
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Aliya Lakhani
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Elavarasan Subramani
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Georgios Batsios
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Marina Radoul
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Anne Marie Gillespie
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Russell O Pieper
- Brain Tumor Center, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, Helen Diller Research Center, University of California San Francisco, San Francisco, CA, USA
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
- Brain Tumor Center, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
24
|
Ruiz-Rodado V, Seki T, Dowdy T, Lita A, Zhang M, Han S, Yang C, Cherukuri MK, Gilbert MR, Larion M. Metabolic Landscape of a Genetically Engineered Mouse Model of IDH1 Mutant Glioma. Cancers (Basel) 2020; 12:E1633. [PMID: 32575619 PMCID: PMC7352932 DOI: 10.3390/cancers12061633] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022] Open
Abstract
Understanding the metabolic reprogramming of aggressive brain tumors has potential applications for therapeutics as well as imaging biomarkers. However, little is known about the nutrient requirements of isocitrate dehydrogenase 1 (IDH1) mutant gliomas. The IDH1 mutation involves the acquisition of a neomorphic enzymatic activity which generates D-2-hydroxyglutarate from α-ketoglutarate. In order to gain insight into the metabolism of these malignant brain tumors, we conducted metabolic profiling of the orthotopic tumor and the contralateral regions for the mouse model of IDH1 mutant glioma; as well as to examine the utilization of glucose and glutamine in supplying major metabolic pathways such as glycolysis and tricarboxylic acid (TCA). We also revealed that the main substrate of 2-hydroxyglutarate is glutamine in this model, and how this re-routing impairs its utilization in the TCA. Our 13C tracing analysis, along with hyperpolarized magnetic resonance experiments, revealed an active glycolytic pathway similar in both regions (tumor and contralateral) of the brain. Therefore, we describe the reprogramming of the central carbon metabolism associated with the IDH1 mutation in a genetically engineered mouse model which reflects the tumor biology encountered in glioma patients.
Collapse
Affiliation(s)
- Victor Ruiz-Rodado
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institute of Health, Bethesda, MD 20814, USA; (V.R.-R.); (T.D.); (A.L.); (M.Z.); (S.H.); (C.Y.); (M.R.G.)
| | - Tomohiro Seki
- Radiation Biology Branch, Center for Cancer Research, National Institute of Health, Bethesda, MD 20814, USA; (T.S.); (M.K.C.)
| | - Tyrone Dowdy
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institute of Health, Bethesda, MD 20814, USA; (V.R.-R.); (T.D.); (A.L.); (M.Z.); (S.H.); (C.Y.); (M.R.G.)
| | - Adrian Lita
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institute of Health, Bethesda, MD 20814, USA; (V.R.-R.); (T.D.); (A.L.); (M.Z.); (S.H.); (C.Y.); (M.R.G.)
| | - Meili Zhang
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institute of Health, Bethesda, MD 20814, USA; (V.R.-R.); (T.D.); (A.L.); (M.Z.); (S.H.); (C.Y.); (M.R.G.)
| | - Sue Han
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institute of Health, Bethesda, MD 20814, USA; (V.R.-R.); (T.D.); (A.L.); (M.Z.); (S.H.); (C.Y.); (M.R.G.)
| | - Chunzhang Yang
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institute of Health, Bethesda, MD 20814, USA; (V.R.-R.); (T.D.); (A.L.); (M.Z.); (S.H.); (C.Y.); (M.R.G.)
| | - Murali K. Cherukuri
- Radiation Biology Branch, Center for Cancer Research, National Institute of Health, Bethesda, MD 20814, USA; (T.S.); (M.K.C.)
| | - Mark R. Gilbert
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institute of Health, Bethesda, MD 20814, USA; (V.R.-R.); (T.D.); (A.L.); (M.Z.); (S.H.); (C.Y.); (M.R.G.)
| | - Mioara Larion
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institute of Health, Bethesda, MD 20814, USA; (V.R.-R.); (T.D.); (A.L.); (M.Z.); (S.H.); (C.Y.); (M.R.G.)
| |
Collapse
|
25
|
Advances in Noninvasive Neurodiagnostics. World Neurosurg 2020; 139:1-3. [PMID: 32194266 DOI: 10.1016/j.wneu.2020.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/02/2020] [Indexed: 11/21/2022]
|
26
|
Kern M, Auer TA, Picht T, Misch M, Wiener E. T2 mapping of molecular subtypes of WHO grade II/III gliomas. BMC Neurol 2020; 20:8. [PMID: 31914945 PMCID: PMC6947951 DOI: 10.1186/s12883-019-1590-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND According to the new WHO classification from 2016, molecular profiles have shown to provide reliable information about prognosis and treatment response. The purpose of our study is to evaluate the diagnostic potential of non-invasive quantitative T2 mapping in the detection of IDH1/2 mutation status in grade II-III gliomas. METHODS Retrospective evaluation of MR examinations in 30 patients with histopathological proven WHO-grade II (n = 9) and III (n = 21) astrocytomas (18 IDH-mutated, 12 IDH-wildtype). Consensus annotation by two observers by use of ROI's in quantitative T2-mapping sequences were performed in all patients. T2 relaxation times were measured pixelwise. RESULTS A significant difference (p = 0,0037) between the central region of IDH-mutated tumors (356,83 ± 114,97 ms) and the IDH-wildtype (199,92 ± 53,13 ms) was found. Furthermore, relaxation times between the central region (322,62 ± 127,41 ms) and the peripheral region (211,1 ± 74,16 ms) of WHO grade II and III astrocytomas differed significantly (p = 0,0021). The central regions relaxation time of WHO-grade II (227,44 ± 80,09 ms) and III gliomas (322,62 ± 127,41 ms) did not differ significantly (p = 0,2276). The difference between the smallest and the largest T2 value (so called "range") is significantly larger (p = 0,0017) in IDH-mutated tumors (230,89 ± 121,11 ms) than in the IDH-wildtype (96,33 ± 101,46 ms). Interobserver variability showed no significant differences. CONCLUSIONS Quantitative evaluation of T2-mapping relaxation times shows significant differences regarding the IDH-status in WHO grade II and III gliomas adding important information regarding the new 2016 World Health Organization (WHO) Classification of tumors of the central nervous system. This to our knowledge is the first study regarding T2 mapping and the IDH1/2 status shows that the mutational status seems to be more important for the appearance on T2 images than the WHO grade.
