1
|
Vu HH, Moellmer SA, McCarty OJ, Puy C. New mechanisms and therapeutic approaches to regulate vascular permeability in systemic inflammation. Curr Opin Hematol 2025; 32:130-137. [PMID: 40063579 PMCID: PMC11949701 DOI: 10.1097/moh.0000000000000864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
PURPOSE OF REVIEW This review summarizes mechanisms that regulate endothelial vascular permeability in health and disease. In systemic inflammation, the endothelial barrier integrity is disrupted, which exacerbates vascular permeability, leading to organ failure and death. Herein we provide an overview of emerging therapeutic targets to reverse barrier dysfunction and preserve vascular permeability in inflammatory diseases like sepsis. RECENT FINDINGS Endothelial barrier function is regulated in part by the endothelial cell-specific protein, Roundabout 4 (ROBO4), and vascular endothelial (VE)-cadherin, a critical adherens junction protein, which act in concert to suppresses vascular permeability by stabilizing endothelial cell-cell interactions. We recently discovered a pathway by which activation of coagulation factor XI (FXI) enhances the cleavage of VE-cadherin by the metalloproteinase ADAM10, contributing to sepsis-related endothelial damage and loss of barrier function. Targeting FXI improved survival and reduced sVE-cadherin levels in a baboon model of sepsis while enhancing Robo4 expression decreased mortality in LPS-treated mice. SUMMARY Endothelial cell barrier dysfunction is a hallmark of excessive immune responses characteristic of systemic inflammatory diseases such as sepsis. Advances in understanding the molecular mechanisms regulating vascular permeability, for instance the newly discovered roles of FXI or ROBO4, may help identify novel therapeutic targets for mitigating vascular hyperpermeability in septic patients.
Collapse
Affiliation(s)
- Helen H. Vu
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Samantha A. Moellmer
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Owen J.T. McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, OR, USA
| | - Cristina Puy
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
2
|
Suzuki T, Loyde E, Chen S, Etzrodt V, Idowu TO, Clark AJ, Saade MC, Flores BM, Lu S, Birrane G, Vemireddy V, Seeliger B, David S, Parikh SM. Cathepsin K cleavage of angiopoietin-2 creates detrimental Tie2 antagonist fragments in sepsis. J Clin Invest 2025; 135:e174135. [PMID: 40029709 PMCID: PMC11996858 DOI: 10.1172/jci174135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/17/2025] [Indexed: 03/05/2025] Open
Abstract
Elevated angiopoietin-2 is associated with diverse inflammatory conditions, including sepsis, a leading global cause of mortality. During inflammation, angiopoietin-2 antagonizes the endothelium-enriched receptor Tie2 to destabilize the vasculature. In other contexts, angiopoietin-2 stimulates Tie2. The basis for context-dependent antagonism remains incompletely understood. Here, we show that inflammation-induced proteolytic cleavage of angiopoietin-2 converts this ligand from Tie2 agonist to antagonist. Conditioned media from stimulated macrophages induced endothelial angiopoietin-2 secretion. Unexpectedly, this was associated with reduction of the 75 kDa full-length protein and appearance of new 25 and 50 kDa C-terminal fragments. Peptide sequencing proposed cathepsin K as a candidate protease. Cathepsin K was necessary and sufficient to cleave angiopoietin-2. Recombinant 25 and 50 kDa angiopoietin-2 fragments (cANGPT225 and cANGPT250) bound and antagonized Tie2. Cathepsin K inhibition with the phase 3 small-molecule inhibitor odanacatib improved survival in distinct murine sepsis models. Full-length angiopoietin-2 enhanced survival in endotoxemic mice administered odanacatib and, conversely, increased mortality in the drug's absence. Odanacatib's benefit was reversed by heterologous cANGPT225. Septic humans accumulated circulating angiopoietin-2 fragments, which were associated with adverse outcomes. These results identify cathepsin K as a candidate marker of sepsis and a proteolytic mechanism for the conversion of angiopoietin-2 from Tie2 agonist to antagonist, with therapeutic implications for inflammatory conditions associated with angiopoietin-2 induction.
Collapse
Affiliation(s)
- Takashi Suzuki
- Division of Nephrology, Department of Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Erik Loyde
- Division of Nephrology, Department of Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Sara Chen
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Valerie Etzrodt
- Division of Nephrology, Department of Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Temitayo O. Idowu
- Division of Nephrology, Department of Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Amanda J. Clark
- Division of Nephrology, Department of Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
- Division of Pediatric Nephrology, Department of Pediatrics, UT Southwestern Medical Center and Children’s Medical Center, Dallas, Texas, USA
| | - Marie Christelle Saade
- Division of Nephrology, Department of Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Brenda Mendoza Flores
- Division of Nephrology, Department of Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Shulin Lu
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Gabriel Birrane
- Division of Experimental Medicine, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Vamsidhara Vemireddy
- Division of Nephrology, Department of Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Benjamin Seeliger
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease, Hannover Medical School, German Center for Lung Research, Hannover, Germany
| | - Sascha David
- Institute of Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Samir M. Parikh
- Division of Nephrology, Department of Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
3
|
Çakir MU, Karduz G, Aksu U. Experimental and clinical perspectives on glycocalyx integrity and its relation to acute respiratory distress syndrome. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167745. [PMID: 39987847 DOI: 10.1016/j.bbadis.2025.167745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 02/02/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
The development of microcirculation imaging devices has significantly advanced our comprehension of the capillary environment's dynamics. Early research suggested that erythrocytes did not contact the vessel's inner surface due to the Fåhraeus effect, implying the presence of a covering on the endothelial cell surface. Subsequent electron microscopy studies revealed this layer to be a complex part of the vessel wall, now known as the endothelial glycocalyx (EG). The EG is a network of proteoglycans and glycoproteins bound to the endothelial membrane, incorporating soluble molecules from the endothelium and plasma. Over time, studies have elucidated the structure, function, and therapeutic targets of the glycocalyx, underscoring its pivotal role in vascular biology. The presence of cellular extensions of lung tissue cells in both vascular and nonvascular areas demonstrates the pivotal role of the glycocalyx in pulmonary vascular leak, surfactant dysfunction, impaired lung compliance and gas exchange abnormalities, which are hallmarks of acute respiratory distress syndrome (ARDS). It is of the utmost importance to elucidate the mechanisms underlying alveolocapillary glycocalyx degradation to develop efficacious treatments for ARDS, which has a mortality rate of 35 %. An understanding of the glycocalyx's role in vascular integrity provides a foundation for exploring new therapeutic avenues to mitigate lung injury and improve clinical outcomes in ARDS patients.
Collapse
Affiliation(s)
- Muzaffer Utku Çakir
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Türkiye
| | - Gülsüm Karduz
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Türkiye
| | - Ugur Aksu
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Türkiye.
| |
Collapse
|
4
|
Pham AVQ, Na Y, Suk G, Yang C, Kang SM, Lee J, Choi H, Kim W, Chi SW, Han S, Choi HW, Kim H, Kim C. Identification of Tie2 as a sensor for reactive oxygen species and its therapeutic implication. Redox Biol 2025; 81:103555. [PMID: 39993340 PMCID: PMC11903958 DOI: 10.1016/j.redox.2025.103555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/03/2025] [Accepted: 02/17/2025] [Indexed: 02/26/2025] Open
Abstract
Psoriasis is a chronic inflammatory disease characterized by hyperproliferation of keratinocytes and abnormal blood vessels. As hyperproliferation is driven by pro-inflammatory cytokines produced by activated immune cells, therapeutic strategies often target these cytokines to manage the disease. However, the role of abnormally developed blood vessels has often been overlooked in treatment approaches. In this study, we focused on blood vessels in psoriatic lesions and investigated the potential interplay between immune and endothelial cells by adopting imiquimod treated mice as in vivo model, together with various cell biological, biochemical, and structural analyses. We found that activated immune cells can generate reactive oxygen species, subsequently inducing oxidative stress in endothelial cells. Oxidative stress impairs endothelial cell layer integrity, thereby facilitating transendothelial migration of immune cells. Mechanistically, oxidative conditions inhibit Tie2 activation, potentially by modifying its cysteine residues, leading to deactivation of its vessel-stabilizing functions. Additionally, we demonstrated that reactivating Tie2 under such conditions could restore endothelial barrier function and alleviate the disease. These results suggest that Tie2 serves as a receptor that is directly responsive to oxidative environments, thereby modulating its kinase activity. Furthermore, we suggest that Tie2 reactivation is a promising alternative therapeutic approach for psoriasis.
Collapse
Affiliation(s)
- An Vuong Quynh Pham
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Yongwoo Na
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Gyeongseo Suk
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Chansik Yang
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - So Min Kang
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Joonha Lee
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Hongseo Choi
- Department of Molecular Science & Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Wook Kim
- Department of Molecular Science & Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Sung Wook Chi
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Sangyeul Han
- Ingenia Therapeutics, 34 Coolidge Ave. 2nd Floor, Watertown, MA, 02472, United States
| | - Hae Woong Choi
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Hyeonwoo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea; KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Chungho Kim
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
5
|
Wang R, Li H, Xie Z, Huang M, Xu P, Yuan C, Li J, Flaumenhaft R, Huang M, Jiang L. Development of a recombinant Ang1 variant with enhanced Tie2 binding and its application to attenuate sepsis in mice. SCIENCE ADVANCES 2025; 11:eads1796. [PMID: 39813336 PMCID: PMC11734714 DOI: 10.1126/sciadv.ads1796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/12/2024] [Indexed: 01/18/2025]
Abstract
The angiopoietin (Ang)-Tie axis, critical for endothelial cell function and vascular development, is a promising therapeutic target for treating vascular disorders and inflammatory conditions like sepsis. This study aimed to enhance the binding affinity of recombinant Ang1 variants to the Tie2 and explore their therapeutic potential. Structural insights from the Ang1-Tie2 complex enabled the identification of key residues within the Ang1 receptor binding domain (RBD) critical for Tie2 interaction. Molecular dynamics simulations revealed that Met436Arg (M436R) and Ala451Asp (A451D) could improve Ang1's Tie2 binding affinity. One variant, Ang1-RBDA451D, demonstrated a 100-fold increase compared to the wild type. Cellular assays revealed that Ang1A451D enhanced Tie2 phosphorylation, promoting endothelial cell migration and tube formation. In vivo, this variant effectively reduced inflammatory cytokines and attenuated organ damage in septic mice. These findings highlight Ang1A451D as a promising therapeutic candidate for vascular diseases, offering notable clinical potential for mitigating sepsis-related vascular dysfunction.
Collapse
Affiliation(s)
- Rui Wang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Hao Li
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Zhinuo Xie
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Meijuan Huang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
| | - Peng Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Jinyu Li
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
- The National & Local Joint Engineering Research Center on Biopharmaceutical and Photodynamic Therapy Technologies, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
- The National & Local Joint Engineering Research Center on Biopharmaceutical and Photodynamic Therapy Technologies, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
6
|
Yang Y, Schmidt EP. Alveolar glycocalyces during health and critical illness. PROTEOGLYCAN RESEARCH 2025; 3:e70022. [PMID: 40242042 PMCID: PMC11999102 DOI: 10.1002/pgr2.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 02/24/2025] [Indexed: 04/18/2025]
Abstract
The alveolus, the functional unit of the lung, is comprised of closely approximated alveolar epithelial and endothelial cells, across which gas exchange occurs. This alveolar septum also includes two substantial, intraluminal extracellular matrices: the alveolar epithelial and endothelial glycocalyces. This perspective investigates the distinct structures and homeostatic functions of these two glycocalyces, as well as their distinct fates and consequences during critical illnesses such as sepsis and the acute respiratory distress syndrome. We seek to identify key knowledge gaps, with the goal to inspire future mechanistic investigations that may substantially impact human health and disease.
Collapse
Affiliation(s)
- Yimu Yang
- Department of Medicine, Massachusetts General Hospital, Boston MA
| | - Eric P. Schmidt
- Department of Medicine, Massachusetts General Hospital, Boston MA
| |
Collapse
|
7
|
Meegan JE, Rizzo AN, Schmidt EP, Bastarache JA. Cellular Mechanisms of Lung Injury: Current Perspectives. Clin Chest Med 2024; 45:821-833. [PMID: 39443000 PMCID: PMC11499619 DOI: 10.1016/j.ccm.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The alveolar-capillary barrier includes microvascular endothelial and alveolar epithelial cells and their matrices, and its disruption is a critical driver of lung injury during development of acute respiratory distress syndrome. In this review, we provide an overview of the structure and function of the alveolar-capillary barrier during health and highlight several important signaling mechanisms that underlie endothelial and epithelial injury during critical illness, emphasizing areas with potential for development of therapeutic strategies targeting alveolar-capillary leak. We also emphasize the importance of biomarker and preclinical studies in developing novel therapies and highlight important areas warranting future investigation.
Collapse
Affiliation(s)
- Jamie E Meegan
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alicia N Rizzo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Bulfinch 148, Boston, MA 02114, USA
| | - Eric P Schmidt
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Bulfinch 148, Boston, MA 02114, USA
| | - Julie A Bastarache
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
8
|
Li H, Wang R, Xu P, Yuan C, Huang M, Jiang L. Elucidating the molecular basis of PECAM-1 and Tie2 interaction from binding dynamics and complex formation. Biochem Biophys Res Commun 2024; 735:150484. [PMID: 39094232 DOI: 10.1016/j.bbrc.2024.150484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Endothelial hyperpermeability-induced vascular dysfunction is a prevalent and significant characteristic in critical illnesses such as sepsis and other conditions marked by acute systemic inflammation. Platelet endothelial cell adhesion molecule-1 (PECAM-1) and Tie2 serve as transmembrane receptors within endothelial cells (ECs), playing pivotal roles not only in maintaining EC-EC junctions but also in influencing vasculogenesis, vessel homeostasis, and vascular remodeling. OBJECTIVES At present, the molecular basis of the PECAM-1-Tie2 interaction remains inadequately elucidated. In the study, recombinant soluble PECAM-1 (sPECAM-1) and Tie2 (sTie2) were expressed by Drosophila S2 and HEK293 expression systems, respectively. The interactions between sPECAM-1 and sTie2 were investigated using the Surface Plasmon Resonance (SPR) and size-exclusion chromatography methods. An immunofluorescence assay was used to detect the binding of sPECAM-1 and sTie2 on endothelial cells. RESULTS PECAM-1 was found to bind with sTie2 in a sodium and pH-dependent manner as confirmed by the ELISA, the D5-D6 domains of PECAM-1 might play a crucial role in binding with sTie2. Surface Plasmon Resonance (SPR) results showed that the full length of sPECAM-1 has the strongest binding affinity (KD = 48.4 nM) with sTie2, compared to sPECAM-1-D1-D4 and sPECAM-1-D1-D2. This result is consistent with that in the ELISA. In addition, size-exclusion chromatography demonstrated that sPECAM-1, sTie2, and Ang1 can form a ternary complex. CONCLUSION In this study, we determined that sPECAM-1 binds to sTie2 in a pH and sodium-dependent manner. The full length of sPECAM-1 has the strongest binding affinity, and the D5-D6 domains in sPECAM-1 play a crucial role in the interaction between sPECAM-1 and sTie2.
