1
|
Costa A, Breccia M. SOHO State of the Art Updates and Next Questions: Combination Therapy in Chronic Myeloid Leukemia in Chronic Phase. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2025; 25:421-431. [PMID: 39920000 DOI: 10.1016/j.clml.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/11/2025] [Accepted: 01/12/2025] [Indexed: 02/09/2025]
Abstract
Therapeutic strategies for chronic myeloid leukemia (CML) are rapidly evolving, with novel agents emerging to address the limitations of current treatments. Goals of CML management are disease control and achieve a deep and sustained molecular response for a possible successful treatment-free remission (TFR). However, a significant proportion of patients fail to reach adequate molecular response and require sequential therapies. A crucial aspect of treatment resistance lies in the persistence of leukemic stem cells (LSCs), which serve as a reservoir for disease recurrence. Increasing focus is placed on combination strategies to overcome the constraints of TKI monotherapy. Various strategies have been explored, starting with the combination of interferon (IFN) and TKIs. The investigation of alternative administration methods, dosing regimens, or extended treatment durations in clinical trials involving IFN represents potential avenues to address current conflicting results. Additionally, the combination of ATP-competitive TKIs with asciminib has shown encouraging preclinical and clinical results, with further data needed for a comprehensive safety profile. Recently, efforts to inhibit other signaling pathways have been explored but with contrasting results. Despite ongoing advancements, TKIs remain the cornerstone of both current and future combination therapies. Their integration with personalized approaches is crucial to overcome complex biological challenges and ensure long-term, effective and safe treatment for CML patients.
Collapse
Affiliation(s)
- Alessandro Costa
- Hematology Unit, Businco Hospital, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Massimo Breccia
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy.
| |
Collapse
|
2
|
Sharif MI, Alotaibi AS, Alyamany R, Alahmari A, Alkhaldi H, Saad A, Alfayez M. The road not taken: Exploring non-transplant options in De Novo philadelphia positive acute myeloid leukemia. Leuk Res Rep 2025; 23:100507. [PMID: 40206282 PMCID: PMC11981798 DOI: 10.1016/j.lrr.2025.100507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/17/2025] [Indexed: 04/11/2025] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease with diverse molecular cytogenetic characteristics. Philadelphia-positive acute myeloid leukemia, a rare subtype of AML, is traditionally considered a high-risk, with the standard recommendation being an allogeneic hematopoietic cell transplant (HCT) in first remission. More recently, with better characterization and understanding of AML biology, novel therapies have been introduced. Drawing parallels from the advances seen in Philadelphia-positive acute lymphoblastic leukemia (ALL), the question arises whether potent tyrosine kinase inhibitors (TKI), such as ponatinib, in combination with AML-directed therapies, could be used in Philadelphia-positive AML, potentially eliminating the need for HCT in the first remission. In this report, we review the literature on Philadelphia-positive AML, study a case where HCT was omitted, and explore potential signals that could support successful HCT omission.
Collapse
Affiliation(s)
- Mohamed I Sharif
- Department of Hematology, Stem Cell Transplant and Cellular Therapy, Oncology Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ahmad S. Alotaibi
- Department of Hematology, Stem Cell Transplant and Cellular Therapy, Oncology Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ruah Alyamany
- Department of Hematology, Stem Cell Transplant and Cellular Therapy, Oncology Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ali Alahmari
- Department of Hematology, Stem Cell Transplant and Cellular Therapy, Oncology Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hanan Alkhaldi
- Department of Hematology, Stem Cell Transplant and Cellular Therapy, Oncology Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ayman Saad
- Department of Hematology, Stem Cell Transplant and Cellular Therapy, Oncology Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mansour Alfayez
- Department of Hematology, Stem Cell Transplant and Cellular Therapy, Oncology Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Cruz-Rodriguez N, Deininger MW. Novel treatment strategies for chronic myeloid leukemia. Blood 2025; 145:931-943. [PMID: 39729529 PMCID: PMC11952011 DOI: 10.1182/blood.2024026312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/29/2024] Open
Abstract
ABSTRACT Starting with imatinib, tyrosine kinase inhibitors (TKIs) have turned chronic myeloid leukemia (CML) from a lethal blood cancer into a chronic condition. As patients with access to advanced CML care have an almost normal life expectancy, there is a perception that CML is a problem of the past, and one should direct research resources elsewhere. However, a closer look at the current CML landscape reveals a more nuanced picture. Most patients still require life-long TKI therapy to avoid recurrence of active CML. Chronic TKI toxicity and the high costs of the well-tolerated agents remain challenging. Progression to blast phase still occurs, particularly in socioeconomically disadvantaged parts of the world, where high-risk CML at diagnosis is common. Here, we review the prospects of further improving TKIs to achieve optimal suppression of BCR::ABL1 kinase activity, the potential of combining different classes of TKIs, and the current state of BCR::ABL1 degraders. We cover combination therapy approaches to address TKI resistance in the setting of residual leukemia and in advanced CML. Despite the unprecedented success of TKIs in CML, more work is needed to truly finish the job, and we hope to stimulate innovative research aiming to achieve this goal.
Collapse
Affiliation(s)
| | - Michael W. Deininger
- Versiti Blood Research Institute, Milwaukee, WI
- Department of Medicine, Division of Hematology/Oncology, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
4
|
Kuznetsova V, Krishnan V, Costa A, Ren X, Ricketts TD, Patel SB, Connelly AN, Goel P, Knapp JP, Franceski AM, Luca F, Lobo de Figueiredo-Pontes L, Bhatia R, Prabhakar S, Ong ST, Welner RS. Chronic inflammation deters natural killer cell fitness and cytotoxicity in myeloid leukemia. Blood Adv 2025; 9:759-773. [PMID: 39571169 PMCID: PMC11869968 DOI: 10.1182/bloodadvances.2024014592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/08/2024] [Indexed: 02/14/2025] Open
Abstract
ABSTRACT Natural killer (NK) cells play an integral role in immunosurveillance against myeloid malignancies, with their mature phenotype and abundance linked to prolonged treatment-free remission in chronic myeloid leukemia (CML). However, NK cell function is suppressed during the disease, and the orchestrators of this impairment are not fully understood. Using a chimeric BCR::ABL1+ CML mouse model, we characterized the impact of the leukemic microenvironment on NK cell function. We showed that NK cells have reduced counts, immature phenotype, poor cytotoxicity, and altered expression of activating and inhibitory receptors in CML mice, which revert to a steady state upon BCR::ABL1 inhibition. Single-cell RNA sequencing revealed an inflammatory cytokine response in CML-exposed NK cells, highlighted by the tumor necrosis factor α (TNFα)-induced gene signature, upregulation of TNFα receptor 2, and enrichment of suppressor of cytokine signaling family genes such as Cish, the critical NK cell checkpoint. Ex vivo exposure of healthy NK cells to leukemic soluble factors compromised target-specific NK cell degranulation, which was partially rescued by targeting Cish or TNFα. In alignment with these findings, NK cells from healthy donors displayed suppressed cytotoxicity when exposed to plasma from untreated patients with CML, with a partial restoration upon Cish or TNFα inhibition. Furthermore, NK cells from newly diagnosed patients with CML predestined for blast crisis showed an enrichment of the TNFα-induced proinflammatory gene signature identified in CML mice. These results suggest that targeting inflammatory signaling could enhance NK cell-based immunotherapies for CML.
Collapse
MESH Headings
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Animals
- Mice
- Humans
- Inflammation/immunology
- Inflammation/pathology
- Inflammation/metabolism
- Cytotoxicity, Immunologic
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Disease Models, Animal
- Chronic Disease
- Tumor Microenvironment/immunology
- Fusion Proteins, bcr-abl/genetics
- Cytokines/metabolism
- Leukemia, Myeloid/immunology
- Leukemia, Myeloid/pathology
Collapse
Affiliation(s)
- Valeriya Kuznetsova
- Division of Hematology and Oncology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL
| | - Vaidehi Krishnan
- Cancer and Stem Cell Biology Research Program, Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
| | - Amanda Costa
- Division of Hematology and Oncology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL
- Hematology Division, Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Xi Ren
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore, Singapore, Singapore
| | - Tiffany D. Ricketts
- Division of Hematology and Oncology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL
| | - Sweta B. Patel
- Division of Hematology and Oncology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL
- Division of Hematology, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO
| | - Ashley N. Connelly
- Division of Hematology and Oncology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL
| | - Paran Goel
- Division of Hematology and Oncology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL
| | - Joshua P. Knapp
- Division of Hematology and Oncology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL
| | - Alana M. Franceski
- Division of Hematology and Oncology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL
| | - Francesca Luca
- Division of Hematology and Oncology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL
| | - Lorena Lobo de Figueiredo-Pontes
- Hematology Division, Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Ravi Bhatia
- Division of Hematology and Oncology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL
| | - Shyam Prabhakar
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore, Singapore, Singapore
| | - S. Tiong Ong
- Cancer and Stem Cell Biology Research Program, Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
- Department of Haematology, Singapore General Hospital, Singapore, Singapore
- Division of Medical Oncology, National Cancer Centre, Singapore, Singapore
- Department of Medicine, Duke University Medical Center, Durham, NC
| | - Robert S. Welner
- Division of Hematology and Oncology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
5
|
Duan C, Lin X, Zou W, He Q, Wei F, Pan J, Liu C, Jin Y. Targeting DDX3X eliminates leukemia stem cells in chronic myeloid leukemia by blocking NT5DC2 mRNA translation. Oncogene 2025; 44:241-254. [PMID: 39516658 DOI: 10.1038/s41388-024-03215-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Tyrosine kinase inhibitors (TKIs) are highly effective in the treatment of patients with chronic myeloid leukemia (CML), but fail to eliminate leukemia stem cells (LSCs), which can lead to disease relapse or progression. It is urgently need to identify the regulators specifically driving LSCs. In this study, we identified DEAD-box helicase 3 X-linked (DDX3X), a ubiquitously expressed RNA helicase, as a critical regulator for CML LSCs by using patient samples and BCR-ABL-driven CML mouse model. We found that DDX3X enhanced the survival, serially plating and long-term engraftment abilities of human primary CML CD34+ cells. Inhibition of DDX3X reduced leukemia burden, eradicated LSCs and extended the survival of CML mice. Mechanistically, we uncovered that DDX3X protein bound to 5'-Nucleotidase Domain Containing 2 (NT5DC2) mRNA and promoted its translation in CML cells. NT5DC2 was a functional mediator in DDX3X regulation of LSCs. Collectively, our findings provide new evidence for RNA helicase facilitating the translation of specific mRNA in LSCs. Targeting DDX3X may represent a promising therapeutic strategy for eradication of LSCs in CML patients.
Collapse
MESH Headings
- DEAD-box RNA Helicases/genetics
- DEAD-box RNA Helicases/metabolism
- DEAD-box RNA Helicases/antagonists & inhibitors
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Humans
- Animals
- Mice
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Neoplastic Stem Cells/drug effects
- RNA, Messenger/genetics
- Protein Biosynthesis/drug effects
- Cell Line, Tumor
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Chen Duan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaoying Lin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China
| | - Waiyi Zou
- Department of Hematology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qi He
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China
| | - Fen Wei
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China
| | - Jingxuan Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
| | - Chang Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China.
- Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China.
| | - Yanli Jin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China.
- Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China.
| |
Collapse
|
6
|
Minhajuddin M, Winters A, Ye H, Pei S, Stevens B, Gillen A, Engel K, Gipson S, Ransom M, Amaya M, Inguva A, Gasparetto M, Althoff MJ, Miller R, Shelton I, Tolison H, Krug A, Culp-Hill R, D'Alessandro A, Sherbenou DW, Pollyea DA, Smith C, Jordan CT. Lysosomal acid lipase A modulates leukemia stem cell response to venetoclax/tyrosine kinase inhibitor combination therapy in blast phase chronic myeloid leukemia. Haematologica 2025; 110:103-116. [PMID: 38934082 PMCID: PMC11694110 DOI: 10.3324/haematol.2023.284716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
The treatment of blast phase chronic myeloid leukemia (bpCML) remains a challenge due, at least in part, to drug resistance of leukemia stem cells (LSC). Recent clinical evidence suggests that the BCL-2 inhibitor venetoclax in combination with ABL-targeting tyrosine kinase inhibitors can eradicate bpCML LSC. In this study, we employed preclinical models of bpCML to investigate the efficacy and underlying mechanism of LSC-targeting with combinations of venetoclax/tyrosine kinase inhibitors. Transcriptional analysis of LSC exposed to venetoclax and dasatinib revealed upregulation of genes involved in lysosomal biology, in particular lysosomal acid lipase A (LIPA), a regulator of free fatty acids. Metabolomic analysis confirmed increased levels of free fatty acids in response to treatment with venetoclax/dasatinib. Pretreatment of leukemia cells with bafilomycin, a specific lysosome inhibitor, or genetic perturbation of LIPA, resulted in increased sensitivity of leukemia cells to venetoclax/dasatinib, implicating LIPA in treatment resistance. Importantly, venetoclax/dasatinib treatment did not affect normal stem cell function, suggesting a leukemia-specific response. These results demonstrate that venetoclax/dasatinib is a LSC-selective regimen in bpCML and that disrupting LIPA and fatty acid transport enhances the response to venetoclax/ dasatinib when targeting LSC, providing a rationale for exploring lysosomal disruption as an adjunctive therapeutic strategy to prolong disease remission.