Collapse
Affiliation(s)
- Maike Kern
- Department of Neuroradiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Timo Alexander Auer
- Department of Radiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Thomas Picht
- Department of Neurosurgery, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Martin Misch
- Department of Neurosurgery, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Edzard Wiener
- Department of Neuroradiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
27
|
Magnetic Resonance Spectroscopic Assessment of Isocitrate Dehydrogenase Status in Gliomas: The New Frontiers of Spectrobiopsy in Neurodiagnostics. World Neurosurg 2020; 133:e421-e427. [DOI: 10.1016/j.wneu.2019.09.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/06/2019] [Indexed: 12/21/2022]
|
28
|
Ozturk-Isik E, Cengiz S, Ozcan A, Yakicier C, Ersen Danyeli A, Pamir MN, Özduman K, Dincer A. Identification of IDH and TERTp mutation status using 1 H-MRS in 112 hemispheric diffuse gliomas. J Magn Reson Imaging 2019; 51:1799-1809. [PMID: 31664773 DOI: 10.1002/jmri.26964] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/22/2019] [Accepted: 09/24/2019] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND There is a growing interest in noninvasively defining molecular subsets of hemispheric diffuse gliomas based on the isocitrate dehydrogenase (IDH) and telomerase reverse transcriptase gene promoter (TERTp) mutation status, which correspond to distinct tumor entities, and differ in demographics, natural history, treatment response, recurrence, and survival patterns. PURPOSE To investigate whether metabolite levels detected with short echo time (TE) proton MR spectroscopy (1 H-MRS) at 3T can be used for noninvasive molecular classification of IDH and TERTp mutation-based subsets of gliomas. STUDY TYPE Retrospective. SUBJECTS In all, 112 hemispheric diffuse gliomas (70 males/42 females, mean age: 42.1 ± 13.9 years). FIELD STRENGTH/SEQUENCE Short-TE 1 H-MRS (repetition time (TR) = 2000 msec, TE = 30 msec, number of signal averages = 192) and routine clinical brain tumor MR protocols were acquired at 3T. ASSESSMENT 1 H-MRS data were quantified using LCModel software. TERTp and IDH1 or IDH2 (IDH1/2) mutations in the tissue were determined by either minisequencing or Sanger sequencing. STATISTICAL TESTS Metabolic differences between IDH mutant and IDH wildtype gliomas were assessed by a Mann-Whitney U-test. A Kruskal-Wallis test followed by a Tukey-Kramer test was used to analyze metabolic differences between IDH and TERTp mutational molecular subsets of gliomas. A Spearman rank correlation coefficient was used to assess the correlations of metabolite intensities with the Ki-67 index. Furthermore, machine learning was employed to classify the IDH and TERTp mutational status of gliomas, and the accuracy, sensitivity, and specificity values were estimated. RESULTS Short-TE 1 H-MRS classified the presence of an IDH mutation with 88.39% accuracy, 76.92% sensitivity, and 94.52% specificity, and a TERTp mutation within primary IDH wildtype gliomas with 92.59% accuracy, 83.33% sensitivity, and 95.24% specificity. DATA CONCLUSION Short-TE 1 H-MRS could be used to identify molecular subsets of hemispheric diffuse gliomas corresponding to IDH and TERTp mutations. LEVEL OF EVIDENCE 3 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2020;51:1799-1809.
Collapse
Affiliation(s)
- Esin Ozturk-Isik
- Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey.,Brain Tumor Research Group, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Sevim Cengiz
- Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey
| | - Alpay Ozcan
- Brain Tumor Research Group, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.,Department of Medical Device Technologies, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.,Biomedical Imaging Research and Development Center, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.,Center for Neuroradiological Applications and Research, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Cengiz Yakicier
- Department of Molecular Biology and Genetics, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ayca Ersen Danyeli
- Brain Tumor Research Group, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.,Department of Pathology, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - M Necmettin Pamir
- Brain Tumor Research Group, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.,Department of Neurosurgery, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.,Center for Neuroradiological Applications and Research, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Koray Özduman
- Brain Tumor Research Group, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.,Department of Neurosurgery, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.,Center for Neuroradiological Applications and Research, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Alp Dincer
- Brain Tumor Research Group, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.,Department of Radiology, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.,Center for Neuroradiological Applications and Research, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| |
Collapse
|
29
|
Suh CH, Kim HS, Jung SC, Choi CG, Kim SJ. 2-Hydroxyglutarate MR spectroscopy for prediction of isocitrate dehydrogenase mutant glioma: a systemic review and meta-analysis using individual patient data. Neuro Oncol 2019; 20:1573-1583. [PMID: 30020513 DOI: 10.1093/neuonc/noy113] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 07/11/2018] [Indexed: 12/31/2022] Open
Abstract
Background Noninvasive and accurate modality to predict isocitrate dehydrogenase (IDH) mutant glioma may have great potential in routine clinical practice. We aimed to investigate the diagnostic performance of 2-hydroxyglutarate (2HG) magnetic resonance spectroscopy (MRS) for prediction of IDH mutant glioma and provide an optimal cutoff value for 2HG. Methods A systematic literature search of Ovid-MEDLINE and EMBASE was performed to identify original articles investigating the diagnostic performance of 2HG MRS up to March 20, 2018. Pooled sensitivity and specificity were calculated using a bivariate random-effects model. Subgroup analysis and meta-regression were performed to explain heterogeneity effects. An optimal cutoff value for 2HG was calculated from studies providing individual patient data. Results Fourteen original articles with 460 patients were included. The pooled sensitivity and specificity for the diagnostic performance of 2HG MRS for prediction of IDH mutant glioma were 95% (95% CI, 85-98%) and 91% (95% CI, 83-96%), respectively. The Higgins I2 statistic demonstrated that heterogeneity was present in the sensitivity (I2 = 50.69%), but not in the specificity (I2 = 30.37%). In the meta-regression, echo time (TE) was associated with study heterogeneity. Among the studies using point-resolved spectroscopy (PRESS), a long TE (97 ms) resulted in higher sensitivity (92%) and specificity (97%) than a short TE (30-35 ms; sensitivity of 90%, specificity of 88%; P < 0.01). The optimal 2HG cutoff value of 2HG using individual patient data was 1.76 mM. Conclusion 2HG MRS demonstrated excellent specificity for prediction of IDH mutant glioma, with TE being associated with heterogeneity in the sensitivity. Key Points 1. HG MRS has excellent diagnostic performance in the prediction of IDH mutant glioma. 2. The pooled sensitivity was 95% and the pooled specificity was 91%. 3. Echo time was associated with study heterogeneity in the meta-regression.