Collapse
Affiliation(s)
- Hao Li
- College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Rui Wang
- College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Peng Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou, 350116, China; The National & Local Joint Engineering Research Center on Biopharmaceutical and Photodynamic Therapy Technologies, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou, 350116, China; The National & Local Joint Engineering Research Center on Biopharmaceutical and Photodynamic Therapy Technologies, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
9
|
Tian T, Yu Q, Yang D, Zhang X, Zhang C, Li J, Luo T, Zhang K, Lv X, Wang Y, Wang H, Li H. Endothelial α 1-adrenergic receptor activation improves cardiac function in septic mice via PKC-ERK/p38MAPK signaling pathway. Int Immunopharmacol 2024; 141:112937. [PMID: 39182270 DOI: 10.1016/j.intimp.2024.112937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
Cardiomyopathy is particularly common in septic patients. Our previous studies have shown that activation of the alpha 1 adrenergic receptor (α1-AR) on cardiomyocytes inhibits sepsis-induced myocardial dysfunction. However, the role of cardiac endothelial α1-AR in septic cardiomyopathy has not been determined. Here, we identified α1-AR expression in mouse and human endothelial cells and showed that activation of α1-AR with phenylephrine (PE) improved cardiac function and survival by preventing cardiac endothelial injury in septic mice. Mechanistically, activating α1-AR with PE decreased the expression of ICAM-1, VCAM-1, iNOS, E-selectin, and p-p38MAPK, while promoting PKC and ERK1/2 phosphorylation in LPS-treated endothelial cells. These effects were abolished by a PKC inhibitor or α1-AR antagonist. PE also reduced p65 nuclear translocation, but this suppression is not blocked by PKC inhibition. Treatment with U0126 (a specific ERK1/2 inhibitor) reversed the effects of PE on p38MAPK phosphorylation. Our results demonstrate that cardiac endothelial α1-AR activation prevents sepsis-induced myocardial dysfunction in mice by inhibiting the endothelial injury via PKC-ERK/p38MAPK signaling pathway and a PKC-independent inhibition of p65 nuclear translocation. These findings offer a new perspective for septic patients with cardiac dysfunction by inhibiting cardiac endothelial cell injury through α1-AR activation.
Collapse
Affiliation(s)
- Tian Tian
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Qing Yu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Duomeng Yang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Xue Zhang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Chanjuan Zhang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jianling Li
- Department of Anesthesiology, The First Affiliated Hospital, Jinan University, Guangzhou 510632, Guangdong, China
| | - Tao Luo
- Department of Pathophysiology, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
| | - Keke Zhang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Xiuxiu Lv
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yiyang Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Huadong Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Hongmei Li
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
10
|
Zhuo M, Fu S, Chi Y, Li X, Li S, Ma X, Li X. Angiopoietin-2 as a prognostic biomarker in septic adult patients: a systemic review and meta-analysis. Ann Intensive Care 2024; 14:169. [PMID: 39522088 PMCID: PMC11551087 DOI: 10.1186/s13613-024-01393-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The impairment of endothelial function represents a key pathophysiological mechanism in the development of sepsis. This research aimed to evaluate the prognostic significance of angiopoietin-2 (Ang-2), an endothelial biomarker, in predicting mortality in sepsis patients. METHODS Chinese and English studies were systematically retrieved in PubMed, Cochrane Library, Embase, WanFang, CNKI, CQVIP, and CBM databases up to July 16, 2023. We conducted a study selection established upon predefined inclusion and exclusion criteria and used the Newcastle-Ottawa scale (NOS) to assess its quality. We extracted available data from the included studies for data analysis. RESULTS The final inclusion comprised 33 studies with 4703 participants. According to the NOS, one study was of medium quality, while the rest were of high quality. In comparison to survivors, the levels of Ang-2 in non-survivors were markedly elevated [standardized mean difference (SMD) = 1.08, 95% confidence intervals (CI) 0.68-1.49, P < 0.001], and the same results were also observed in the subgroup that met sepsis 3.0 diagnosis criteria (SMD = 0.63, 95% CI 0.11-1.14, P = 0.017). The results comparing Ang-2 levels between non-survivors and survivors were independent of duration of follow-up, sample sources, type of study, and region. Ang-2 was a risk factor for mortality [odds ratios (OR) = 1.16, 95% CI 1.09-1.23, P < 0.001]. Ang-2 was demonstrated to be able to predict mortality in septic adult patients [area under the curve (AUC) = 0.76, 95% CI 0.70-0.82, P < 0.001]. CONCLUSIONS Ang-2 level was positively correlated with risk of death in sepsis patients. Ang-2 might be a useful and valuable biomarker for predicting mortality in septic adult patients.
Collapse
Affiliation(s)
- Mengke Zhuo
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, North Nanjing Street 155, Shenyang, Liaoning Province, 110001, China
| | - Sifeng Fu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Diseases, Guangzhou, 510120, China
| | - Yawen Chi
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, North Nanjing Street 155, Shenyang, Liaoning Province, 110001, China
| | - Xinghua Li
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, North Nanjing Street 155, Shenyang, Liaoning Province, 110001, China
| | - Sirui Li
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, North Nanjing Street 155, Shenyang, Liaoning Province, 110001, China
| | - Xiaochun Ma
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, North Nanjing Street 155, Shenyang, Liaoning Province, 110001, China
| | - Xu Li
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, North Nanjing Street 155, Shenyang, Liaoning Province, 110001, China.
| |
Collapse
|
11
|
Lynch Y, Vande Vusse LK. Diffuse Alveolar Hemorrhage in Hematopoietic Cell Transplantation. J Intensive Care Med 2024; 39:1055-1070. [PMID: 37872657 DOI: 10.1177/08850666231207331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Diffuse alveolar hemorrhage (DAH) is a morbid syndrome that occurs after autologous and allogeneic hematopoietic cell transplantation in children and adults. DAH manifests most often in the first few weeks following transplantation. It presents with pneumonia-like symptoms and acute respiratory failure, often requiring high levels of oxygen supplementation or mechanical ventilatory support. Hemoptysis is variably present. Chest radiographs typically feature widespread alveolar filling, sometimes with peripheral sparing and pleural effusions. The diagnosis is suspected when serial bronchoalveolar lavages return increasingly bloody fluid. DAH is differentiated from infectious causes of alveolar hemorrhage when extensive microbiological testing reveals no pulmonary pathogens. The cause is poorly understood, though preclinical and clinical studies implicate pretransplant conditioning regimens, particularly those using high doses of total-body-irradiation, acute graft-versus-host disease (GVHD), medications used to prevent GVHD, and other factors. Treatment consists of supportive care, systemic corticosteroids, platelet transfusions, and sometimes includes antifibrinolytic drugs and topical procoagulant factors. Therapeutic blockade of tumor necrosis factor-α showed promise in observational studies, but its benefit for DAH remains uncertain after small clinical trials. Even with these treatments, mortality from progression and relapse is high. Future investigational therapies could target the vascular endothelial cell biology theorized to contribute to alveolar bleeding and pathways that contribute to susceptibility, inflammation, cellular resilience, and tissue repair. This review will help clinicians navigate through the limited evidence to diagnose and treat DAH, counsel patients and families, and plan for future research.
Collapse
Affiliation(s)
- Ylinne Lynch
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Lisa K Vande Vusse
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
12
|
Sha L, Zhao Y, Li S, Wei D, Tao Y, Wang Y. Insights to Ang/Tie signaling pathway: another rosy dawn for treating retinal and choroidal vascular diseases. J Transl Med 2024; 22:898. [PMID: 39367441 PMCID: PMC11451039 DOI: 10.1186/s12967-024-05441-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/27/2024] [Indexed: 10/06/2024] Open
Abstract
Retinal neurovascular unit (NVU) is a multi-cellular structure that consists of the functional coupling between neural tissue and vascular system. Disrupted NVU will result in the occurrence of retinal and choroidal vascular diseases, which are characterized by the development of neovascularization, increased vascular permeability, and inflammation. This pathological entity mainly includes neovascular age-related macular degeneration (neovascular-AMD), diabetic retinopathy (DR) retinal vein occlusion (RVO), and retinopathy of prematurity (ROP). Emerging evidences suggest that the angopoietin/tyrosine kinase with immunoglobulin and epidermal growth factor homology domains (Ang/Tie) signaling pathway is essential for the development of retinal and choroidal vascular. Tie receptors and their downstream pathways play a key role in modulating the vascular development, vascular stability, remodeling and angiogenesis. Angiopoietin 1 (Ang1) is a natural agonist of Tie2 receptor, which can promote vascular stability. On the other hand, angiopoietin 2 (Ang2) is an antagonist of Tie2 receptor that causes vascular instability. Currently, agents targeting the Ang/Tie signaling pathway have been used to inhibit neovascularization and vascular leakage in neovascular-AMD and DR animal models. Particularly, the AKB-9778 and Faricimab have shown promising efficacy in improving visual acuity in patients with neovascular-AMD and DR. These experimental and clinical evidences suggest that activation of Ang/Tie signaling pathway can inhibit the vascular permeability, neovascularization, thereby maintaining the normal function and structure of NVU. This review seeks to introduce the versatile functions and elucidate the modulatory mechanisms of Ang/Tie signaling pathway. Recent pharmacologic therapies targeting this pathway are also elaborated and summarized. Further translation of these findings may afford a new therapeutic strategy from bench to bedside.
Collapse
Affiliation(s)
- Lulu Sha
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Yameng Zhao
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Siyu Li
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Dong Wei
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Ye Tao
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| | - Yange Wang
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| |
Collapse
|
13
|
Augustin HG, Koh GY. A systems view of the vascular endothelium in health and disease. Cell 2024; 187:4833-4858. [PMID: 39241746 DOI: 10.1016/j.cell.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 09/09/2024]
Abstract
The dysfunction of blood-vessel-lining endothelial cells is a major cause of mortality. Although endothelial cells, being present in all organs as a single-cell layer, are often conceived as a rather inert cell population, the vascular endothelium as a whole should be considered a highly dynamic and interactive systemically disseminated organ. We present here a holistic view of the field of vascular research and review the diverse functions of blood-vessel-lining endothelial cells during the life cycle of the vasculature, namely responsive and relaying functions of the vascular endothelium and the responsive roles as instructive gatekeepers of organ function. Emerging translational perspectives in regenerative medicine, preventive medicine, and aging research are developed. Collectively, this review is aimed at promoting disciplinary coherence in the field of angioscience for a broader appreciation of the importance of the vasculature for organ function, systemic health, and healthy aging.
Collapse
Affiliation(s)
- Hellmut G Augustin
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ), 69120 Heidelberg, Germany.
| | - Gou Young Koh
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea; Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
14
|
Tang F, Zhao XL, Xu LY, Zhang JN, Ao H, Peng C. Endothelial dysfunction: Pathophysiology and therapeutic targets for sepsis-induced multiple organ dysfunction syndrome. Biomed Pharmacother 2024; 178:117180. [PMID: 39068853 DOI: 10.1016/j.biopha.2024.117180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Sepsis and septic shock are critical medical conditions characterized by a systemic inflammatory response to infection, significantly contributing to global mortality rates. The progression to multiple organ dysfunction syndrome (MODS) represents the most severe complication of sepsis and markedly increases clinical mortality. Central to the pathophysiology of sepsis, endothelial cells play a crucial role in regulating microcirculation and maintaining barrier integrity across various organs and tissues. Recent studies have underscored the pivotal role of endothelial function in the development of sepsis-induced MODS. This review aims to provide a comprehensive overview of the pathophysiology of sepsis-induced MODS, with a specific focus on endothelial dysfunction. It also compiles compelling evidence regarding potential small molecules that could attenuate sepsis and subsequent multi-organ damage by modulating endothelial function. Thus, this review serves as an essential resource for clinical practitioners involved in the diagnosing, managing, and providing intensive care for sepsis and associated multi-organ injuries, emphasizing the importance of targeting endothelial cells to enhance outcomes of the patients.
Collapse
Affiliation(s)
- Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiao-Lan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Li-Yue Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jing-Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
15
|
Balistreri CR, Di Giorgi L, Monastero R. Focus of endothelial glycocalyx dysfunction in ischemic stroke and Alzheimer's disease: Possible intervention strategies. Ageing Res Rev 2024; 99:102362. [PMID: 38830545 DOI: 10.1016/j.arr.2024.102362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
The integrity of the endothelial glycocalyx (eGCX), a mixture of carbohydrates attached to proteins expressed on the surface of blood vessel endothelial cells (EC), is critical for the maintenance of homeostasis of the cardiovascular system and all systems of the human body, the endothelium being the critical component of the stroma of all tissues. Consequently, dysfunction of eGCX results in a dysfunctional cardiovascular wall and severe downstream cardiovascular events, which contribute to the onset of cardio- and cerebrovascular diseases and neurodegenerative disorders, as well as other age-related diseases (ARDs). The key role of eGCX dysfunction in the onset of ARDs is examined here, with a focus on the most prevalent neurological diseases: ischemic stroke and Alzheimer's disease. Furthermore, the advantages and limitations of some treatment strategies for anti-eGCX dysfunction are described, ranging from experimental drug therapies, which need to be better tested and explored not only in animal models but also in humans, as well as reprogramming, the use of nutraceuticals, which are emerging as regenerative and new approaches. The promotion of these strategies is essential to keep eGCX and endothelium healthy, as is the development of intravital (e.g., intravascular) tools to estimate eGCX health status and treatment efficacy, which could lead to advanced solutions to address ARDs.