Collapse
MESH Headings
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/administration & dosage
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Humans
- Sulfonamides/pharmacology
- Sulfonamides/administration & dosage
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/administration & dosage
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Mice
- Blast Crisis/drug therapy
- Blast Crisis/pathology
- Cell Line, Tumor
- Drug Resistance, Neoplasm/drug effects
- Tyrosine Kinase Inhibitors
Collapse
Affiliation(s)
- Mohd Minhajuddin
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO.
| | - Amanda Winters
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Haobin Ye
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghaii
| | - Shanshan Pei
- Liangzhu Laboratory, Zhejiang University Medical Center, Zhejiang
| | - Brett Stevens
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO
| | - Austin Gillen
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO
| | - Krysta Engel
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO
| | - Stephanie Gipson
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO
| | - Monica Ransom
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO
| | - Maria Amaya
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO
| | - Anagha Inguva
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO
| | - Maura Gasparetto
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO
| | - Mark J Althoff
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO
| | - Regan Miller
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO
| | - Ian Shelton
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO
| | - Hunter Tolison
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO
| | - Anna Krug
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO
| | - Rachel Culp-Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Daniel W Sherbenou
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO
| | - Daniel A Pollyea
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO
| | - Clayton Smith
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO
| | - Craig T Jordan
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO
| |
Collapse
|
7
|
Issa GC, Aldoss I, Thirman MJ, DiPersio J, Arellano M, Blachly JS, Mannis GN, Perl A, Dickens DS, McMahon CM, Traer E, Zwaan CM, Grove CS, Stone R, Shami PJ, Mantzaris I, Greenwood M, Shukla N, Cuglievan B, Kovacsovics T, Gu Y, Bagley RG, Madigan K, Chudnovsky Y, Nguyen HV, McNeer N, Stein EM. Menin Inhibition With Revumenib for KMT2A-Rearranged Relapsed or Refractory Acute Leukemia (AUGMENT-101). J Clin Oncol 2025; 43:75-84. [PMID: 39121437 PMCID: PMC11687943 DOI: 10.1200/jco.24.00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 04/26/2024] [Accepted: 05/21/2024] [Indexed: 08/11/2024] Open
Abstract
PURPOSE Revumenib, an oral, small molecule inhibitor of the menin-lysine methyltransferase 2A (KMT2A) interaction, showed promising efficacy and safety in a phase I study of heavily pretreated patients with KMT2A-rearranged (KMT2Ar) acute leukemia. Here, we evaluated the activity of revumenib in individuals with relapsed/refractory (R/R) KMT2Ar acute leukemia. METHODS AUGMENT-101 is a phase I/II, open-label, dose-escalation and expansion study of revumenib conducted across 22 clinical sites in five countries (ClinicalTrials.gov identifier: NCT04065399). We report results from the phase II, registration-enabling portion. Individuals age ≥30 days with R/R KMT2Ar acute leukemia or with AML and nucleophosmin 1 (NPM1) mutation were enrolled. Revumenib was administered once every 12 hours, at 163 mg (95 mg/m2 if weight <40 kg) with a strong cytochrome P450 inhibitor, in 28-day cycles. The primary end points were the rate of complete remission (CR) or CR with partial hematologic recovery (CR + CRh) and safety. At a prespecified interim analysis, safety was assessed in all KMT2Ar treated patients; efficacy was assessed in those with centrally confirmed KMT2Ar. The separate NPM1 cohort of the trial is ongoing. RESULTS From October 1, 2021, to July 24, 2023, N = 94 patients (median [range] age, 37 [1.3-75] years) were treated. Grade ≥3 adverse events included febrile neutropenia (37.2%), differentiation syndrome (16.0%), and QTc prolongation (13.8%). In the efficacy-evaluable patients (n = 57), the CR + CRh rate was 22.8% (95% CI, 12.7 to 35.8), exceeding the null hypothesis of 10% (P = .0036). Overall response rate was 63.2% (95% CI, 49.3 to 75.6), with 15 of 22 patients (68.2%) having no detectable residual disease. CONCLUSION Revumenib led to high remission rates with a predictable safety profile in R/R KMT2Ar acute leukemia. To our knowledge, this trial represents the largest evaluation of a targeted therapy for these patients.
Collapse
Affiliation(s)
- Ghayas C. Issa
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ibrahim Aldoss
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA
| | - Michael J. Thirman
- Biological Sciences Division, The University of Chicago Medicine, Chicago, IL
| | - John DiPersio
- John T. Milliken Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, MO
| | - Martha Arellano
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA
| | - James S. Blachly
- Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH
| | - Gabriel N. Mannis
- Division of Hematology, Stanford University School of Medicine, Stanford, CA
| | - Alexander Perl
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - David S. Dickens
- University of Iowa Stead Family Children's Hospital, Iowa City, IA
| | - Christine M. McMahon
- UCHealth Blood Disorders and Cell Therapies Center, University of Colorado School of Medicine, Aurora, CO
| | - Elie Traer
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - C. Michel Zwaan
- Princess Máxima Center for Pediatric Oncology, Utrecht, and Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Carolyn S. Grove
- Department of Haematology, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Richard Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Paul J. Shami
- University of Utah Huntsman Cancer Institute, Salt Lake City, UT
| | - Ioannis Mantzaris
- Department of Oncology, Montefiore Einstein Comprehensive Cancer Center, Bronx, NY
| | - Matthew Greenwood
- Department of Haematology, Royal North Shore Hospital, The University of Sydney, Sydney, New South Wales, Australia
| | - Neerav Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Branko Cuglievan
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Yu Gu
- Syndax Pharmaceuticals, Inc, Waltham, MA
| | | | | | | | | | | | - Eytan M. Stein
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
8
|
Yu M, Nah GSS, Krishnan V, Sulaimi FNB, Ng KP, Wang C, Bhatt S, Chuah C, Bergstrom DE, Ong ST. The BIM deletion polymorphism potentiates the survival of leukemia stem and progenitor cells and impairs response to targeted therapies. Leukemia 2025; 39:134-143. [PMID: 39438588 DOI: 10.1038/s41375-024-02418-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
One sixth of human cancers harbor pathogenic germline variants, but few studies have established their functional contribution to cancer outcomes. Here, we developed a humanized mouse model harboring a common East Asian polymorphism, the BIM deletion polymorphism (BDP), which confers resistance to oncogenic kinase inhibitors through generation of non-apoptotic splice isoforms. However, despite its clear role in mediating bulk resistance in patients, the BDP's role in cancer stem and progenitor cells, which initiate disease and possess altered BCL-2 rheostats compared to differentiated tumor cells, remains unknown. To study the role of the BDP in leukemia initiation, we crossed the BDP mouse into a chronic myeloid leukemia (CML) model. We found that the BDP greatly enhanced the fitness of CML cells with a three-fold greater competitive advantage, leading to more aggressive disease. The BDP conferred almost complete resistance to cell death induced by imatinib in CML stem and progenitor cells (LSPCs). Using BH3 profiling, we identified a novel therapeutic vulnerability of BDP LSPCs to MCL-1 antagonists, which we confirmed in primary human LSPCs, and in vivo. Our findings demonstrate the impact of human polymorphisms on the survival of LSPCs and highlight their potential as companion diagnostics for tailored therapies.
Collapse
MESH Headings
- Animals
- Bcl-2-Like Protein 11/genetics
- Mice
- Neoplastic Stem Cells/pathology
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/drug effects
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/mortality
- Polymorphism, Genetic
- Drug Resistance, Neoplasm/genetics
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
- Apoptosis
- Cell Survival/genetics
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Molecular Targeted Therapy
Collapse
Affiliation(s)
- Mengge Yu
- Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Giselle Sek Suan Nah
- Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Vaidehi Krishnan
- Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore
| | | | - King Pan Ng
- Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore
- KK Women's and Children's Hospital, Singapore, 229899, Singapore
| | - Chuqi Wang
- Department of Pharmacy, National University of Singapore, Singapore, 117559, Singapore
| | - Shruti Bhatt
- Department of Pharmacy, National University of Singapore, Singapore, 117559, Singapore
| | - Charles Chuah
- Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore
- Department of Haematology, Singapore General Hospital, Singapore, 169608, Singapore
| | | | - S Tiong Ong
- Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore.
- Department of Haematology, Singapore General Hospital, Singapore, 169608, Singapore.
- Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, 27708, USA.
| |
Collapse
|
9
|
Quijada-Álamo M, Freed G, Wagenblast E. LIPA-frogging blast phase chronic myeloid leukemia: hopping over resistance with lysosomal targeting. Haematologica 2025; 110:13-15. [PMID: 39219462 PMCID: PMC11694097 DOI: 10.3324/haematol.2024.286140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Affiliation(s)
- Miguel Quijada-Álamo
- Department of Oncological Sciences, Tisch Cancer Institute, Black Family Stem Cell Institute, Mindich Child Health and Development Institute and Department of Pediatrics, Division of Pediatric Hematology-Oncology, Icahn School of Medicine at Mount Sinai
| | - Grace Freed
- Department of Oncological Sciences, Tisch Cancer Institute, Black Family Stem Cell Institute, Mindich Child Health and Development Institute and Department of Pediatrics, Division of Pediatric Hematology-Oncology, Icahn School of Medicine at Mount Sinai
| | - Elvin Wagenblast
- Department of Oncological Sciences, Tisch Cancer Institute, Black Family Stem Cell Institute, Mindich Child Health and Development Institute and Department of Pediatrics, Division of Pediatric Hematology-Oncology, Icahn School of Medicine at Mount Sinai.
| |
Collapse
|
10
|
Jabbour E, Kantarjian H. Chronic myeloid leukemia: 2025 update on diagnosis, therapy, and monitoring. Am J Hematol 2024; 99:2191-2212. [PMID: 39093014 DOI: 10.1002/ajh.27443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024]
Abstract
DISEASE OVERVIEW Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm with an annual incidence of two cases/100 000. It accounts for approximately 15% of newly diagnosed cases of leukemia in adults. DIAGNOSIS CML is characterized by a balanced genetic translocation, t(9;22) (q34;q11.2), involving a fusion of the Abelson murine leukemia (ABL1) gene from chromosome 9q34 with the breakpoint cluster region (BCR) gene on chromosome 22q11.2. This rearrangement is known as the Philadelphia chromosome. The molecular consequence of this translocation is the generation of a BCR::ABL1 fusion oncogene, which in turn translates into a BCR::ABL1 oncoprotein. FRONTLINE THERAPY Four tyrosine kinase inhibitors (TKIs), imatinib, dasatinib, bosutinib, and nilotinib, are approved by the United States Food and Drug Administration (FDA) for first-line treatment of newly diagnosed CML in the chronic phase (CML-CP). Clinical trials with second and third-generation TKIs in frontline CML-CP therapy reported significantly deeper and faster responses but had no impact on survival prolongation, likely because of their potent efficacy and the availability of effective TKIs salvage therapies for patients who have a cytogenetic relapse with frontline TKI therapy. All four TKIs are equivalent if the aim of therapy is to improve survival. In younger patients with high-risk disease and in whom the aim of therapy is to induce a treatment-free remission status, second-generation TKIs may be favored. SALVAGE THERAPY For CML post-failure on frontline therapy, second-line options include second and third-generation TKIs. Although potent and selective, these TKIs exhibit unique pharmacological profiles and response patterns relative to different patient and disease characteristics, such as patients' comorbidities and financial status, disease stage, and BCR::ABL1 mutational status. Patients who develop the T315I "gatekeeper" mutation display resistance to all currently available TKIs except ponatinib, asciminib, and olverembatinib. Allogeneic stem cell transplantation remains an important therapeutic option for patients with CML-CP and failure (due to resistance) of at least two TKIs and for all patients in advanced-phase disease. Older patients who have a cytogenetic relapse post-failure on all TKIs can maintain long-term survival if they continue a daily most effective/least toxic TKI, with or without the addition of non-TKI anti-CML agents (hydroxyurea, omacetaxine, azacitidine, decitabine, cytarabine, and others).
