1
|
Chen S, Fu P, Rastegar-Kashkooli Y, Zhu L, Zong Y, Huang M, Gao C, Wang J, Zhang J, Wang J, Jiang C. AX-024 Inhibits Antigen-Specific T-Cell Response and Improves Intracerebral Hemorrhage Outcomes in Mice. Stroke 2025; 56:1253-1265. [PMID: 40143825 DOI: 10.1161/strokeaha.124.048507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/26/2024] [Accepted: 02/03/2025] [Indexed: 03/28/2025]
Abstract
BACKGROUND Stroke-induced opposite T-cell responses in the peri-lesion area and periphery worsen stroke outcomes by aggravating brain injury or increasing infectious complications, respectively. Despite their well-known role in T lymphocyte activation, the impact of TCRs (T-cell receptors) on stroke remains poorly understood. In this study, we investigated the causal link between TCRs and the opposite T-cell responses observed in intracerebral hemorrhage (ICH). METHODS We established the ICH model by injecting the collagenase VII-S into the left striatum of young adult (10-12 weeks) male and female and aged (18-20 months) male C57BL/6 mice. We intraperitoneally administered AX-024, a small molecule inhibitor of TCR signaling, and evaluated the results using flow cytometry, Western blotting, immunofluorescence staining, histological staining, bacterial culture, and behavioral tests. RESULTS Our findings in young adult male mice indicate that administering AX-024 within 48 hours suppressed the activation of nonspecific and antigen-specific CD3 (cluster of differentiation 3)+CD4+ and CD3+CD8+ cells in the brain 36 hours and 3 days after ICH but not 7 days after. Additionally, it temporarily inhibited antigen-specific T-cell activation in the periphery at the above 2 time points. It also reduced molecular and cellular neuroinflammation in the hemorrhagic brain early after ICH. These effects in the brain and periphery of young adult male mice ultimately improved ICH outcomes while having no impact on lung bacterial loads. This can be further supported by similar findings in young adult female and aged male mice with ICH. CONCLUSIONS AX-024 may represent a promising option for mitigating the detrimental effects of T cells entering the damaged brain without increasing bacterial loads in the lung in ICH. The potential of AX-024 as a potent immunosuppressive treatment for ICH is an exciting prospect that warrants further investigation.
Collapse
Affiliation(s)
- Shuai Chen
- Department of Neurology, The People's Hospital of Zhengzhou University and Henan Provincial People's Hospital, People's Republic of China (S.C., P.F., Y.Z., M.H., C.G., J.Z., C.J.)
- Department of Neurology (S.C., P.F., L.Z., Y.Z., M.H., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, People's Republic of China
- The Laboratory of Cerebrovascular Diseases and Neuroimmunology (S.C., P.F., L.Z., Y.Z., M.H., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, People's Republic of China
| | - Peiji Fu
- Department of Neurology, The People's Hospital of Zhengzhou University and Henan Provincial People's Hospital, People's Republic of China (S.C., P.F., Y.Z., M.H., C.G., J.Z., C.J.)
- Department of Neurology (S.C., P.F., L.Z., Y.Z., M.H., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, People's Republic of China
- The Laboratory of Cerebrovascular Diseases and Neuroimmunology (S.C., P.F., L.Z., Y.Z., M.H., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, People's Republic of China
| | - Yousef Rastegar-Kashkooli
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, People's Republic of China (Y.R.-K., Junmin Wang, Jian Wang)
| | - Li Zhu
- Department of Neurology (S.C., P.F., L.Z., Y.Z., M.H., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, People's Republic of China
- The Laboratory of Cerebrovascular Diseases and Neuroimmunology (S.C., P.F., L.Z., Y.Z., M.H., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, People's Republic of China
| | - Yan Zong
- Department of Neurology, The People's Hospital of Zhengzhou University and Henan Provincial People's Hospital, People's Republic of China (S.C., P.F., Y.Z., M.H., C.G., J.Z., C.J.)
- Department of Neurology (S.C., P.F., L.Z., Y.Z., M.H., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, People's Republic of China
- The Laboratory of Cerebrovascular Diseases and Neuroimmunology (S.C., P.F., L.Z., Y.Z., M.H., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, People's Republic of China
| | - Maosen Huang
- Department of Neurology, The People's Hospital of Zhengzhou University and Henan Provincial People's Hospital, People's Republic of China (S.C., P.F., Y.Z., M.H., C.G., J.Z., C.J.)
- Department of Neurology (S.C., P.F., L.Z., Y.Z., M.H., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, People's Republic of China
- The Laboratory of Cerebrovascular Diseases and Neuroimmunology (S.C., P.F., L.Z., Y.Z., M.H., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, People's Republic of China
| | - Chenhao Gao
- Department of Neurology, The People's Hospital of Zhengzhou University and Henan Provincial People's Hospital, People's Republic of China (S.C., P.F., Y.Z., M.H., C.G., J.Z., C.J.)
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, People's Republic of China (Y.R.-K., Junmin Wang, Jian Wang)
| | - Jiewen Zhang
- Department of Neurology, The People's Hospital of Zhengzhou University and Henan Provincial People's Hospital, People's Republic of China (S.C., P.F., Y.Z., M.H., C.G., J.Z., C.J.)
| | - Jian Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, People's Republic of China (Y.R.-K., Junmin Wang, Jian Wang)
| | - Chao Jiang
- Department of Neurology, The People's Hospital of Zhengzhou University and Henan Provincial People's Hospital, People's Republic of China (S.C., P.F., Y.Z., M.H., C.G., J.Z., C.J.)
- Department of Neurology (S.C., P.F., L.Z., Y.Z., M.H., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, People's Republic of China
- The Laboratory of Cerebrovascular Diseases and Neuroimmunology (S.C., P.F., L.Z., Y.Z., M.H., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, People's Republic of China
| |
Collapse
|
2
|
Xiu Y, Wang Y, Wang N, Liu N, Jiang Y, Shi M, Zhou D, Sein TY, Kilgore MD, Katakam PVG, Liu Q, Jin WN, Shi FD, Wang X, Dumont AS. T cell receptor activation contributes to brain damage after intracerebral hemorrhage in mice. J Neuroinflammation 2025; 22:78. [PMID: 40082981 PMCID: PMC11905663 DOI: 10.1186/s12974-025-03402-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/25/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Our previous studies demonstrated that activated T cells accumulate in perihematomal regions following intracerebral hemorrhage (ICH) and exacerbate hemorrhagic brain injury. In the present study, we aimed to explore the mechanisms underlying brain-infiltrating T cell activation and the associated pathophysiological effects in neurological outcomes following ICH. METHODS We employed standardized collagenase injection-induced and autologous blood injection models of ICH in male C57BL/6J mice. T cell receptor (TCR) activation, immune cell infiltration, and cytokine production were quantified through immunostaining, flow cytometry, and cytokine arrays at 1- and 3-days post-ICH. Brain edema volume was measured at 3 days post-ICH and neurobehavioral assessments were conducted up to 14 days post-ICH. Pharmacological inhibition of TCR activation was achieved using the TCR-specific inhibitor AX-024, administered intraperitoneally at a dosage of 10 mg/kg 1-hour post-ICH. RESULTS Flow cytometry and immunostaining detected TCR activation of brain-infiltrating T cells. Specific TCR activation inhibitor AX-024 administration markedly reduced TCR activation and the production of pro-inflammatory cytokines in the brain at 1- and 3-days post-ICH. Moreover, AX-024 administration led to a significant reduction in the infiltration of other leukocyte populations, and significantly reduced brain edema while improved long-term sensorimotor and cognitive outcomes up to 14 days post-ICH. DISCUSSION Our findings underscore the critical role of TCR activation in the mobilization and activation of brain-infiltrating T cells post-ICH. Inhibition of TCR activation via AX-024 administration might be developed as a promising therapeutic strategy to improve neurological outcomes following ICH. However, further research is necessary to thoroughly explore the complex pathophysiological processes involved.
Collapse
Affiliation(s)
- Yuwen Xiu
- Clinical Neurosciences Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Yingjie Wang
- Clinical Neurosciences Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ningning Wang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ning Liu
- Clinical Neurosciences Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA, USA
- Neuroscience Program, Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Yinghua Jiang
- Clinical Neurosciences Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA, USA
- Neuroscience Program, Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Mengxuan Shi
- Clinical Neurosciences Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Di Zhou
- Clinical Neurosciences Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Thin Yadanar Sein
- Clinical Neurosciences Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Mitchell D Kilgore
- Clinical Neurosciences Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Prasad V G Katakam
- Clinical Neurosciences Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA, USA
- Neuroscience Program, Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Qiang Liu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei-Na Jin
- Center of Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fu-Dong Shi
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
- Center of Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaoying Wang
- Clinical Neurosciences Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA, USA.
- Neuroscience Program, Tulane Brain Institute, Tulane University, New Orleans, LA, USA.
| | - Aaron S Dumont
- Clinical Neurosciences Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA, USA.
- Neuroscience Program, Tulane Brain Institute, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
3
|
Minguet S, Maus MV, Schamel WW. From TCR fundamental research to innovative chimeric antigen receptor design. Nat Rev Immunol 2025; 25:212-224. [PMID: 39433885 DOI: 10.1038/s41577-024-01093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/23/2024]
Abstract
Engineered T cells that express chimeric antigen receptors (CARs) have transformed the treatment of haematological cancers. CARs combine the tumour-antigen-binding function of antibodies with the signalling functions of the T cell receptor (TCR) ζ chain and co-stimulatory receptors. The resulting constructs aim to mimic the TCR-based and co-receptor-based activation of T cells. Although these have been successful for some types of cancer, new CAR formats are needed, to limit side effects and broaden their use to solid cancers. Insights into the mechanisms of TCR signalling, including the identification of signalling motifs that are not present in the TCR ζ chain and mechanistic insights in TCR activation, have enabled the development of CAR formats that outcompete the current CARs in preclinical mouse models and clinical trials. In this Perspective, we explore the mechanistic rationale behind new CAR designs.
Collapse
MESH Headings
- Humans
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Animals
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes/immunology
- Immunotherapy, Adoptive/methods
- Signal Transduction/immunology
- Neoplasms/therapy
- Neoplasms/immunology
- Mice
- Lymphocyte Activation/immunology
Collapse
Affiliation(s)
- Susana Minguet
- Signalling Research Centers BIOSS and CIBSS, Freiburg, Germany.
- Department of Synthetic Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany.
- Centre for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Marcela V Maus
- Cellular Immunotherapy Program and Krantz Family Center for Cancer Research, Mass General Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Wolfgang W Schamel
- Signalling Research Centers BIOSS and CIBSS, Freiburg, Germany.