Collapse
Affiliation(s)
- Carmela Rita Balistreri
- Cellular, Molecular and Clinical Pathological Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo 90134, Italy.
| | - Lucia Di Giorgi
- Memory and Parkinson's disease Center Policlinico "Paolo Giaccone", Palermo, and Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Via La Loggia 1, Palermo 90129, Italy
| | - Roberto Monastero
- Memory and Parkinson's disease Center Policlinico "Paolo Giaccone", Palermo, and Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Via La Loggia 1, Palermo 90129, Italy.
| |
Collapse
|
16
|
Jiang K, Hwa J, Xiang Y. Novel strategies for targeting neutrophil against myocardial infarction. Pharmacol Res 2024; 205:107256. [PMID: 38866263 DOI: 10.1016/j.phrs.2024.107256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/08/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Inflammation is a crucial factor in cardiac remodeling after acute myocardial infarction (MI). Neutrophils, as the first wave of leukocytes to infiltrate the injured myocardium, exacerbate inflammation and cardiac injury. However, therapies that deplete neutrophils to manage cardiac remodeling after MI have not consistently produced promising outcomes. Recent studies have revealed that neutrophils at different time points and locations may have distinct functions. Thus, transferring neutrophil phenotypes, rather than simply blocking their activities, potentially meet the needs of cardiac repair. In this review, we focus on discussing the fate, heterogeneity, functions of neutrophils, and attempt to provide a more comprehensive understanding of their roles and targeting strategies in MI. We highlight the strategies and translational potential of targeting neutrophils to limit cardiac injury to reduce morbidity and mortality from MI.
Collapse
Affiliation(s)
- Kai Jiang
- State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - John Hwa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Yaozu Xiang
- State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
17
|
Spoto S, Basili S, Cangemi R, Yuste JR, Lucena F, Romiti GF, Raparelli V, Argemi J, D’Avanzo G, Locorriere L, Masini F, Calarco R, Testorio G, Spiezia S, Ciccozzi M, Angeletti S. A Focus on the Pathophysiology of Adrenomedullin Expression: Endothelitis and Organ Damage in Severe Viral and Bacterial Infections. Cells 2024; 13:892. [PMID: 38891025 PMCID: PMC11172186 DOI: 10.3390/cells13110892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/03/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
Adrenomedullin (ADM) is a peptide hormone produced primarily in the adrenal glands, playing a crucial role in various physiological processes. As well as improving vascular integrity and decreasing vascular permeability, ADM acts as a vasodilator, positive inotrope, diuretic, natriuretic and bronchodilator, antagonizing angiotensin II by inhibiting aldosterone secretion. ADM also has antihypertrophic, anti-apoptotic, antifibrotic, antioxidant, angiogenic and immunoregulatory effects and antimicrobial properties. ADM expression is upregulated by hypoxia, inflammation-inducing cytokines, viral or bacterial substances, strength of shear stress, and leakage of blood vessels. These pathological conditions are established during systemic inflammation that can result from infections, surgery, trauma/accidents or burns. The ability to rapidly identify infections and the prognostic, predictive power makes it a valuable tool in severe viral and bacterial infections burdened by high incidence and mortality. This review sheds light on the pathophysiological processes that in severe viral or bacterial infections cause endothelitis up to the development of organ damage, the resulting increase in ADM levels dosed through its more stable peptide mid-regional proadrenomedullin (MR-proADM), the most significant studies that attest to its diagnostic and prognostic accuracy in highlighting the severity of viral or bacterial infections and appropriate therapeutic insights.
Collapse
Affiliation(s)
- Silvia Spoto
- Diagnostic and Therapeutic Medicine Department, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (G.D.); (L.L.); (F.M.); (R.C.); (G.T.); (S.S.)
| | - Stefania Basili
- Department of Translational and Precision Medicine, Sapienza University, Viale dell’Università, 30, 00185 Rome, Italy; (S.B.); (R.C.); (V.R.)
| | - Roberto Cangemi
- Department of Translational and Precision Medicine, Sapienza University, Viale dell’Università, 30, 00185 Rome, Italy; (S.B.); (R.C.); (V.R.)
| | - José Ramón Yuste
- Division of Infectious Diseases, Faculty of Medicine, Clinica Universidad de Navarra, University of Navarra, Avda. Pío XII, 36, 31008 Pamplona, Spain;
- Department of Internal Medicine, Faculty of Medicine, Clinica Universidad de Navarra, University of Navarra, Avda. Pío XII, 36, 31008 Pamplona, Spain
| | - Felipe Lucena
- Departamento de Medicina Interna, Clinica Universidad de Navarra, Avda. Pío XII, 36, 31008 Pamplona, Spain; (F.L.); (J.A.)
| | - Giulio Francesco Romiti
- Department of Translational and Precision Medicine, Sapienza University, Viale dell’Università, 30, 00185 Rome, Italy; (S.B.); (R.C.); (V.R.)
| | - Valeria Raparelli
- Department of Translational and Precision Medicine, Sapienza University, Viale dell’Università, 30, 00185 Rome, Italy; (S.B.); (R.C.); (V.R.)
| | - Josepmaria Argemi
- Departamento de Medicina Interna, Clinica Universidad de Navarra, Avda. Pío XII, 36, 31008 Pamplona, Spain; (F.L.); (J.A.)
| | - Giorgio D’Avanzo
- Diagnostic and Therapeutic Medicine Department, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (G.D.); (L.L.); (F.M.); (R.C.); (G.T.); (S.S.)
| | - Luciana Locorriere
- Diagnostic and Therapeutic Medicine Department, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (G.D.); (L.L.); (F.M.); (R.C.); (G.T.); (S.S.)
| | - Francesco Masini
- Diagnostic and Therapeutic Medicine Department, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (G.D.); (L.L.); (F.M.); (R.C.); (G.T.); (S.S.)
| | - Rodolfo Calarco
- Diagnostic and Therapeutic Medicine Department, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (G.D.); (L.L.); (F.M.); (R.C.); (G.T.); (S.S.)
| | - Giulia Testorio
- Diagnostic and Therapeutic Medicine Department, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (G.D.); (L.L.); (F.M.); (R.C.); (G.T.); (S.S.)
| | - Serenella Spiezia
- Diagnostic and Therapeutic Medicine Department, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (G.D.); (L.L.); (F.M.); (R.C.); (G.T.); (S.S.)
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| | - Silvia Angeletti
- Unit of Laboratory, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy;
- Research Unit of Clinical Laboratory Science, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| |
Collapse
|
18
|
Xu C, Zhang L, Xu S, Wang Z, Han Q, Lv Y, Wang X, Zhang X, Zhang Q, Zhang Y, He S, Yuan Q, Bian Y, Li C, Wang J, Xu F, Cao Y, Pang J, Chen Y. Neutrophil ALDH2 is a new therapeutic target for the effective treatment of sepsis-induced ARDS. Cell Mol Immunol 2024; 21:510-526. [PMID: 38472357 PMCID: PMC11061144 DOI: 10.1038/s41423-024-01146-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/09/2024] [Indexed: 03/14/2024] Open
Abstract
Acetaldehyde dehydrogenase 2 (ALDH2) mutations are commonly found in a subgroup of the Asian population. However, the role of ALDH2 in septic acute respiratory distress syndrome (ARDS) remains unknown. Here, we showed that human subjects carrying the ALDH2rs671 mutation were highly susceptible to developing septic ARDS. Intriguingly, ALDH2rs671-ARDS patients showed higher levels of blood cell-free DNA (cfDNA) and myeloperoxidase (MPO)-DNA than ALDH2WT-ARDS patients. To investigate the mechanisms underlying ALDH2 deficiency in the development of septic ARDS, we utilized Aldh2 gene knockout mice and Aldh2rs671 gene knock-in mice. In clinically relevant mouse sepsis models, Aldh2-/- mice and Aldh2rs671 mice exhibited pulmonary and circulating NETosis, a specific process that releases neutrophil extracellular traps (NETs) from neutrophils. Furthermore, we discovered that NETosis strongly promoted endothelial destruction, accelerated vascular leakage, and exacerbated septic ARDS. At the molecular level, ALDH2 increased K48-linked polyubiquitination and degradation of peptidylarginine deiminase 4 (PAD4) to inhibit NETosis, which was achieved by promoting PAD4 binding to the E3 ubiquitin ligase CHIP. Pharmacological administration of the ALDH2-specific activator Alda-1 substantially alleviated septic ARDS by inhibiting NETosis. Together, our data reveal a novel ALDH2-based protective mechanism against septic ARDS, and the activation of ALDH2 may be an effective treatment strategy for sepsis.
Collapse
Affiliation(s)
- Changchang Xu
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Lin Zhang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Shaoyu Xu
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Zichen Wang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Qi Han
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Ying Lv
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xingfang Wang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xiangxin Zhang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Qingju Zhang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Ying Zhang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Simeng He
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Qiuhuan Yuan
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yuan Bian
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Chuanbao Li
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jiali Wang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Feng Xu
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, 171 65, Sweden
| | - Jiaojiao Pang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China.
- Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China.
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China.
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China.
| | - Yuguo Chen
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China.
- Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China.
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China.
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
19
|
Qiao X, Yin J, Zheng Z, Li L, Feng X. Endothelial cell dynamics in sepsis-induced acute lung injury and acute respiratory distress syndrome: pathogenesis and therapeutic implications. Cell Commun Signal 2024; 22:241. [PMID: 38664775 PMCID: PMC11046830 DOI: 10.1186/s12964-024-01620-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Sepsis, a prevalent critical condition in clinics, continues to be the leading cause of death from infections and a global healthcare issue. Among the organs susceptible to the harmful effects of sepsis, the lungs are notably the most frequently affected. Consequently, patients with sepsis are predisposed to developing acute lung injury (ALI), and in severe cases, acute respiratory distress syndrome (ARDS). Nevertheless, the precise mechanisms associated with the onset of ALI/ARDS remain elusive. In recent years, there has been a growing emphasis on the role of endothelial cells (ECs), a cell type integral to lung barrier function, and their interactions with various stromal cells in sepsis-induced ALI/ARDS. In this comprehensive review, we summarize the involvement of endothelial cells and their intricate interplay with immune cells and stromal cells, including pulmonary epithelial cells and fibroblasts, in the pathogenesis of sepsis-induced ALI/ARDS, with particular emphasis placed on discussing the several pivotal pathways implicated in this process. Furthermore, we discuss the potential therapeutic interventions for modulating the functions of endothelial cells, their interactions with immune cells and stromal cells, and relevant pathways associated with ALI/ARDS to present a potential therapeutic strategy for managing sepsis and sepsis-induced ALI/ARDS.
Collapse
Affiliation(s)
- Xinyu Qiao
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Junhao Yin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Zhihuan Zheng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Liangge Li
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Xiujing Feng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
20
|
Khan N, Kumar V, Li P, Schlapbach LJ, Boyd AW, Coulthard MG, Woodruff TM. Inhibiting Eph/ephrin signaling reduces vascular leak and endothelial cell dysfunction in mice with sepsis. Sci Transl Med 2024; 16:eadg5768. [PMID: 38657024 DOI: 10.1126/scitranslmed.adg5768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
Sepsis is a life-threatening disease caused by a dysregulated host response to infection, resulting in 11 million deaths globally each year. Vascular endothelial cell dysfunction results in the loss of endothelial barrier integrity, which contributes to sepsis-induced multiple organ failure and mortality. Erythropoietin-producing hepatocellular carcinoma (Eph) receptors and their ephrin ligands play a key role in vascular endothelial barrier disruption but are currently not a therapeutic target in sepsis. Using a cecal ligation and puncture (CLP) mouse model of sepsis, we showed that prophylactic or therapeutic treatment of mice with EphA4-Fc, a decoy receptor and pan-ephrin inhibitor, resulted in improved survival and a reduction in vascular leak, lung injury, and endothelial cell dysfunction. EphA2-/- mice also exhibited reduced mortality and pathology after CLP compared with wild-type mice. Proteomics of plasma samples from mice with sepsis after CLP revealed dysregulation of a number of Eph/ephrins, including EphA2/ephrin A1. Administration of EphA4-Fc to cultured human endothelial cells pretreated with TNF-α or ephrin-A1 prevented loss of endothelial junction proteins, specifically VE-cadherin, with maintenance of endothelial barrier integrity. In children admitted to hospital with fever and suspected infection, we observed that changes in EphA2/ephrin A1 in serum samples correlated with endothelial and organ dysfunction. Targeting Eph/ephrin signaling may be a potential therapeutic strategy to reduce sepsis-induced endothelial dysfunction and mortality.
Collapse
Affiliation(s)
- Nemat Khan
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD 4072, Australia
- Mayne Academy of Paediatrics, Faculty of Medicine, University of Queensland, Queensland Children's Hospital, Brisbane, QLD 4101, Australia
| | - Vinod Kumar
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD 4072, Australia
| | - Pengcheng Li
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD 4072, Australia
- Mayne Academy of Paediatrics, Faculty of Medicine, University of Queensland, Queensland Children's Hospital, Brisbane, QLD 4101, Australia
| | - Luregn J Schlapbach
- Children's Intensive Care Research Program, Child Health Research Centre, University of Queensland, Brisbane, QLD 4101, Australia
- Paediatric Intensive Care Unit, Queensland Children's Hospital, Brisbane, QLD 4101, Australia
- Department of Intensive Care and Neonatology, and Children's Research Center, University Children's Hospital Zürich, University of Zürich, 8032 Zürich, Switzerland
| | - Andrew W Boyd
- Faculty of Medicine, University of Queensland, Brisbane, QLD 4006, Australia
| | - Mark G Coulthard
- Mayne Academy of Paediatrics, Faculty of Medicine, University of Queensland, Queensland Children's Hospital, Brisbane, QLD 4101, Australia
- Paediatric Intensive Care Unit, Queensland Children's Hospital, Brisbane, QLD 4101, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
21
|
Bensalel J, Gallego-Delgado J. Exploring adjunctive therapies for cerebral malaria. Front Cell Infect Microbiol 2024; 14:1347486. [PMID: 38410724 PMCID: PMC10895034 DOI: 10.3389/fcimb.2024.1347486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/17/2024] [Indexed: 02/28/2024] Open
Abstract
Cerebral malaria (CM) is one of the most severe complications of malaria infection characterized by coma and neurological effects. Despite standardized treatment of malaria infection with artemisinin-based combination therapies (ACT), the mortality rate is still high, and it primarily affects pediatric patients. ACT reduces parasitemia but fails to adequately target the pathogenic mechanisms underlying CM, including blood-brain-barrier (BBB) disruption, endothelial activation/dysfunction, and hyperinflammation. The need for adjunctive therapies to specifically treat this form of severe malaria is critical as hundreds of thousands of people continue to die each year from this disease. Here we present a summary of some potential promising therapeutic targets and treatments for CM, as well as some that have been tested and deemed ineffective or, in some cases, even deleterious. Further exploration into these therapeutic agents is warranted to assess the effectiveness of these potential treatments for CM patients.