Collapse
MESH Headings
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Protein Kinase Inhibitors/therapeutic use
- Antineoplastic Agents/therapeutic use
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/antagonists & inhibitors
Collapse
Affiliation(s)
- Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
11
|
Çakan E, Lara OD, Szymanowska A, Bayraktar E, Chavez-Reyes A, Lopez-Berestein G, Amero P, Rodriguez-Aguayo C. Therapeutic Antisense Oligonucleotides in Oncology: From Bench to Bedside. Cancers (Basel) 2024; 16:2940. [PMID: 39272802 PMCID: PMC11394571 DOI: 10.3390/cancers16172940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 09/15/2024] Open
Abstract
Advancements in our comprehension of tumor biology and chemoresistance have spurred the development of treatments that precisely target specific molecules within the body. Despite the expanding landscape of therapeutic options, there persists a demand for innovative approaches to address unmet clinical needs. RNA therapeutics have emerged as a promising frontier in this realm, offering novel avenues for intervention such as RNA interference and the utilization of antisense oligonucleotides (ASOs). ASOs represent a versatile class of therapeutics capable of selectively targeting messenger RNAs (mRNAs) and silencing disease-associated proteins, thereby disrupting pathogenic processes at the molecular level. Recent advancements in chemical modification and carrier molecule design have significantly enhanced the stability, biodistribution, and intracellular uptake of ASOs, thereby bolstering their therapeutic potential. While ASO therapy holds promise across various disease domains, including oncology, coronary angioplasty, neurological disorders, viral, and parasitic diseases, our review manuscript focuses specifically on the application of ASOs in targeted cancer therapies. Through a comprehensive examination of the latest research findings and clinical developments, we delve into the intricacies of ASO-based approaches to cancer treatment, shedding light on their mechanisms of action, therapeutic efficacy, and prospects.
Collapse
Affiliation(s)
- Elif Çakan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| | - Olivia D Lara
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
- Division of Gynecologic Oncology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Anna Szymanowska
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Emine Bayraktar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Department of Medical Biology, Faculty of Medicine, University of Gaziantep, Gaziantep 27310, Turkey
| | | | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| |
Collapse
|
12
|
Jabbour E, Haddad FG, Sasaki K, Carter BZ, Alvarado Y, Nasnas C, Nasr L, Masarova L, Daver N, Pemmaraju N, Short NJ, Skinner J, Kadia T, Borthakur G, Garcia-Manero G, Ravandi F, Issa GC, Andreeff M, Kantarjian H. Combination of dasatinib and venetoclax in newly diagnosed chronic phase chronic myeloid leukemia. Cancer 2024; 130:2652-2659. [PMID: 38591430 DOI: 10.1002/cncr.35317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND The dual inhibition of the BCR::ABL1 tyrosine kinase and BCL-2 could potentially deepen the response rates of chronic myeloid leukemia in chronic phase (CML-CP). This study evaluated the safety and efficacy of the combination of dasatinib and venetoclax. METHODS In this phase 2 trial, patients with CML-CP or accelerated phase (clonal evolution) received dasatinib 50 mg/day for three courses; venetoclax was added in course 4 for 3 years. The initial venetoclax dose was 200 mg/day continuously but reduced later to 200 mg/day for 14 days, and to 100 mg/day for 7 days per course once a molecular response (MR)4.5 was achieved. After 3 years of combination, patients were maintained on single-agent dasatinib. The primary end point was the rate of major molecular response (MMR) by 12 months of combination. RESULTS Sixty-five patients were treated. Their median age was 46 years (range, 23-73). By 12 months of combination, the MMR, MR4, and MR4.5 rates were 86%, 53%, and 45%, respectively. After a median follow-up of 42 months, the 4-year event-free and overall survival rates were 96% and 100%, respectively. Outcomes with the combination were comparable to historical outcomes with single-agent dasatinib (cumulative 12-months MMR rate of 79% with both strategies). The incidence of grade 3-4 neutropenia was 22% with the combination and 11% with single-agent dasatinib (p < .001). CONCLUSIONS Treatment with dasatinib and venetoclax was safe and effective in CML-CP. The cumulative response rates with the combination were similar to those with single-agent dasatinib. Further follow-up is needed to evaluate the rates of durable deep molecular response and treatment-free remission.
Collapse
Affiliation(s)
- Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Fadi G Haddad
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Koji Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bing Z Carter
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yesid Alvarado
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Cedric Nasnas
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lewis Nasr
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lucia Masarova
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jeffrey Skinner
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tapan Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Guillermo Garcia-Manero
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ghayas C Issa
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael Andreeff
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
13
|
Adnan Awad S, Dufva O, Klievink J, Karjalainen E, Ianevski A, Pietarinen P, Kim D, Potdar S, Wolf M, Lotfi K, Aittokallio T, Wennerberg K, Porkka K, Mustjoki S. Integrated drug profiling and CRISPR screening identify BCR::ABL1-independent vulnerabilities in chronic myeloid leukemia. Cell Rep Med 2024; 5:101521. [PMID: 38653245 PMCID: PMC11148568 DOI: 10.1016/j.xcrm.2024.101521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/10/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024]
Abstract
BCR::ABL1-independent pathways contribute to primary resistance to tyrosine kinase inhibitor (TKI) treatment in chronic myeloid leukemia (CML) and play a role in leukemic stem cell persistence. Here, we perform ex vivo drug screening of CML CD34+ leukemic stem/progenitor cells using 100 single drugs and TKI-drug combinations and identify sensitivities to Wee1, MDM2, and BCL2 inhibitors. These agents effectively inhibit primitive CD34+CD38- CML cells and demonstrate potent synergies when combined with TKIs. Flow-cytometry-based drug screening identifies mepacrine to induce differentiation of CD34+CD38- cells. We employ genome-wide CRISPR-Cas9 screening for six drugs, and mediator complex, apoptosis, and erythroid-lineage-related genes are identified as key resistance hits for TKIs, whereas the Wee1 inhibitor AZD1775 and mepacrine exhibit distinct resistance profiles. KCTD5, a consistent TKI-resistance-conferring gene, is found to mediate TKI-induced BCR::ABL1 ubiquitination. In summary, we delineate potential mechanisms for primary TKI resistance and non-BCR::ABL1-targeting drugs, offering insights for optimizing CML treatment.
Collapse
MESH Headings
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Protein Kinase Inhibitors/pharmacology
- CRISPR-Cas Systems/genetics
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- Proto-Oncogene Proteins c-abl/metabolism
- Proto-Oncogene Proteins c-abl/genetics
- Proto-Oncogene Proteins c-abl/antagonists & inhibitors
- Cell Line, Tumor
Collapse
Affiliation(s)
- Shady Adnan Awad
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; Foundation for the Finnish Cancer Institute, 00290 Helsinki, Finland; Clinical Pathology Department, National Cancer Institute, Cairo University, 11796 Cairo, Egypt.
| | - Olli Dufva
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00014 Helsinki, Finland
| | - Jay Klievink
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland
| | - Ella Karjalainen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute for Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Aleksandr Ianevski
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute for Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Paavo Pietarinen
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland
| | - Daehong Kim
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland
| | - Swapnil Potdar
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute for Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Maija Wolf
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute for Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Kourosh Lotfi
- Department of Medical and Health Sciences, Faculty of Medicine and Health, Linköping University, 58183 Linköping, Sweden
| | - Tero Aittokallio
- Foundation for the Finnish Cancer Institute, 00290 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00014 Helsinki, Finland; Institute for Molecular Medicine Finland (FIMM), Helsinki Institute for Life Science, University of Helsinki, 00014 Helsinki, Finland; Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; Oslo Centre for Biostatistics and Epidemiology, University of Oslo, 0317 Oslo, Norway
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute for Life Science, University of Helsinki, 00014 Helsinki, Finland; Biotech Research & Innovation Centre and Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kimmo Porkka
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00014 Helsinki, Finland
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00014 Helsinki, Finland.
| |
Collapse
|
14
|
Beinortas T, Huntly BJP. Integrated functional genomic screening to bypass TKI resistance in chronic myeloid leukemia. Cell Rep Med 2024; 5:101565. [PMID: 38776875 PMCID: PMC11148797 DOI: 10.1016/j.xcrm.2024.101565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
CML is readily treatable with tyrosine kinase inhibitors (TKIs); however, resistance occurs, with the disease curable in only ∼15%-20% of patients. Using integrated functional genomics, Adnan Awad et al.1 identify agents effective against CML stem cells and describe mechanisms underlying TKI resistance.
Collapse
MESH Headings
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- Genomics/methods
Collapse
Affiliation(s)
- Tumas Beinortas
- Department of Haematology, University of Cambridge, Cambridge, UK; Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK; Cambridge University Hospitals, Cambridge, UK
| | - Brian J P Huntly
- Department of Haematology, University of Cambridge, Cambridge, UK; Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK; Cambridge University Hospitals, Cambridge, UK.
| |
Collapse
|
15
|
Costa A, Breccia M. How to improve treatment-free remission eligibility in chronic myeloid leukaemia? Br J Haematol 2024; 204:434-448. [PMID: 38148564 DOI: 10.1111/bjh.19269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/03/2023] [Accepted: 12/08/2023] [Indexed: 12/28/2023]
Abstract
The achievement of treatment-free remission (TFR) has become a significant clinical end-point in the management of patients with chronic myeloid leukaemia (CML), providing an opportunity to discontinue therapy with tyrosine kinase inhibitors (TKIs) while maintaining deep molecular response (DMR). Early studies, such as the French STIM trial, have demonstrated that a portion of patients can maintain DMR after treatment cessation, with rates ranging from 40% to 50%, and most relapses occurring within the first 6 months. Key prognostic factors for successful TFR, including treatment duration, duration of DMR, risk scores, and transcript type, have been identified. Optimal patient selection for TFR remains a challenge, but recent research provides insights into potential strategies to increase TFR eligibility. Evidence suggests that early intervention switching to achieve optimal response, treatment combinations, proactive switch in the case of absence of DMR, dose-optimization and induction-maintenance approach can improve molecular responses and, consequently, enhance TFR eligibility. In this review, we report and discuss all the potential therapeutic strategies that may enhance eligibility for a first attempt at TFR, with a particular emphasis on potential future approaches.
Collapse
Affiliation(s)
- Alessandro Costa
- Hematology Unit, Department of Medical Sciences and Public Health, Businco Hospital, University of Cagliari, Cagliari, Italy
| | - Massimo Breccia
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| |
Collapse
|
16
|
Costa A, Scalzulli E, Carmosino I, Ielo C, Bisegna ML, Martelli M, Breccia M. Pharmacotherapeutic advances for chronic myelogenous leukemia: beyond tyrosine kinase inhibitors. Expert Opin Pharmacother 2024; 25:189-202. [PMID: 38488824 DOI: 10.1080/14656566.2024.2331778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024]
Abstract
INTRODUCTION Despite the notable success of tyrosine kinase inhibitors (TKIs) in treating chronic myeloid leukemia (CML), a subset of patients experiences resistance, or relapse after discontinuation. This challenge is attributed to the Ph+ leukemia stem cells (LSCs) pool not fully involved in the inhibition process due to the current therapeutic approach. AREAS COVERED Current pharmacological advancements in CML therapy focus on targeting LSCs, intervening in self-renewal pathways, and exploiting biological vulnerabilities. Beyond BCR::ABL1 inhibition, innovative approaches include immunotherapy, epigenetic modulation, and interference with microenvironmental mechanisms. EXPERT OPINION Diverse therapeutic strategies beyond TKIs are under investigation. Immunotherapy with interferon-α (IFN-α) shows some biological effects, although further research is needed for optimal application in enhancing discontinuation rates. Other compounds were able to mobilize Ph+ LSCs from the bone marrow niche (DPP-IV inhibitor vildagliptin or PAI-1 inhibitor TM5614) increasing the LSC clearance or target the CD26, a Ph+ specific surface receptor. It is noteworthy that the majority of these alternative strategies still incorporate TKIs. In conclusion, novel therapeutic perspectives are emerging for CML, holding the potential for substantial advancements in disease treatment.