- Centre for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
4
|
Mirzaiebadizi A, Shafabakhsh R, Ahmadian MR. Modulating PAK1: Accessory Proteins as Promising Therapeutic Targets. Biomolecules 2025; 15:242. [PMID: 40001545 PMCID: PMC11852631 DOI: 10.3390/biom15020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
The p21-activated kinase (PAK1), a serine/threonine protein kinase, is critical in regulating various cellular processes, including muscle contraction, neutrophil chemotaxis, neuronal polarization, and endothelial barrier function. Aberrant PAK1 activity has been implicated in the progression of several human diseases, including cancer, heart disease, and neurological disorders. Increased PAK1 expression is often associated with poor clinical prognosis, invasive tumor characteristics, and therapeutic resistance. Despite its importance, the cellular mechanisms that modulate PAK1 function remain poorly understood. Accessory proteins, essential for the precise assembly and temporal regulation of signaling pathways, offer unique advantages as therapeutic targets. Unlike core signaling components, these modulators can attenuate aberrant signaling without completely abolishing it, potentially restoring signaling to physiological levels. This review highlights PAK1 accessory proteins as promising and novel therapeutic targets, opening new horizons for disease treatment.
Collapse
Affiliation(s)
- Amin Mirzaiebadizi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Rana Shafabakhsh
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, 52074 Aachen, Germany;
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| |
Collapse
|
5
|
Alarcon B, Schamel WW. Allosteric Changes Underlie the Outside-In Transmission of Activatory Signals in the TCR. Immunol Rev 2025; 329:e13438. [PMID: 39754405 DOI: 10.1111/imr.13438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/18/2024] [Indexed: 01/06/2025]
Abstract
Rather than being contained in a single polypeptide, and unlike receptor tyrosine kinases, the T cell receptor (TCR) divides its signaling functions among its subunits: TCRα/β bind the extracellular ligand, an antigenic peptide-MHC complex (pMHC), and the CD3 subunits (CD3γ, CD3δ, CD3ε, and CD3ζ) transmit this information to the cytoplasm. How information about the quality of pMHC binding outside is transmitted to the cytoplasm remains a matter of debate. In this review, we compile data generated using a wide variety of experimental systems indicating that TCR engagement by an appropriate pMHC triggers allosteric changes transmitted from the ligand-binding loops in the TCRα and TCRβ subunits to the cytoplasmic tails of the CD3 subunits. We summarize how pMHC and stimulatory antibody binding to TCR ectodomains induces the exposure of a polyproline sequence in the CD3ε cytoplasmic tail for binding to the Nck adapter, the exposure of the RK motif in CD3ε for recruiting the Lck tyrosine kinase, and the induced exposure and phosphorylation of tyrosine residues in all the CD3 cytoplasmic tails. We also review the yet incipient data that help elucidate the structural basis of the Active and Resting conformations of the TCR.
Collapse
Affiliation(s)
- Balbino Alarcon
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Wolfgang W Schamel
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Medical Center Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Hu Y, Rogers J, Duan Y, Velusamy A, Narum S, Al Abdullatif S, Salaita K. Quantifying T cell receptor mechanics at membrane junctions using DNA origami tension sensors. NATURE NANOTECHNOLOGY 2024; 19:1674-1685. [PMID: 39103452 DOI: 10.1038/s41565-024-01723-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 06/21/2024] [Indexed: 08/07/2024]
Abstract
The T cell receptor (TCR) is thought to be a mechanosensor, meaning that it transmits mechanical force to its antigen and leverages the force to amplify the specificity and magnitude of TCR signalling. Although a variety of molecular probes have been proposed to quantify TCR mechanics, these probes are immobilized on hard substrates, and thus fail to reveal fluid TCR-antigen interactions in the physiological context of cell membranes. Here we developed DNA origami tension sensors (DOTS) which bear force sensors on a DNA origami breadboard and allow mapping of TCR mechanotransduction at dynamic intermembrane junctions. We quantified the mechanical forces at fluid TCR-antigen bonds and observed their dependence on cell state, antigen mobility, antigen potency, antigen height and F-actin activity. The programmability of DOTS allows us to tether these to microparticles to mechanically screen antigens in high throughput using flow cytometry. Additionally, DOTS were anchored onto live B cells, allowing quantification of TCR mechanics at immune cell-cell junctions.
Collapse
Affiliation(s)
- Yuesong Hu
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Jhordan Rogers
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Yuxin Duan
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | | | - Steven Narum
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | | | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
7
|
Teyssier V, Williamson CR, Shata E, Rosen SP, Jones N, Bisson N. Adapting to change: resolving the dynamic and dual roles of NCK1 and NCK2. Biochem J 2024; 481:1411-1435. [PMID: 39392452 DOI: 10.1042/bcj20230232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024]
Abstract
Adaptor proteins play central roles in the assembly of molecular complexes and co-ordinated activation of specific pathways. Through their modular domain structure, the NCK family of adaptor proteins (NCK1 and NCK2) link protein targets via their single SRC Homology (SH) 2 and three SH3 domains. Classically, their SH2 domain binds to phosphotyrosine motif-containing receptors (e.g. receptor tyrosine kinases), while their SH3 domains bind polyproline motif-containing cytoplasmic effectors. Due to these functions being established for both NCK1 and NCK2, their roles were inaccurately assumed to be redundant. However, in contrast with this previously held view, NCK1 and NCK2 now have a growing list of paralog-specific functions, which underscores the need to further explore their differences. Here we review current evidence detailing how these two paralogs are unique, including differences in their gene/protein regulation, binding partners and overall contributions to cellular functions. To help explain these contrasting characteristics, we then discuss SH2/SH3 structural features, disordered interdomain linker regions and post-translational modifications. Together, this review seeks to highlight the importance of distinguishing NCK1 and NCK2 in research and to pave the way for investigations into the origins of their interaction specificity.
Collapse
Affiliation(s)
- Valentine Teyssier
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Division Oncologie, Québec, QC, Canada
- Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada
- PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada
| | - Casey R Williamson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Erka Shata
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Stephanie P Rosen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Nina Jones
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Nicolas Bisson
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Division Oncologie, Québec, QC, Canada
- Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada
- PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC, Canada
| |
Collapse
|
8
|
Zhu H, Jiang J, Yang M, Zhao M, He Z, Tang C, Song C, Zhao M, Akbar AN, Reddy V, Pan W, Li S, Tan Y, Wu H, Lu Q. Topical application of a BCL-2 inhibitor ameliorates imiquimod-induced psoriasiform dermatitis by eliminating senescent cells. J Dermatol Sci 2024; 115:54-63. [PMID: 38960840 DOI: 10.1016/j.jdermsci.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 05/27/2024] [Accepted: 06/14/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Psoriasis is an inflammatory skin disease with unclear pathogenesis and unmet therapeutic needs. OBJECTIVE To investigate the role of senescent CD4+ T cells in psoriatic lesion formation and explore the application of senolytics in treating psoriasis. METHODS We explored the expression levels of p16INK4a and p21, classical markers of cellular senescence, in CD4+ T cells from human psoriatic lesions and imiquimod (IMQ)-induced psoriatic lesions. We prepared a senolytic gel using B-cell lymphoma 2 (BCL-2) inhibitor ABT-737 and evaluated its therapeutic efficacy in treating psoriasis. RESULTS Using multispectrum immunohistochemistry (mIHC) staining, we detected increased expression levels of p16INK4a and p21 in CD4+ T cells from psoriatic lesions. After topical application of ABT-737 gel, significant alleviation of IMQ-induced psoriatic lesions was observed, with milder pathological alterations. Mechanistically, ABT-737 gel significantly decreased the percentage of senescent cells, expression of T cell receptor (TCR) α and β chains, and expression of Tet methylcytosine dioxygenase 2 (Tet2) in IMQ-induced psoriatic lesions, as determined by mIHC, high-throughput sequencing of the TCR repertoire, and RT-qPCR, respectively. Furthermore, the severity of psoriatic lesions in CD4creTet2f/f mice was milder than that in Tet2f/f mice in the IMQ-induced psoriasis model. CONCLUSION We revealed the roles of senescent CD4+ T cells in developing psoriasis and highlighted the therapeutic potential of topical ABT-737 gel in treating psoriasis through the elimination of senescent cells, modulation of the TCR αβ repertoire, and regulation of the TET2-Th17 cell pathway.
Collapse
Affiliation(s)
- Huan Zhu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jiao Jiang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China; Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Ming Yang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Mingming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhenghao He
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Congli Tang
- Nanjing ARP Biotechnology Co., Ltd, Nanjing, China
| | - Cailing Song
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Arne N Akbar
- Division of Medicine, University College London, London, United Kingdom
| | - Venkat Reddy
- Centre for Rheumatology, Division of Medicine, University College London, London, United Kingdom
| | - Wenjing Pan
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Matemal and Child Health Care Hospital, school of Basic Medical Sciences, Hengyang Medical school, University of South China, Changsha, China
| | - Song Li
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Matemal and Child Health Care Hospital, school of Basic Medical Sciences, Hengyang Medical school, University of South China, Changsha, China
| | - Yixin Tan
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China; Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China.
| |
Collapse
|
9
|
Li Y, Lai J, Ran M, Yi T, Zhou L, Luo J, Liu X, Tang X, Huang M, Xie X, Li H, Yang Y, Zou W, Wu J. Alnustone promotes megakaryocyte differentiation and platelet production via the interleukin-17A/interleukin-17A receptor/Src/RAC1/MEK/ERK signaling pathway. Eur J Pharmacol 2024; 971:176548. [PMID: 38570080 DOI: 10.1016/j.ejphar.2024.176548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
OBJECTIVES Thrombocytopenia is a disease in which the number of platelets in the peripheral blood decreases. It can be caused by multiple genetic factors, and numerous challenges are associated with its treatment. In this study, the effects of alnustone on megakaryocytes and platelets were investigated, with the aim of developing a new therapeutic approach for thrombocytopenia. METHODS Random forest algorithm was used to establish a drug screening model, and alnustone was identified as a natural active compound that could promote megakaryocyte differentiation. The effect of alnustone on megakaryocyte activity was determined using cell counting kit-8. The effect of alnustone on megakaryocyte differentiation was determined using flow cytometry, Giemsa staining, and phalloidin staining. A mouse model of thrombocytopenia was established by exposing mice to X-rays at 4 Gy and was used to test the bioactivity of alnustone in vivo. The effect of alnustone on platelet production was determined using zebrafish. Network pharmacology was used to predict targets and signaling pathways. Western blotting and immunofluorescence staining determined the expression levels of proteins. RESULTS Alnustone promoted the differentiation and maturation of megakaryocytes in vitro and restored platelet production in thrombocytopenic mice and zebrafish. Network pharmacology and western blotting showed that alnustone promoted the expression of interleukin-17A and enhanced its interaction with its receptor, and thereby regulated downstream MEK/ERK signaling and promoted megakaryocyte differentiation. CONCLUSIONS Alnustone can promote megakaryocyte differentiation and platelet production via the interleukin-17A/interleukin-17A receptor/Src/RAC1/MEK/ERK signaling pathway and thus provides a new therapeutic strategy for the treatment of thrombocytopenia.