Collapse
Affiliation(s)
- Johanna Bensalel
- Ph.D. Program in Biology, The Graduate Center, The City University of New York, New York, NY, United States
- Department of Biological Sciences, Lehman College, City University of New York, New York, NY, United States
| | - Julio Gallego-Delgado
- Ph.D. Program in Biology, The Graduate Center, The City University of New York, New York, NY, United States
- Department of Biological Sciences, Lehman College, City University of New York, New York, NY, United States
- Ph.D. Program in Biochemistry, The Graduate Center, The City University of New York, New York, NY, United States
| |
Collapse
|
22
|
Chi Y, Yu S, Yin J, Liu D, Zhuo M, Li X. Role of Angiopoietin/Tie2 System in Sepsis: A Potential Therapeutic Target. Clin Appl Thromb Hemost 2024; 30:10760296241238010. [PMID: 38449088 PMCID: PMC10921858 DOI: 10.1177/10760296241238010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024] Open
Abstract
Sepsis is a disorder of host response caused by severe infection that can lead to life-threatening organ dysfunction. There is no specific treatment for sepsis. Although there are many different pathogens that can cause sepsis, endothelial dysfunction is a frequent mechanism resulting in vascular leakage and coagulation problem. Recent studies on the regulatory pathways of vascular endothelium have shown that the disturbance of angiopoietin (Ang) /Tie2 axis can induce endothelial cell activation, which is the core pathogenesis of sepsis. In this review, we aim to discuss the regulation of Ang/Tie2 axis and the biomarkers involved in the context of sepsis. Also, we attempt to explore the prospective and feasibility of Ang/Tie2 axis as a potential target for sepsis intervention to improve clinical outcomes.
Collapse
Affiliation(s)
- Yawen Chi
- Department of Critical Care Medicine, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Sihan Yu
- Department of Critical Care Medicine, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Jia Yin
- Department of Critical Care Medicine, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Danyan Liu
- Department of Critical Care Medicine, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Mengke Zhuo
- Department of Critical Care Medicine, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xu Li
- Department of Critical Care Medicine, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
23
|
Cao J, Chen Y. The impact of vascular endothelial glycocalyx on the pathogenesis and treatment of disseminated intravascular coagulation. Blood Coagul Fibrinolysis 2023; 34:465-470. [PMID: 37823419 PMCID: PMC10754481 DOI: 10.1097/mbc.0000000000001257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023]
Abstract
Disseminated intravascular coagulation (DIC) is a complex disorder characterized by widespread activation of blood clotting mechanisms throughout the body. Understanding the role of vascular endothelial glycocalyx in the pathogenesis and treatment of DIC is crucial for advancing our knowledge in this field. The vascular endothelial glycocalyx is a gel-like layer that coats the inner surface of blood vessels. It plays a significant role in maintaining vascular integrity, regulating fluid balance, and preventing excessive clotting. In the pathogenesis of DIC, the disruption of the vascular endothelial glycocalyx is a key factor. Pathological conditions trigger the activation of enzymes, including heparanase, hyaluronase, and matrix metalloproteinase. This activation leads to glycocalyx degradation, subsequently exposing endothelial cells to procoagulant stimuli. Additionally, the ANGPTs/Tie-2 signaling pathway plays a role in the imbalance between the synthesis and degradation of VEG, exacerbating endothelial dysfunction and DIC. Understanding the mechanisms behind glycocalyx degradation and its impact on DIC can provide valuable insights for the development of targeted therapies. Preservation of the glycocalyx integrity may help prevent the initiation and propagation of DIC. Strategies such as administration of exogenous glycocalyx components, anticoagulant agents, or Tie-2 antibody agents have shown promising results in experimental models. In conclusion, the vascular endothelial glycocalyx plays a crucial role in the pathogenesis and treatment of DIC. Further research in this field is warranted to unravel the complex interactions between the glycocalyx and DIC, ultimately leading to the development of novel therapies.
Collapse
Affiliation(s)
- Jingjing Cao
- Department of Intensive Care Medicine, Binhaiwan Central Hospital of Dongguan, Dongguan City, Guangdong Province, China
| | | |
Collapse
|
24
|
Ablooglu AJ, Desai A, Yoo JS, Park CH, Lee EA, Kim BY, Park H, Lee YA, Shim SR, Lee WS, Druey KM. A ligand-independent Tie2-activating antibody reduces vascular leakage in models of Clarkson disease. SCIENCE ADVANCES 2023; 9:eadi1394. [PMID: 37976351 PMCID: PMC10656064 DOI: 10.1126/sciadv.adi1394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
Vascular dysfunction resulting from endothelial hyperpermeability is a common and important feature of critical illness due to sepsis, trauma, and other conditions associated with acute systemic inflammation. Clarkson disease [monoclonal gammopathy-associated idiopathic systemic capillary leak syndrome (ISCLS)] is a rare, orphan disorder marked by spontaneous and recurrent episodes of hypotensive shock and peripheral edema due to widespread vascular leakage in peripheral tissues. Mortality from acute flares approaches 30% due to lack of effective therapies. We evaluated a monoclonal antibody (4E2) specific for the endothelial receptor tyrosine kinase Tie2 in ISCLS models. 4E2 activated Tie2 in ISCLS patient-derived endothelial cells and reduced baseline and proinflammatory mediator-induced barrier dysfunction. 4E2 also reduced mortality and/or vascular leakage associated with systemic histamine challenge or influenza infection in the SJL/J mouse model of ISCLS. These findings support a critical role for Tie2 dysregulation in ISCLS and highlight a viable therapeutic approach to this catastrophic disorder.
Collapse
Affiliation(s)
- Ararat J. Ablooglu
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Abhishek Desai
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jin-San Yoo
- R&D Center, PharmAbcine Inc., 70, Yuseong-daero 1689 beon-gil, Yuseong-gu, Daejeon, Republic of Korea
| | - Cheon Ho Park
- R&D Center, PharmAbcine Inc., 70, Yuseong-daero 1689 beon-gil, Yuseong-gu, Daejeon, Republic of Korea
| | - Eun-Ah Lee
- R&D Center, PharmAbcine Inc., 70, Yuseong-daero 1689 beon-gil, Yuseong-gu, Daejeon, Republic of Korea
| | - Bu Yeon Kim
- R&D Center, PharmAbcine Inc., 70, Yuseong-daero 1689 beon-gil, Yuseong-gu, Daejeon, Republic of Korea
| | - Hyunsun Park
- R&D Center, PharmAbcine Inc., 70, Yuseong-daero 1689 beon-gil, Yuseong-gu, Daejeon, Republic of Korea
| | - Young Ae Lee
- R&D Center, PharmAbcine Inc., 70, Yuseong-daero 1689 beon-gil, Yuseong-gu, Daejeon, Republic of Korea
| | - Sang Ryeol Shim
- R&D Center, PharmAbcine Inc., 70, Yuseong-daero 1689 beon-gil, Yuseong-gu, Daejeon, Republic of Korea
| | - Weon Sup Lee
- R&D Center, PharmAbcine Inc., 70, Yuseong-daero 1689 beon-gil, Yuseong-gu, Daejeon, Republic of Korea
| | - Kirk M. Druey
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
25
|
Choi Y, Jung K. Normalization of the tumor microenvironment by harnessing vascular and immune modulation to achieve enhanced cancer therapy. Exp Mol Med 2023; 55:2308-2319. [PMID: 37907742 PMCID: PMC10689787 DOI: 10.1038/s12276-023-01114-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 11/02/2023] Open
Abstract
Solid tumors are complex entities that actively shape their microenvironment to create a supportive environment for their own growth. Angiogenesis and immune suppression are two key characteristics of this tumor microenvironment. Despite attempts to deplete tumor blood vessels using antiangiogenic drugs, extensive vessel pruning has shown limited efficacy. Instead, a targeted approach involving the judicious use of drugs at specific time points can normalize the function and structure of tumor vessels, leading to improved outcomes when combined with other anticancer therapies. Additionally, normalizing the immune microenvironment by suppressing immunosuppressive cells and activating immunostimulatory cells has shown promise in suppressing tumor growth and improving overall survival. Based on these findings, many studies have been conducted to normalize each component of the tumor microenvironment, leading to the development of a variety of strategies. In this review, we provide an overview of the concepts of vascular and immune normalization and discuss some of the strategies employed to achieve these goals.
Collapse
Affiliation(s)
- Yechan Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Keehoon Jung
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, 03080, Republic of Korea.
| |
Collapse
|
26
|
Hadjilaou A, Brandi J, Riehn M, Friese MA, Jacobs T. Pathogenetic mechanisms and treatment targets in cerebral malaria. Nat Rev Neurol 2023; 19:688-709. [PMID: 37857843 DOI: 10.1038/s41582-023-00881-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 10/21/2023]
Abstract
Malaria, the most prevalent mosquito-borne infectious disease worldwide, has accompanied humanity for millennia and remains an important public health issue despite advances in its prevention and treatment. Most infections are asymptomatic, but a small percentage of individuals with a heavy parasite burden develop severe malaria, a group of clinical syndromes attributable to organ dysfunction. Cerebral malaria is an infrequent but life-threatening complication of severe malaria that presents as an acute cerebrovascular encephalopathy characterized by unarousable coma. Despite effective antiparasite drug treatment, 20% of patients with cerebral malaria die from this disease, and many survivors of cerebral malaria have neurocognitive impairment. Thus, an important unmet clinical need is to rapidly identify people with malaria who are at risk of developing cerebral malaria and to develop preventive, adjunctive and neuroprotective treatments for cerebral malaria. This Review describes important advances in the understanding of cerebral malaria over the past two decades and discusses how these mechanistic insights could be translated into new therapies.
Collapse
Affiliation(s)
- Alexandros Hadjilaou
- Protozoen Immunologie, Bernhard-Nocht-Institut für Tropenmedizin (BNITM), Hamburg, Germany.
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| | - Johannes Brandi
- Protozoen Immunologie, Bernhard-Nocht-Institut für Tropenmedizin (BNITM), Hamburg, Germany
| | - Mathias Riehn
- Protozoen Immunologie, Bernhard-Nocht-Institut für Tropenmedizin (BNITM), Hamburg, Germany
| | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Jacobs
- Protozoen Immunologie, Bernhard-Nocht-Institut für Tropenmedizin (BNITM), Hamburg, Germany
| |
Collapse
|
27
|
Lv B, Huang S, Huang H, Niu N, Liu J. Endothelial Glycocalyx Injury in SARS-CoV-2 Infection: Molecular Mechanisms and Potential Targeted Therapy. Mediators Inflamm 2023; 2023:6685251. [PMID: 37674786 PMCID: PMC10480029 DOI: 10.1155/2023/6685251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/05/2023] [Accepted: 08/17/2023] [Indexed: 09/08/2023] Open
Abstract
This review aims at summarizing state-of-the-art knowledge on glycocalyx and SARS-CoV-2. The endothelial glycocalyx is a dynamic grid overlying the surface of the endothelial cell (EC) lumen and consists of membrane-bound proteoglycans and glycoproteins. The role of glycocalyx has been determined in the regulation of EC permeability, adhesion, and coagulation. SARS-CoV-2 is an enveloped, single-stranded RNA virus belonging to β-coronavirus that causes the outbreak and the pandemic of COVID-19. Through the respiratory tract, SARS-CoV-2 enters blood circulation and interacts with ECs possessing angiotensin-converting enzyme 2 (ACE2). Intact glycolyx prevents SARS-CoV-2 invasion of ECs. When the glycocalyx is incomplete, virus spike protein of SARS-CoV-2 binds with ACE2 and enters ECs for replication. In addition, cytokine storm targets glycocalyx, leading to subsequent coagulation disorder. Therefore, it is intriguing to develop a novel treatment for SARS-CoV-2 infection through the maintenance of the integrity of glycocalyx. This review aims to summarize state-of-the-art knowledge of glycocalyx and its potential function in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Bingxuan Lv
- The Second Hospital of Shandong University, Shandong University, 247 Beiyuan Street, Jinan 250033, China
| | - Shengshi Huang
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan 250014, China
| | - Hong Huang
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan 250014, China
| | - Na Niu
- Department of Pediatrics, Shandong Provincial Hospital, Shandong First Medical University, 324 Jingwu Road, Jinan 250021, China
| | - Ju Liu
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan 250014, China
| |
Collapse
|
28
|
Huang X, Zhang X, Machireddy N, Evans CE, Trewartha SD, Hu G, Fang Y, Mutlu GM, Wu D, Zhao YY. Endothelial FoxM1 reactivates aging-impaired endothelial regeneration for vascular repair and resolution of inflammatory lung injury. Sci Transl Med 2023; 15:eabm5755. [PMID: 37585502 PMCID: PMC10894510 DOI: 10.1126/scitranslmed.abm5755] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 07/28/2023] [Indexed: 08/18/2023]
Abstract
Aging is a major risk factor of high incidence and increased mortality of acute respiratory distress syndrome (ARDS). Here, we demonstrated that persistent lung injury and high mortality in aged mice after sepsis challenge were attributable to impaired endothelial regeneration and vascular repair. Genetic lineage tracing study showed that endothelial regeneration after sepsis-induced vascular injury was mediated by lung resident endothelial proliferation in young adult mice, whereas this intrinsic regenerative program was impaired in aged mice. Expression of forkhead box M1 (FoxM1), an important mediator of endothelial regeneration in young mice, was not induced in lungs of aged mice. Transgenic FOXM1 expression or in vivo endothelium-targeted nanoparticle delivery of the FOXM1 gene driven by an endothelial cell (EC)-specific promoter reactivated endothelial regeneration, normalized vascular repair and resolution of inflammation, and promoted survival in aged mice after sepsis challenge. In addition, treatment with the FDA-approved DNA demethylating agent decitabine was sufficient to reactivate FoxM1-dependent endothelial regeneration in aged mice, reverse aging-impaired resolution of inflammatory injury, and promote survival. Mechanistically, aging-induced Foxm1 promoter hypermethylation in mice, which could be inhibited by decitabine treatment, inhibited Foxm1 induction after sepsis challenge. In COVID-19 lung autopsy samples, FOXM1 was not induced in vascular ECs of elderly patients in their 80s, in contrast with middle-aged patients (aged 50 to 60 years). Thus, reactivation of FoxM1-mediated endothelial regeneration and vascular repair may represent a potential therapy for elderly patients with ARDS.