Collapse
Affiliation(s)
- Alessandro Costa
- Hematology Unit, Businco Hospital, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Emilia Scalzulli
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| | - Ida Carmosino
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| | - Claudia Ielo
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| | - Maria Laura Bisegna
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| | - Maurizio Martelli
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| | - Massimo Breccia
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| |
Collapse
|
17
|
Dabbaghipour R, Khaze Shahgoli V, Safaei S, Amini M, Tabei S, Shanehbandi D, Rahbar Farzam O, Baradaran B, Entezam M. siRNA-mediated downregulation of BATF3 diminished proliferation and induced apoptosis through downregulating c-Myc expression in chronic myelogenous leukemia cells. Mol Biol Rep 2024; 51:100. [PMID: 38217769 DOI: 10.1007/s11033-023-09059-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/21/2023] [Indexed: 01/15/2024]
Abstract
OBJECTIVE Despite considerable improvement in therapeutic approaches to chronic myeloid leukemia (CML) treatment, this malignancy is considered incurable due to resistance. However, investigating the molecular mechanism of CML may give rise to the development of extremely efficient targeted therapies that improve the prognosis of patients. Basic leucine zipper transcription factor ATF-like3 (BATF3), as transcription factor, is considered a key regulator of cellular activities and its function has been evaluated in tumor development and growth in several cancer types. This study aimed to evaluate the potential of the cellular impact of siRNA-mediated downregulation of BATF3 on CML cancer cells through cell proliferation, induction of apoptosis, and cell cycle distribution. MATERIALS AND METHODS The transfection of BATF3 siRNA to K562 CML cells was performed by electroporation device. To measure cellular viability and apoptosis, MTT assay and Annexin V/PI staining were carried out, respectively. Also, cell cycle assay and flow cytometry instrument were applied to assess cell cycle distribution of K562 cells. For more validation, mRNA expression of correlated genes was relatively evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS The data indicated that siRNA-mediated BATF3 inactivating severely promoted the cell apoptosis. Also, the targeted therapy led to high expression of Caspase-3 gene and Bax/Bcl-2 ratio. Silenced BATF3 also induced cell cycle arrest in phase sub-G1 compared to control. Finally, a noticeable decrement was obtained in c-Myc gene expression through suppression of BATF3 in CML cells. CONCLUSION The findings of this research illustrated the suppression of BATF3 as an effective targeted therapy strategy for CML.
Collapse
Affiliation(s)
- Reza Dabbaghipour
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Khaze Shahgoli
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Cancer and Inflammation Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Smb Tabei
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Omid Rahbar Farzam
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mona Entezam
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, IR, Iran.
| |
Collapse
|
18
|
Podszywalow-Bartnicka P, Neugebauer KM. Multiple roles for AU-rich RNA binding proteins in the development of haematologic malignancies and their resistance to chemotherapy. RNA Biol 2024; 21:1-17. [PMID: 38798162 PMCID: PMC11135835 DOI: 10.1080/15476286.2024.2346688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 05/29/2024] Open
Abstract
Post-transcriptional regulation by RNA binding proteins can determine gene expression levels and drive changes in cancer cell proteomes. Identifying mechanisms of protein-RNA binding, including preferred sequence motifs bound in vivo, provides insights into protein-RNA networks and how they impact mRNA structure, function, and stability. In this review, we will focus on proteins that bind to AU-rich elements (AREs) in nascent or mature mRNA where they play roles in response to stresses encountered by cancer cells. ARE-binding proteins (ARE-BPs) specifically impact alternative splicing, stability, decay and translation, and formation of RNA-rich biomolecular condensates like cytoplasmic stress granules (SGs). For example, recent findings highlight the role of ARE-BPs - like TIAR and HUR - in chemotherapy resistance and in translational regulation of mRNAs encoding pro-inflammatory cytokines. We will discuss emerging evidence that different modes of ARE-BP activity impact leukaemia and lymphoma development, progression, adaptation to microenvironment and chemotherapy resistance.
Collapse
Affiliation(s)
- Paulina Podszywalow-Bartnicka
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, USA
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Karla M. Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
19
|
Nishida Y, Ishizawa J, Ayoub E, Montoya RH, Ostermann LB, Muftuoglu M, Ruvolo VR, Patsilevas T, Scruggs DA, Khazaei S, Mak PY, Tao W, Carter BZ, Boettcher S, Ebert BL, Daver NG, Konopleva M, Seki T, Kojima K, Andreeff M. Enhanced TP53 reactivation disrupts MYC transcriptional program and overcomes venetoclax resistance in acute myeloid leukemias. SCIENCE ADVANCES 2023; 9:eadh1436. [PMID: 38019903 PMCID: PMC10686564 DOI: 10.1126/sciadv.adh1436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023]
Abstract
The tumor suppressor TP53 is frequently inactivated in a mutation-independent manner in cancers and is reactivated by inhibiting its negative regulators. We here cotarget MDM2 and the nuclear exporter XPO1 to maximize transcriptional activity of p53. MDM2/XPO1 inhibition accumulated nuclear p53 and elicited a 25- to 60-fold increase of its transcriptional targets. TP53 regulates MYC, and MDM2/XPO1 inhibition disrupted the c-MYC-regulated transcriptome, resulting in the synergistic induction of apoptosis in acute myeloid leukemia (AML). Unexpectedly, venetoclax-resistant AMLs express high levels of c-MYC and are vulnerable to MDM2/XPO1 inhibition in vivo. However, AML cells persisting after MDM2/XPO1 inhibition exhibit a quiescence- and stress response-associated phenotype. Venetoclax overcomes that resistance, as shown by single-cell mass cytometry. The triple inhibition of MDM2, XPO1, and BCL2 was highly effective against venetoclax-resistant AML in vivo. Our results propose a novel, highly translatable therapeutic approach leveraging p53 reactivation to overcome nongenetic, stress-adapted venetoclax resistance.
Collapse
Affiliation(s)
- Yuki Nishida
- Section of Molecular Hematology and Therapy, Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jo Ishizawa
- Section of Molecular Hematology and Therapy, Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Edward Ayoub
- Section of Molecular Hematology and Therapy, Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rafael Heinz Montoya
- Section of Molecular Hematology and Therapy, Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lauren B. Ostermann
- Section of Molecular Hematology and Therapy, Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Muharrem Muftuoglu
- Section of Molecular Hematology and Therapy, Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vivian R Ruvolo
- Section of Molecular Hematology and Therapy, Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tallie Patsilevas
- Section of Molecular Hematology and Therapy, Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Darah A. Scruggs
- Section of Molecular Hematology and Therapy, Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shayaun Khazaei
- Section of Molecular Hematology and Therapy, Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Po Yee Mak
- Section of Molecular Hematology and Therapy, Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wenjing Tao
- Section of Molecular Hematology and Therapy, Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bing Z. Carter
- Section of Molecular Hematology and Therapy, Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Steffen Boettcher
- Department of Medical Oncology and Haematology, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland
- Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, The Broad Institute, Boston, MA 02115, USA
| | - Benjamin L. Ebert
- Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, The Broad Institute, Boston, MA 02115, USA
| | - Naval G. Daver
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marina Konopleva
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Section of Leukemia Biology Research, Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Kensuke Kojima
- Section of Molecular Hematology and Therapy, Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Hematology, Kochi University, Nankoku, Kochi 783-8505, Japan
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
20
|
Busch C, Mulholland T, Zagnoni M, Dalby M, Berry C, Wheadon H. Overcoming BCR::ABL1 dependent and independent survival mechanisms in chronic myeloid leukaemia using a multi-kinase targeting approach. Cell Commun Signal 2023; 21:342. [PMID: 38031192 PMCID: PMC10685629 DOI: 10.1186/s12964-023-01363-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Despite improved patient outcome using tyrosine kinase inhibitors (TKIs), chronic myeloid leukaemia (CML) patients require life-long treatment due to leukaemic stem cell (LSC) persistence. LSCs reside in the bone marrow (BM) niche, which they modify to their advantage. The BM provides oncogene-independent signals to aid LSC cell survival and quiescence. The bone-morphogenetic pathway (BMP) is one pathway identified to be highly deregulated in CML, with high levels of BMP ligands detected in the BM, accompanied by CML stem and progenitor cells overexpressing BMP type 1 receptors- activin-like kinases (ALKs), especially in TKI resistant patients. Saracatinib (SC), a SRC/ABL1 dual inhibitor, inhibits the growth of CML cells resistant to the TKI imatinib (IM). Recent studies indicate that SC is also a potent ALK inhibitor and BMP antagonist. Here we investigate the efficacy of SC in overcoming CML BCR::ABL1 dependent and independent signals mediated by the BM niche both in 2D and 3D culture. METHODS CML cells (K562 cell line and CML CD34+ primary cells) were treated with single or combination treatments of: IM, SC and the BMP receptors inhibitor dorsomorphin (DOR), with or without BMP4 stimulation in 2D (suspension) and 3D co-culture on HS5 stroma cell line and mesenchymal stem cells in AggreWell and microfluidic devices. Flow cytometry was performed to investigate apoptosis, cell cycle progression and proliferation, alongside colony assays following treatment. Proteins changes were validated by immunoblotting and transcriptional changes by Fluidigm multiplex qPCR. RESULTS By targeting the BMP pathway, using specific inhibitors against ALKs in combination with SRC and ABL TKIs, we show an increase in apoptosis, altered cell cycle regulation, fewer cell divisions, and reduced numbers of CD34+ cells. Impairment of long-term proliferation and differentiation potential after combinatorial treatment also occurred. CONCLUSION BMP signalling pathway is important for CML cell survival. Targeting SRC, ABL and ALK kinases is more effective than ABL inhibition alone, the combination efficacy importantly being demonstrated in both 2D and 3D cell cultures highlighting the need for combinatorial therapies in contrast to standard of care single agents. Our study provides justification to target multiple kinases in CML to combat LSC persistence.
Collapse
Affiliation(s)
- Caroline Busch
- Paul O'Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK
| | - Theresa Mulholland
- Centre for Microsystems and Photonics, Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW, UK
| | - Michele Zagnoni
- Centre for Microsystems and Photonics, Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW, UK
| | - Matthew Dalby
- Mazumdar-Shaw Advanced Research Centre, School of Molecular Biosciences, University of Glasgow, Glasgow, G11 6EW, UK
| | - Catherine Berry
- Mazumdar-Shaw Advanced Research Centre, School of Molecular Biosciences, University of Glasgow, Glasgow, G11 6EW, UK
| | - Helen Wheadon
- Paul O'Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK.
| |
Collapse
|
21
|
Lee YC, Chiou JT, Wang LJ, Chen YJ, Chang LS. Amsacrine downregulates BCL2L1 expression and triggers apoptosis in human chronic myeloid leukemia cells through the SIDT2/NOX4/ERK/HuR pathway. Toxicol Appl Pharmacol 2023; 474:116625. [PMID: 37451322 DOI: 10.1016/j.taap.2023.116625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Accumulating evidence indicates that the anticancer activity of acridine derivatives is mediated through the regulation of anti-apoptotic and pro-apoptotic BCL2 protein expression. Therefore, we investigated whether the cytotoxicity of amsacrine with an acridine structural scaffold in human chronic myeloid leukemia (CML) K562 cells was mediated by BCL2 family proteins. Amsacrine induced apoptosis, mitochondrial depolarization, and BCL2L1 (also known as BCL-XL) downregulation in K562 cells. BCL2L1 overexpression inhibited amsacrine-induced cell death and mitochondrial depolarization. Amsacrine treatment triggered SIDT2-mediated miR-25 downregulation, leading to increased NOX4-mediated ROS production. ROS-mediated inactivation of ERK triggered miR-22 expression, leading to increased HuR mRNA decay. As HuR is involved in stabilizing BCL2L1 mRNA, downregulation of BCL2L1 was noted in K562 cells after amsacrine treatment. In contrast, amsacrine-induced BCL2L1 downregulation was alleviated by restoring ERK phosphorylation and HuR expression. Altogether, the results of this study suggest that amsacrine triggers apoptosis in K562 cells by inhibiting BCL2L1 expression through the SIDT2/NOX4/ERK-mediated downregulation of HuR. Furthermore, a similar pathway also explains the cytotoxicity of amsacrine in CML MEG-01 and KU812 cells.