Collapse
Affiliation(s)
- Yueyue Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jia Lai
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China; School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Mei Ran
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Taian Yi
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Ling Zhou
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Jiesi Luo
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China.
| | - Xiaoxi Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Xiaoqin Tang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Miao Huang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xiang Xie
- School of Basic Medical Sciences, Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China.
| | - Hong Li
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Yan Yang
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China.
| | - Wenjun Zou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jianming Wu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China; School of Pharmacy, Southwest Medical University, Luzhou, 646000, China; Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
10
|
Al Abdullatif S, Narum S, Hu Y, Rogers J, Fitzgerald R, Salaita K. Molecular Compressive Force Sensor for Mapping Forces at the Cell-Substrate Interface. J Am Chem Soc 2024; 146:6830-6836. [PMID: 38418383 PMCID: PMC10941184 DOI: 10.1021/jacs.3c13648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 03/01/2024]
Abstract
Mechanical forces are crucial for biological processes such as T cell antigen recognition. A suite of molecular tension probes to measure pulling forces have been reported over the past decade; however, there are no reports of molecular probes for measuring compressive forces, representing a gap in the current mechanobiology toolbox. To address this gap, we report a molecular compression reporter using pseudostable hairpins (M-CRUSH). The design principle was based on a pseudostable DNA structure that folds in response to an external compressive force. We created a library of DNA stem-loop hairpins with varying thermodynamic stability, and then used Förster Resonance Energy Transfer (FRET) to quantify hairpin folding stability as a function of temperature and crowding. We identified an optimal pseudostable DNA hairpin highly sensitive to molecular crowding that displayed a shift in melting temperature (Tm) of 7 °C in response to a PEG crowding agent. When immobilized on surfaces, this optimized DNA hairpin showed a 29 ± 6% increase in FRET index in response to 25% w/w PEG 8K. As a proof-of-concept demonstration, we employed M-CRUSH to map the compressive forces generated by primary naïve T cells. We noted dynamic compressive forces that were highly sensitive to antigen presentation and coreceptor engagement. Importantly, mechanical forces are generated by cytoskeletal protrusions caused by acto-myosin activity. This was confirmed by treating cells with cytoskeletal inhibitors, which resulted in a lower FRET response when compared to untreated cells. Furthermore, we showed that M-CRUSH signal is dependent on probe density with greater density probes showing enhanced signal. Finally, we demonstrated that M-CRUSH probes are modular and can be applied to different cell types by displaying a compressive signal observed under human platelets. M-CRUSH offers a powerful tool to complement tension sensors and map out compressive forces in living systems.
Collapse
Affiliation(s)
- Sarah Al Abdullatif
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Steven Narum
- Department
of Biomedical Engineering, Georgia Institute
of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Yuesong Hu
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Jhordan Rogers
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Rachel Fitzgerald
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Khalid Salaita
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
- Department
of Biomedical Engineering, Georgia Institute
of Technology and Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
11
|
Rao D, Yang T, Feng H, An Q, Zhang S, Yu J, Ren X, Diao X, Huang H, Tang W, Xu S. Discovery and Structural Optimization of Covalent ZAP-70 Kinase Inhibitors against Psoriasis. J Med Chem 2023; 66:12018-12032. [PMID: 37594408 DOI: 10.1021/acs.jmedchem.3c00606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Psoriasis is a chronic inflammatory skin disease closely related with T cells, and its management remains a challenge. Novel targets and associated drugs are urgently needed. Zeta-chain-associated protein kinase 70 kDa (ZAP-70) has been recognized as a potential target for treating autoimmune diseases due to its crucial role in T cell receptor signaling. In our previous work, we identified a potent and selective covalent ZAP-70 inhibitor with anti-inflammatory activity in vitro. Herein, we report the structural optimization of covalent ZAP-70 inhibitors. Our efforts led to the discovery of compound 25 (RDN2150), which exhibited potent inhibitory activity against ZAP-70 and favorable selectivity. It also demonstrated promising inhibitory effects on T cell activation and inflammatory cytokine production. Furthermore, a topical application of 25 resulted in significant efficacy in an imiquimod-induced psoriasis mouse model. Overall, these findings present the basis of a promising strategy for the treatment of psoriasis by targeting ZAP-70.
Collapse
Affiliation(s)
- Danni Rao
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Tao Yang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Huixu Feng
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qi An
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shaofeng Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinghua Yu
- Center for Drug Metabolism and Pharmacokinetics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xuelian Ren
- Center for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xingxing Diao
- Center for Drug Metabolism and Pharmacokinetics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - He Huang
- Center for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Wei Tang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Shilin Xu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
12
|
Menon AP, Moreno B, Meraviglia-Crivelli D, Nonatelli F, Villanueva H, Barainka M, Zheleva A, van Santen HM, Pastor F. Modulating T Cell Responses by Targeting CD3. Cancers (Basel) 2023; 15:1189. [PMID: 36831533 PMCID: PMC9953819 DOI: 10.3390/cancers15041189] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/27/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Harnessing the immune system to fight cancer has become a reality with the clinical success of immune-checkpoint blockade (ICB) antibodies against PD(L)-1 and CTLA-4. However, not all cancer patients respond to ICB. Thus, there is a need to modulate the immune system through alternative strategies for improving clinical responses to ICB. The CD3-T cell receptor (TCR) is the canonical receptor complex on T cells. It provides the "first signal" that initiates T cell activation and determines the specificity of the immune response. The TCR confers the binding specificity whilst the CD3 subunits facilitate signal transduction necessary for T cell activation. While the mechanisms through which antigen sensing and signal transduction occur in the CD3-TCR complex are still under debate, recent revelations regarding the intricate 3D structure of the CD3-TCR complex might open the possibility of modulating its activity by designing targeted drugs and tools, including aptamers. In this review, we summarize the basis of CD3-TCR complex assembly and survey the clinical and preclinical therapeutic tools available to modulate CD3-TCR function for potentiating cancer immunotherapy.
Collapse
Affiliation(s)
- Ashwathi Puravankara Menon
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Beatriz Moreno
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
| | - Daniel Meraviglia-Crivelli
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Francesca Nonatelli
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
| | - Helena Villanueva
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Martin Barainka
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Angelina Zheleva
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Hisse M. van Santen
- Unidad Desarrollo y Función del Sistema Inmunitario, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Fernando Pastor
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| |
Collapse
|
13
|
Nuiyen A, Rattanasri A, Wipa P, Roytrakul S, Wangteeraprasert A, Pongcharoen S, Ngoenkam J. Lack of Nck1 protein and Nck-CD3 interaction caused the increment of lipid content in Jurkat T cells. BMC Mol Cell Biol 2022; 23:36. [PMID: 35902806 PMCID: PMC9330638 DOI: 10.1186/s12860-022-00436-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The non-catalytic region of tyrosine kinase (Nck) is an adaptor protein, which is ubiquitously expressed in many types of cells. In T cells, the Nck1 isoform promotes T cell receptor signalling as well as actin polymerisation. However, the role of Nck1 in the lipid metabolism in T cells is unknown. In the present study, we investigated the effect of the Nck1 protein and Nck-CD3 interaction on lipid metabolism and on the physical and biological properties of Jurkat T cells, using a newly developed holotomographic microscope. RESULTS Holotomographic microscopy showed that Nck1-knocked-out cells had membrane blebs and were irregular in shape compared to the rounded control cells. The cell size and volume of Nck1-deficient cells were comparable to those of the control cells. Nck1-knocked-out Jurkat T cells had a greater lipid content, lipid mass/cell mass ratio, and lipid metabolite levels than the control cells. Interestingly, treatment with a small molecule, AX-024, which inhibited Nck-CD3 interaction, also caused an increase in the lipid content in wild-type Jurkat T cells, as found in Nck1-deficient cells. CONCLUSIONS Knockout of Nck1 protein and hindrance of the Nck-CD3 interaction cause the elevation of lipid content in Jurkat T cells.
Collapse
Affiliation(s)
- Aussanee Nuiyen
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Araya Rattanasri
- Graduate School of Biomedical Sciences Programme, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Piyamaporn Wipa
- Division of Immunology, Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok, 65000, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology, National Center for Genetic Engineering and Biotechnology (BIOTECH), Thailand Science Park, Pathumthani, 12120, Thailand
| | - Apirath Wangteeraprasert
- Division of Immunology, Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok, 65000, Thailand
| | - Sutatip Pongcharoen
- Division of Immunology, Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok, 65000, Thailand.
- Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok, 65000, Thailand.
| | - Jutaporn Ngoenkam
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
| |
Collapse
|
14
|
Borroto A, Alarcón B, Navarro MN. Mutation of the Polyproline Sequence in CD3ε Evidences TCR Signaling Requirements for Differentiation and Function of Pro-Inflammatory Tγδ17 Cells. Front Immunol 2022; 13:799919. [PMID: 35432331 PMCID: PMC9008450 DOI: 10.3389/fimmu.2022.799919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/09/2022] [Indexed: 11/23/2022] Open
Abstract
Tγδ17 cells have emerged as a key population in the development of inflammatory and autoimmune conditions such as psoriasis. Thus, the therapeutic intervention of Tγδ17 cells can exert protective effects in this type of pathologies. Tγδ cells commit to IL-17 production during thymus development, and upon immune challenge, additional extrathymic signals induce the differentiation of uncommitted Tγδ cells into Tγδ17 effector cells. Despite the interest in Tγδ17 cells during the past 20 years, the role of TCR signaling in the generation and function of Tγδ17 cells has not been completely elucidated. While some studies point to the notion that Tγδ17 differentiation requires weak or no TCR signaling, other works suggest that Tγδ17 require the participation of specific kinases and adaptor molecules downstream of the TCR. Here we have examined the differentiation and pathogenic function of Tγδ17 cells in “knockin” mice bearing conservative mutations in the CD3ε polyproline rich sequence (KI-PRS) with attenuated TCR signaling due to lack of binding of the essential adaptor Nck. KI-PRS mice presented decreased frequency and numbers of Tγδ17 cells in adult thymus and lymph nodes. In the Imiquimod model of skin inflammation, KI-PRS presented attenuated skin inflammation parameters compared to wild-type littermates. Moreover, the generation, expansion and effector function Tγδ17 cells were impaired in KI-PRS mice upon Imiquimod challenge. Thus, we conclude that an intact CD3ε-PRS sequence is required for optimal differentiation and pathogenic function of Tγδ17 cells. These data open new opportunities for therapeutic targeting of specific TCR downstream effectors for treatment of Tγδ17-mediated diseases.