Collapse
Affiliation(s)
- Chong Hyun Suh
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Ho Sung Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Seung Chai Jung
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Choong Gon Choi
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Sang Joon Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| |
Collapse
|
30
|
Linninger A, Hartung GA, Liu BP, Mirkov S, Tangen K, Lukas RV, Unruh D, James CD, Sarkaria JN, Horbinski C. Modeling the diffusion of D-2-hydroxyglutarate from IDH1 mutant gliomas in the central nervous system. Neuro Oncol 2019; 20:1197-1206. [PMID: 29660019 DOI: 10.1093/neuonc/noy051] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Among diffusely infiltrative gliomas in adults, 20%-30% contain a point mutation in isocitrate dehydrogenase 1 (IDH1mut), which increases production of D-2-hydroxyglutarate (D2HG). This is so efficient that D2HG often reaches 30 mM within IDH1mut gliomas. Yet, while up to 100 µM D2HG can be detected in the circulating cerebrospinal fluid of IDH1mut glioma patients, the exposure of nonneoplastic cells within and surrounding an IDH1mut glioma to D2HG is unknown and difficult to measure directly. Methods Conditioned medium from patient-derived wild type IDH1 (IDH1wt) and IDH1mut glioma cells was analyzed for D2HG by liquid chromatography-mass spectrometry (LC-MS). Mathematical models of D2HG release and diffusion around an IDH1mut glioma were independently generated based on fluid dynamics within the brain and on previously reported intratumoral and cerebrospinal D2HG concentrations. Results LC-MS analysis indicates that patient-derived IDH1mut glioma cells release 3.7-97.0 pg D2HG per cell per week. Extrapolating this to an average-sized tumor (30 mL glioma volume and 1 × 108 cells/mL tumor), the rate of D2HG release by an IDH1mut glioma (SA) is estimated at 3.2-83.0 × 10-12 mol/mL/sec. Mathematical models estimate an SA of 2.9-12.9 × 10-12 mol/mL/sec, within the range of the in vitro LC-MS data. In even the most conservative of these models, the extracellular concentration of D2HG exceeds 3 mM within a 2 cm radius from the center of an IDH1mut glioma. Conclusions The microenvironment of an IDH1mut glioma is likely being exposed to high concentrations of D2HG, in the low millimolar range. This has implications for understanding how D2HG affects nonneoplastic cells in an IDH1mut glioma.
Collapse
Affiliation(s)
- Andreas Linninger
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois.,Department of Neurosurgery, University of Illinois at Chicago, Chicago, Illinois
| | - Grant A Hartung
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, Illinois
| | - Benjamin P Liu
- Department of Radiology, Northwestern University, Chicago, Illinois
| | - Snezana Mirkov
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
| | - Kevin Tangen
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, Illinois
| | - Rimas V Lukas
- Department of Neurology, Northwestern University, Chicago, Illinois
| | - Dusten Unruh
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
| | - C David James
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
| | | | - Craig Horbinski
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois.,Department of Pathology, Northwestern University, Chicago, Illinois
| |
Collapse
|
31
|
Aquilanti E, Miller J, Santagata S, Cahill DP, Brastianos PK. Updates in prognostic markers for gliomas. Neuro Oncol 2019; 20:vii17-vii26. [PMID: 30412261 DOI: 10.1093/neuonc/noy158] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Gliomas are the most common primary malignant brain tumor in adults. The traditional classification of gliomas has been based on histologic features and tumor grade. The advent of sophisticated molecular diagnostic techniques has led to a deeper understanding of genomic drivers implicated in gliomagenesis, some of which have important prognostic implications. These advances have led to an extensive revision of the World Health Organization classification of diffuse gliomas to include molecular markers such as isocitrate dehydrogenase mutation, 1p/19q codeletion, and histone mutations as integral components of brain tumor classification. Here, we report a comprehensive analysis of molecular prognostic factors for patients with gliomas, including those mentioned above, but also extending to others such as telomerase reverse transcriptase promoter mutations, O6-methylguanine-DNA methyltransferase promoter methylation, glioma cytosine-phosphate-guanine island methylator phenotype DNA methylation, and epidermal growth factor receptor alterations.
Collapse
Affiliation(s)
- Elisa Aquilanti
- Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts.,Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Cancer Program, Broad Institute, Boston, Massachusetts
| | - Julie Miller
- Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Division of Neuro-Oncology, Department of Neurology, Stephen E. and Catherine Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sandro Santagata
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts.,Ludwig Center at Harvard Medical School, Boston, Massachusetts.,Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Daniel P Cahill
- Division of Neuro-Oncology, Department of Neurology, Stephen E. and Catherine Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Priscilla K Brastianos
- Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Division of Neuro-Oncology, Department of Neurology, Stephen E. and Catherine Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Cancer Program, Broad Institute, Boston, Massachusetts
| |
Collapse
|
32
|
Fatehi M, Yip S. Commentary: Radiological Characteristics and Natural History of Adult IDH-Wild-Type Astrocytomas With TERT Promoter Mutations. Neurosurgery 2019; 85:E457-E458. [PMID: 30418602 DOI: 10.1093/neuros/nyy529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 10/04/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mostafa Fatehi
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephen Yip
- Department of Pathology & Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
33
|
Lee JE, Jeun SS, Kim SH, Yoo CY, Baek HM, Yang SH. Metabolic profiling of human gliomas assessed with NMR. J Clin Neurosci 2019; 68:275-280. [PMID: 31409545 DOI: 10.1016/j.jocn.2019.07.078] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/12/2019] [Accepted: 07/29/2019] [Indexed: 01/04/2023]
Abstract
Little is known about the underlying metabolic alterations of gliomas. The objective of this study was to analyze metabolomic profiles of gliomas diagnosed according to revised WHO classification to demonstrate metabolic signatures beyond isocitrate dehydrogenase (IDH) 1/2 mutation. 1H NMR spectroscopy of tumor extracts was performed to analyze brain tumor metabolism. We detected 46 metabolites including 2-hydroxyglutarate from human brain tumors. Metabolic profiles obtained were analyzed using multivariate analysis and MetaboAnalyst 3.0, a pathway analysis tool. We found that lactate, glutamate, alanine, glutamine, 2-hydroxglutarate, serine, O-phosphocholine, glycine, glycerol, myo-inositol, aspartate, leucine, threonine, creatine, and valine had top-ranked VIP scores in metabolic pathway analyses of glioma. Major metabolism pathways perturbed in glioma included alanine/aspartate/glutamate metabolism, glycine/serine/threonine metabolism, pyruvate metabolism, taurine/hypotaurine metabolism, and d-glutamine/d-glutamate metabolism. Altered metabolites were defined between low-grade and high-grade gliomas. We identified metabolomics signatures of gliomas associated with 2-hydroxglutarate and glioma grade. Metabolic approach may lead to metabolomic cluster-precision strategy and development of metabolic anti-glioma therapy in the future.