Collapse
Affiliation(s)
- Yuan-Chin Lee
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Jing-Ting Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Liang-Jun Wang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Ying-Jung Chen
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
22
|
Wu SC, Lai SW, Lu XJ, Lai HF, Chen YG, Chen PH, Ho CL, Wu YY, Chiu YL. Profiling of miRNAs and their interfering targets in peripheral blood mononuclear cells from patients with chronic myeloid leukaemia. Front Oncol 2023; 13:1173970. [PMID: 37476380 PMCID: PMC10356106 DOI: 10.3389/fonc.2023.1173970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/16/2023] [Indexed: 07/22/2023] Open
Abstract
Introduction MicroRNAs may be implicated in the acquisition of drug resistance in chronic myeloid leukemia as they regulate the expression of not only BCR-ABL1 but also genes associated with the activation of drug transfer proteins or essential signaling pathways. Methods To understand the impact of specifically expressed miRNAs in chronic myeloid leukemia and their target genes, we collected peripheral blood mononuclear cells (PBMC) from patients diagnosed with chronic myeloid leukemia (CML) and healthy donors to determine whole miRNA expression by small RNA sequencing and screened out 31 differentially expressed microRNAs (DE-miRNAs) with high expression. With the utilization of miRNA set enrichment analysis tools, we present here a comprehensive analysis of the relevance of DE-miRNAs to disease and biological function. Furthermore, the literature-based miRNA-target gene database was used to analyze the overall target genes of the DE-miRNAs and to define their associated biological responses. We further integrated DE-miRNA target genes to identify CML miRNA targeted gene signature singscore (CMTGSS) and used gene-set enrichment analysis (GSEA) to analyze the correlation between CMTGSS and Hallmark gene-sets in PBMC samples from clinical CML patients. Finally, the association of CMTGSS stratification with multiple CML cell lineage gene sets was validated in PBMC samples from CML patients using GSEA. Results Although individual miRNAs have been reported to have varying degrees of impact on CML, overall, our results show that abnormally upregulated miRNAs are associated with apoptosis and aberrantly downregulated miRNAs are associated with cell cycle. The clinical database shows that our defined DE-miRNAs are associated with the prognosis of CML patients. CMTGSS-based stratification analysis presented a tendency for miRNAs to affect cell differentiation in the blood microenvironment. Conclusion Collectively, this study defined differentially expressed miRNAs by miRNA sequencing from clinical samples and comprehensively analyzed the biological functions of the differential miRNAs in association with the target genes. The analysis of the enrichment of specific myeloid differentiated cells and immune cells also suggests the magnitude and potential targets of differentially expressed miRNAs in the clinical setting. It helps us to make links between the different results obtained from the multi-faceted studies to provide more potential research directions.
Collapse
Affiliation(s)
- Sheng-Cheng Wu
- Division of Hematology and Oncology, Department of Internal Medicine, Tri-Service General Hospital Penghu Branch, Magong City, Taiwan
| | - Shiue-Wei Lai
- Division of Hematology and Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Xin-Jie Lu
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan
| | - Hsing-Fan Lai
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan
| | - Yu-Guang Chen
- Division of Hematology and Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Po-Huang Chen
- Division of Hematology and Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Ching-Liang Ho
- Division of Hematology and Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Yi-Ying Wu
- Division of Hematology and Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Yi-Lin Chiu
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan
| |
Collapse
|
23
|
Iweala EJ, Oluwapelumi AE, Dania OE, Ugbogu EA. Bioactive Phytoconstituents and Their Therapeutic Potentials in the Treatment of Haematological Cancers: A Review. Life (Basel) 2023; 13:1422. [PMID: 37511797 PMCID: PMC10381774 DOI: 10.3390/life13071422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 07/30/2023] Open
Abstract
Haematological (blood) cancers are the cancers of the blood and lymphoid forming tissues which represents approximately 10% of all cancers. It has been reported that approximately 60% of all blood cancers are incurable. Despite substantial improvement in access to detection/diagnosis, chemotherapy and bone marrow transplantation, there is still high recurrence and unpredictable but clearly defined relapses indicating that effective therapies are still lacking. Over the past two decades, medicinal plants and their biologically active compounds are being used as potential remedies and alternative therapies for the treatment of cancer. This is due to their anti-oxidant, anti-inflammatory, anti-mutagenic, anti-angiogenic, anti-cancer activities and negligible side effects. These bioactive compounds have the capacity to reduce proliferation of haematological cancers via various mechanisms such as promoting apoptosis, transcription regulation, inhibition of signalling pathways, downregulating receptors and blocking cell cycle. This review study highlights the mechanistic and beneficial effects of nine bioactive compounds (quercetin, ursolic acid, fisetin, resveratrol, epigallocatechin gallate, curcumin, gambogic acid, butein and celastrol) as potential remedies for chemoprevention of haematological cancers. The study provides useful insights on the effectiveness of the use of bioactive compounds from plants for chemoprevention of haematological cancers.
Collapse
Affiliation(s)
- Emeka J Iweala
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota PMB 1023, Ogun State, Nigeria
- Covenant Applied Informatics and Communication African Centre of Excellence (CApIC-ACE), Covenant University, Ota PMB 1023, Ogun State, Nigeria
| | - Adurosakin E Oluwapelumi
- Department of Microbiology, Ladoke Akintola University of Technology, Ogbomoso PMB 4000, Oyo State, Nigeria
| | - Omoremime E Dania
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota PMB 1023, Ogun State, Nigeria
| | | |
Collapse
|
24
|
Rajamani BM, Illangeswaran RSS, Benjamin ESB, Balakrishnan B, Jebanesan DZP, Das S, Pai AA, Vidhyadharan RT, Mohan A, Karathedath S, Abraham A, Mathews V, Velayudhan SR, Balasubramanian P. Modulating retinoid-X-receptor alpha (RXRA) expression sensitizes chronic myeloid leukemia cells to imatinib in vitro and reduces disease burden in vivo. Front Pharmacol 2023; 14:1187066. [PMID: 37324449 PMCID: PMC10264673 DOI: 10.3389/fphar.2023.1187066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction: The ligand-activated transcription factors, nuclear hormone receptors (NHRs), remain unexplored in hematological malignancies except for retinoic acid receptor alpha (RARA). Methods: Here we profiled the expression of various NHRs and their coregulators in Chronic myeloid leukemia (CML) cell lines and identified a significant differential expression pattern between inherently imatinib mesylate (IM)-sensitive and resistant cell lines. Results: Retinoid-X-receptor alpha (RXRA) was downregulated in CML cell lines inherently resistant to IM and in primary CML CD34+ cells. Pre-treatment with clinically relevant RXRA ligands improved sensitivity to IM in-vitro in both CML cell lines and primary CML cells. This combination effectively reduced the viability and colony-forming capacity of CML CD34+ cells in-vitro. In-vivo, this combination reduced leukemic burden and prolonged survival. Overexpression (OE) of RXRA inhibited proliferation and improved sensitivity to IM in-vitro. In-vivo, RXRA OE cells showed reduced engraftment of cells in the bone marrow, improved sensitivity to IM, and prolonged survival. Both RXRA OE and ligand treatment markedly reduced BCR::ABL1 downstream kinase activation, activating apoptotic cascades and improving sensitivity to IM. Importantly, RXRA OE also led to the disruption of the oxidative capacity of these cells. Conclusion: Combining IM with clinically available RXRA ligands could form an alternative treatment strategy in CML patients with suboptimal response to IM.
Collapse
Affiliation(s)
- Bharathi M. Rajamani
- Department of Haematology, Christian Medical College, Vellore, India
- Department of Biotechnology, Thiruvalluvar University, Vellore, India
| | | | - Esther Sathya Bama Benjamin
- Department of Haematology, Christian Medical College, Vellore, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Balaji Balakrishnan
- Department of Haematology, Christian Medical College, Vellore, India
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | | | - Saswati Das
- Department of Haematology, Christian Medical College, Vellore, India
- Department of Biotechnology, Thiruvalluvar University, Vellore, India
| | - Aswin Anand Pai
- Department of Haematology, Christian Medical College, Vellore, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | | | - Ajith Mohan
- Department of Haematology, Christian Medical College, Vellore, India
| | | | - Aby Abraham
- Department of Haematology, Christian Medical College, Vellore, India
| | - Vikram Mathews
- Department of Haematology, Christian Medical College, Vellore, India
| | - Shaji R. Velayudhan
- Department of Haematology, Christian Medical College, Vellore, India
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, India
| | | |
Collapse
|
25
|
Carter BZ, Mak PY, Tao W, Ayoub E, Ostermann LB, Huang X, Loghavi S, Boettcher S, Nishida Y, Ruvolo V, Hughes PE, Morrow PK, Haferlach T, Kornblau S, Muftuoglu M, Andreeff M. Combined inhibition of BCL-2 and MCL-1 overcomes BAX deficiency-mediated resistance of TP53-mutant acute myeloid leukemia to individual BH3 mimetics. Blood Cancer J 2023; 13:57. [PMID: 37088806 PMCID: PMC10123065 DOI: 10.1038/s41408-023-00830-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/07/2023] [Accepted: 04/04/2023] [Indexed: 04/25/2023] Open
Abstract
TP53-mutant acute myeloid leukemia (AML) respond poorly to currently available treatments, including venetoclax-based drug combinations and pose a major therapeutic challenge. Analyses of RNA sequencing and reverse phase protein array datasets revealed significantly lower BAX RNA and protein levels in TP53-mutant compared to TP53-wild-type (WT) AML, a finding confirmed in isogenic CRISPR-generated TP53-knockout and -mutant AML. The response to either BCL-2 (venetoclax) or MCL-1 (AMG176) inhibition was BAX-dependent and much reduced in TP53-mutant compared to TP53-WT cells, while the combination of two BH3 mimetics effectively activated BAX, circumventing survival mechanisms in cells treated with either BH3 mimetic, and synergistically induced cell death in TP53-mutant AML and stem/progenitor cells. The BH3 mimetic-driven stress response and cell death patterns after dual inhibition were largely independent of TP53 status and affected by apoptosis induction. Co-targeting, but not individual targeting of BCL-2 and MCL-1 in mice xenografted with TP53-WT and TP53-R248W Molm13 cells suppressed both TP53-WT and TP53-mutant cell growth and significantly prolonged survival. Our results demonstrate that co-targeting BCL-2 and MCL-1 overcomes BAX deficiency-mediated resistance to individual BH3 mimetics in TP53-mutant cells, thus shifting cell fate from survival to death in TP53-deficient and -mutant AML. This concept warrants clinical evaluation.
Collapse
Affiliation(s)
- Bing Z Carter
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Po Yee Mak
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wenjing Tao
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Edward Ayoub
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lauren B Ostermann
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xuelin Huang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steffen Boettcher
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Yuki Nishida
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vivian Ruvolo
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul E Hughes
- Oncology Research, Amgen Inc, Thousand Oaks, CA, USA
| | | | | | - Steven Kornblau
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Muharrem Muftuoglu
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
26
|
Opydo M, Mlyczyńska A, Mlyczyńska E, Rak A, Kolaczkowska E. Synergistic Action of MCL-1 Inhibitor with BCL-2/BCL-XL or MAPK Pathway Inhibitors Enhances Acute Myeloid Leukemia Cell Apoptosis and Differentiation. Int J Mol Sci 2023; 24:ijms24087180. [PMID: 37108344 PMCID: PMC10138770 DOI: 10.3390/ijms24087180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy characterized by excessive proliferation of abnormal myeloid precursors accompanied by a differentiation block and inhibition of apoptosis. Increased expression of an anti-apoptotic MCL-1 protein was shown to be critical for the sustained survival and expansion of AML cells. Therefore, herein, we examined the pro-apoptotic and pro-differentiating effects of S63845, a specific inhibitor of MCL-1, in a single-agent treatment and in combination with BCL-2/BCL-XL inhibitor, ABT-737, in two AML cell lines: HL-60 and ML-1. Additionally, we determined whether inhibition of the MAPK pathway had an impact on the sensitivity of AML cells to S63845. To assess AML cells' apoptosis and differentiation, in vitro studies were performed using PrestoBlue assay, Coulter electrical impedance method, flow cytometry, light microscopy and Western blot techniques. S63845 caused a concentration-dependent decrease in the viability of HL-60 and ML-1 cells and increased the percentage of apoptotic cells. Combined treatment with S63845 and ABT-737 or MAPK pathway inhibitor enhanced apoptosis but also induced differentiation of tested cells, as well as altering the expression of the MCL-1 protein. Taken together, our data provide the rationale for further studies regarding the use of MCL-1 inhibitor in combination with other pro-survival protein inhibitors.