Collapse
Affiliation(s)
- Aldo Borroto
- Interactions with the Environment Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Balbino Alarcón
- Interactions with the Environment Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - María N Navarro
- Interactions with the Environment Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
15
|
New Label-Free Biosensing for the Evaluation of the AX-024 Inhibitor: Case Study for the Development of New Drugs in Autoimmune Diseases. SENSORS 2022; 22:s22031218. [PMID: 35161965 PMCID: PMC8839007 DOI: 10.3390/s22031218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 12/04/2022]
Abstract
We developed a new label-free assay to evaluate the inhibition capacity of AX-024 by means of a new Point-of-Care (PoC) device for application in the development of new drugs in autoimmune diseases. The technology of PoC is based on interferometric optical detection method (IODM). For this purpose, we have optimized and developed an assay protocol whereby a Glutathione S-Transferase modified protein (GST-SH3.1), which contains a functional domain of a protein involved in T-cell activation, together with the AX-024 inhibitor has been studied. The chips used are a sensing surface based on nitrocellulose. We used streptavidin and a biotinylated peptide as links for the immobilization process on the sensing surface. The biotinylated peptide and AX-024 inhibitor compete for the same functional group of the GST-SH3.1 modified protein. When the inhibitor binds its binding site on GST-SH3.1, the biotinylated peptide cannot bind to its pocket on the protein. This competition reduces the total molecular mass of protein fixed onto the biosensor. In order to quantify the inhibition capacity of AX-024, several Ax-024:GST-SH3.1 ratios have been studied. We have compared the read-out signal for GST-SH3.1 protein not interfered by the drug, which served as a positive blank, and the response of the GST-SH3.1 modified protein blocked by the inhibitor. The technology has been correlated with confocal fluorescence microscopy.
Collapse
|
16
|
Rueda‐Carrasco J, Martin‐Bermejo MJ, Pereyra G, Mateo MI, Borroto A, Brosseron F, Kummer MP, Schwartz S, López‐Atalaya JP, Alarcon B, Esteve P, Heneka MT, Bovolenta P. SFRP1 modulates astrocyte-to-microglia crosstalk in acute and chronic neuroinflammation. EMBO Rep 2021; 22:e51696. [PMID: 34569685 PMCID: PMC8567217 DOI: 10.15252/embr.202051696] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 08/26/2021] [Accepted: 09/06/2021] [Indexed: 12/16/2022] Open
Abstract
Neuroinflammation is a common feature of many neurodegenerative diseases. It fosters a dysfunctional neuron-microglia-astrocyte crosstalk that, in turn, maintains microglial cells in a perniciously reactive state that often enhances neuronal damage. The molecular components that mediate this critical communication are not fully explored. Here, we show that secreted frizzled-related protein 1 (SFRP1), a multifunctional regulator of cell-to-cell communication, is part of the cellular crosstalk underlying neuroinflammation. In mouse models of acute and chronic neuroinflammation, SFRP1, largely astrocyte-derived, promotes and sustains microglial activation, and thus a chronic inflammatory state. SFRP1 promotes the upregulation of components of the hypoxia-induced factor-dependent inflammatory pathway and, to a lower extent, of those downstream of the nuclear factor-kappa B. We thus propose that SFRP1 acts as an astrocyte-to-microglia amplifier of neuroinflammation, representing a potential valuable therapeutic target for counteracting the harmful effect of chronic inflammation in several neurodegenerative diseases.
Collapse
Affiliation(s)
- Javier Rueda‐Carrasco
- Centro de Biología Molecular Severo OchoaCSIC‐UAMMadridSpain
- CIBER de Enfermedades Raras (CIBERER)MadridSpain
| | - María Jesús Martin‐Bermejo
- Centro de Biología Molecular Severo OchoaCSIC‐UAMMadridSpain
- CIBER de Enfermedades Raras (CIBERER)MadridSpain
| | - Guadalupe Pereyra
- Centro de Biología Molecular Severo OchoaCSIC‐UAMMadridSpain
- CIBER de Enfermedades Raras (CIBERER)MadridSpain
| | - María Inés Mateo
- Centro de Biología Molecular Severo OchoaCSIC‐UAMMadridSpain
- CIBER de Enfermedades Raras (CIBERER)MadridSpain
| | - Aldo Borroto
- Centro de Biología Molecular Severo OchoaCSIC‐UAMMadridSpain
| | - Frederic Brosseron
- NeurologyUniversitätsklinikum BonnBonnGermany
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Markus P Kummer
- NeurologyUniversitätsklinikum BonnBonnGermany
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Stephanie Schwartz
- NeurologyUniversitätsklinikum BonnBonnGermany
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | | | - Balbino Alarcon
- Centro de Biología Molecular Severo OchoaCSIC‐UAMMadridSpain
| | - Pilar Esteve
- Centro de Biología Molecular Severo OchoaCSIC‐UAMMadridSpain
- CIBER de Enfermedades Raras (CIBERER)MadridSpain
| | - Michael T Heneka
- NeurologyUniversitätsklinikum BonnBonnGermany
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Paola Bovolenta
- Centro de Biología Molecular Severo OchoaCSIC‐UAMMadridSpain
- CIBER de Enfermedades Raras (CIBERER)MadridSpain
| |
Collapse
|
17
|
Abstract
The non-catalytic region of tyrosine kinase (Nck) family of adaptors, consisting of Nck1 and Nck2, contributes to selectivity and specificity in the flow of cellular information by recruiting components of signaling networks. Known to play key roles in cytoskeletal remodeling, Nck adaptors modulate host cell-pathogen interactions, immune cell receptor activation, cell adhesion and motility, and intercellular junctions in kidney podocytes. Genetic inactivation of both members of the Nck family results in embryonic lethality; however, viability of mice lacking either one of these adaptors suggests partial functional redundancy. In this Cell Science at a Glance and the accompanying poster, we highlight the molecular organization and functions of the Nck family, focusing on key interactions and pathways, regulation of cellular processes, development, homeostasis and pathogenesis, as well as emerging and non-redundant functions of Nck1 compared to those of Nck2. This article thus aims to provide a timely perspective on the biology of Nck adaptors and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Briana C. Bywaters
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 7783, USA
| | - Gonzalo M. Rivera
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 7783, USA
| |
Collapse
|
18
|
Kunkl M, Amormino C, Caristi S, Tedeschi V, Fiorillo MT, Levy R, Popugailo A, Kaempfer R, Tuosto L. Binding of Staphylococcal Enterotoxin B (SEB) to B7 Receptors Triggers TCR- and CD28-Mediated Inflammatory Signals in the Absence of MHC Class II Molecules. Front Immunol 2021; 12:723689. [PMID: 34489975 PMCID: PMC8418141 DOI: 10.3389/fimmu.2021.723689] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/02/2021] [Indexed: 01/19/2023] Open
Abstract
The inflammatory activity of staphylococcal enterotoxin B (SEB) relies on its capacity to trigger polyclonal T-cell activation by binding both T-cell receptor (TCR) and costimulatory receptor CD28 on T cells and MHC class II and B7 molecules on antigen presenting cells (APC). Previous studies highlighted that SEB may bind TCR and CD28 molecules independently of MHC class II, yet the relative contribution of these interactions to the pro-inflammatory function of SEB remained unclear. Here, we show that binding to MHC class II is dispensable for the inflammatory activity of SEB, whereas binding to TCR, CD28 and B7 molecules is pivotal, in both human primary T cells and Jurkat T cell lines. In particular, our finding is that binding of SEB to B7 molecules suffices to trigger both TCR- and CD28-mediated inflammatory signalling. We also provide evidence that, by strengthening the interaction between CD28 and B7, SEB favours the recruitment of the TCR into the immunological synapse, thus inducing lethal inflammatory signalling.
Collapse
Affiliation(s)
- Martina Kunkl
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Carola Amormino
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Silvana Caristi
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Valentina Tedeschi
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Revital Levy
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Andrey Popugailo
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Raymond Kaempfer
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Loretta Tuosto
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| |
Collapse
|
19
|
Yang Y, Santamaria P. Evolution of nanomedicines for the treatment of autoimmune disease: From vehicles for drug delivery to inducers of bystander immunoregulation. Adv Drug Deliv Rev 2021; 176:113898. [PMID: 34314782 DOI: 10.1016/j.addr.2021.113898] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/08/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022]
Abstract
Over the last two decades, the nanomedicine field has witnessed an explosive growth of research on the development of nanoparticle/microparticle (NP/MP)-based compounds for the treatment of autoimmune diseases. Studies have evaluated compounds generated with a broad range of materials with different shapes, sizes, surface chemistries and structures. A number of active pharmaceutical ingredients, including immunosuppressants, cytokines, nucleotides, peptides, proteins and immunomodulators of various types have been encapsulated into or incorporated onto the surface of these compounds, either individually or in combination, and delivered to animal models of autoimmune inflammation via different administration routes. These NP/MP-based compounds can be categorized into four different groups based on their intended mechanisms of action. Here, we review the engineering designs, the pharmacodynamic and therapeutic correlates and the disease specificity of nanomedicines belonging to each of these groups.
Collapse
Affiliation(s)
- Yang Yang
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1 Canada; Department of Biochemistry and Molecular Biology and Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada.
| | - Pere Santamaria
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1 Canada; Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona 08036, Spain.
| |
Collapse
|
20
|
Su Z, Jin Y, Zhang Y, Guan Z, Li H, Chen X, Xie C, Zhang C, Liu X, Li P, Ye P, Zhang L, Kong Y, Luo W. The Diagnostic and Prognostic Potential of the B-Cell Repertoire in Membranous Nephropathy. Front Immunol 2021; 12:635326. [PMID: 34122405 PMCID: PMC8190383 DOI: 10.3389/fimmu.2021.635326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
Membranous nephropathy (MN), an autoimmune glomerular disease, is one of the most common causes of nephrotic syndrome in adults. In current clinical practice, the diagnosis is dependent on renal tissue biopsy. A new method for diagnosis and prognosis surveillance is urgently needed for patients. In the present study, we recruited 66 MN patients before any treatment and 11 healthy control (HC) and analyzed multiple aspects of the immunoglobulin heavy chain (IGH) repertoire of these samples using high-throughput sequencing. We found that the abnormalities of CDR-H3 length, hydrophobicity, somatic hypermutation (SHM), and germ line index were progressively more prominent in patients with MN, and the frequency of IGHV3-66 in post-therapy patients was significantly lower than that in pre-therapy patients. Moreover, we found that the IGHV3-38 gene was significantly related to PLA2R, which is the most commonly used biomarker. The most important discovery was that several IGHV, IGHD transcripts, CDR-H3 length, and SHM rate in pre-therapy patients had the potential to predict the therapeutic effect. Our study further demonstrated that the IGH repertoire could be a potential biomarker for prognosis prediction of MN. The landscape of circulating B-lymphocyte repertoires sheds new light on the detection and surveillance of MN.