Collapse
Affiliation(s)
- Jung Eun Lee
- Department of Neurosurgery, St. Vincent's Hospital, Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Republic of Korea
| | - Sin Soo Jeun
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Republic of Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University of College of Medicine, Republic of Korea
| | - Chang Young Yoo
- Department of Pathology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Republic of Korea
| | - Hyeon-Man Baek
- Department of Molecular Medicine, Gachon University School of Medicine, Republic of Korea.
| | - Seung Ho Yang
- Department of Neurosurgery, St. Vincent's Hospital, Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Republic of Korea.
| |
Collapse
|
34
|
Colip C, Oztek MA, Lo S, Yuh W, Fink J. Updates in the Neuoroimaging and WHO Classification of Primary CNS Gliomas: A Review of Current Terminology, Diagnosis, and Clinical Relevance From a Radiologic Prospective. Top Magn Reson Imaging 2019; 28:73-84. [PMID: 31022050 DOI: 10.1097/rmr.0000000000000195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
As new advances in the genomics and imaging of CNS tumors continues to evolve, a standardized system for classification is increasingly essential to diagnosis and management. The molecular markers introduced in the 2016 WHO classification of CNS tumors bring both practical and conceptual advances to the characterization of gliomas, strengthening the prognostic and predictive value of terminology while shedding light on the underlying mechanisms that drive biologic behavior. The purpose of this article is to provide a succinct overview of primary intracranial gliomas from a neuroradiologic prospective and according to the 5th edition WHO classification that was revised in 2016. An update of the molecular markers pertinent to defining the major lineages of brain gliomas will be provided, followed by discussion of the terminology, grading and imaging features associated with individual entities. Neuroradiologists should be aware of the key genomic and radiomic features of common brain gliomas, and familiar with an integrated approach to their diagnosis and grading.
Collapse
Affiliation(s)
- Charles Colip
- University of Washington Medical Center, Department of Radiology, Seattle, WA
| | - Murat Alp Oztek
- University of Washington Medical Center, Department of Radiology, Seattle, WA
| | - Simon Lo
- University of Washington Medical Center, Department of Radiation Oncology, Seattle, WA
| | - Willam Yuh
- University of Washington Medical Center, Department of Radiology, Seattle, WA
| | - James Fink
- University of Washington Medical Center, Department of Radiology, Seattle, WA
| |
Collapse
|
35
|
Bancroft Brown J, Sriram R, VanCriekinge M, Delos Santos R, Sun J, Delos Santos J, Tabatabai ZL, Shinohara K, Nguyen H, Peehl DM, Kurhanewicz J. NMR quantification of lactate production and efflux and glutamate fractional enrichment in living human prostate biopsies cultured with [1,6- 13 C 2 ]glucose. Magn Reson Med 2019; 82:566-576. [PMID: 30924180 DOI: 10.1002/mrm.27739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/12/2019] [Accepted: 02/25/2019] [Indexed: 12/27/2022]
Abstract
PURPOSE Image-guided prostate biopsies are routinely acquired in the diagnosis and treatment monitoring of prostate cancer, yielding useful tissue for identifying metabolic biomarkers and therapeutic targets. We developed an optimized biopsy tissue culture protocol in combination with [1,6-13 C2 ]glucose labeling and quantitative high-resolution NMR to measure glycolysis and tricarboxcylic acid (TCA) cycle activity in freshly acquired living human prostate biopsies. METHODS We acquired 34 MRI-ultrasound fusion-guided prostate biopsies in vials on ice from 22 previously untreated patients. Within 15 min, biopsies were transferred to rotary tissue culture in 37°C prostate medium containing [1,6-13 C2 ]glucose. Following 24 h of culture, tissue lactate and glutamate pool sizes and fractional enrichments were quantified using quantitative 1 H high resolution magic angle spinning Carr-Purcell-Meiboom-Gill (CPMG) spectroscopy at 1°C with and without 13 C decoupling. Lactate effluxed from the biopsy tissue was quantified in the culture medium using quantitative solution-state high-resolution NMR. RESULTS Lactate concentration in low-grade cancer (1.15 ± 0.78 nmol/mg) and benign (0.74 ± 0.15 nmol/mg) biopsies agreed with prior published measurements of snap-frozen biopsies. There was substantial fractional enrichment of [3-13 C]lactate (≈70%) and [4-13 C]glutamate (≈24%) in both low-grade cancer and benign biopsies. Although a significant difference in tissue [3-13 C]lactate fractional enrichment was not observed, lactate efflux was significantly higher (P < 0.05) in low-grade cancer biopsies (0.55 ± 0.14 nmol/min/mg) versus benign biopsies (0.31 ± 0.04 nmol/min/mg). CONCLUSION A protocol was developed for quantification of lactate production-efflux and TCA cycle activity in single living human prostate biopsies, allowing metabolic labeling on a wide spectrum of human tissues (e.g., metastatic, post-non-surgical therapy) from patients not receiving surgery.
Collapse
Affiliation(s)
- Jeremy Bancroft Brown
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Mark VanCriekinge
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Romelyn Delos Santos
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Jinny Sun
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Justin Delos Santos
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Z Laura Tabatabai
- Department of Anatomic Pathology, University of California, San Francisco, California
| | - Katsuto Shinohara
- Department of Urology, University of California, San Francisco, California
| | - Hao Nguyen
- Department of Urology, University of California, San Francisco, California
| | - Donna M Peehl
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| |
Collapse
|
36
|
Zhou L, Wang Z, Hu C, Zhang C, Kovatcheva-Datchary P, Yu D, Liu S, Ren F, Wang X, Li Y, Hou X, Piao H, Lu X, Zhang Y, Xu G. Integrated Metabolomics and Lipidomics Analyses Reveal Metabolic Reprogramming in Human Glioma with IDH1 Mutation. J Proteome Res 2019; 18:960-969. [PMID: 30596429 DOI: 10.1021/acs.jproteome.8b00663] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mutations in isocitrate dehydrogenase ( IDH) 1 are high-frequency events in low-grade glioma and secondary glioblastoma, and IDH1 mutant gliomas are vulnerable to interventions. Metabolic reprogramming is a hallmark of cancer. In this study, comprehensive metabolism investigation of clinical IDH1 mutant glioma specimens was performed to explore its specific metabolic reprogramming in real microenvironment. Massive metabolic alterations from glycolysis to lipid metabolism were identified in the IDH1 mutant glioma tissue when compared to IDH1 wild-type glioma. Of note, tricarboxylic acid (TCA) cycle intermediates were in similar levels in both groups, with more pyruvate found entering the TCA cycle in IDH1 mutant glioma. The pool of fatty acyl chains was also reduced, displayed as decreased triglycerides and sphingolipids, although membrane phosphatidyl lipids were not changed. The lower fatty acyl pool may be mediated by the lower protein expression levels of long-chain acyl-CoA synthetase 1 (ACSL1), ACSL4, and very long-chain acyl-CoA synthetase 3 (ACSVL3) in IDH1 mutant glioma. Lower ACSL1 was further found to contribute to the better survival of IDH1 mutant glioma patients based on the The Cancer Genome Atlas (TCGA) RNA sequencing data. Our research provides valuable insights into the tissue metabolism of human IDH1 mutant glioma and unravels new lipid-related targets.