Collapse
Affiliation(s)
- Małgorzata Opydo
- Laboratory of Experimental Hematology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Anna Mlyczyńska
- Laboratory of Experimental Hematology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-387 Krakow, Poland
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Elzbieta Kolaczkowska
- Laboratory of Experimental Hematology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| |
Collapse
|
27
|
Zhang T, Zhou H, Xu M, Qian C, Sun A, Wu D, Xue S. Combination venetoclax and olverembatinib (HQP1351) as a successful therapeutic strategy for relapsed/refractory (R/R) mixed-phenotype blast phase of chronic myeloid leukemia. Ann Hematol 2023; 102:973-975. [PMID: 36745193 DOI: 10.1007/s00277-023-05110-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/24/2023] [Indexed: 02/07/2023]
Affiliation(s)
- Tongtong Zhang
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215000, China
| | - Haixia Zhou
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215000, China
| | - Mingzhu Xu
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215000, China
| | - Chongsheng Qian
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215000, China
| | - Aining Sun
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215000, China
| | - Depei Wu
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215000, China
| | - Shengli Xue
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215000, China.
| |
Collapse
|
28
|
Yang Z, Liu C, Hu Y, Liu H, Li J, Wu L, Liu Q, Zheng Y, Huang P, Wang Y. Tyrosine kinase inhibitors combined with venetoclax and azacytidine as an effective therapy for de novo lymphoid blast phase-chronic myeloid leukemia. Leuk Res 2023; 127:107039. [PMID: 36812660 DOI: 10.1016/j.leukres.2023.107039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/14/2023]
Affiliation(s)
- Zhihuan Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Chunhua Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Yimin Hu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Hong Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Junfan Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Lihua Wu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Qingguo Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Yali Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Pingping Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Ying Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China.
| |
Collapse
|
29
|
Przespolewski ER, Baron J, Kashef F, Fu K, Jani Sait SN, Hernandez-Ilizaliturri F, Thompson J. Concomitant Venetoclax and Imatinib for Comanaging Chronic Lymphocytic Leukemia and Chronic Myeloid Leukemia: A Case Report. J Natl Compr Canc Netw 2023; 21:102-107. [PMID: 36791756 DOI: 10.6004/jnccn.2022.7069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/18/2022] [Indexed: 02/17/2023]
Abstract
Patients with synchronous malignancies can be problematic to diagnose and manage because workup and therapeutic targeting for each individual malignancy must be coordinated carefully. This report presents a patient with concurrent chronic myeloid leukemia (CML) and chronic lymphocytic leukemia (CLL) managed with concomitant venetoclax and imatinib. Because imatinib is a moderate cytochrome P450 3A4 inhibitor, close monitoring is required when using with a substrate of 3A4 such as venetoclax. Although the target dose of venetoclax is 400 mg, it was capped at 100 mg due to the interaction. Despite the interaction and possible enhancement of toxicities, the patient has tolerated therapy well, and both diseases have responded to this novel approach. In addition, because aberrant BCL-2 activity has been implicated in CML, the use of venetoclax may contribute to success in the management of this patient's CML. This case report represents the safe concomitant use of venetoclax and imatinib in a patient with synchronous CML and CLL.
Collapse
Affiliation(s)
| | - Jeffrey Baron
- Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Farshid Kashef
- Roswell Park Comprehensive Cancer Center, Buffalo, New York.,Kaleida Health, Buffalo, New York
| | - Kai Fu
- Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | | | | | - James Thompson
- Roswell Park Comprehensive Cancer Center, Buffalo, New York
| |
Collapse
|
30
|
Zhang M, Xiao F, Li Y, Chen Z, Zhang X, Zhang X, Song J, Zhang Y, Si X, Bai J, Yagüe E, Zhou Y. The miR-106b-25 cluster mediates drug resistance in myeloid leukaemias by inactivating multiple apoptotic genes. Int J Hematol 2023; 117:236-250. [PMID: 36399285 DOI: 10.1007/s12185-022-03483-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/19/2022]
Abstract
Drug resistance is a major obstacle to the successful treatment of cancer. The role of the miR-106b-25 cluster in drug resistance of haematologic malignancies has not yet been elucidated. Here, we show that the miR-106b-25 cluster mediates resistance to therapeutic agents with structural and mechanistic dissimilarity in vitro and in vivo. RNA sequencing data revealed that overexpression of the miR-106b-25 cluster or its individual miRNAs resulted in downregulation of multiple key regulators of apoptotic pathways. Luciferase reporter assay identified TP73 as a direct target of miR-93 and miR-106b, BAK1 as a direct target of miR-25 and CASP7 as a direct target of all three miRNAs. We also showed that inhibitors of the miR-106b-25 cluster and BCL-2 exert synergistic effects on apoptosis induction in primary myeloid leukaemic cells. Thus, the members of the miR-106b-25 cluster may jointly contribute to myeloid leukaemia drug resistance by inactivating multiple apoptotic genes. Targeting this cluster could be a promising combination strategy in patients resistant to therapeutic agents that induce apoptosis.
Collapse
Affiliation(s)
- Mingying Zhang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Fangnan Xiao
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Yunan Li
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Zizhen Chen
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Xiaoyun Zhang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Xiaoru Zhang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Junzhe Song
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Yuhui Zhang
- Department of Hematology, The Second Affiliated Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Xiaohui Si
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jie Bai
- Department of Hematology, The Second Affiliated Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Ernesto Yagüe
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China.
| |
Collapse
|
31
|
BH3 mimetics and TKI combined therapy for Chronic Myeloid Leukemia. Biochem J 2023; 480:161-176. [PMID: 36719792 DOI: 10.1042/bcj20210608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 02/01/2023]
Abstract
Chronic myeloid leukemia (CML) was considered for a long time one of the most hostile leukemia that was incurable for most of the patients, predominantly due to the extreme resistance to chemotherapy. Part of the resistance to cell death (apoptosis) is the result of increased levels of anti-apoptotic and decreased levels of pro-apoptotic member of the BCL-2 family induced by the BCR-ABL1 oncoprotein. BCR-ABL1 is a constitutively active tyrosine kinase responsible for initiating multiple and oncogenic signaling pathways. With the development of specific BCR-ABL1 tyrosine kinase inhibitors (TKIs) CML became a much more tractable disease. Nevertheless, TKIs do not cure CML patients and a substantial number of them develop intolerance or become resistant to the treatment. Therefore, novel anti-cancer strategies must be developed to treat CML patients independently or in combination with TKIs. Here, we will discuss the mechanisms of BCR-ABL1-dependent and -independent resistance to TKIs and the use of BH3-mimetics as a potential tool to fight CML.
Collapse
|
32
|
Senapati J, Jabbour E, Kantarjian H, Short NJ. Pathogenesis and management of accelerated and blast phases of chronic myeloid leukemia. Leukemia 2023; 37:5-17. [PMID: 36309558 DOI: 10.1038/s41375-022-01736-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 02/01/2023]
Abstract
The treatment of chronic myeloid leukemia (CML) with tyrosine kinase inhibitors (TKIs) has been a model for cancer therapy development. Though most patients with CML have a normal quality and duration of life with TKI therapy, some patients progress to accelerated phase (AP) and blast phase (BP), both of which have a relatively poor prognosis. The rates of progression have reduced significantly from over >20% in the pre-TKI era to <5% now, largely due to refinements in CML therapy and response monitoring. Significant insights have been gained into the mechanisms of disease transformation including the role of additional cytogenetic abnormalities, somatic mutations, and other genomic alterations present at diagnosis or evolving on therapy. This knowledge is helping to optimize TKI therapy, improve prognostication and inform the development of novel combination regimens in these patients. While patients with de novo CML-AP have outcomes almost similar to CML in chronic phase (CP), those transformed from previously treated CML-CP should receive second- or third- generation TKIs and be strongly considered for allogeneic stem cell transplantation (allo-SCT). Similarly, patients with transformed CML-BP have particularly dismal outcomes with a median survival usually less than one year. Combination regimens with a potent TKI such as ponatinib followed by allo-SCT can achieve long-term survival in some transformed BP patients. Regimens including venetoclax in myeloid BP or inotuzumab ozogamicin or blinatumomab in lymphoid BP might lead to deeper and longer responses, facilitating potentially curative allo-SCT for patients with CML-BP once CP is achieved. Newer agents and novel combination therapies are further expanding the therapeutic arsenal in advanced phase CML.
Collapse
Affiliation(s)
- Jayastu Senapati
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
33
|
Downregulation of Stearoyl-CoA Desaturase 1 (SCD-1) Promotes Resistance to Imatinib in Chronic Myeloid Leukemia. Mediterr J Hematol Infect Dis 2023; 15:e2023008. [PMID: 36660357 PMCID: PMC9833301 DOI: 10.4084/mjhid.2023.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/21/2022] [Indexed: 01/03/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a malignant hematopoietic stem cell disease resulting in the fusion of BCR and ABL genes and characterized by the presence of the reciprocal translocation t(9;22)(q34;q11). BCR-ABL, a product of the BCR-ABL fusion gene, is a structurally active tyrosine kinase and plays an important role in CML disease pathogenesis. Imatinib mesylate (IMA) is a strong and selective BCR-ABL tyrosine kinase inhibitor. Although IMA therapy is an effective treatment, patients may develop resistance to IMA therapy over time. This study investigated the possible genetic resistance mechanisms in patients developing resistance to IMA. We did DNA sequencing in order to detect BCR-ABL mutations, which are responsible for IMA resistance. Moreover, we analyzed the mRNA expression levels of genes responsible for apoptosis, such as BCL-2, P53, and other genes (SCD-1, PTEN). In a group of CML patients resistant to IMA, when compared with IMA-sensitive CML patients, a decrease in SCD-1 gene expression levels and an increase in BCL-2 gene expression levels was observed. In this case, the SCD-1 gene was thought to act as a tumor suppressor. The present study aimed to investigate the mechanisms involved in IMA resistance in CML patients and determine new targets that can be beneficial in choosing the effective treatment. Finally, the study suggests that the SCD-1 and BCL-2 genes may be mechanisms responsible for resistance.
Collapse
|
34
|
Huang S, Tao T, Wan C, Wu T, Cao H, Qiu Y, Shen X, Wang B, Ge S, Li Y, Zhang T, Wu B, Xue S. Flumatinib plus venetoclax as an effective therapy for Philadelphia chromosome-positive acute myeloid leukemia: A case report. Clin Case Rep 2023; 11:e6688. [PMID: 36619491 PMCID: PMC9810787 DOI: 10.1002/ccr3.6688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/22/2022] [Accepted: 11/14/2022] [Indexed: 01/05/2023] Open
Abstract
Philadelphia chromosome-positive acute myeloid leukemia (Ph + AML) is a rare type of AML with a low survival rate and poor prognosis. We first report a Ph + AML patient who remained in long-term remission after the combination of flumatinib and venetoclax, which could provide corresponding treatment ideas for clinical practice.
Collapse
Affiliation(s)
- Si‐Man Huang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of HematologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of HematologySoochow UniversitySuzhouChina
| | - Tao Tao
- Department of Respiratory and Critical Medicinethe Fifth People's Hospital of SuzhouSuzhouChina
- Department of Respiratory and Critical Medicinethe Affiliated Infectious Diseases Hospital of Soochow UniversitySuzhouChina
| | - Chao‐Ling Wan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of HematologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of HematologySoochow UniversitySuzhouChina
| | - Tian‐Mei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of HematologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of HematologySoochow UniversitySuzhouChina
| | - Han‐Yu Cao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of HematologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of HematologySoochow UniversitySuzhouChina
| | - Yan Qiu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of HematologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of HematologySoochow UniversitySuzhouChina
| | - Xiang‐Dong Shen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of HematologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of HematologySoochow UniversitySuzhouChina
| | - Bin‐Ru Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of HematologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of HematologySoochow UniversitySuzhouChina
| | - Shuai‐Shuai Ge
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of HematologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of HematologySoochow UniversitySuzhouChina
| | - Yan‐Yan Li
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of HematologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of HematologySoochow UniversitySuzhouChina
| | - Tong‐Tong Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of HematologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of HematologySoochow UniversitySuzhouChina
| | - Bing Wu
- Suzhou Hospital of Chinese Traditional Medicinethe Affiliated Hospital of Nanjing University of Chinese Traditional MedicineSuzhouChina
| | - Sheng‐Li Xue
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of HematologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of HematologySoochow UniversitySuzhouChina
| |
Collapse
|
35
|
Yohanan B, George B. Current Management of Chronic Myeloid Leukemia Myeloid Blast Phase. Clin Med Insights Oncol 2022; 16:11795549221139357. [PMID: 36507316 PMCID: PMC9726842 DOI: 10.1177/11795549221139357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/31/2022] [Indexed: 12/12/2022] Open
Abstract
Despite the major advancements in the management of chronic phase (CP) chronic myeloid leukemia (CML), blast crisis (BC) remains a major therapeutic challenge. BC can be myeloid, lymphoid, or mixed lineage with myeloid BC being the most common type. BC in CML is mediated by aberrant tyrosine kinase activity of the BCR::ABL fusion protein. The introduction of BCR::ABL tyrosine kinase inhibitor (TKI) has been a gamechanger in the treatment of CML and there has been a significant reduction in the incidence of BC. The main treatment goal in BC is to achieve a second CP and consolidate that with an allogeneic stem cell transplantation (SCT) in eligible patients. The outcomes in BC remain dismal even in the current era. In this review, we provide an overview of the biology and current therapeutic approach in myeloid BC.