Collapse
Affiliation(s)
- Zuhui Su
- Clinical Research Institute, The First People's Hospital of Foshan, Foshan, China
| | - Yabin Jin
- Clinical Research Institute, The First People's Hospital of Foshan, Foshan, China
| | - Yu Zhang
- Nephrology Department, The First People's Hospital of Foshan, Foshan, China
| | - Zhanwen Guan
- Clinical Research Institute, The First People's Hospital of Foshan, Foshan, China
| | - Huishi Li
- Nephrology Department, The First People's Hospital of Foshan, Foshan, China
| | - Xiangping Chen
- Clinical Research Institute, The First People's Hospital of Foshan, Foshan, China
| | - Chao Xie
- Nephrology Department, The First People's Hospital of Foshan, Foshan, China
| | - Chuling Zhang
- Clinical Research Institute, The First People's Hospital of Foshan, Foshan, China
| | - Xiaofen Liu
- Nephrology Department, The First People's Hospital of Foshan, Foshan, China
| | - Peixian Li
- Clinical Research Institute, The First People's Hospital of Foshan, Foshan, China
| | - Peiyi Ye
- Nephrology Department, The First People's Hospital of Foshan, Foshan, China
| | - Lifang Zhang
- Clinical Research Institute, The First People's Hospital of Foshan, Foshan, China
| | - Yaozhong Kong
- Nephrology Department, The First People's Hospital of Foshan, Foshan, China
| | - Wei Luo
- Clinical Research Institute, The First People's Hospital of Foshan, Foshan, China
| |
Collapse
|
21
|
Alfaidi M, Scott ML, Orr AW. Sinner or Saint?: Nck Adaptor Proteins in Vascular Biology. Front Cell Dev Biol 2021; 9:688388. [PMID: 34124074 PMCID: PMC8187788 DOI: 10.3389/fcell.2021.688388] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/28/2021] [Indexed: 12/28/2022] Open
Abstract
The Nck family of modular adaptor proteins, including Nck1 and Nck2, link phosphotyrosine signaling to changes in cytoskeletal dynamics and gene expression that critically modulate cellular phenotype. The Nck SH2 domain interacts with phosphotyrosine at dynamic signaling hubs, such as activated growth factor receptors and sites of cell adhesion. The Nck SH3 domains interact with signaling effectors containing proline-rich regions that mediate their activation by upstream kinases. In vascular biology, Nck1 and Nck2 play redundant roles in vascular development and postnatal angiogenesis. However, recent studies suggest that Nck1 and Nck2 differentially regulate cell phenotype in the adult vasculature. Domain-specific interactions likely mediate these isoform-selective effects, and these isolated domains may serve as therapeutic targets to limit specific protein-protein interactions. In this review, we highlight the function of the Nck adaptor proteins, the known differences in domain-selective interactions, and discuss the role of individual Nck isoforms in vascular remodeling and function.
Collapse
Affiliation(s)
- Mabruka Alfaidi
- Department of Pathology and Translational Pathobiology, Louisiana State University Health - Shreveport, Shreveport, LA, United States
| | - Matthew L Scott
- Department of Pathology and Translational Pathobiology, Louisiana State University Health - Shreveport, Shreveport, LA, United States
| | - Anthony Wayne Orr
- Department of Pathology and Translational Pathobiology, Louisiana State University Health - Shreveport, Shreveport, LA, United States.,Department of Cell Biology and Anatomy, LSU Health - Shreveport, Shreveport, LA, United States.,Department of Molecular & Cellular Physiology, LSU Health - Shreveport, Shreveport, LA, United States
| |
Collapse
|
22
|
Rao D, Li H, Ren X, Sun Y, Wen C, Zheng M, Huang H, Tang W, Xu S. Discovery of a potent, selective, and covalent ZAP-70 kinase inhibitor. Eur J Med Chem 2021; 219:113393. [PMID: 33845236 DOI: 10.1016/j.ejmech.2021.113393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 11/25/2022]
Abstract
ZAP-70 (zeta-chain associated protein kinase 70 kDa) signaling pathway and its functions have been involved in the development and adaptive immune signaling of T cell. It thus represents a promising target for autoimmune diseases. Although reversible ZAP-70 kinase domain inhibitors have been developed, they are either weak or nonselective. We report herein the structure-guided development of the first potent and covalent inhibitor of ZAP-70 kinase domain. In particular, compound 18 (RDN009) showed good selectivity for ZAP-70 over structurally related Syk, and displayed potent inhibitory effects on T cell proliferation, activation, and inflammatory cytokine production. A mass spectrometry analysis further confirmed the covalent linkage between the inhibitor and ZAP-70 protein at C346. Overall, the covalent inhibitor RDN009 represents a potent and selective probe of ZAP-70 for further development for treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Danni Rao
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Science, 19 Yuquan Road, Beijing, 110039, China
| | - Heng Li
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xuelian Ren
- Center for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yaoliang Sun
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Cuiyun Wen
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Science, 19 Yuquan Road, Beijing, 110039, China
| | - He Huang
- Center for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Science, 19 Yuquan Road, Beijing, 110039, China
| | - Wei Tang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Science, 19 Yuquan Road, Beijing, 110039, China.
| | - Shilin Xu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Science, 19 Yuquan Road, Beijing, 110039, China.
| |
Collapse
|
23
|
Boccasavia VL, Bovolenta ER, Villanueva A, Borroto A, Oeste CL, van Santen HM, Prieto C, Alonso-López D, Diaz-Muñoz MD, Batista FD, Alarcón B. Antigen presentation between T cells drives Th17 polarization under conditions of limiting antigen. Cell Rep 2021; 34:108861. [PMID: 33730591 PMCID: PMC7972993 DOI: 10.1016/j.celrep.2021.108861] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/29/2020] [Accepted: 02/19/2021] [Indexed: 02/06/2023] Open
Abstract
T cells form immunological synapses with professional antigen-presenting cells (APCs) resulting in T cell activation and the acquisition of peptide antigen-MHC (pMHC) complexes from the plasma membrane of the APC. They thus become APCs themselves. We investigate the functional outcome of T-T cell antigen presentation by CD4 T cells and find that the antigen-presenting T cells (Tpres) predominantly differentiate into regulatory T cells (Treg), whereas T cells that have been stimulated by Tpres cells predominantly differentiate into Th17 pro-inflammatory cells. Using mice deficient in pMHC uptake by T cells, we show that T-T antigen presentation is important for the development of experimental autoimmune encephalitis and Th17 cell differentiation in vivo. By varying the professional APC:T cell ratio, we can modulate Treg versus Th17 differentiation in vitro and in vivo, suggesting that T-T antigen presentation underlies proinflammatory responses in conditions of antigen scarcity.
Collapse
Affiliation(s)
- Viola L Boccasavia
- Interactions with the Environment Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Elena R Bovolenta
- Interactions with the Environment Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Ana Villanueva
- Interactions with the Environment Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Aldo Borroto
- Interactions with the Environment Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Clara L Oeste
- Interactions with the Environment Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Hisse M van Santen
- Interactions with the Environment Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Cristina Prieto
- Interactions with the Environment Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Diego Alonso-López
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cancer, and Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, Campus Unamuno s/n, 37007 Salamanca, Spain
| | - Manuel D Diaz-Muñoz
- Center for Physiopathology Toulouse-Purpan, INSERM UMR1043/CNRS UMR5282, CHU Purpan, BP3028, 31024 Toulouse, France
| | | | - Balbino Alarcón
- Interactions with the Environment Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
24
|
Norin U, Rintisch C, Meng L, Forster F, Ekman D, Tuncel J, Klocke K, Bäcklund J, Yang M, Bonner MY, Lahore GF, James J, Shchetynsky K, Bergquist M, Gjertsson I, Hubner N, Bäckdahl L, Holmdahl R. Endophilin A2 deficiency protects rodents from autoimmune arthritis by modulating T cell activation. Nat Commun 2021; 12:610. [PMID: 33504785 PMCID: PMC7840939 DOI: 10.1038/s41467-020-20586-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 12/07/2020] [Indexed: 11/18/2022] Open
Abstract
The introduction of the CTLA-4 recombinant fusion protein has demonstrated therapeutic effects by selectively modulating T-cell activation in rheumatoid arthritis. Here we show, using a forward genetic approach, that a mutation in the SH3gl1 gene encoding the endocytic protein Endophilin A2 is associated with the development of arthritis in rodents. Defective expression of SH3gl1 affects T cell effector functions and alters the activation threshold of autoreactive T cells, thereby leading to complete protection from chronic autoimmune inflammatory disease in both mice and rats. We further show that SH3GL1 regulates human T cell signaling and T cell receptor internalization, and its expression is upregulated in rheumatoid arthritis patients. Collectively our data identify SH3GL1 as a key regulator of T cell activation, and as a potential target for treatment of autoimmune diseases. The autoimmune disorder, rheumatoid arthritis (RA), has been associated with multiple pathophysiological factors. Here the authors show that deficiency in endophilin A2 in rodents protects them from experimental arthritis by altering T cell activation threshold and effector functions, thereby hinting a potential target for RA therapy.