Collapse
Affiliation(s)
- Lina Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | - Zhichao Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Chunxiu Hu
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | - Chaoqi Zhang
- Biotherapy Center and Cancer Center , The First Affiliated Hospital of Zhengzhou University , Zhengzhou 450052 , P. R. China
| | - Petia Kovatcheva-Datchary
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | - Di Yu
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Shasha Liu
- Biotherapy Center and Cancer Center , The First Affiliated Hospital of Zhengzhou University , Zhengzhou 450052 , P. R. China
| | - Feifei Ren
- Biotherapy Center and Cancer Center , The First Affiliated Hospital of Zhengzhou University , Zhengzhou 450052 , P. R. China
| | - Xiaolin Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | - Yanli Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | - Xiaoli Hou
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | - Hailong Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | - Xin Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | - Yi Zhang
- Biotherapy Center and Cancer Center , The First Affiliated Hospital of Zhengzhou University , Zhengzhou 450052 , P. R. China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China
| |
Collapse
|
37
|
Thon N, Tonn JC, Kreth FW. The surgical perspective in precision treatment of diffuse gliomas. Onco Targets Ther 2019; 12:1497-1508. [PMID: 30863116 PMCID: PMC6390867 DOI: 10.2147/ott.s174316] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Over the last decade, advances in molecular and imaging-based biomarkers have induced a more versatile diagnostic classification and prognostic evaluation of glioma patients. This, in combination with a growing therapeutic armamentarium, enables increasingly individualized, risk-benefit-optimized treatment strategies. This path to precision medicine in glioma patients requires surgical procedures to be reassessed within multidimensional management considerations. This article attempts to integrate the surgical intervention into a dynamic network of versatile diagnostic characterization, prognostic assessment, and multimodal treatment options in the light of the latest 2016 World Health Organization (WHO) classification of diffuse brain tumors, WHO grade II, III, and IV. Special focus is set on surgical aspects such as resectability, extent of resection, and targeted surgical strategies including minimal invasive stereotactic biopsy procedures, convection enhanced delivery, and photodynamic therapy. Moreover, the influence of recent advances in radiomics/radiogenimics on the process of surgical decision-making will be touched.
Collapse
Affiliation(s)
- Niklas Thon
- Department of Neurosurgery, Ludwig-Maximilians-University Munich, Munich, Germany,
| | - Joerg-Christian Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University Munich, Munich, Germany,
| | | |
Collapse
|
38
|
Waitkus MS, Diplas BH, Yan H. Biological Role and Therapeutic Potential of IDH Mutations in Cancer. Cancer Cell 2018; 34:186-195. [PMID: 29805076 PMCID: PMC6092238 DOI: 10.1016/j.ccell.2018.04.011] [Citation(s) in RCA: 232] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/25/2018] [Accepted: 04/26/2018] [Indexed: 12/20/2022]
Abstract
Hotspot mutations in isocitrate dehydrogenase 1 (IDH1) and isocitrate dehydrogenase 2 (IDH2) occur in a variety of myeloid malignancies and solid tumors. Mutant IDH proteins acquire a neomorphic enzyme activity to produce the putative oncometabolite D-2-hydroxyglutarate, which is thought to block cellular differentiation by competitively inhibiting α-ketoglutarate-dependent dioxygenases involved in histone and DNA demethylation. Small-molecule inhibitors of mutant IDH1 and IDH2 have been developed and are progressing through pre-clinical and clinical development. In this review, we provide an overview of mutant IDH-targeted therapy and discuss a number of important recent pre-clinical studies using models of IDH-mutant solid tumors.
Collapse
Affiliation(s)
- Matthew S Waitkus
- Department of Pathology, Duke University, Durham, NC, USA; The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC, USA
| | - Bill H Diplas
- Department of Pathology, Duke University, Durham, NC, USA; The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC, USA
| | - Hai Yan
- Department of Pathology, Duke University, Durham, NC, USA; The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC, USA.
| |
Collapse
|
39
|
Tissue metabolite profiles for the characterisation of paediatric cerebellar tumours. Sci Rep 2018; 8:11992. [PMID: 30097636 PMCID: PMC6086878 DOI: 10.1038/s41598-018-30342-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/10/2018] [Indexed: 01/05/2023] Open
Abstract
Paediatric brain tumors are becoming well characterized due to large genomic and epigenomic studies. Metabolomics is a powerful analytical approach aiding in the characterization of tumors. This study shows that common cerebellar tumors have metabolite profiles sufficiently different to build accurate, robust diagnostic classifiers, and that the metabolite profiles can be used to assess differences in metabolism between the tumors. Tissue metabolite profiles were obtained from cerebellar ependymoma (n = 18), medulloblastoma (n = 36), pilocytic astrocytoma (n = 24) and atypical teratoid/rhabdoid tumors (n = 5) samples using HR-MAS. Quantified metabolites accurately discriminated the tumors; classification accuracies were 94% for ependymoma and medulloblastoma and 92% for pilocytic astrocytoma. Using current intraoperative examination the diagnostic accuracy was 72% for ependymoma, 90% for medulloblastoma and 89% for pilocytic astrocytoma. Elevated myo-inositol was characteristic of ependymoma whilst high taurine, phosphocholine and glycine distinguished medulloblastoma. Glutamine, hypotaurine and N-acetylaspartate (NAA) were increased in pilocytic astrocytoma. High lipids, phosphocholine and glutathione were important for separating ATRTs from medulloblastomas. This study demonstrates the ability of metabolic profiling by HR-MAS on small biopsy tissue samples to characterize these tumors. Analysis of tissue metabolite profiles has advantages in terms of minimal tissue pre-processing, short data acquisition time giving the potential to be used as part of a rapid diagnostic work-up.