Collapse
Affiliation(s)
- Xiaojia Huang
- Program for Lung and Vascular Biology and Section for Injury Repair and Regeneration Research, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL60611, USA
- Department of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine. Chicago, IL60611, USA
| | - Xianming Zhang
- Program for Lung and Vascular Biology and Section for Injury Repair and Regeneration Research, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL60611, USA
- Department of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine. Chicago, IL60611, USA
| | - Narsa Machireddy
- Program for Lung and Vascular Biology and Section for Injury Repair and Regeneration Research, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL60611, USA
- Department of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine. Chicago, IL60611, USA
| | - Colin E. Evans
- Program for Lung and Vascular Biology and Section for Injury Repair and Regeneration Research, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL60611, USA
- Department of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine. Chicago, IL60611, USA
| | - Shawn D. Trewartha
- Program for Lung and Vascular Biology and Section for Injury Repair and Regeneration Research, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL60611, USA
- Department of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine. Chicago, IL60611, USA
| | - Guochang Hu
- Departments of Anesthesiology and Pharmacology, University of Illinois College of Medicine, Chicago, IL60607, USA
| | - Yun Fang
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL60637, USA
| | - Gökhan M. Mutlu
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL60637, USA
| | - David Wu
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL60637, USA
| | - You-Yang Zhao
- Program for Lung and Vascular Biology and Section for Injury Repair and Regeneration Research, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL60611, USA
- Department of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine. Chicago, IL60611, USA
- Department of Pharmacology
- Department of Medicine, Division of Pulmonary and Critical Care Medicine
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine. Chicago, IL60611, USA
| |
Collapse
|
29
|
Wu J, Lan Y, Wu J, Zhu K. Sepsis-Induced Acute Lung Injury Is Alleviated by Small Molecules from Dietary Plants via Pyroptosis Modulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12153-12166. [PMID: 37537751 DOI: 10.1021/acs.jafc.2c08926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Sepsis-induced acute respiratory distress syndrome (ARDS) has high morbidity and mortality, and it has three major pathogeneses, namely alveolar-capillary barrier destruction, elevated gut permeability, and reduced neutrophil extracellular traps (NETS), all of which are pyroptosis-involved. Due to limitations of current agents like adverse reaction superposition, inevitable drug resistance, and relatively heavier financial burden, naturally extracted small-molecule compounds have a broad market even though chemically modified drugs have straightforward efficacy. Despite increased understanding of the molecular biology and mechanism underlying sepsis-induced ARDS, there are no specific reviews concerning how small molecules from dietary plants alleviate sepsis-induced acute lung injury (ALI) via regulating pyroptotic cell death. Herein, we traced and reviewed the molecular underpinnings of sepsis-induced ALI with a focus on small-molecule compounds from dietary plants, the top three categories of which are respectively flavonoids and flavone, terpenoids, and polyphenol and phenolic acids, and how they rescued septic ALI by restraining pyroptosis.
Collapse
Affiliation(s)
- Jiasi Wu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuejia Lan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Jinghan Wu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Keli Zhu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
30
|
Immanuel J, Yun S. Vascular Inflammatory Diseases and Endothelial Phenotypes. Cells 2023; 12:1640. [PMID: 37371110 PMCID: PMC10297687 DOI: 10.3390/cells12121640] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The physiological functions of endothelial cells control vascular tone, permeability, inflammation, and angiogenesis, which significantly help to maintain a healthy vascular system. Several cardiovascular diseases are characterized by endothelial cell activation or dysfunction triggered by external stimuli such as disturbed flow, hypoxia, growth factors, and cytokines in response to high levels of low-density lipoprotein and cholesterol, hypertension, diabetes, aging, drugs, and smoking. Increasing evidence suggests that uncontrolled proinflammatory signaling and further alteration in endothelial cell phenotypes such as barrier disruption, increased permeability, endothelial to mesenchymal transition (EndMT), and metabolic reprogramming further induce vascular diseases, and multiple studies are focusing on finding the pathways and mechanisms involved in it. This review highlights the main proinflammatory stimuli and their effects on endothelial cell function. In order to provide a rational direction for future research, we also compiled the most recent data regarding the impact of endothelial cell dysfunction on vascular diseases and potential targets that impede the pathogenic process.
Collapse
Affiliation(s)
| | - Sanguk Yun
- Department of Biotechnology, Inje University, Gimhae-si 50834, Republic of Korea;
| |
Collapse
|
31
|
Li Y, Liu P, Zhou Y, Maekawa H, Silva JB, Ansari MJ, Boubes K, Alia Y, Deb DK, Thomson BR, Jin J, Quaggin SE. Activation of Angiopoietin-Tie2 Signaling Protects the Kidney from Ischemic Injury by Modulation of Endothelial-Specific Pathways. J Am Soc Nephrol 2023; 34:969-987. [PMID: 36787763 PMCID: PMC10278803 DOI: 10.1681/asn.0000000000000098] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/19/2023] [Indexed: 02/16/2023] Open
Abstract
SIGNIFICANCE STATEMENT Ischemia-reperfusion AKI (IR-AKI) is common and causes significant morbidity. Effective treatments are lacking. However, preclinical studies suggest that inhibition of angiopoietin-Tie2 vascular signaling promotes injury, whereas activation of Tie2 is protective. We show that kidney ischemia leads to increased levels of the endothelial-specific phosphatase vascular endothelial protein tyrosine phosphatase (VE-PTP; PTPRB), which inactivates Tie2. Activation of Tie2 through VE-PTP deletion, or delivery of a novel angiopoietin mimetic (Hepta-ANG1), abrogated IR-AKI in mice. Single-cell RNAseq analysis showed Tie2 activation promotes increased Entpd1 expression, downregulation of FOXO1 target genes in the kidney vasculature, and emergence of a new subpopulation of glomerular endothelial cells. Our data provide a molecular basis and identify a candidate therapeutic to improve endothelial integrity and kidney function after IR-AKI. BACKGROUND Ischemia-reperfusion AKI (IR-AKI) is estimated to affect 2%-7% of all hospitalized patients. The significant morbidity and mortality associated with AKI indicates urgent need for effective treatments. Previous studies have shown activation of the vascular angiopoietin-Tie2 tyrosine kinase signaling pathway abrogates ischemia-reperfusion injury (IRI). We extended previous studies to (1) determine the molecular mechanism(s) underlying kidney injury and protection related to decreased or increased activation of Tie2, respectively, and (2) to test the hypothesis that deletion of the Tie2 inhibitory phosphatase vascular endothelial protein tyrosine phosphatase (VE-PTP) or injection of a new angiopoietin mimetic protects the kidney from IRI by common molecular mechanism(s). METHODS Bilateral IR-AKI was performed in VE-PTP wild-type or knockout mice and in C57BL/6J mice treated with Hepta-ANG1 or vehicle. Histologic, immunostaining, and single-cell RNA sequencing analyses were performed. RESULTS The phosphatase VE-PTP, which negatively regulates the angiopoietin-Tie2 pathway, was upregulated in kidney endothelial cells after IRI, and genetic deletion of VE-PTP in mice protected the kidney from IR-AKI. Injection of Hepta-ANG1 potently activated Tie2 and protected the mouse kidney from IRI. Single-cell RNAseq analysis of kidneys from Hepta-ANG1-treated and vehicle-treated mice identified endothelial-specific gene signatures and emergence of a new glomerular endothelial subpopulation associated with improved kidney function. Overlap was found between endothelial-specific genes upregulated by Hepta-ANG1 treatment and those downregulated in HUVECs with constitutive FOXO1 activation, including Entpd1 / ENTPD1 that modulates purinergic receptor signaling. CONCLUSIONS Our data support a key role of the endothelium in the development of IR-AKI, introduce Hepta-ANG1 as a putative new therapeutic biologic, and report a model to explain how IRI reduces Tie2 signaling and how Tie2 activation protects the kidney. PODCAST This article contains a podcast at https://dts.podtrac.com/redirect.mp3/www.asn-online.org/media/podcast/JASN/2023_05_23_JSN_Ang_EP23_052323.mp3.
Collapse
Affiliation(s)
- Yanyang Li
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- The Feinberg Cardiovascular and Renal Research Institute, Chicago, Illinois
| | - Pan Liu
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- The Feinberg Cardiovascular and Renal Research Institute, Chicago, Illinois
| | - Yalu Zhou
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- The Feinberg Cardiovascular and Renal Research Institute, Chicago, Illinois
| | - Hiroshi Maekawa
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - John B. Silva
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Mohammed Javeed Ansari
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Khaled Boubes
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Yazan Alia
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Dilip K. Deb
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | - Jing Jin
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- The Feinberg Cardiovascular and Renal Research Institute, Chicago, Illinois
| | - Susan E. Quaggin
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- The Feinberg Cardiovascular and Renal Research Institute, Chicago, Illinois
| |
Collapse
|
32
|
Choi S, Hong SP, Bae JH, Suh SH, Bae H, Kang KP, Lee HJ, Koh GY. Hyperactivation of YAP/TAZ Drives Alterations in Mesangial Cells through Stabilization of N-Myc in Diabetic Nephropathy. J Am Soc Nephrol 2023; 34:809-828. [PMID: 36724799 PMCID: PMC10125647 DOI: 10.1681/asn.0000000000000075] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 12/18/2022] [Indexed: 01/26/2023] Open
Abstract
SIGNIFICANCE STATEMENT Mesangial cells (MCs) in the kidney are essential to maintaining glomerular integrity, and their impairment leads to major glomerular diseases including diabetic nephropathy (DN). Although high blood glucose elicits abnormal alterations in MCs, the underlying mechanism is poorly understood. We show that YAP/TAZ are increased in MCs of patients with DN and two animal models of DN. High glucose directly induces activation of YAP/TAZ through the canonical Hippo pathway in cultured MCs. Hyperactivation of YAP/TAZ in mouse MCs recapitulates the hallmarks of DN. Activated YAP/TAZ bind and stabilize N-Myc, one of the Myc family. N-Myc stabilization leads to aberrant enhancement of its transcriptional activity and to MC impairments. Our findings shed light on how high blood glucose in diabetes mellitus leads to DN and support a rationale that lowering blood glucose in diabetes mellitus could delay DN pathogenesis. BACKGROUND Mesangial cells (MCs) in the kidney are central to maintaining glomerular integrity, and their impairment leads to major glomerular diseases, including diabetic nephropathy (DN). Although high blood glucose elicits abnormal alterations in MCs, the underlying molecular mechanism is poorly understood. METHODS Immunolocalization of YAP/TAZ and pathological features of PDGFRβ + MCs were analyzed in the glomeruli of patients with DN, in Zucker diabetic fatty rats, and in Lats1/2i ΔPβ mice. RiboTag bulk-RNA sequencing and transcriptomic analysis of gene expression profiles of the isolated MCs from control and Lats1/2iΔPβ mice were performed. Immunoprecipitation analysis and protein stability of N-Myc were performed by the standard protocols. RESULTS YAP and TAZ, the final effectors of the Hippo pathway, are highly increased in MCs of patients with DN and in Zucker diabetic fatty rats. Moreover, high glucose directly induces activation of YAP/TAZ through the canonical Hippo pathway in cultured MCs. Hyperactivation of YAP/TAZ in mouse model MCs recapitulates the hallmarks of DN, including excessive proliferation of MCs and extracellular matrix deposition, endothelial cell impairment, glomerular sclerosis, albuminuria, and reduced glomerular filtration rate. Mechanistically, activated YAP/TAZ bind and stabilize N-Myc protein, one of the Myc family of oncogenes. N-Myc stabilization leads to aberrant enhancement of its transcriptional activity and eventually to MC impairments and DN pathogenesis. CONCLUSIONS Our findings shed light on how high blood glucose in diabetes mellitus leads to DN and support a rationale that lowering blood glucose in diabetes mellitus could delay DN pathogenesis.
Collapse
Affiliation(s)
- Seunghyeok Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Seon Pyo Hong
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
| | - Jung Hyun Bae
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
| | - Sang Heon Suh
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
| | - Hosung Bae
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
| | - Kyung Pyo Kang
- Department of Internal Medicine, Research Institute of Clinical Medicine, Jeonbuk National University Medical School, Jeonju, Republic of Korea
- Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Hyuek Jong Lee
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
| | - Gou Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
| |
Collapse
|
33
|
Kang JH, Jang M, Seo SJ, Choi A, Shin D, Seo S, Lee SH, Kim HN. Mechanobiological Adaptation to Hyperosmolarity Enhances Barrier Function in Human Vascular Microphysiological System. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206384. [PMID: 36808839 PMCID: PMC10161024 DOI: 10.1002/advs.202206384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/27/2023] [Indexed: 05/06/2023]
Abstract
In infectious disease such as sepsis and COVID-19, blood vessel leakage treatment is critical to prevent fatal progression into multi-organ failure and ultimately death, but the existing effective therapeutic modalities that improve vascular barrier function are limited. Here, this study reports that osmolarity modulation can significantly improve vascular barrier function, even in an inflammatory condition. 3D human vascular microphysiological systems and automated permeability quantification processes for high-throughput analysis of vascular barrier function are utilized. Vascular barrier function is enhanced by >7-folds with 24-48 h hyperosmotic exposure (time window of emergency care; >500 mOsm L-1 ) but is disrupted after hypo-osmotic exposure (<200 mOsm L-1 ). By integrating genetic and protein level analysis, it is shown that hyperosmolarity upregulates vascular endothelial-cadherin, cortical F-actin, and cell-cell junction tension, indicating that hyperosmotic adaptation mechanically stabilizes the vascular barrier. Importantly, improved vascular barrier function following hyperosmotic exposure is maintained even after chronic exposure to proinflammatory cytokines and iso-osmotic recovery via Yes-associated protein signaling pathways. This study suggests that osmolarity modulation may be a unique therapeutic strategy to proactively prevent infectious disease progression into severe stages via vascular barrier function protection.