Collapse
Affiliation(s)
- Binoy Yohanan
- Department of Hematology/Oncology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Binsah George
- Department of Hematology/Oncology, The University of Texas Health Science Center at Houston, Houston, TX, USA,Binsah George, Department of Hematology/Oncology, The University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 5.216, Houston, TX 77030, USA.
| |
Collapse
|
36
|
Ng JJ, Ong ST. Therapy Resistance and Disease Progression in CML: Mechanistic Links and Therapeutic Strategies. Curr Hematol Malig Rep 2022; 17:181-197. [PMID: 36258106 DOI: 10.1007/s11899-022-00679-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Despite the adoption of tyrosine kinases inhibitors (TKIs) as molecular targeted therapy in chronic myeloid leukemia, some patients do not respond to treatment and even experience disease progression. This review aims to give a broad summary of advances in understanding of the mechanisms of therapy resistance, as well as management strategies that may overcome or prevent the emergence of drug resistance. Ultimately, the goal of therapy is the cure of CML, which will also require an increased understanding of the leukemia stem cell (LSC). RECENT FINDINGS Resistance to tyrosine kinase inhibitors stems from a range of possible causes. Mutations of the BCR-ABL1 fusion oncoprotein have been well-studied. Other causes range from cell-intrinsic factors, such as the inherent resistance of primitive stem cells to drug treatment, to mechanisms extrinsic to the leukemic compartment that help CML cells evade apoptosis. There exists heterogeneity in TKI response among different hematopoietic populations in CML. The abundances of these TKI-sensitive and TKI-insensitive populations differ from patient to patient and contribute to response heterogeneity. It is becoming clear that targeting the BCR-ABL1 kinase through TKIs is only one part of the equation, and TKI usage alone may not cure the majority of patients with CML. Considerable effort should be devoted to targeting the BCR-ABL1-independent mechanisms of resistance and persistence of CML LSCs.
Collapse
Affiliation(s)
- John Joson Ng
- Cancer & Stem Cell Biology Signature Research Programme, Duke-NUS Medical School, 8 College Road, Singapore, Singapore, 169857
| | - S Tiong Ong
- Cancer & Stem Cell Biology Signature Research Programme, Duke-NUS Medical School, 8 College Road, Singapore, Singapore, 169857.
- Department of Haematology, Singapore General Hospital, Singapore, Singapore.
- Department of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore.
- Department of Medicine, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
37
|
Mughal TI, Pemmaraju N, Bejar R, Gale RP, Bose P, Kiladjian JJ, Prchal J, Royston D, Pollyea D, Valent P, Brümmendorf TH, Skorski T, Patnaik M, Santini V, Fenaux P, Kucine N, Verstovsek S, Mesa R, Barbui T, Saglio G, Van Etten RA. Perspective: Pivotal translational hematology and therapeutic insights in chronic myeloid hematopoietic stem cell malignancies. Hematol Oncol 2022; 40:491-504. [PMID: 35368098 DOI: 10.1002/hon.2987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/21/2022] [Accepted: 03/03/2022] [Indexed: 11/10/2022]
Abstract
Despite much of the past 2 years being engulfed by the devastating consequences of the SAR-CoV-2 pandemic, significant progress, even breathtaking, occurred in the field of chronic myeloid malignancies. Some of this was show-cased at the 15th Post-American Society of Hematology (ASH) and the 25th John Goldman workshops on myeloproliferative neoplasms (MPN) held on 9th-10th December 2020 and 7th-10th October 2021, respectively. The inaugural Post-ASH MPN workshop was set out in 2006 by John Goldman (deceased) and Tariq Mughal to answer emerging translational hematology and therapeutics of patients with these malignancies. Rather than present a resume of the discussions, this perspective focuses on some of the pivotal translational hematology and therapeutic insights in these diseases.
Collapse
Affiliation(s)
- Tariq I Mughal
- Tufts University School of Medicine, Boston, Massachusetts, USA
- University of Buckingham, Buckingham, UK
| | - Naveen Pemmaraju
- MD Anderson Cancer Center, University of Texas, Houston, Texas, USA
| | - Rafael Bejar
- University of California San Diego, La Jolla, California, USA
| | | | - Prithviraj Bose
- MD Anderson Cancer Center, University of Texas, Houston, Texas, USA
| | | | - Josef Prchal
- Huntsman Cancer Center, Salt Lake City, Utah, USA
| | - Daniel Royston
- John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Daniel Pollyea
- University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Peter Valent
- Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | | | - Tomasz Skorski
- Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Valeria Santini
- Azienda Ospedaliero Universitaria Careggi, University of Florence, Florence, Italy
| | - Pierre Fenaux
- Hospital St Louis, Assistance Publique Hôpitaux de Paris, Paris, France
| | | | - Srdan Verstovsek
- MD Anderson Cancer Center, University of Texas, Houston, Texas, USA
| | - Ruben Mesa
- Mays Cancer Center, UT Health San Antonio MD Anderson Cancer Center, San Antonio, Texas, USA
| | - Tiziano Barbui
- Fondazione per la Ricerca Ospedale Maggiore di Bergamo, Bergamo, Italy
| | | | - Richard A Van Etten
- Chao Family Comprehensive Cancer Center, University of California, Irvine, California, USA
| |
Collapse
|
38
|
Freeman-Mills L, Copland M. EXABS-156-CML Beyond TKI Therapy in CML. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22 Suppl 2:S61-S63. [PMID: 36164233 DOI: 10.1016/s2152-2650(22)00663-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
| | - Mhairi Copland
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G12 0ZD, UK
| |
Collapse
|
39
|
Investigation of the Effect of Imatinib and Hydroxyurea Combination Therapy on Hematological Parameters and Gene Expression in Chronic Myeloid Leukemia (CML) Patients. J Clin Med 2022; 11:jcm11174954. [PMID: 36078884 PMCID: PMC9456239 DOI: 10.3390/jcm11174954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 12/24/2022] Open
Abstract
(1) Background: Chronic myeloid leukemia is defined as the neoplastic development of mostly myeloid cells in the bone marrow. Several treatments, including chemotherapy, radiation, hormone treatment, and immunological therapy, can be used to control this condition. The therapeutic impact on leukemic individuals varies, and the response to therapy varies between patients due to disease heterogeneity. The primary goal of this study is to compare the effects of single and Imatinib (IM) and Hydroxyurea (HU) combined treatment on hematological parameters and gene expression in CML patients. (2) Methods: This study was conducted on 51 patients, with chronic myeloid leukemia, who were admitted to Al-Basher hospital in Amman, Jordan, for follow-up. Their hematological parameters were checked and gene expression was measured for (BCL2, PP2A, CIP2A, and WT1). (3) Results: The BCL2 gene was found to be less expressed in both IM and (HU + IM) treatments as compared to the HU group alone, while PP2A gene expression was raised. Such a thing indicates that the outcome of the combined therapy method is not ideal, since PP2A activation causes CML cells to move toward the blast crisis stage. Furthermore, CIP2A gene expression revealed that IM and (HU + IM) had the same therapeutic effect and were more successful in CML patients than HU alone. With regards to the treatment effect on hematological parameters, notably in CML patients in later stages, the combination therapy (HU + IM) raised lymphocyte count, indicating a greater response to the treatment. When compared to single medicines, the combination treatment reduced the proportion of neutrophils to normal reference ranges. Platelet counts, on the other hand, dramatically decreased in both IM and (HU + IM). (4) Conclusion: Because the studied genes (BCL2, PP2A, CIP2A, and WT1) are participating in cell proliferation and death, the findings show that the examined genes are significant to understand the efficacy of various therapies. Furthermore, it was found that there was a clear effect of the clinic-based strategic treatment on hematological indicators such as WBCs, lymphocytes, neutrophils, and platelet counts.
Collapse
|
40
|
Properties of Leukemic Stem Cells in Regulating Drug Resistance in Acute and Chronic Myeloid Leukemias. Biomedicines 2022; 10:biomedicines10081841. [PMID: 36009388 PMCID: PMC9405586 DOI: 10.3390/biomedicines10081841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Notoriously known for their capacity to reconstitute hematological malignancies in vivo, leukemic stem cells (LSCs) represent key drivers of therapeutic resistance and disease relapse, posing as a major medical dilemma. Despite having low abundance in the bulk leukemic population, LSCs have developed unique molecular dependencies and intricate signaling networks to enable self-renewal, quiescence, and drug resistance. To illustrate the multi-dimensional landscape of LSC-mediated leukemogenesis, in this review, we present phenotypical characteristics of LSCs, address the LSC-associated leukemic stromal microenvironment, highlight molecular aberrations that occur in the transcriptome, epigenome, proteome, and metabolome of LSCs, and showcase promising novel therapeutic strategies that potentially target the molecular vulnerabilities of LSCs.
Collapse
|
41
|
Poudel G, Tolland MG, Hughes TP, Pagani IS. Mechanisms of Resistance and Implications for Treatment Strategies in Chronic Myeloid Leukaemia. Cancers (Basel) 2022; 14:cancers14143300. [PMID: 35884363 PMCID: PMC9317051 DOI: 10.3390/cancers14143300] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 12/01/2022] Open
Abstract
Simple Summary Chronic myeloid leukaemia (CML) is a type of blood cancer that is currently well-managed with drugs that target cancer-causing proteins. However, a significant proportion of CML patients do not respond to those drug treatments or relapse when they stop those drugs because the cancer cells in those patients stop relying on that protein and instead develop a new way to survive. Therefore, new treatment strategies may be necessary for those patients. In this review, we discuss those additional survival pathways and outline combination treatment strategies to increase responses and clinical outcomes, improving the lives of CML patients. Abstract Tyrosine kinase inhibitors (TKIs) have revolutionised the management of chronic myeloid leukaemia (CML), with the disease now having a five-year survival rate over 80%. The primary focus in the treatment of CML has been on improving the specificity and potency of TKIs to inhibit the activation of the BCR::ABL1 kinase and/or overcoming resistance driven by mutations in the BCR::ABL1 oncogene. However, this approach may be limited in a significant proportion of patients who develop TKI resistance despite the effective inhibition of BCR::ABL1. These patients may require novel therapeutic strategies that target both BCR::ABL1-dependent and BCR::ABL1-independent mechanisms of resistance. The combination treatment strategies that target alternative survival signalling, which may contribute towards BCR::ABL1-independent resistance, could be a successful strategy for eradicating residual leukaemic cells and consequently increasing the response rate in CML patients.
Collapse
Affiliation(s)
- Govinda Poudel
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia; (G.P.); (M.G.T.); (T.P.H.)
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
- Australasian Leukaemia and Lymphoma Group, Richmond, VIC 3121, Australia
| | - Molly G. Tolland
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia; (G.P.); (M.G.T.); (T.P.H.)
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
| | - Timothy P. Hughes
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia; (G.P.); (M.G.T.); (T.P.H.)
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
- Australasian Leukaemia and Lymphoma Group, Richmond, VIC 3121, Australia
- Department of Haematology and Bone Marrow Transplantation, Royal Adelaide Hospital and SA Pathology, Adelaide, SA 5000, Australia
| | - Ilaria S. Pagani
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia; (G.P.); (M.G.T.); (T.P.H.)