Collapse
Affiliation(s)
- Ulrika Norin
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
| | - Carola Rintisch
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.,Medical Inflammation Research, Lund University, Lund, Sweden.,Cardiovascular and Metabolic Sciences, Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Liesu Meng
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.,The Second affiliated hospital to Xi'an Jiaotong University and the Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061, Xi'an, Shaanxi, China
| | - Florian Forster
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Diana Ekman
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.,Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Jonatan Tuncel
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Katrin Klocke
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Johan Bäcklund
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Min Yang
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Michael Y Bonner
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Gonzalo Fernandez Lahore
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Jaime James
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Klementy Shchetynsky
- Rheumatology Unit, Department of Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Maria Bergquist
- Department of Rheumatology and Inflammation Research, Institute for Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Medical Sciences, Clinical Physiology, Uppsala University, Uppsala, Sweden
| | - Inger Gjertsson
- Department of Rheumatology and Inflammation Research, Institute for Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Norbert Hubner
- Cardiovascular and Metabolic Sciences, Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany.,Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Liselotte Bäckdahl
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Rikard Holmdahl
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden. .,The Second affiliated hospital to Xi'an Jiaotong University and the Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061, Xi'an, Shaanxi, China.
| |
Collapse
|
25
|
Alarcon B, Borroto A. Small molecule AX-024 targets T cell receptor signaling by disrupting CD3ε-Nck interaction. J Biol Chem 2020; 295:10076. [PMID: 32680971 DOI: 10.1074/jbc.l120.014338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Balbino Alarcon
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Aldo Borroto
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
26
|
Richter K, Rufer AC, Muller M, Burger D, Casagrande F, Grossenbacher T, Huber S, Hug MN, Koldewey P, D'Osualdo A, Schlatter D, Stoll T, Rudolph MG. Reply to Alarcon and Borroto: Small molecule AX-024 reduces T cell proliferation independently of CD3ε-Nck1 interaction at SH3.1. J Biol Chem 2020; 295:10077. [PMID: 32680972 DOI: 10.1074/jbc.rl120.014441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Kirsten Richter
- pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Arne C Rufer
- pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Magali Muller
- pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Dominique Burger
- pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Fabio Casagrande
- pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Tabea Grossenbacher
- pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Sylwia Huber
- pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Melanie N Hug
- pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Philipp Koldewey
- pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Andrea D'Osualdo
- pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Daniel Schlatter
- pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Theodor Stoll
- pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Markus G Rudolph
- pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| |
Collapse
|
27
|
Alfaidi M, Bhattarai U, Orr AW. Nck1, But Not Nck2, Mediates Disturbed Flow-Induced p21-Activated Kinase Activation and Endothelial Permeability. J Am Heart Assoc 2020; 9:e016099. [PMID: 32468886 PMCID: PMC7428973 DOI: 10.1161/jaha.120.016099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background Alteration in hemodynamic shear stress at atheroprone sites promotes endothelial paracellular pore formation and permeability. The molecular mechanism remains unknown. Methods and Results We show that Nck (noncatalytic region of tyrosine kinase) deletion significantly ameliorates disturbed flow‐induced permeability, and selective isoform depletion suggests distinct signaling mechanisms. Only Nck1 deletion significantly reduces disturbed flow‐induced paracellular pore formation and permeability, whereas Nck2 depletion has no significant effects. Additionally, Nck1 re‐expression, but not Nck2, restores disturbed flow‐induced permeability in Nck1/2 knockout cells, confirming the noncompensating roles. In vivo, using the partial carotid ligation model of disturbed flow, Nck1 knockout prevented the increase in vascular permeability, as assessed by Evans blue and fluorescein isothiocyanate dextran extravasations and leakage of plasma fibrinogen into the vessel wall. Domain swap experiments mixing SH2 (phosphotyrosine binding) and SH3 (proline‐rich binding) domains between Nck1 and Nck2 showed a dispensable role for SH2 domains but a critical role for the Nck1 SH3 domains in rescuing disturbed flow‐induced endothelial permeability. Consistent with this, both Nck1 and Nck2 bind to platelet endothelial adhesion molecule‐1 (SH2 dependent) in response to shear stress, but only Nck1 ablation interferes with shear stress–induced PAK2 (p21‐activated kinase) membrane translocation and activation. A single point mutation into individual Nck1 SH3 domains suggests a role for the first domain of Nck1 in PAK recruitment to platelet endothelial cell adhesion molecule‐1 and activation in response to shear stress. Conclusions This work provides the first evidence that Nck1 but not the highly similar Nck2 plays a distinct role in disturbed flow‐induced vascular permeability by selective p21‐activated kinase activation.
Collapse
Affiliation(s)
- Mabruka Alfaidi
- Department of Pathology and Translational Pathobiology LSU Health-Shreveport LA
| | - Umesh Bhattarai
- Department of Molecular& Cellular Physiology LSU Health-Shreveport LA
| | - A Wayne Orr
- Department of Pathology and Translational Pathobiology LSU Health-Shreveport LA.,Department of Molecular& Cellular Physiology LSU Health-Shreveport LA.,Department of Cell Biology and Anatomy LSU Health-Shreveport LA
| |
Collapse
|
28
|
Richter K, Rufer AC, Muller M, Burger D, Casagrande F, Grossenbacher T, Huber S, Hug MN, Koldewey P, D'Osualdo A, Schlatter D, Stoll T, Rudolph MG. Small molecule AX-024 reduces T cell proliferation independently of CD3ϵ/Nck1 interaction, which is governed by a domain swap in the Nck1-SH3.1 domain. J Biol Chem 2020; 295:7849-7864. [PMID: 32317279 PMCID: PMC7278359 DOI: 10.1074/jbc.ra120.012788] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Activation of the T cell receptor (TCR) results in binding of the adapter protein Nck (noncatalytic region of tyrosine kinase) to the CD3ϵ subunit of the TCR. The interaction was suggested to be important for the amplification of TCR signals and is governed by a proline-rich sequence (PRS) in CD3ϵ that binds to the first Src homology 3 (SH3) domain of Nck (Nck-SH3.1). Inhibition of this protein/protein interaction ameliorated inflammatory symptoms in mouse models of multiple sclerosis, psoriasis, and asthma. A small molecule, AX-024, was reported to inhibit the Nck/CD3ϵ interaction by physically binding to the Nck1-SH3.1 domain, suggesting a route to develop an inhibitor of the Nck1/CD3ϵ interaction for modulating TCR activity in autoimmune and inflammatory diseases. We show here that AX-024 reduces T cell proliferation upon weak TCR stimulation but does not significantly affect phosphorylation of Zap70 (ζ chain of T cell receptor–associated protein kinase 70). We also find that AX-024 is likely not involved in modulating the Nck/TCR interaction but probably has other targets in T cells. An array of biophysical techniques did not detect a direct interaction between AX-024 and Nck-SH3.1 in vitro. Crystal structures of the Nck-SH3.1 domain revealed its binding mode to the PRS in CD3ϵ. The SH3 domain tends to generate homodimers through a domain swap. Domain swaps observed previously in other SH3 domains indicate a general propensity of this protein fold to exchange structural elements. The swapped form of Nck-SH3.1 is unable to bind CD3ϵ, possibly representing an inactive form of Nck in cells.
Collapse
Affiliation(s)
- Kirsten Richter
- I2O Disease Translational Area, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Arne C Rufer
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Magali Muller
- I2O Disease Translational Area, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Dominique Burger
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Fabio Casagrande
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Tabea Grossenbacher
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Sylwia Huber
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Melanie N Hug
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Philipp Koldewey
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Andrea D'Osualdo
- I2O Disease Translational Area, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Daniel Schlatter
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Theodor Stoll
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Markus G Rudolph
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|
29
|
Wipa P, Paensuwan P, Ngoenkam J, Woessner NM, Minguet S, Schamel WW, Pongcharoen S. Actin polymerization regulates recruitment of Nck to CD3ε upon T-cell receptor triggering. Immunology 2020; 159:298-308. [PMID: 31674657 PMCID: PMC7011646 DOI: 10.1111/imm.13146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/15/2022] Open
Abstract
Following T-cell antigen receptor (TCR) engagement, rearrangement of the actin cytoskeleton supports intracellular signal transduction and T-cell activation. The non-catalytic region of the tyrosine kinase (Nck) molecule is an adapter protein implicated in TCR-induced actin polymerization. Further, Nck is recruited to the CD3ε subunit of the TCR upon TCR triggering. Here we examine the role of actin polymerization in the recruitment of Nck to the TCR. To this end, Nck binding to CD3ε was quantified in Jurkat cells using the proximity ligation assay. We show that inhibition of actin polymerization using cytochalasin D delayed the recruitment of Nck1 to the TCR upon TCR triggering. Interestingly, CD3ε phosphorylation was also delayed. These findings suggest that actin polymerization promotes the recruitment of Nck to the TCR, enhancing downstream signaling, such as phosphorylation of CD3ε.
Collapse
Affiliation(s)
- Piyamaporn Wipa
- Department of Microbiology and ParasitologyFaculty of Medical ScienceNaresuan UniversityPhitsanulokThailand
| | - Pussadee Paensuwan
- Department of OptometryFaculty of Allied Health SciencesNaresuan UniversityPhitsanulokThailand
| | - Jatuporn Ngoenkam
- Department of Microbiology and ParasitologyFaculty of Medical ScienceNaresuan UniversityPhitsanulokThailand
| | - Nadine M. Woessner
- Department of ImmunologyFaculty of BiologyUniversity of FreiburgFreiburgGermany
- Signaling Research Centers BIOSS and CIBSSUniversity of FreiburgFreiburgGermany
| | - Susana Minguet
- Department of ImmunologyFaculty of BiologyUniversity of FreiburgFreiburgGermany
- Signaling Research Centers BIOSS and CIBSSUniversity of FreiburgFreiburgGermany
- Center for Chronic Immunodeficiency CCIMedical Center Freiburg and Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Wolfgang W. Schamel
- Department of ImmunologyFaculty of BiologyUniversity of FreiburgFreiburgGermany
- Signaling Research Centers BIOSS and CIBSSUniversity of FreiburgFreiburgGermany
- Center for Chronic Immunodeficiency CCIMedical Center Freiburg and Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Sutatip Pongcharoen
- Division of ImmunologyDepartment of MedicineFaculty of MedicineNaresuan UniversityPhitsanulokThailand
- Center of Excellence in Medical BiotechnologyFaculty of Medical ScienceNaresuan UniversityPhitsanulokThailand
- Research Center for Academic Excellence in Petroleum, Petrochemical, and Advanced MaterialsFaculty of ScienceNaresuan UniversityPhitsanulokThailand
| |
Collapse
|
30
|
Xu X, Li H, Xu C. Structural understanding of T cell receptor triggering. Cell Mol Immunol 2020; 17:193-202. [PMID: 32047259 PMCID: PMC7052162 DOI: 10.1038/s41423-020-0367-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/08/2020] [Indexed: 11/09/2022] Open
Abstract
The T cell receptor (TCR) is one of the most complicated receptors in mammalian cells, and its triggering mechanism remains mysterious. As an octamer complex, TCR comprises an antigen-binding subunit (TCRαβ) and three CD3 signaling subunits (CD3ζζ, CD3δε, and CD3γε). Engagement of TCRαβ with an antigen peptide presented on the MHC leads to tyrosine phosphorylation of the immunoreceptor tyrosine-based activation motif (ITAM) in CD3 cytoplasmic domains (CDs), thus translating extracellular binding kinetics to intracellular signaling events. Whether conformational change plays an important role in the transmembrane signal transduction of TCR is under debate. Attracted by the complexity and functional importance of TCR, many groups have been studying TCR structure and triggering for decades using diverse biochemical and biophysical tools. Here, we synthesize these structural studies and discuss the relevance of the conformational change model in TCR triggering.