Collapse
|
40
|
Abstract
Aggressive neurosurgical resection to achieve sustained local control is essential for prolonging survival in patients with lower-grade glioma. However, progression in many of these patients is characterized by local regrowth. Most lower-grade gliomas harbor isocitrate dehydrogenase 1 (IDH1) or IDH2 mutations, which sensitize to metabolism-altering agents. To improve local control of IDH mutant gliomas while avoiding systemic toxicity associated with metabolic therapies, we developed a precision intraoperative treatment that couples a rapid multiplexed genotyping tool with a sustained release microparticle (MP) drug delivery system containing an IDH-directed nicotinamide phosphoribosyltransferase (NAMPT) inhibitor (GMX-1778). We validated our genetic diagnostic tool on clinically annotated tumor specimens. GMX-1778 MPs showed mutant IDH genotype-specific toxicity in vitro and in vivo, inducing regression of orthotopic IDH mutant glioma murine models. Our strategy enables immediate intraoperative genotyping and local application of a genotype-specific treatment in surgical scenarios where local tumor control is paramount and systemic toxicity is therapeutically limiting.
Collapse
|
41
|
Luks TL, McKnight TR, Jalbert LE, Williams A, Neill E, Lobo KA, Persson AI, Perry A, Phillips JJ, Molinaro AM, Chang SM, Nelson SJ. Relationship of In Vivo MR Parameters to Histopathological and Molecular Characteristics of Newly Diagnosed, Nonenhancing Lower-Grade Gliomas. Transl Oncol 2018; 11:941-949. [PMID: 29883968 PMCID: PMC6041571 DOI: 10.1016/j.tranon.2018.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/02/2018] [Accepted: 05/08/2018] [Indexed: 11/05/2022] Open
Abstract
The goal of this research was to elucidate the relationship between WHO 2016 molecular classifications of newly diagnosed, nonenhancing lower grade gliomas (LrGG), tissue sample histopathology, and magnetic resonance (MR) parameters derived from diffusion, perfusion, and 1H spectroscopic imaging from the tissue sample locations and the entire tumor. A total of 135 patients were scanned prior to initial surgery, with tumor cellularity scores obtained from 88 image-guided tissue samples. MR parameters were obtained from corresponding sample locations, and histograms of normalized MR parameters within the T2 fluid-attenuated inversion recovery lesion were analyzed in order to evaluate differences between subgroups. For tissue samples, higher tumor scores were related to increased normalized apparent diffusion coefficient (nADC), lower fractional anisotropy (nFA), lower cerebral blood volume (nCBV), higher choline (nCho), and lower N-acetylaspartate (nNAA). Within the T2 lesion, higher tumor grade was associated with higher nADC, lower nFA, and higher Cho to NAA index. Pathological analysis confirmed that diffusion and metabolic parameters increased and perfusion decreased with tumor cellularity. This information can be used to select targets for tissue sampling and to aid in making decisions about treating residual disease.
Collapse
Affiliation(s)
- Tracy L Luks
- Department of Radiology and Biomedical Imaging, University of California San Francisco.
| | | | - Llewellyn E Jalbert
- Department of Radiology and Biomedical Imaging, University of California San Francisco
| | - Aurelia Williams
- Department of Radiology and Biomedical Imaging, University of California San Francisco
| | - Evan Neill
- Department of Radiology and Biomedical Imaging, University of California San Francisco
| | - Khadjia A Lobo
- Department of Radiology and Biomedical Imaging, University of California San Francisco
| | | | - Arie Perry
- Department of Neurology, University of California San Francisco
| | - Joanna J Phillips
- Department of Pathology, University of California San Francisco; Department of Neurological Surgery, University of California San Francisco
| | - Annette M Molinaro
- Department of Neurological Surgery, University of California San Francisco; Department of Epidemiology and Biostatistics, University of California San Francisco
| | - Susan M Chang
- Department of Neurological Surgery, University of California San Francisco
| | - Sarah J Nelson
- Department of Radiology and Biomedical Imaging, University of California San Francisco
| |
Collapse
|
42
|
De Looze C, Beausang A, Cryan J, Loftus T, Buckley PG, Farrell M, Looby S, Reilly R, Brett F, Kearney H. Machine learning: a useful radiological adjunct in determination of a newly diagnosed glioma's grade and IDH status. J Neurooncol 2018; 139:491-499. [PMID: 29770897 DOI: 10.1007/s11060-018-2895-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/02/2018] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Machine learning methods have been introduced as a computer aided diagnostic tool, with applications to glioma characterisation on MRI. Such an algorithmic approach may provide a useful adjunct for a rapid and accurate diagnosis of a glioma. The aim of this study is to devise a machine learning algorithm that may be used by radiologists in routine practice to aid diagnosis of both: WHO grade and IDH mutation status in de novo gliomas. METHODS To evaluate the status quo, we interrogated the accuracy of neuroradiology reports in relation to WHO grade: grade II 96.49% (95% confidence intervals [CI] 0.88, 0.99); III 36.51% (95% CI 0.24, 0.50); IV 72.9% (95% CI 0.67, 0.78). We derived five MRI parameters from the same diagnostic brain scans, in under two minutes per case, and then supplied these data to a random forest algorithm. RESULTS Machine learning resulted in a high level of accuracy in prediction of tumour grade: grade II/III; area under the receiver operating characteristic curve (AUC) = 98%, sensitivity = 0.82, specificity = 0.94; grade II/IV; AUC = 100%, sensitivity = 1.0, specificity = 1.0; grade III/IV; AUC = 97%, sensitivity = 0.83, specificity = 0.97. Furthermore, machine learning also facilitated the discrimination of IDH status: AUC of 88%, sensitivity = 0.81, specificity = 0.77. CONCLUSIONS These data demonstrate the ability of machine learning to accurately classify diffuse gliomas by both WHO grade and IDH status from routine MRI alone-without significant image processing, which may facilitate usage as a diagnostic adjunct in clinical practice.