Collapse
Affiliation(s)
- Joon Ho Kang
- Brain Science InstituteKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Minjeong Jang
- Brain Science InstituteKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Su Jin Seo
- Brain Science InstituteKorea Institute of Science and TechnologySeoul02792Republic of Korea
- Department of Chemical EngineeringKwangwoon UniversitySeoul01897Republic of Korea
| | - Andrew Choi
- Brain Science InstituteKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Daeeun Shin
- Brain Science InstituteKorea Institute of Science and TechnologySeoul02792Republic of Korea
- School of Mechanical EngineeringSungkyunkwan UniversitySuwon16419Republic of Korea
| | - Suyoung Seo
- Brain Science InstituteKorea Institute of Science and TechnologySeoul02792Republic of Korea
- Program in Nano Science and TechnologyGraduate School of Convergence Science and TechnologySeoul National UniversitySeoul08826Republic of Korea
| | - Soo Hyun Lee
- Brain Science InstituteKorea Institute of Science and TechnologySeoul02792Republic of Korea
- Division of Bio‐Medical Science & TechnologyKIST SchoolUniversity of Science and Technology (UST)Seoul02792Republic of Korea
| | - Hong Nam Kim
- Brain Science InstituteKorea Institute of Science and TechnologySeoul02792Republic of Korea
- Division of Bio‐Medical Science & TechnologyKIST SchoolUniversity of Science and Technology (UST)Seoul02792Republic of Korea
- School of Mechanical EngineeringYonsei UniversitySeoul03722Republic of Korea
- Yonsei‐KIST Convergence Research InstituteYonsei UniversitySeoul03722Republic of Korea
| |
Collapse
|
34
|
Lutz ID, Wang S, Norn C, Courbet A, Borst AJ, Zhao YT, Dosey A, Cao L, Xu J, Leaf EM, Treichel C, Litvicov P, Li Z, Goodson AD, Rivera-Sánchez P, Bratovianu AM, Baek M, King NP, Ruohola-Baker H, Baker D. Top-down design of protein architectures with reinforcement learning. Science 2023; 380:266-273. [PMID: 37079676 DOI: 10.1126/science.adf6591] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 03/21/2023] [Indexed: 04/22/2023]
Abstract
As a result of evolutionary selection, the subunits of naturally occurring protein assemblies often fit together with substantial shape complementarity to generate architectures optimal for function in a manner not achievable by current design approaches. We describe a "top-down" reinforcement learning-based design approach that solves this problem using Monte Carlo tree search to sample protein conformers in the context of an overall architecture and specified functional constraints. Cryo-electron microscopy structures of the designed disk-shaped nanopores and ultracompact icosahedra are very close to the computational models. The icosohedra enable very-high-density display of immunogens and signaling molecules, which potentiates vaccine response and angiogenesis induction. Our approach enables the top-down design of complex protein nanomaterials with desired system properties and demonstrates the power of reinforcement learning in protein design.
Collapse
Affiliation(s)
- Isaac D Lutz
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Shunzhi Wang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Christoffer Norn
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- BioInnovation Institute, DK2200 Copenhagen N, Denmark
| | - Alexis Courbet
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Andrew J Borst
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Yan Ting Zhao
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Oral Health Sciences, University of Washington, Seattle, WA, USA
| | - Annie Dosey
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Longxing Cao
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Jinwei Xu
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Elizabeth M Leaf
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Catherine Treichel
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Patrisia Litvicov
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Zhe Li
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Alexander D Goodson
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | | | | | - Minkyung Baek
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Hannele Ruohola-Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Oral Health Sciences, University of Washington, Seattle, WA, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
35
|
Shi X, Seidle KA, Simms KJ, Dong F, Chilian WM, Zhang P. Endothelial progenitor cells in the host defense response. Pharmacol Ther 2023; 241:108315. [PMID: 36436689 PMCID: PMC9944665 DOI: 10.1016/j.pharmthera.2022.108315] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Extensive injury of endothelial cells in blood vasculature, especially in the microcirculatory system, frequently occurs in hosts suffering from sepsis and the accompanied systemic inflammation. Pathological factors, including toxic components derived from invading microbes, oxidative stress associated with tissue ischemia/reperfusion, and vessel active mediators generated during the inflammatory response, are known to play important roles in mediating endothelial injury. Collapse of microcirculation and tissue edema developed from the failure of endothelial barrier function in vital organ systems, including the lung, brain, and kidney, are detrimental, which often predict fatal outcomes. The host body possesses a substantial capacity for maintaining vascular homeostasis and repairing endothelial damage. Bone marrow and vascular wall niches house endothelial progenitor cells (EPCs). In response to septic challenges, EPCs in their niche environment are rapidly activated for proliferation and angiogenic differentiation. In the meantime, release of EPCs from their niches into the blood stream and homing of these vascular precursors to tissue sites of injury are markedly increased. The recruited EPCs actively participate in host defense against endothelial injury and repair of damage in blood vasculature via direct differentiation into endothelial cells for re-endothelialization as well as production of vessel active mediators to exert paracrine and autocrine effects on angiogenesis/vasculogenesis. In recent years, investigations on significance of EPCs in host defense and molecular signaling mechanisms underlying regulation of the EPC response have achieved substantial progress, which promotes exploration of vascular precursor cell-based approaches for effective prevention and treatment of sepsis-induced vascular injury as well as vital organ system failure.
Collapse
Affiliation(s)
- Xin Shi
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - Kelly A Seidle
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - Kevin J Simms
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - Feng Dong
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - William M Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - Ping Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America.
| |
Collapse
|
36
|
Fatmi A, Saadi W, Beltrán-García J, García-Giménez JL, Pallardó FV. The Endothelial Glycocalyx and Neonatal Sepsis. Int J Mol Sci 2022; 24:364. [PMID: 36613805 PMCID: PMC9820255 DOI: 10.3390/ijms24010364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Sepsis carries a substantial risk of morbidity and mortality in newborns, especially preterm-born neonates. Endothelial glycocalyx (eGC) is a carbohydrate-rich layer lining the vascular endothelium, with important vascular barrier function and cell adhesion properties, serving also as a mechano-sensor for blood flow. eGC shedding is recognized as a fundamental pathophysiological process generating microvascular dysfunction, which in turn contributes to multiple organ failure and death in sepsis. Although the disruption of eGC and its consequences have been investigated intensively in the adult population, its composition, development, and potential mechanisms of action are still poorly studied during the neonatal period, and more specifically, in neonatal sepsis. Further knowledge on this topic may provide a better understanding of the molecular mechanisms that guide the sepsis pathology during the neonatal period, and would increase the usefulness of endothelial glycocalyx dysfunction as a diagnostic and prognostic biomarker. We reviewed several components of the eGC that help to deeply understand the mechanisms involved in the eGC disruption during the neonatal period. In addition, we evaluated the potential of eGC components as biomarkers and future targets to develop therapeutic strategies for neonatal sepsis.
Collapse
Affiliation(s)
- Ahlam Fatmi
- INCLIVA Health Research Institute, Mixed Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
| | - Wiam Saadi
- Department of Biology, Faculty of Nature, Life and Earth Sciences, University of Djillali Bounaama, Khemis Miliana 44225, Algeria
| | - Jesús Beltrán-García
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, CA 92093, USA
| | - José Luis García-Giménez
- INCLIVA Health Research Institute, Mixed Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | - Federico V. Pallardó
- INCLIVA Health Research Institute, Mixed Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
37
|
He H, Yang W, Su N, Zhang C, Dai J, Han F, Singhal M, Bai W, Zhu X, Zhu J, Liu Z, Xia W, Liu X, Zhang C, Jiang K, Huang W, Chen D, Wang Z, He X, Kirchhoff F, Li Z, Liu C, Huan J, Wang X, Wei W, Wang J, Augustin HG, Hu J. Activating NO-sGC crosstalk in the mouse vascular niche promotes vascular integrity and mitigates acute lung injury. J Exp Med 2022; 220:213673. [PMID: 36350314 PMCID: PMC9984546 DOI: 10.1084/jem.20211422] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/20/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
Disruption of endothelial cell (ECs) and pericytes interactions results in vascular leakage in acute lung injury (ALI). However, molecular signals mediating EC-pericyte crosstalk have not been systemically investigated, and whether targeting such crosstalk could be adopted to combat ALI remains elusive. Using comparative genome-wide EC-pericyte crosstalk analysis of healthy and LPS-challenged lungs, we discovered that crosstalk between endothelial nitric oxide and pericyte soluble guanylate cyclase (NO-sGC) is impaired in ALI. Indeed, stimulating the NO-sGC pathway promotes vascular integrity and reduces lung edema and inflammation-induced lung injury, while pericyte-specific sGC knockout abolishes this protective effect. Mechanistically, sGC activation suppresses cytoskeleton rearrangement in pericytes through inhibiting VASP-dependent F-actin formation and MRTFA/SRF-dependent de novo synthesis of genes associated with cytoskeleton rearrangement, thereby leading to the stabilization of EC-pericyte interactions. Collectively, our data demonstrate that impaired NO-sGC crosstalk in the vascular niche results in elevated vascular permeability, and pharmacological activation of this crosstalk represents a promising translational therapy for ALI.
Collapse
Affiliation(s)
- Hao He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China,University of Chinese Academy of Sciences, Beijing, China
| | - Wu Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China,University of Chinese Academy of Sciences, Beijing, China
| | - Nan Su
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China,University of Chinese Academy of Sciences, Beijing, China
| | - Chuankai Zhang
- Department of Burn and Plastic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianing Dai
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Feng Han
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Mahak Singhal
- Laboratory of AngioRhythms, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Wenjuan Bai
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolan Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China,University of Chinese Academy of Sciences, Beijing, China
| | - Jing Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China,University of Chinese Academy of Sciences, Beijing, China
| | - Zhen Liu
- University of Chinese Academy of Sciences, Beijing, China,Chinese Academy of Sciences Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Wencheng Xia
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoting Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China,University of Chinese Academy of Sciences, Beijing, China
| | - Chonghe Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China,University of Chinese Academy of Sciences, Beijing, China
| | - Kai Jiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Wenhui Huang
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| | - Dan Chen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Zhaoyin Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China,University of Chinese Academy of Sciences, Beijing, China
| | - Xueyang He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China,University of Chinese Academy of Sciences, Beijing, China
| | - Frank Kirchhoff
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| | - Zhenyu Li
- Texas A&M Health Science Center, Bryan, TX
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China,University of Chinese Academy of Sciences, Beijing, China
| | - Jingning Huan
- Department of Burn and Plastic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohong Wang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Wu Wei
- University of Chinese Academy of Sciences, Beijing, China,Chinese Academy of Sciences Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Jing Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hellmut G. Augustin
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany,Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Junhao Hu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China,University of Chinese Academy of Sciences, Beijing, China,Correspondence to Junhao Hu:
| |
Collapse
|
38
|
Solimando AG, Marziliano D, Ribatti D. SARS-CoV-2 and Endothelial Cells: Vascular Changes, Intussusceptive Microvascular Growth and Novel Therapeutic Windows. Biomedicines 2022; 10:2242. [PMID: 36140343 PMCID: PMC9496230 DOI: 10.3390/biomedicines10092242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Endothelial activation in infectious diseases plays a crucial role in understanding and predicting the outcomes and future treatments of several clinical conditions. COVID-19 is no exception. Moving from basic principles to novel approaches, an evolving view of endothelial activation provides insights into a better knowledge of the upstream actors in COVID-19 as a crucial future direction for managing SARS-CoV-2 and other infections. Assessing the function of resting and damaged endothelial cells in infection, particularly in COVID-19, five critical processes emerged controlling thrombo-resistance: vascular integrity, blood flow regulation, immune cell trafficking, angiogenesis and intussusceptive microvascular growth. Endothelial cell injury is associated with thrombosis, increased vessel contraction and a crucial phenomenon identified as intussusceptive microvascular growth, an unprecedented event of vessel splitting into two lumens through the integration of circulating pro-angiogenic cells. An essential awareness of endothelial cells and their phenotypic changes in COVID-19 inflammation is pivotal to understanding the vascular biology of infections and may offer crucial new therapeutic windows.
Collapse
Affiliation(s)
- Antonio Giovanni Solimando
- Guido Baccelli Unit of Internal Medicine, Department of Biomedical Sciences and Human Oncology, School of Medicine, Aldo Moro University of Bari, 70124 Bari, Italy
| | - Donatello Marziliano
- Guido Baccelli Unit of Internal Medicine, Department of Biomedical Sciences and Human Oncology, School of Medicine, Aldo Moro University of Bari, 70124 Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy
| |
Collapse
|
39
|
Martin TR, Zemans RL, Ware LB, Schmidt EP, Riches DWH, Bastarache L, Calfee CS, Desai TJ, Herold S, Hough CL, Looney MR, Matthay MA, Meyer N, Parikh SM, Stevens T, Thompson BT. New Insights into Clinical and Mechanistic Heterogeneity of the Acute Respiratory Distress Syndrome: Summary of the Aspen Lung Conference 2021. Am J Respir Cell Mol Biol 2022; 67:284-308. [PMID: 35679511 PMCID: PMC9447141 DOI: 10.1165/rcmb.2022-0089ws] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/09/2022] [Indexed: 12/15/2022] Open
Abstract
Clinical and molecular heterogeneity are common features of human disease. Understanding the basis for heterogeneity has led to major advances in therapy for many cancers and pulmonary diseases such as cystic fibrosis and asthma. Although heterogeneity of risk factors, disease severity, and outcomes in survivors are common features of the acute respiratory distress syndrome (ARDS), many challenges exist in understanding the clinical and molecular basis for disease heterogeneity and using heterogeneity to tailor therapy for individual patients. This report summarizes the proceedings of the 2021 Aspen Lung Conference, which was organized to review key issues related to understanding clinical and molecular heterogeneity in ARDS. The goals were to review new information about ARDS phenotypes, to explore multicellular and multisystem mechanisms responsible for heterogeneity, and to review how best to account for clinical and molecular heterogeneity in clinical trial design and assessment of outcomes. The report concludes with recommendations for future research to understand the clinical and basic mechanisms underlying heterogeneity in ARDS to advance the development of new treatments for this life-threatening critical illness.