Collapse
Affiliation(s)
- Xinyi Xu
- State Key Laboratory of Molecular Biology, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
| | - Hua Li
- State Key Laboratory of Molecular Biology, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
| | - Chenqi Xu
- State Key Laboratory of Molecular Biology, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, 201210, Shanghai, China.
| |
Collapse
|
31
|
Schamel WW, Alarcon B, Minguet S. The TCR is an allosterically regulated macromolecular machinery changing its conformation while working. Immunol Rev 2020; 291:8-25. [PMID: 31402501 DOI: 10.1111/imr.12788] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 05/30/2019] [Indexed: 12/13/2022]
Abstract
The αβ T-cell receptor (TCR) is a multiprotein complex controlling the activation of T cells. Although the structure of the complete TCR is not known, cumulative evidence supports that the TCR cycles between different conformational states that are promoted either by thermal motion or by force. These structural transitions determine whether the TCR engages intracellular effectors or not, regulating TCR phosphorylation and signaling. As for other membrane receptors, ligand binding selects and stabilizes the TCR in active conformations, and/or switches the TCR to activating states that were not visited before ligand engagement. Here we review the main models of TCR allostery, that is, ligand binding at TCRαβ changes the structure at CD3 and ζ. (a) The ITAM and proline-rich sequence exposure model, in which the TCR's cytoplasmic tails shield each other and ligand binding exposes them for phosphorylation. (b) The membrane-ITAM model, in which the CD3ε and ζ tails are sequestered inside the membrane and again ligand binding exposes them. (c) The mechanosensor model in which ligand binding exerts force on the TCR, inducing structural changes that allow signaling. Since these models are complementary rather than competing, we propose a unified model that aims to incorporate all existing data.
Collapse
Affiliation(s)
- Wolfgang W Schamel
- Department of Immunology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Center of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, Freiburg, Germany
| | - Balbino Alarcon
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Susana Minguet
- Department of Immunology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Center of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, Freiburg, Germany
| |
Collapse
|
32
|
Immune checkpoint molecules. Possible future therapeutic implications in autoimmune diseases. J Autoimmun 2019; 104:102333. [DOI: 10.1016/j.jaut.2019.102333] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
|
33
|
Haider N, Dusseault J, Larose L. Nck1 Deficiency Impairs Adipogenesis by Activation of PDGFRα in Preadipocytes. iScience 2018; 6:22-37. [PMID: 30240612 PMCID: PMC6137712 DOI: 10.1016/j.isci.2018.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 05/22/2018] [Accepted: 07/13/2018] [Indexed: 02/06/2023] Open
Abstract
Obesity results from an excessive expansion of white adipose tissue (WAT), which is still poorly understood from an etiologic-mechanistic perspective. Here, we report that Nck1, a Src homology domain-containing adaptor, is upregulated during WAT expansion and in vitro adipogenesis. In agreement, Nck1 mRNA correlates positively with peroxisome proliferator-activated receptor (PPAR) γ and adiponectin mRNAs in the WAT of obese humans, whereas Nck1-deficient mice display smaller WAT depots with reduced number of adipocyte precursors and accumulation of extracellular matrix. Furthermore, silencing Nck1 in 3T3-L1 preadipocytes increases the proliferation and expression of genes encoding collagen, whereas it decreases the expression of adipogenic markers and impairs adipogenesis. Silencing Nck1 in 3T3-L1 preadipocytes also promotes the expression of platelet-derived growth factor (PDGF)-A and platelet-derived growth factor receptor (PDGFR) α activation and signaling. Preventing PDGFRα activation using imatinib, or through PDGF-A or PDGFRα deficiency, inhibits collagen expression in Nck1-deficient preadipocytes. Finally, imatinib rescues differentiation of Nck1-deficient preadipocytes. Altogether, our findings reveal that Nck1 modulates WAT development through PDGFRα-dependent remodeling of preadipocytes.
Collapse
Affiliation(s)
- Nida Haider
- Division of Experimental Medicine, Department of Medicine, McGill University and The Research Institute of McGill University Health Centre, Glen Site, Bloc E, Rm E02-7244, 1001 Decarie Boulevard, Montreal, QC H4A 3J1 Canada
| | - Julie Dusseault
- Division of Experimental Medicine, Department of Medicine, McGill University and The Research Institute of McGill University Health Centre, Glen Site, Bloc E, Rm E02-7244, 1001 Decarie Boulevard, Montreal, QC H4A 3J1 Canada
| | - Louise Larose
- Division of Experimental Medicine, Department of Medicine, McGill University and The Research Institute of McGill University Health Centre, Glen Site, Bloc E, Rm E02-7244, 1001 Decarie Boulevard, Montreal, QC H4A 3J1 Canada.
| |
Collapse
|
34
|
Dubrac A, Künzel SE, Künzel SH, Li J, Chandran RR, Martin K, Greif DM, Adams RH, Eichmann A. NCK-dependent pericyte migration promotes pathological neovascularization in ischemic retinopathy. Nat Commun 2018; 9:3463. [PMID: 30150707 PMCID: PMC6110853 DOI: 10.1038/s41467-018-05926-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 07/04/2018] [Indexed: 12/20/2022] Open
Abstract
Pericytes are mural cells that surround capillaries and control angiogenesis and capillary barrier function. During sprouting angiogenesis, endothelial cell-derived platelet-derived growth factor-B (PDGF-B) regulates pericyte proliferation and migration via the platelet-derived growth factor receptor-β (PDGFRβ). PDGF-B overexpression has been associated with proliferative retinopathy, but the underlying mechanisms remain poorly understood. Here we show that abnormal, α-SMA-expressing pericytes cover angiogenic sprouts and pathological neovascular tufts (NVTs) in a mouse model of oxygen-induced retinopathy. Genetic lineage tracing demonstrates that pericytes acquire α-SMA expression during NVT formation. Pericyte depletion through inducible endothelial-specific knockout of Pdgf-b decreases NVT formation and impairs revascularization. Inactivation of the NCK1 and NCK2 adaptor proteins inhibits pericyte migration by preventing PDGF-B-induced phosphorylation of PDGFRβ at Y1009 and PAK activation. Loss of Nck1 and Nck2 in mural cells prevents NVT formation and vascular leakage and promotes revascularization, suggesting PDGFRβ-Y1009/NCK signaling as a potential target for the treatment of retinopathies. Pericytes are perivascular cells that regulate blood vessel formation and function. Here Dubrac et al. show that pericyte recruitment contributes to pathological neovascularisation in a mouse model of ischemic retinopathy, and that this depends on the regulation of PDGF-B signaling by NCK adaptor proteins.
Collapse
Affiliation(s)
- Alexandre Dubrac
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06511, USA.
| | - Steffen E Künzel
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Sandrine H Künzel
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Jinyu Li
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Rachana Radhamani Chandran
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Kathleen Martin
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Daniel M Greif
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Ralf H Adams
- Department of Tissue Morphogenesis and University of Münster, Faculty of Medicine, Max Planck Institute for Molecular Biomedicine, 48149, Münster, Germany
| | - Anne Eichmann
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06511, USA. .,INSERM U970, Paris Cardiovascular Research Center, 75015, Paris, France. .,Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
35
|
Juraske C, Wipa P, Morath A, Hidalgo JV, Hartl FA, Raute K, Oberg HH, Wesch D, Fisch P, Minguet S, Pongcharoen S, Schamel WW. Anti-CD3 Fab Fragments Enhance Tumor Killing by Human γδ T Cells Independent of Nck Recruitment to the γδ T Cell Antigen Receptor. Front Immunol 2018; 9:1579. [PMID: 30038626 PMCID: PMC6046647 DOI: 10.3389/fimmu.2018.01579] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 06/26/2018] [Indexed: 01/18/2023] Open
Abstract
T lymphocytes expressing the γδ T cell receptor (γδ TCR) can recognize antigens expressed by tumor cells and subsequently kill these cells. γδ T cells are indeed used in cancer immunotherapy clinical trials. The anti-CD3ε antibody UCHT1 enhanced the in vitro tumor killing activity of human γδ T cells by an unknown molecular mechanism. Here, we demonstrate that Fab fragments of UCHT1, which only bind monovalently to the γδ TCR, also enhanced tumor killing by expanded human Vγ9Vδ2 γδ T cells or pan-γδ T cells of the peripheral blood. The Fab fragments induced Nck recruitment to the γδ TCR, suggesting that they stabilized the γδ TCR in an active CD3ε conformation. However, blocking the Nck-CD3ε interaction in γδ T cells using the small molecule inhibitor AX-024 neither reduced the γδ T cells' natural nor the Fab-enhanced tumor killing activity. Likewise, Nck recruitment to CD3ε was not required for intracellular signaling, CD69 and CD25 up-regulation, or cytokine secretion by γδ T cells. Thus, the Nck-CD3ε interaction seems to be dispensable in γδ T cells.
Collapse
Affiliation(s)
- Claudia Juraske
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Piyamaporn Wipa
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Anna Morath
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Jose Villacorta Hidalgo
- Department of Pathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- University Hospital “José de San Martin”, University of Buenos Aires, Buenos Aires, Argentina
| | - Frederike A. Hartl
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katrin Raute
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Hans-Heinrich Oberg
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Daniela Wesch
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Paul Fisch
- Department of Pathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Susana Minguet
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sutatip Pongcharoen
- Division of Immunology, Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok, Thailand
- Research Center for Academic Excellence in Petroleum, Petrochemical and Advanced Materials, Faculty of Science, Naresuan University, Phitsanulok, Thailand
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Wolfgang W. Schamel
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
36
|
Chen EW, Brzostek J, Gascoigne NRJ, Rybakin V. Development of a screening strategy for new modulators of T cell receptor signaling and T cell activation. Sci Rep 2018; 8:10046. [PMID: 29968737 PMCID: PMC6030045 DOI: 10.1038/s41598-018-28106-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/15/2018] [Indexed: 12/31/2022] Open
Abstract
Activation of the T cell receptor (TCR) leads to the generation of a network of signaling events critical to the developmental decision making and activation of T cells. Various experimental approaches continue to identify new signaling molecules, adaptor proteins, and other regulators of TCR signaling. We propose a screening strategy for the identification of small molecules affecting TCR signaling based on the uncoupling of TCR stimulation from cellular responses in developing thymocytes. We demonstrate that this strategy successfully identifies inhibitors of kinases already shown to act downstream of TCR engagement, as well as new inhibitors. The proposed strategy is easily scalable for high throughput screening and will contribute to the identification of new druggable targets in T cell activation.