Collapse
Affiliation(s)
- Céline De Looze
- Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland.,School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Alan Beausang
- Department of Neuropathology, Beaumont Hospital, Dublin, Ireland
| | - Jane Cryan
- Department of Neuropathology, Beaumont Hospital, Dublin, Ireland
| | - Teresa Loftus
- Department of Molecular Pathology, Beaumont Hospital, Dublin, Ireland
| | - Patrick G Buckley
- Department of Molecular Pathology, Beaumont Hospital, Dublin, Ireland.,Genomics Medicine Ireland, Dublin, Ireland
| | - Michael Farrell
- Department of Neuropathology, Beaumont Hospital, Dublin, Ireland
| | - Seamus Looby
- Department of Neuroradiology, Beaumont Hospital, Dublin, Ireland
| | - Richard Reilly
- Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland.,Institute of Neurosciences, Trinity College Dublin, Dublin, Ireland.,School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Francesca Brett
- Department of Neuropathology, Beaumont Hospital, Dublin, Ireland
| | - Hugh Kearney
- Department of Neuropathology, Beaumont Hospital, Dublin, Ireland.
| |
Collapse
|
43
|
IDH1 mutation in human glioma induces chemical alterations that are amenable to optical Raman spectroscopy. J Neurooncol 2018; 139:261-268. [PMID: 29761368 DOI: 10.1007/s11060-018-2883-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/23/2018] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Mutations in the isocytrate dehydrogenase 1 (IDH1) gene are early genetic events in glioma pathogenesis and cause profound metabolic changes. Because this genotype is found in virtually every tumor cell, therapies targeting mutant IDH1 protein are being developed. The intraoperative administration of those therapies would require fast technologies for the determination of IDH1 genotype. As of today, there is no such diagnostic test available. Recently, infrared spectroscopy was shown to bridge this gap. Here, we tested Raman spectroscopy for analysis of IDH1 genotype in glioma, which constitutes an alternative contact-free technique with the potential of being applicable in situ. METHODS Human glioma samples (n = 36) were obtained during surgery and cryosections were prepared. IDH1 mutations were assessed using DNA sequencing and 100 Raman spectra were obtained for each sample. RESULTS Analysis of Raman spectra revealed increased intensities in spectral bands related to DNA in IDH1 mutant glioma while bands assigned to molecular vibrations of lipids were significantly decreased. Moreover, intensities of Raman bands assigned to proteins differed in IDH1 mutant and IDH1 wild-type glioma, suggesting alterations in the protein profile. The selection of five bands (498, 826, 1003, 1174 and 1337 cm-1) allowed the classification of Raman spectra according to IDH1 genotype with a correct rate of 89%. CONCLUSION Raman spectroscopy constitutes a simple, rapid and safe procedure for determination of the IDH1 mutation that shows great promise for clinically relevant in situ diagnostics.
Collapse
|
44
|
Texture analysis- and support vector machine-assisted diffusional kurtosis imaging may allow in vivo gliomas grading and IDH-mutation status prediction: a preliminary study. Sci Rep 2018; 8:6108. [PMID: 29666413 PMCID: PMC5904150 DOI: 10.1038/s41598-018-24438-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 03/07/2018] [Indexed: 12/27/2022] Open
Abstract
We sought to investigate, whether texture analysis of diffusional kurtosis imaging (DKI) enhanced by support vector machine (SVM) analysis may provide biomarkers for gliomas staging and detection of the IDH mutation. First-order statistics and texture feature extraction were performed in 37 patients on both conventional (FLAIR) and mean diffusional kurtosis (MDK) images and recursive feature elimination (RFE) methodology based on SVM was employed to select the most discriminative diagnostic biomarkers. The first-order statistics demonstrated significantly lower MDK values in the IDH-mutant tumors. This resulted in 81.1% accuracy (sensitivity = 0.96, specificity = 0.45, AUC 0.59) for IDH mutation diagnosis. There were non-significant differences in average MDK and skewness among the different tumour grades. When texture analysis and SVM were utilized, the grading accuracy achieved by DKI biomarkers was 78.1% (sensitivity 0.77, specificity 0.79, AUC 0.79); the prediction accuracy for IDH mutation reached 83.8% (sensitivity 0.96, specificity 0.55, AUC 0.87). For the IDH mutation task, DKI outperformed significantly the FLAIR imaging. When using selected biomarkers after RFE, the prediction accuracy achieved 83.8% (sensitivity 0.92, specificity 0.64, AUC 0.88). These findings demonstrate the superiority of DKI enhanced by texture analysis and SVM, compared to conventional imaging, for gliomas staging and prediction of IDH mutational status.
Collapse
|
45
|
2-Hydroxyglutarate Detection by Short Echo Time Magnetic Resonance Spectroscopy in Routine Imaging Study of Brain Glioma at 3.0 T. J Comput Assist Tomogr 2018; 42:469-474. [DOI: 10.1097/rct.0000000000000705] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
46
|
Dietz C, Ehret F, Palmas F, Vandergrift LA, Jiang Y, Schmitt V, Dufner V, Habbel P, Nowak J, Cheng LL. Applications of high-resolution magic angle spinning MRS in biomedical studies II-Human diseases. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3784. [PMID: 28915318 PMCID: PMC5690552 DOI: 10.1002/nbm.3784] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/21/2017] [Accepted: 07/10/2017] [Indexed: 05/06/2023]
Abstract
High-resolution magic angle spinning (HRMAS) MRS is a powerful method for gaining insight into the physiological and pathological processes of cellular metabolism. Given its ability to obtain high-resolution spectra of non-liquid biological samples, while preserving tissue architecture for subsequent histopathological analysis, the technique has become invaluable for biochemical and biomedical studies. Using HRMAS MRS, alterations in measured metabolites, metabolic ratios, and metabolomic profiles present the possibility to improve identification and prognostication of various diseases and decipher the metabolomic impact of drug therapies. In this review, we evaluate HRMAS MRS results on human tissue specimens from malignancies and non-localized diseases reported in the literature since the inception of the technique in 1996. We present the diverse applications of the technique in understanding pathological processes of different anatomical origins, correlations with in vivo imaging, effectiveness of therapies, and progress in the HRMAS methodology.