Collapse
Affiliation(s)
- Thomas R. Martin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Rachel L. Zemans
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine and Program in Cellular and Molecular Biology, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Lorraine B. Ware
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine and
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Eric P. Schmidt
- Division of Pulmonary Sciences and Critical Care, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - David W. H. Riches
- Division of Pulmonary Sciences and Critical Care, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado
| | - Lisa Bastarache
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Carolyn S. Calfee
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Anesthesia
| | - Tushar J. Desai
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Stem Cell Institute, Stanford University School of Medicine, Stanford, California
| | - Susanne Herold
- Department of Internal Medicine VI and Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| | - Catherine L. Hough
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, Oregon
| | | | - Michael A. Matthay
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California San Francisco, San Francisco, California
| | - Nuala Meyer
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Samir M. Parikh
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Division of Nephrology, University of Texas Southwestern, Dallas, Texas
| | - Troy Stevens
- Department of Physiology and Cell Biology, College of Medicine, Center for Lung Biology, University of South Alabama, Mobile, Alabama; and
| | - B. Taylor Thompson
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
40
|
Sorrentino JT, Golden GJ, Morris C, Painter CD, Nizet V, Campos AR, Smith JW, Karlsson C, Malmström J, Lewis NE, Esko JD, Gómez Toledo A. Vascular Proteome Responses Precede Organ Dysfunction in a Murine Model of Staphylococcus aureus Bacteremia. mSystems 2022; 7:e0039522. [PMID: 35913192 PMCID: PMC9426442 DOI: 10.1128/msystems.00395-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/16/2022] [Indexed: 12/24/2022] Open
Abstract
Vascular dysfunction and organ failure are two distinct, albeit highly interconnected, clinical outcomes linked to morbidity and mortality in human sepsis. The mechanisms driving vascular and parenchymal damage are dynamic and display significant molecular cross talk between organs and tissues. Therefore, assessing their individual contribution to disease progression is technically challenging. Here, we hypothesize that dysregulated vascular responses predispose the organism to organ failure. To address this hypothesis, we have evaluated four major organs in a murine model of Staphylococcus aureus sepsis by combining in vivo labeling of the endothelial cell surface proteome, data-independent acquisition (DIA) mass spectrometry, and an integrative computational pipeline. The data reveal, with unprecedented depth and throughput, that a septic insult evokes organ-specific proteome responses that are highly compartmentalized, synchronously coordinated, and significantly correlated with the progression of the disease. These responses include abundant vascular shedding, dysregulation of the intrinsic pathway of coagulation, compartmentalization of the acute phase response, and abundant upregulation of glycocalyx components. Vascular cell surface proteome changes were also found to precede bacterial invasion and leukocyte infiltration into the organs, as well as to precede changes in various well-established cellular and biochemical correlates of systemic coagulopathy and tissue dysfunction. Importantly, our data suggest a potential role for the vascular proteome as a determinant of the susceptibility of the organs to undergo failure during sepsis. IMPORTANCE Sepsis is a life-threatening response to infection that results in immune dysregulation, vascular dysfunction, and organ failure. New methods are needed for the identification of diagnostic and therapeutic targets. Here, we took a systems-wide approach using data-independent acquisition (DIA) mass spectrometry to track the progression of bacterial sepsis in the vasculature leading to organ failure. Using a murine model of S. aureus sepsis, we were able to quantify thousands of proteins across the plasma and parenchymal and vascular compartments of multiple organs in a time-resolved fashion. We showcase the profound proteome remodeling triggered by sepsis over time and across these compartments. Importantly, many vascular proteome alterations precede changes in traditional correlates of organ dysfunction, opening a molecular window for the discovery of early markers of sepsis progression.
Collapse
Affiliation(s)
- James T. Sorrentino
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Gregory J. Golden
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California, USA
| | - Claire Morris
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California, USA
| | - Chelsea D. Painter
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California, USA
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| | - Alexandre Rosa Campos
- The Cancer Center and The Inflammatory and Infectious Disease Center, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Jeffrey W. Smith
- The Cancer Center and The Inflammatory and Infectious Disease Center, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Christofer Karlsson
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, BMC, Lund, Sweden
| | - Johan Malmström
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, BMC, Lund, Sweden
| | - Nathan E. Lewis
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
- National Biologics Facility, Technical University of Denmark, Krogens-Lyngby, Denmark
| | - Jeffrey D. Esko
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California, USA
| | - Alejandro Gómez Toledo
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, BMC, Lund, Sweden
| |
Collapse
|
41
|
Yoon JH, Shin P, Joo J, Kim GS, Oh WY, Jeong Y. Increased capillary stalling is associated with endothelial glycocalyx loss in subcortical vascular dementia. J Cereb Blood Flow Metab 2022; 42:1383-1397. [PMID: 35139674 PMCID: PMC9274855 DOI: 10.1177/0271678x221076568] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022]
Abstract
Proper regulation and patency of cerebral microcirculation are crucial for maintaining a healthy brain. Capillary stalling, i.e., the brief interruption of microcirculation has been observed in the normal brain and several diseases related to microcirculation. We hypothesized that endothelial glycocalyx, which is located on the luminal side of the vascular endothelium and involved in cell-to-cell interaction regulation in peripheral organs, is also related to cerebral capillary stalling. We measured capillary stalling and the cerebral endothelial glycocalyx (cEG) in male mice using in vivo optical coherence tomography angiography (OCT-A) and two-photon microscopy. Our findings revealed that some capillary segments were prone to capillary stalling and had less cEG. In addition, we demonstrated that the enzymatic degradation of the cEG increased the capillary stalling, mainly by leukocyte plugging. Further, we noted decreased cEG along with increased capillary stalling in a mouse model of subcortical vascular dementia (SVaD) with impaired cortical microcirculation. Moreover, gene expression related to cEG production or degradation changed in the SVaD model. These results indicate that cEG mediates capillary stalling and impacts cerebral blood flow and is involved in the pathogenesis of SVaD.
Collapse
Affiliation(s)
- Jin-Hui Yoon
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
| | - Paul Shin
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Jongyoon Joo
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Gaon S Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Wang-Yuhl Oh
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Yong Jeong
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| |
Collapse
|
42
|
Wang R, Yang M, Jiang L, Huang M. Role of Angiopoietin-Tie axis in vascular and lymphatic systems and therapeutic interventions. Pharmacol Res 2022; 182:106331. [PMID: 35772646 DOI: 10.1016/j.phrs.2022.106331] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/11/2022] [Accepted: 06/24/2022] [Indexed: 12/29/2022]
Abstract
The Angiopoietin (Ang)-Tyrosine kinase with immunoglobulin-like and EGF-like domains (Tie) axis is an endothelial cell-specific ligand-receptor signaling pathway necessary for vascular and lymphatic development. The Ang-Tie axis is involved in regulating angiogenesis, vascular remodeling, vascular permeability, and inflammation to maintain vascular quiescence. Disruptions in the Ang-Tie axis are involved in many vascular and lymphatic system diseases and play an important role in physiological and pathological vascular conditions. Given recent advances in the Ang-Tie axis in the vascular and lymphatic systems, this review focuses on the multiple functions of the Ang-Tie axis in inflammation-induced vascular permeability, vascular remodeling, atherosclerosis, ocular angiogenesis, tumor angiogenesis, and metastasis. A summary of relevant therapeutic approaches to the Ang-Tie axis, including therapeutic antibodies, recombinant proteins and small molecule drugs are also discussed. The purpose of this review is to provide new hypotheses and identify potential therapeutic strategies based on the Ang-Tie signaling axis for the treatment of vascular and lymphatic-related diseases.
Collapse
Affiliation(s)
- Rui Wang
- College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Moua Yang
- Division of Hemostasis & Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA02215, United States
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China.
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China.
| |
Collapse
|
43
|
Hellenthal KEM, Brabenec L, Wagner NM. Regulation and Dysregulation of Endothelial Permeability during Systemic Inflammation. Cells 2022; 11:cells11121935. [PMID: 35741064 PMCID: PMC9221661 DOI: 10.3390/cells11121935] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 12/14/2022] Open
Abstract
Systemic inflammation can be triggered by infection, surgery, trauma or burns. During systemic inflammation, an overshooting immune response induces tissue damage resulting in organ dysfunction and mortality. Endothelial cells make up the inner lining of all blood vessels and are critically involved in maintaining organ integrity by regulating tissue perfusion. Permeability of the endothelial monolayer is strictly controlled and highly organ-specific, forming continuous, fenestrated and discontinuous capillaries that orchestrate the extravasation of fluids, proteins and solutes to maintain organ homeostasis. In the physiological state, the endothelial barrier is maintained by the glycocalyx, extracellular matrix and intercellular junctions including adherens and tight junctions. As endothelial cells are constantly sensing and responding to the extracellular environment, their activation by inflammatory stimuli promotes a loss of endothelial barrier function, which has been identified as a hallmark of systemic inflammation, leading to tissue edema formation and hypotension and thus, is a key contributor to lethal outcomes. In this review, we provide a comprehensive summary of the major players, such as the angiopoietin-Tie2 signaling axis, adrenomedullin and vascular endothelial (VE-) cadherin, that substantially contribute to the regulation and dysregulation of endothelial permeability during systemic inflammation and elucidate treatment strategies targeting the preservation of vascular integrity.
Collapse
|
44
|
Hultström M, Fromell K, Larsson A, Persson B, Nilsson B, Quaggin SE, Betsholtz C, Frithiof R, Lipcsey M, Jeansson M. Angiopoietin-2 Inhibition of Thrombomodulin-Mediated Anticoagulation-A Novel Mechanism That May Contribute to Hypercoagulation in Critically Ill COVID-19 Patients. Biomedicines 2022; 10:1333. [PMID: 35740360 PMCID: PMC9220312 DOI: 10.3390/biomedicines10061333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/23/2022] [Accepted: 06/02/2022] [Indexed: 01/08/2023] Open
Abstract
Hypercoagulation and endothelial dysfunction play central roles in severe forms of COVID-19 infections, but the molecular mechanisms involved are unclear. Increased plasma levels of the inflammatory cytokine and TIE2 receptor antagonist Angiopoietin-2 were reported in severely ill COVID-19 patients. In vitro experiments suggest that Angiopoietin-2 bind and inhibits thrombomodulin. Thrombomodulin is expressed on the luminal surface of endothelial cells where it is an important member of the intrinsic anticoagulant pathway through activation of protein C. Using clinical data, mouse models, and in vitro assays, we tested if Angiopoietin-2 plays a causal role in COVID-19-associated hypercoagulation through direct inhibition of thrombin/thrombomodulin-mediated physiological anticoagulation. Angiopoietin-2 was measured in 61 patients at admission, and after 10 days in the 40 patients remaining in the ICU. We found that Angiopoietin-2 levels were increased in COVID-19 patients in correlation with disease severity, hypercoagulation, and mortality. In support of a direct effect of Angiopoietin-2 on coagulation, we found that injected Angiopoietin-2 in mice associated to thrombomodulin and resulted in a shortened tail bleeding time, decreased circulating levels of activated protein C, and increased plasma thrombin/antithrombin complexes. Conversely, bleeding time was increased in endothelial-specific Angiopoietin-2 knockout mice, while knockout of Tie2 had no effect on tail bleeding. Using in vitro assays, we found that Angiopoietin-2 inhibited thrombomodulin-mediated anticoagulation and protein C activation in human donor plasma. Our data suggest a novel in vivo mechanism for Angiopoietin-2 in COVID-19-associated hypercoagulation, implicating that Angiopoietin-2 inhibitors may be effective in the treatment of hypercoagulation in severe COVID-19 infection.
Collapse
Affiliation(s)
- Michael Hultström
- Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, 751 85 Uppsala, Sweden; (M.H.); (R.F.); (M.L.)
- Integrative Physiology, Department of Medical Cell Biology, Uppsala University, 751 23 Uppsala, Sweden
| | - Karin Fromell
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (K.F.); (B.P.); (B.N.); (C.B.)
| | - Anders Larsson
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, 751 85 Uppsala, Sweden;
| | - Barbro Persson
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (K.F.); (B.P.); (B.N.); (C.B.)
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (K.F.); (B.P.); (B.N.); (C.B.)
| | - Susan E. Quaggin
- Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Division of Nephrology and Hypertension, Northwestern University, Chicago, IL 60611, USA
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (K.F.); (B.P.); (B.N.); (C.B.)
- Department of Medicine Huddinge, Karolinska Institutet, 141 52 Huddinge, Sweden
| | - Robert Frithiof
- Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, 751 85 Uppsala, Sweden; (M.H.); (R.F.); (M.L.)
| | - Miklos Lipcsey
- Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, 751 85 Uppsala, Sweden; (M.H.); (R.F.); (M.L.)
- Hedenstierna Laboratory, CIRRUS, Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, 751 23 Uppsala, Sweden
| | - Marie Jeansson
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (K.F.); (B.P.); (B.N.); (C.B.)
- Department of Medicine Huddinge, Karolinska Institutet, 141 52 Huddinge, Sweden
| |
Collapse
|
45
|
Luxen M, van Meurs M, Molema G. Unlocking the Untapped Potential of Endothelial Kinase and Phosphatase Involvement in Sepsis for Drug Treatment Design. Front Immunol 2022; 13:867625. [PMID: 35634305 PMCID: PMC9136877 DOI: 10.3389/fimmu.2022.867625] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022] Open
Abstract
Sepsis is a devastating clinical condition that can lead to multiple organ failure and death. Despite advancements in our understanding of molecular mechanisms underlying sepsis and sepsis-associated multiple organ failure, no effective therapeutic treatment to directly counteract it has yet been established. The endothelium is considered to play an important role in sepsis. This review highlights a number of signal transduction pathways involved in endothelial inflammatory activation and dysregulated endothelial barrier function in response to sepsis conditions. Within these pathways – NF-κB, Rac1/RhoA GTPases, AP-1, APC/S1P, Angpt/Tie2, and VEGF/VEGFR2 – we focus on the role of kinases and phosphatases as potential druggable targets for therapeutic intervention. Animal studies and clinical trials that have been conducted for this purpose are discussed, highlighting reasons why they might not have resulted in the expected outcomes, and which lessons can be learned from this. Lastly, opportunities and challenges that sepsis and sepsis-associated multiple organ failure research are currently facing are presented, including recommendations on improved experimental design to increase the translational power of preclinical research to the clinic.