Collapse
Affiliation(s)
- Elijah W Chen
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2 Blk MD4, Singapore, 117545, Singapore
| | - Joanna Brzostek
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2 Blk MD4, Singapore, 117545, Singapore
| | - Nicholas R J Gascoigne
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2 Blk MD4, Singapore, 117545, Singapore.
| | - Vasily Rybakin
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2 Blk MD4, Singapore, 117545, Singapore. .,Department of Immunobiology, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
37
|
Kefalas G, Jouvet N, Baldwin C, Estall JL, Larose L. Peptide-based sequestration of the adaptor protein Nck1 in pancreatic β cells enhances insulin biogenesis and protects against diabetogenic stresses. J Biol Chem 2018; 293:12516-12524. [PMID: 29941454 DOI: 10.1074/jbc.ra118.002728] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 06/16/2018] [Indexed: 01/14/2023] Open
Abstract
One feature of diabetes is the failure of pancreatic β cells to produce insulin, but the molecular mechanisms leading to this failure remain unclear. Increasing evidence supports a role for protein kinase R-like endoplasmic reticulum kinase (PERK) in the development and function of healthy pancreatic β cells. Previously, our group identified the adaptor protein Nck1 as a negative regulator of PERK. Indeed, we demonstrated that Nck1, by directly binding PERK autophosphorylated on Tyr561, limits PERK activation and signaling. Accordingly, we found that stable depletion of Nck1 in β cells promotes PERK activation and signaling, increases insulin biosynthesis, and improves cell viability in response to diabetes-related stresses. Herein, we explored the therapeutic potential of abrogating the interaction between Nck and PERK to improve β-cell function and survival. To do so, we designed and used a peptide containing the minimal PERK sequence involved in binding Nck1 conjugated to the cell-permeable protein transduction domain from the HIV protein TAT. In the current study, we confirm that the synthetic TAT-Tyr(P)561 phosphopeptide specifically binds the SH2 domain of Nck and prevents Nck interaction with PERK, thereby promoting basal PERK activation. Moreover, we report that treatment of β cells with TAT-Tyr(P)561 inhibits glucolipotoxicity-induced apoptosis, whereas it enhances insulin production and secretion. Taken together, our results support the potential of sequestering Nck using a synthetic peptide to enhance basal PERK activation and create more robust β cells.
Collapse
Affiliation(s)
- George Kefalas
- From the Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,the Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada, and
| | - Nathalie Jouvet
- the Institut de Recherches Cliniques de Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Cindy Baldwin
- From the Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,the Institut de Recherches Cliniques de Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Jennifer L Estall
- the Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada, and .,the Institut de Recherches Cliniques de Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Louise Larose
- From the Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada, .,the Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada, and
| |
Collapse
|
38
|
Autoimmune diseases: Inhibitor of adaptor protein shows self-antigen selectivity. Nat Rev Immunol 2018; 17:80-81. [PMID: 28138142 DOI: 10.1038/nri.2017.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Ou M, Zheng F, Zhang X, Liu S, Tang D, Zhu P, Qiu J, Dai Y. Integrated analysis of B‑cell and T‑cell receptors by high‑throughput sequencing reveals conserved repertoires in IgA nephropathy. Mol Med Rep 2018; 17:7027-7036. [PMID: 29568935 PMCID: PMC5928659 DOI: 10.3892/mmr.2018.8793] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/01/2018] [Indexed: 01/12/2023] Open
Abstract
Immunoglobulin A nephropathy (IgAN) is a type of glomerular disorder associated with immune dysregulation, and understanding B‑/T‑cell receptors (BCRs/TCRs) may be valuable for the development of specific immunotherapeutic interventions. In the present study, B and T cells were isolated from IgAN patients and healthy controls, and the composition of the BCR/TCR complementarity‑determining region (CDR)3 was analyzed by multiplex polymerase chain reaction, high‑throughput sequencing and bioinformatics. The present results revealed that the BCR/TCR CDR3 clones were expressed at very low frequencies, and the composition of clone types in patients with IgAN was skewed; the majority of clones were unique, and only 12 BCR and 228 TCR CDR3 clones were public ones, of which 16 were expressed at a significantly higher frequency in patients with IgAN (P<0.001). There were also certain conserved amino acid residues between unique clones or groups, and the residues GMDV, EQY and EQF were recurring only in the IgAN group. In addition, some VDJ gene recombinations indicated great variation between groups, including 4 high‑frequency VDJ gene recombinations in the IgAN patients (P<0.001). Immune repertoires provide novel information, and conserved BCR/TCR CDR3 clones and VDJ gene recombinations with great variation may be potential therapeutic targets for IgAN patients.
Collapse
Affiliation(s)
- Minglin Ou
- Clinical Medical Research Center of Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Fengping Zheng
- Clinical Medical Research Center of Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Xinzhou Zhang
- Clinical Medical Research Center of Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Song Liu
- Clinical Medical Research Center of Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Donge Tang
- Clinical Medical Research Center of Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Peng Zhu
- Lab Center of Shenzhen Pingshan People's Hospital, Shenzhen, Guangdong 518118, P.R. China
| | - Jingjun Qiu
- Lab Center of Shenzhen Pingshan People's Hospital, Shenzhen, Guangdong 518118, P.R. China
| | - Yong Dai
- Clinical Medical Research Center of Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| |
Collapse
|
40
|
Abstract
CD28 superagonistic antibodies (CD28SAb) can preferentially activate and expand immunosuppressive regulatory T cells (Treg) in mice. However, pre-clinical trials assessing CD28SAbs for the therapy of autoimmune diseases reveal severe systemic inflammatory response syndrome in humans, thereby implying the existence of distinct signalling abilities between human and mouse CD28. Here, we show that a single amino acid variant within the C-terminal proline-rich motif of human and mouse CD28 (P212 in human vs. A210 in mouse) regulates CD28-induced NF-κB activation and pro-inflammatory cytokine gene expression. Moreover, this Y209APP212 sequence in humans is crucial for the association of CD28 with the Nck adaptor protein for actin cytoskeleton reorganisation events necessary for CD28 autonomous signalling. This study thus unveils different outcomes between human and mouse CD28 signalling to underscore the importance of species difference when transferring results from preclinical models to the bedside. CD28 transmits co-stimulatory signals for the activation of both mouse and human T cells, but in vivo hyperactivation of CD28 has opposite effects on system immunity. Here, the authors show that a single amino acid difference between mouse and human CD28 dictates this function distinction via differential recruitment of Nck.
Collapse
|
41
|
Serra P, Santamaria P. Nanoparticle-based approaches to immune tolerance for the treatment of autoimmune diseases. Eur J Immunol 2018; 48:751-756. [PMID: 29427438 DOI: 10.1002/eji.201747059] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/20/2017] [Accepted: 02/05/2018] [Indexed: 12/12/2022]
Abstract
Autoimmune diseases are caused by antigenically complex immune responses of the adaptive and innate immune system against specific cells, tissues or organs. Antigen-specific approaches for induction of immune tolerance in autoimmunity, based on the use of antigenic peptides or proteins, have failed to deliver the desired therapeutic results in clinical trials. These approaches, which are largely relying on triggering clonal anergy and/or deletion of defined autoreactive specificities, do not address the overwhelming antigenic, molecular, and cellular complexity of most autoimmune diseases, which involve various immune cells and ever-growing repertoires of antigenic epitopes on numerous self-antigens. Advances in the field of regulatory T-cell (Treg) biology have suggested that Treg cells might be able to afford dominant tolerance provided they are properly activated and expanded in vivo. More recently, nanotechnology has introduced novel technical advances capable of modulating immune responses. Here, we review nanoparticle-based approaches designed to induce immune tolerance, ranging from approaches that primarily trigger clonal T-cell anergy or deletion to approaches that trigger Treg cell formation and expansion from autoreactive T-cell effectors. We will also highlight the therapeutic potential and positive outcomes in numerous experimental models of autoimmunity.
Collapse
Affiliation(s)
- Pau Serra
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Pere Santamaria
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.,Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
42
|
Ngoenkam J, Schamel WW, Pongcharoen S. Selected signalling proteins recruited to the T-cell receptor-CD3 complex. Immunology 2018; 153:42-50. [PMID: 28771705 PMCID: PMC5721247 DOI: 10.1111/imm.12809] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 12/22/2022] Open
Abstract
The T-cell receptor (TCR)-CD3 complex, expressed on T cells, determines the outcome of a T-cell response. It consists of the TCR-αβ heterodimer and the non-covalently associated signalling dimers of CD3εγ, CD3εδ and CD3ζζ. TCR-αβ binds specifically to a cognate peptide antigen bound to an MHC molecule, whereas the CD3 subunits transmit the signal into the cytosol to activate signalling events. Recruitment of proteins to specialized localizations is one mechanism to regulate activation and termination of signalling. In the last 25 years a large number of signalling molecules recruited to the TCR-CD3 complex upon antigen binding to TCR-αβ have been described. Here, we review knowledge about five of those interaction partners: Lck, ZAP-70, Nck, WASP and Numb. Some of these proteins have been targeted in the development of immunomodulatory drugs aiming to treat patients with autoimmune diseases and organ transplants.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- CD3 Complex/chemistry
- CD3 Complex/genetics
- CD3 Complex/metabolism
- Carrier Proteins/chemistry
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Humans
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism
- Membrane Proteins/metabolism
- Mutation
- Nerve Tissue Proteins/metabolism
- Oncogene Proteins/metabolism
- Protein Binding
- Protein Interaction Domains and Motifs
- Receptor-CD3 Complex, Antigen, T-Cell/chemistry
- Receptor-CD3 Complex, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Signal Transduction
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Wiskott-Aldrich Syndrome Protein/metabolism
- ZAP-70 Protein-Tyrosine Kinase/metabolism
Collapse
Affiliation(s)
- Jatuporn Ngoenkam
- Department of Microbiology and ParasitologyFaculty of Medical ScienceNaresuan UniversityPhitsanulokThailand
| | - Wolfgang W. Schamel
- Department of ImmunologyInstitute for Biology IIIFaculty of BiologyUniversity of FreiburgFreiburgGermany
- BIOSS Centre for Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
- Centre for Chronic Immunodeficiency (CCI)Medical Centre‐University of FreiburgFaculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Sutatip Pongcharoen
- Centre of Excellence in Medical BiotechnologyFaculty of Medical ScienceNaresuan UniversityPhitsanulokThailand
- Centre of Excellence in Petroleum, Petrochemicals and Advanced MaterialsFaculty of ScienceNaresuan UniversityPhitsanulokThailand
- Department of MedicineFaculty of MedicineNaresuan UniversityPhitsanulokThailand
| |
Collapse
|
43
|
Chinen J, Badran YR, Geha RS, Chou JS, Fried AJ. Advances in basic and clinical immunology in 2016. J Allergy Clin Immunol 2017; 140:959-973. [DOI: 10.1016/j.jaci.2017.07.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/12/2017] [Accepted: 07/22/2017] [Indexed: 10/19/2022]
|
44
|
Flemming A. Inhibitor of adaptor protein shows self-antigen selectivity. Nat Rev Drug Discov 2017; 16:86. [DOI: 10.1038/nrd.2017.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Ferrarelli LK. Papers of note in
Science Translational Medicine
8
(370). Sci Signal 2017. [DOI: 10.1126/scisignal.aam6507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This week’s articles highlight advances in treating spinobulbar muscular dystrophy by activating adenylyl cyclase and autoimmune disease by inhibiting protein interactions that mediate T cell signaling.
Collapse
|