Collapse
Affiliation(s)
- Christopher Dietz
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
- Faculty of Medicine, Julius Maximilian University of Würzburg, 97080 Würzburg, Germany
| | - Felix Ehret
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
- Faculty of Medicine, Julius Maximilian University of Würzburg, 97080 Würzburg, Germany
| | - Francesco Palmas
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
- Department of Chemical and Geological Sciences, University of Cagliari, Cagliari, Sardinia, 09042 Italy
| | - Lindsey A. Vandergrift
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
| | - Yanni Jiang
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
- Department of Radiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029 China
| | - Vanessa Schmitt
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
- Faculty of Medicine, Julius Maximilian University of Würzburg, 97080 Würzburg, Germany
| | - Vera Dufner
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
- Department of Hematology and Oncology, Charité Medical University of Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Piet Habbel
- Department of Hematology and Oncology, Charité Medical University of Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Johannes Nowak
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Leo L. Cheng
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
| |
Collapse
|
47
|
Collins RRJ, Patel K, Putnam WC, Kapur P, Rakheja D. Oncometabolites: A New Paradigm for Oncology, Metabolism, and the Clinical Laboratory. Clin Chem 2017; 63:1812-1820. [PMID: 29038145 DOI: 10.1373/clinchem.2016.267666] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 09/19/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Pediatric clinical laboratories commonly measure tricarboxylic acid cycle intermediates for screening, diagnosis, and monitoring of specific inborn errors of metabolism, such as organic acidurias. In the past decade, the same tricarboxylic acid cycle metabolites have been implicated and studied in cancer. The accumulation of these metabolites in certain cancers not only serves as a biomarker but also directly contributes to cellular transformation, therefore earning them the designation of oncometabolites. CONTENT D-2-hydroxyglutarate, L-2-hydroxyglutarate, succinate, and fumarate are the currently recognized oncometabolites. They are structurally similar and share metabolic proximity in the tricarboxylic acid cycle. As a result, they promote tumorigenesis in cancer cells through similar mechanisms. This review summarizes the currently understood common and distinct biological features of these compounds. In addition, we will review the current laboratory methodologies that can be used to quantify these metabolites and their downstream targets. SUMMARY Oncometabolites play an important role in cancer biology. The metabolic pathways that lead to the production of oncometabolites and the downstream signaling pathways that are activated by oncometabolites represent potential therapeutic targets. Clinical laboratories have a critical role to play in the management of oncometabolite-associated cancers through development and validation of sensitive and specific assays that measure oncometabolites and their downstream effectors. These assays can be used as screening tools and for follow-up to measure response to treatment, as well as to detect minimal residual disease and recurrence.
Collapse
Affiliation(s)
- Rebecca R J Collins
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX.,Department of Pathology and Laboratory Medicine, Children's Health, Dallas, TX
| | - Khushbu Patel
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX.,Department of Pathology and Laboratory Medicine, Children's Health, Dallas, TX
| | - William C Putnam
- Office of Clinical and Translational Research, Texas Tech University Health Sciences Center, Dallas, TX
| | - Payal Kapur
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Dinesh Rakheja
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX; .,Department of Pathology and Laboratory Medicine, Children's Health, Dallas, TX.,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
48
|
Wenger KJ, Hattingen E, Franz K, Steinbach J, Bähr O, Pilatus U. In vivo Metabolic Profiles as Determined by 31P and short TE 1H MR-Spectroscopy : No Difference Between Patients with IDH Wildtype and IDH Mutant Gliomas. Clin Neuroradiol 2017; 29:27-36. [PMID: 28983683 DOI: 10.1007/s00062-017-0630-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/15/2017] [Indexed: 12/28/2022]
Abstract
PURPOSE Previous ex vivo spectroscopic data from tissue samples revealed differences in phospholipid metabolites between isocitrate dehydrogenase mutated (IDHmut) and IDH wildtype (IDHwt) gliomas. We investigated whether these changes can be found in vivo using 1H-decoupled 31P magnetic resonance spectroscopic imaging (MRSI) with 3D chemical shift imaging (CSI) at 3 T in patients with low and high-grade gliomas. METHODS The study included 33 prospectively enrolled, mostly untreated patients who met spectral quality criteria according to the World Health Organization (WHO II n = 7, WHO III n = 17, WHO IV n = 9; 25 patients IDHmut, 8 patients IDHwt). The MRSI protocol included 1H decoupled 31P MRSI with 3D CSI (3D 31P CSI), 2D 1H CSI and a 1H single voxel spectroscopy sequence (TE 30 ms) from the tumor area. For 1H MRS, absolute metabolite concentration values were calculated (phantom replacement method). For 31P MRS, metabolite intensity ratios were calculated for the choline (C) and ethanolamine (E)-containing metabolites. RESULTS In our patient cohort we did not find significant differences for the ratio of phosphocholine (PC) and phosphoethanolamine (PE), PC/PE, (p = 0.24) for IDHmut compared to IDHwt gliomas. Furthermore, we found no elevated ratios of glycerophosphocholine (GPC) and glycerophosphoethanolamine (GPE), GPC/GPE, (p = 0.68) or GPC/PE (p = 0.12) for IDHmut gliomas. Even the ratio (PC+GPC)/(PE+GPE) showed no significant differences with respect to mutation status (p = 0.16). Nonetheless, changes related to tumor grade regarding intracellular pH (pHi) and phospholipid metabolism as well as absolute metabolite concentrations of co-registered 2D 1H CSI data for tumor and control tissue showed the anticipated results. CONCLUSION Using 3D-CSI data acquisition, in vivo 31P MR spectroscopic measurement of phospholipid metabolites could not distinguish between IDHmut and IDHwt.
Collapse
Affiliation(s)
- Katharina J Wenger
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elke Hattingen
- Institute of Neuroradiology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany. .,Institute of Neuroradiology, University Hospital Bonn, Sigmund-Freud Straße 25, 53127, Bonn, Germany.
| | - Kea Franz
- Department of Neurosurgery, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Joachim Steinbach
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Oliver Bähr
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ulrich Pilatus
- Institute of Neuroradiology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| |
Collapse
|
49
|
Reliable diagnosis of IDH-mutant glioblastoma by 2-hydroxyglutarate detection: a study by 3-T magnetic resonance spectroscopy. Neurosurg Rev 2017; 41:641-647. [DOI: 10.1007/s10143-017-0908-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/25/2017] [Accepted: 09/15/2017] [Indexed: 12/18/2022]
|
50
|
Clonal expansion and epigenetic reprogramming following deletion or amplification of mutant IDH1. Proc Natl Acad Sci U S A 2017; 114:10743-10748. [PMID: 28916733 DOI: 10.1073/pnas.1708914114] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
IDH1 mutation is the earliest genetic alteration in low-grade gliomas (LGGs), but its role in tumor recurrence is unclear. Mutant IDH1 drives overproduction of the oncometabolite d-2-hydroxyglutarate (2HG) and a CpG island (CGI) hypermethylation phenotype (G-CIMP). To investigate the role of mutant IDH1 at recurrence, we performed a longitudinal analysis of 50 IDH1 mutant LGGs. We discovered six cases with copy number alterations (CNAs) at the IDH1 locus at recurrence. Deletion or amplification of IDH1 was followed by clonal expansion and recurrence at a higher grade. Successful cultures derived from IDH1 mutant, but not IDH1 wild type, gliomas systematically deleted IDH1 in vitro and in vivo, further suggestive of selection against the heterozygous mutant state as tumors progress. Tumors and cultures with IDH1 CNA had decreased 2HG, maintenance of G-CIMP, and DNA methylation reprogramming outside CGI. Thus, while IDH1 mutation initiates gliomagenesis, in some patients mutant IDH1 and 2HG are not required for later clonal expansions.
Collapse
|