Collapse
Affiliation(s)
- Matthijs Luxen
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- *Correspondence: Matthijs Luxen,
| | - Matijs van Meurs
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Grietje Molema
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
46
|
Qiu Y, Buffonge S, Ramnath R, Jenner S, Fawaz S, Arkill KP, Neal C, Verkade P, White SJ, Hezzell M, Salmon AHJ, Suleiman MS, Welsh GI, Foster RR, Madeddu P, Satchell SC. Endothelial glycocalyx is damaged in diabetic cardiomyopathy: angiopoietin 1 restores glycocalyx and improves diastolic function in mice. Diabetologia 2022; 65:879-894. [PMID: 35211778 PMCID: PMC8960650 DOI: 10.1007/s00125-022-05650-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 10/28/2021] [Indexed: 12/28/2022]
Abstract
AIMS/HYPOTHESIS Diabetic cardiomyopathy (DCM) is a serious and under-recognised complication of diabetes. The first sign is diastolic dysfunction, which progresses to heart failure. The pathophysiology of DCM is incompletely understood but microcirculatory changes are important. Endothelial glycocalyx (eGlx) plays multiple vital roles in the microcirculation, including in the regulation of vascular permeability, and is compromised in diabetes but has not previously been studied in the coronary microcirculation in diabetes. We hypothesised that eGlx damage in the coronary microcirculation contributes to increased microvascular permeability and hence to cardiac dysfunction. METHODS We investigated eGlx damage and cardiomyopathy in mouse models of type 1 (streptozotocin-induced) and type 2 (db/db) diabetes. Cardiac dysfunction was determined by echocardiography. We obtained eGlx depth and coverage by transmission electron microscopy (TEM) on mouse hearts perfusion-fixed with glutaraldehyde and Alcian Blue. Perivascular oedema was assessed from TEM images by measuring the perivascular space area. Lectin-based fluorescence was developed to study eGlx in paraformaldehyde-fixed mouse and human tissues. The eGlx of human conditionally immortalised coronary microvascular endothelial cells (CMVECs) in culture was removed with eGlx-degrading enzymes before measurement of protein passage across the cell monolayer. The mechanism of eGlx damage in the diabetic heart was investigated by quantitative reverse transcription-PCR array and matrix metalloproteinase (MMP) activity assay. To directly demonstrate that eGlx damage disturbs cardiac function, isolated rat hearts were treated with enzymes in a Langendorff preparation. Angiopoietin 1 (Ang1) is known to restore eGlx and so was used to investigate whether eGlx restoration reverses diastolic dysfunction in mice with type 1 diabetes. RESULTS In a mouse model of type 1 diabetes, diastolic dysfunction (confirmed by echocardiography) was associated with loss of eGlx from CMVECs and the development of perivascular oedema, suggesting increased microvascular permeability. We confirmed in vitro that eGlx removal increases CMVEC monolayer permeability. We identified increased MMP activity as a potential mechanism of eGlx damage and we observed loss of syndecan 4 consistent with MMP activity. In a mouse model of type 2 diabetes we found a similar loss of eGlx preceding the development of diastolic dysfunction. We used isolated rat hearts to demonstrate that eGlx damage (induced by enzymes) is sufficient to disturb cardiac function. Ang1 restored eGlx and this was associated with reduced perivascular oedema and amelioration of the diastolic dysfunction seen in mice with type 1 diabetes. CONCLUSIONS/INTERPRETATION The association of CMVEC glycocalyx damage with diastolic dysfunction in two diabetes models suggests that it may play a pathophysiological role and the enzyme studies confirm that eGlx damage is sufficient to impair cardiac function. Ang1 rapidly restores the CMVEC glycocalyx and improves diastolic function. Our work identifies CMVEC glycocalyx damage as a potential contributor to the development of DCM and therefore as a therapeutic target.
Collapse
Affiliation(s)
- Yan Qiu
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, University of Bristol, Bristol, UK.
| | - Stanley Buffonge
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Raina Ramnath
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Sophie Jenner
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Sarah Fawaz
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Kenton P Arkill
- Biodiscovery Institute, Medicine, University of Nottingham, Nottingham, UK
| | - Chris Neal
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Paul Verkade
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Stephen J White
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Melanie Hezzell
- Bristol Veterinary School, University of Bristol, Langford, UK
| | - Andrew H J Salmon
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, University of Bristol, Bristol, UK
- Renal Service, Specialist Medicine and Health of Older People, North Shore Hospital, Waitemata District Health Board, Takapuna, Auckland, New Zealand
| | - M-Saadeh Suleiman
- Bristol Heart Institute, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Gavin I Welsh
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Rebecca R Foster
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Paolo Madeddu
- Bristol Heart Institute, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Simon C Satchell
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
47
|
Amelio GS, Provitera L, Raffaeli G, Tripodi M, Amodeo I, Gulden S, Cortesi V, Manzoni F, Cervellini G, Tomaselli A, Pravatà V, Garrido F, Villamor E, Mosca F, Cavallaro G. Endothelial dysfunction in preterm infants: The hidden legacy of uteroplacental pathologies. Front Pediatr 2022; 10:1041919. [PMID: 36405831 PMCID: PMC9671930 DOI: 10.3389/fped.2022.1041919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Millions of infants are born prematurely every year worldwide. Prematurity, particularly at lower gestational ages, is associated with high mortality and morbidity and is a significant global health burden. Pregnancy complications and preterm birth syndrome strongly impact neonatal clinical phenotypes and outcomes. The vascular endothelium is a pivotal regulator of fetal growth and development. In recent years, the key role of uteroplacental pathologies impairing endothelial homeostasis is emerging. Conditions leading to very and extremely preterm birth can be classified into two main pathophysiological patterns or endotypes: infection/inflammation and dysfunctional placentation. The first is frequently related to chorioamnionitis, whereas the second is commonly associated with hypertensive disorders of pregnancy and fetal growth restriction. The nature, timing, and extent of prenatal noxa may alter fetal and neonatal endothelial phenotype and functions. Changes in the luminal surface, oxidative stress, growth factors imbalance, and dysregulation of permeability and vascular tone are the leading causes of endothelial dysfunction in preterm infants. However, the available evidence regarding endothelial physiology and damage is limited in neonates compared to adults. Herein, we discuss the current knowledge on endothelial dysfunction in the infectious/inflammatory and dysfunctional placentation endotypes of prematurity, summarizing their molecular features, available biomarkers, and clinical impact. Furthermore, knowledge gaps, shadows, and future research perspectives are highlighted.
Collapse
Affiliation(s)
- Giacomo Simeone Amelio
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Livia Provitera
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Genny Raffaeli
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy
| | - Matteo Tripodi
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ilaria Amodeo
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Silvia Gulden
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valeria Cortesi
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy
| | - Francesca Manzoni
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy
| | - Gaia Cervellini
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy
| | - Andrea Tomaselli
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy
| | - Valentina Pravatà
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Felipe Garrido
- Department of Pediatrics, Clínica Universidad de Navarra, Madrid, Spain
| | - Eduardo Villamor
- Department of Pediatrics, Maastricht University Medical Center (MUMC+), School for Oncology and Reproduction (GROW), University of Maastricht, Maastricht, Netherlands
| | - Fabio Mosca
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy
| | - Giacomo Cavallaro
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
48
|
Pape T, Hunkemöller AM, Kümpers P, Haller H, David S, Stahl K. Targeting the "sweet spot" in septic shock - A perspective on the endothelial glycocalyx regulating proteins Heparanase-1 and -2. Matrix Biol Plus 2021; 12:100095. [PMID: 34917926 PMCID: PMC8669377 DOI: 10.1016/j.mbplus.2021.100095] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
Sepsis is a life-threatening syndrome caused by a pathological host response to an infection that eventually, if uncontrolled, leads to septic shock and ultimately, death. In sepsis, a massive aggregation of pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) cause a cytokine storm. The endothelial glycocalyx (eGC) is a gel like layer on the luminal side of the endothelium that consists of proteoglycans, glycosaminoglycans (GAG) and plasma proteins. It is synthesized by endothelial cells and plays an active role in the regulation of inflammation, permeability, and coagulation. In sepsis, early and profound injury of the eGC is observed and circulating eGC components correlate directly with clinical severity and outcome. The activity of the heparan sulfate (HS) specific glucuronidase Heparanase-1 (Hpa-1) is elevated in sepsis, resulting in shedding of heparan sulfate (HS), a main GAG of the eGC. HS induces endothelial barrier breakdown and accelerates systemic inflammation. Lipopolysaccharide (LPS), a PAMP mainly found on the surface of gram-negative bacteria, activates TLR-4, which results in cytokine production and further activation of Hpa-1. Hpa-1 shed HS fragments act as DAMPs themselves, leading to a vicious cycle of inflammation and end-organ dysfunction such as septic cardiomyopathy and encephalopathy. Recently, Hpa-1's natural antagonist, Heparanase-2 (Hpa-2) has been identified. It has no intrinsic enzymatic activity but instead acts by reducing inflammation. Hpa-2 levels are reduced in septic mice and patients, leading to an acquired imbalance of Hpa-1 and Hpa-2 paving the road towards a therapeutic intervention. Recently, the synthetic antimicrobial peptide 19-2.5 was described as a promising therapy protecting the eGC by inhibition of Hpa-1 activity and HS shed fragments in animal studies. However, a recombinant Hpa-2 therapy does not exist to the present time. Therapeutic plasma exchange (TPE), a modality already tested in clinical practice, effectively removes injurious mediators, e.g., Hpa-1, while replacing depleted protective molecules, e.g., Hpa-2. In critically ill patients with septic shock, TPE restores the physiological Hpa-1/Hpa-2 ratio and attenuates eGC breakdown. TPE results in a significant improvement in hemodynamic instability including reduced vasopressor requirement. Although promising, further studies are needed to determine the therapeutic impact of TPE in septic shock.
Collapse
Affiliation(s)
- Thorben Pape
- Division of Nephrology and Hypertension, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Anna Maria Hunkemöller
- Department of Medicine, Division of General Internal and Emergency Medicine, Nephrology, and Rheumatology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Philipp Kümpers
- Department of Medicine, Division of General Internal and Emergency Medicine, Nephrology, and Rheumatology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Hermann Haller
- Division of Nephrology and Hypertension, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Sascha David
- Institute of Intensive Care Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Klaus Stahl
- Division of Nephrology and Hypertension, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.,Division of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
49
|
Endothelial glycocalyx degradation during sepsis: Causes and consequences. Matrix Biol Plus 2021; 12:100094. [PMID: 34917925 PMCID: PMC8668992 DOI: 10.1016/j.mbplus.2021.100094] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
The endothelial glycocalyx is a ubiquitous intravascular structure essential for vascular homeostasis. During sepsis, the glycocalyx is degraded via the collective action of a variety of redundant sheddases, the regulation of which remains the focus of active investigation. Septic loss of the glycocalyx imparts both local vascular injury (leading to acute respiratory distress syndrome and acute kidney injury) as well as the systemic consequences of circulating glycosaminoglycan fragments (leading to cognitive dysfunction). Glycocalyx degradation during sepsis is potentially shaped by clinically-modifiable factors, suggesting opportunities for therapeutic intervention to mitigate the end-organ consequences of sepsis.
The glycocalyx is a ubiquitous structure found on endothelial cells that extends into the vascular lumen. It is enriched in proteoglycans, which are proteins attached to the glycosaminoglycans heparan sulfate, chondroitin sulfate, dermatan sulfate, keratan sulfate, and hyaluronic acid. In health and disease, the endothelial glycocalyx is a central regulator of vascular permeability, inflammation, coagulation, and circulatory tonicity. During sepsis, a life-threatening syndrome seen commonly in hospitalized patients, the endothelial glycocalyx is degraded, significantly contributing to its many clinical manifestations. In this review we discuss the intrinsically linked mechanisms responsible for septic endothelial glycocalyx destruction: glycosaminoglycan degradation and proteoglycan cleavage. We then examine the consequences of local endothelial glycocalyx loss to several organ systems and the systemic consequences of shed glycocalyx constituents. Last, we explore clinically relevant non-modifiable and modifiable factors that exacerbate or protect against endothelial glycocalyx shedding during sepsis.
Collapse
Key Words
- ADAM, A Disintegrin and Metalloproteinase
- ANP, Atrial Natriuretic Peptide
- ARDS, Acute respiratory distress syndrome
- Ang2, Angiopoietin-2
- DAMP, Damage-associated Molecular Pattern
- Endothelial glycocalyx
- FFP, Fresh Frozen Plasma
- GAG, Glycosaminoglycan
- Glycosaminoglycans
- HPSE-1/2, Heparanase-1/2
- LPS, Lipopolysaccharide
- MMP, Matrix Metalloproteinase
- PG, Proteoglycan
- Proteoglycans
- Sepsis
- TIMP, Tissue inhibitors of matrix metalloproteinase
Collapse
|
50
|
Drost CC, Rovas A, Kümpers P. Protection and rebuilding of the endothelial glycocalyx in sepsis - Science or fiction? Matrix Biol Plus 2021; 12:100091. [PMID: 34877522 PMCID: PMC8633034 DOI: 10.1016/j.mbplus.2021.100091] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
The endothelial glycocalyx (eGC), a delicate carbohydrate-rich structure lining the luminal surface of the vascular endothelium, is vital for maintenance of microvascular homeostasis. In sepsis, damage of the eGC triggers the development of vascular hyperpermeability with consecutive edema formation and organ failure. While there is evidence that protection or rebuilding of the eGC might counteract sepsis-induced vascular leakage and improve outcome, approved therapeutics are not yet available. This narrative review aims to outline possible therapeutic strategies to ameliorate organ dysfunction caused by eGC impairment.
Collapse
Affiliation(s)
- Carolin Christina Drost
- Department of Medicine D, Division of General Internal and Emergency Medicine, Nephrology, and Rheumatology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Alexandros Rovas
- Department of Medicine D, Division of General Internal and Emergency Medicine, Nephrology, and Rheumatology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Philipp Kümpers
- Department of Medicine D, Division of General Internal and Emergency Medicine, Nephrology, and Rheumatology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| |
Collapse
|