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
- Australasian Leukaemia and Lymphoma Group, Richmond, VIC 3121, Australia
- Correspondence:
| |
Collapse
|
42
|
Jabbour E, Kantarjian H. Chronic Myeloid Leukemia: 2022 Update on Diagnosis, Therapy and Monitoring. Am J Hematol 2022; 97:1236-1256. [PMID: 35751859 DOI: 10.1002/ajh.26642] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 11/08/2022]
Abstract
DISEASE OVERVIEW Chronic Myeloid Leukemia (CML) is a myeloproliferative neoplasm with an incidence of 1-2 cases per 100,000 adults. It accounts for approximately 15% of newly diagnosed cases of leukemia in adults DIAGNOSIS: CML is characterized by a balanced genetic translocation, t (9;22) (q34;q11.2), involving a fusion of the Abelson gene (ABL1) from chromosome 9q34 with the breakpoint cluster region (BCR) gene on chromosome 22q11.2. This rearrangement is known as the Philadelphia chromosome. The molecular consequence of this translocation is the generation of a BCR::ABL1 fusion oncogene, which in turn translates into a BCR::ABL1 oncoprotein. FRONTLINE THERAPY Four tyrosine kinase inhibitors (TKIs), imatinib, dasatinib, bosutinib, and nilotinib are approved by the United States Food and Drug Administration for first-line treatment of newly diagnosed CML in chronic phase (CML-CP). Clinical trials with second generation TKIs reported significantly deeper and faster responses but had no impact on survival prolongation, likely because of the availability of effective TKIs salvage therapies for patients who have a cytogenetic relapse with frontline TKI therapy. SALVAGE THERAPY For CML post failure on frontline therapy, second-line options include second and third generation TKIs. Although potent and selective, these TKIs exhibit unique pharmacological profiles and response patterns relative to different patient and disease characteristics, such as patients' comorbidities, disease stage, and BCR::ABL1 mutational status. Patients who develop the T315I "gatekeeper" mutation display resistance to all currently available TKIs except ponatinib, asciminib, and olverembatinib. Allogeneic stem cell transplantation remains an important therapeutic option for patients with CML-CP and failure (due to resistance) of at least 2 TKIs, and for all patients in advanced phase disease. Older patients who have a cytogenetic relapse post failure on all TKIs can maintain long-term survival if they continue a daily most effective/least toxic TKI, with or without the addition of non-TKI anti-CML agents (hydroxyurea, omacetaxine, azacitidine, decitabine, cytarabine, busulfan, others). This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Elias Jabbour
- Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| |
Collapse
|
43
|
Liu C, Zou W, Nie D, Li S, Duan C, Zhou M, Lai P, Yang S, Ji S, Li Y, Mei M, Bao S, Jin Y, Pan J. Loss of PRMT7 reprograms glycine metabolism to selectively eradicate leukemia stem cells in CML. Cell Metab 2022; 34:818-835.e7. [PMID: 35508169 DOI: 10.1016/j.cmet.2022.04.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 02/14/2022] [Accepted: 04/11/2022] [Indexed: 02/08/2023]
Abstract
Our group has reported previously on the role of various members of the protein arginine methyltransferase (PRMT) family, which are involved in epigenetic regulation, in the progression of leukemia. Here, we explored the role of PRMT7, given its unique function within the PRMT family, in the maintenance of leukemia stem cells (LSCs) in chronic myeloid leukemia (CML). Genetic loss of Prmt7, and the development and testing of a small-molecule specific inhibitor of PRMT7, showed that targeting PRMT7 delayed leukemia development and impaired self-renewal of LSCs in a CML mouse model and in primary CML CD34+ cells from humans without affecting normal hematopoiesis. Mechanistically, loss of PRMT7 resulted in reduced expressions of glycine decarboxylase, leading to the reprograming of glycine metabolism to generate methylglyoxal, which is detrimental to LSCs. These findings link histone arginine methylation with glycine metabolism, while suggesting PRMT7 as a potential therapeutic target for the eradication of LSCs in CML.
Collapse
Affiliation(s)
- Chang Liu
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Waiyi Zou
- Department of Hematology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Danian Nie
- Department of Hematology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Shuyi Li
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Chen Duan
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Min Zhou
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Peilong Lai
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Shengyong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Sen Ji
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Mei Mei
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shilai Bao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanli Jin
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Jingxuan Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| |
Collapse
|
44
|
Wang W, Sun Y, Liu X, Kumar SK, Jin F, Dai Y. Dual-Targeted Therapy Circumvents Non-Genetic Drug Resistance to Targeted Therapy. Front Oncol 2022; 12:859455. [PMID: 35574302 PMCID: PMC9093074 DOI: 10.3389/fonc.2022.859455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/14/2022] [Indexed: 02/05/2023] Open
Abstract
The introduction of various targeted agents into the armamentarium of cancer treatment has revolutionized the standard care of patients with cancer. However, like conventional chemotherapy, drug resistance, either preexisting (primary or intrinsic resistance) or developed following treatment (secondary or acquired resistance), remains the Achilles heel of all targeted agents with no exception, via either genetic or non-genetic mechanisms. In the latter, emerging evidence supports the notion that intracellular signaling pathways for tumor cell survival act as a mutually interdependent network via extensive cross-talks and feedback loops. Thus, dysregulations of multiple signaling pathways usually join forces to drive oncogenesis, tumor progression, invasion, metastasis, and drug resistance, thereby providing a basis for so-called "bypass" mechanisms underlying non-genetic resistance in response to targeted agents. In this context, simultaneous interruption of two or more related targets or pathways (an approach called dual-targeted therapy, DTT), via either linear or parallel inhibition, is required to deal with such a form of drug resistance to targeted agents that specifically inhibit a single oncoprotein or oncogenic pathway. Together, while most types of tumor cells are often addicted to two or more targets or pathways or can switch their dependency between them, DTT targeting either intrinsically activated or drug-induced compensatory targets/pathways would efficiently overcome drug resistance caused by non-genetic events, with a great opportunity that those resistant cells might be particularly more vulnerable. In this review article, we discuss, with our experience, diverse mechanisms for non-genetic resistance to targeted agents and the rationales to circumvent them in the treatment of cancer, emphasizing hematologic malignancies.
Collapse
Affiliation(s)
- Wei Wang
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yue Sun
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xiaobo Liu
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China
| | - Shaji K. Kumar
- Division of Hematology, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Fengyan Jin
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
45
|
Xin Q, Chen Z, Wei W, Wu Y. Animal models of acute lymphoblastic leukemia: Recapitulating the human disease to evaluate drug efficacy and discover therapeutic targets. Biochem Pharmacol 2022; 198:114970. [PMID: 35183530 DOI: 10.1016/j.bcp.2022.114970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 01/02/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is a malignant hematologic tumor with highly aggressive characteristics, which is prone to relapse, has a poor prognosis and few clinically effective drugs. It is meaningful to gain a better understanding of its pathogenesis in order to discover and evaluate potential therapeutic drugs and new treatment targets. The goal of developing novel targeted drugs and treatment methods is to increase complete remission, reduce toxicity and morbidity, and that is also the most important prerequisite for modern leukemia treatment. However, the process of new drugs from research and development to clinical application is long and difficult. Many promising drugs were rejected by the USFoodandDrugAdministration(FDA) due to serious adverse drug reactions (ADR) in clinical phase I trials. Animal models provide us with an excellent tool to understand the complex pathological mechanisms of human diseases, to evaluate the potential of new targeted drugs and therapeutic approaches to treat ALL in vivo and, more importantly, to assess the potential ADR they may have on healthy organs. In this article we review ALL animal models' progression, their roles in revealing the pathogenesis of ALL and drug development. Additionally, we mainly focus on the mouse models, especially xenotransplantation and transgenic models that more closely reproduce the human phenotype. In conclusion, we summarize the advantages and limitations of each model, thereby facilitating further understanding the etiology of ALL, and eventually contributing to the effective management of the disease.
Collapse
Affiliation(s)
- Qianling Xin
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Zhaoying Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Provincial Institute of Translational Medicine, Hefei 230032, China.
| | - Yujing Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Provincial Institute of Translational Medicine, Hefei 230032, China.
| |
Collapse
|
46
|
Ozel B, Kipcak S, Biray Avci C, Gunduz C, Saydam G, Aktan C, Selvi Gunel N. Combination of dasatinib and okadaic acid induces apoptosis and cell cycle arrest by targeting protein phosphatase PP2A in chronic myeloid leukemia cells. Med Oncol 2022; 39:46. [PMID: 35092492 DOI: 10.1007/s12032-021-01643-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/28/2021] [Indexed: 11/28/2022]
Abstract
Chronic myeloid leukemia (CML) is a cancer type of the white blood cells and because of BCR-ABL translocation it results in increased tyrosine kinase activity. For this purpose, dasatinib is the second-generation tyrosine kinase inhibitor that is used for inhibition of BCR-ABL. Effectively and safetly, dasatinib has been used for imatinib-intolerant/resistant CML patients. Protein phosphatase 2A (PP2A) is the major serine/threonine phosphatase ensuring cellular homeostasis in cells and is associated with many cancer types including leukemias. In this study, we aimed to investigate the effects of dasatinib and okadaic acid (OA), either alone or in combination, on apoptosis and cell cycle arrest and dasatinib effect on enzyme activity and protein-level changes of PP2A in K562 cell line. The cytotoxic effects of dasatinib were evaluated by WST-1 analysis. Apoptosis was determined by Annexin V and Apo-Direct assays by flow cytometry. Cell cycle arrest analysis was performed for the investigation of the cytostatic effect. We also used OA as a PP2A inhibitor to assess apoptosis and cell cycle arrest changes in case of reducing the level of PP2A. PP2A enyzme activity and protein levels of PP2A were examined by serine/threonine phosphatase assay and Western blot analysis, respectively. Apoptosis was increased with dasatinib and OA combination. Cell cycle arrest was determined especially after OA treatment. The enzyme activity was decreased depending on time after dasatinib application. PP2A regulatory and catalytic subunit protein levels were decreased compared to control. Targeting the PP2A by dasatinib and OA has potential for CML treatment.
Collapse
Affiliation(s)
- Buket Ozel
- Medical Biology Department, Faculty of Medicine, Ege University, Izmir, Turkey.
| | - Sezgi Kipcak
- Medical Biology Department, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Cigir Biray Avci
- Medical Biology Department, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Cumhur Gunduz
- Medical Biology Department, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Guray Saydam
- Division of Haematology, Department of Internal Medicine, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Cagdas Aktan
- Medical Biology Department, Faculty of Medicine, Beykent University, Istanbul, Turkey
| | - Nur Selvi Gunel
- Medical Biology Department, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
47
|
Malik V, Radhakrishnan N, Kaul SC, Wadhwa R, Sundar D. Computational Identification of BCR-ABL Oncogenic Signaling as a Candidate Target of Withaferin A and Withanone. Biomolecules 2022; 12:biom12020212. [PMID: 35204712 PMCID: PMC8961606 DOI: 10.3390/biom12020212] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 01/09/2023] Open
Abstract
Withaferin-A (Wi-A), a secondary metabolite extracted from Ashwagandha (Withania somnifera), has been shown to possess anticancer activity. However, the molecular mechanism of its action and the signaling pathways have not yet been fully explored. We performed an inverse virtual screening to investigate its binding potential to the catalytic site of protein kinases and identified ABL as a strong candidate. Molecular docking and molecular dynamics simulations were undertaken to investigate the effects on BCR-ABL oncogenic signaling that is constitutively activated yielding uncontrolled proliferation and inhibition of apoptosis in Chronic Myeloid Leukemia (CML). We found that Wi-A and its closely related withanolide, Withanone (Wi-N), interact at both catalytic and allosteric sites of the ABL. The calculated binding energies were higher in the case of Wi-A at catalytic site (−82.19 ± 5.48) and allosteric site (−67.00 ± 4.96) as compared to the clinically used drugs Imatinib (−78.11 ± 5.21) and Asciminib (−54.00 ± 6.45) respectively. Wi-N had a lesser binding energy (−42.11 ± 10.57) compared to Asciminib at the allosteric site. The interaction and conformational changes, subjected to ligand interaction, were found to be similar to the drugs Imatinib and Asciminib. The data suggested that Ashwagandha extracts containing withanolides, Wi-A and Wi-N may serve as natural drugs for the treatment of CML. Inhibition of ABL is suggested as one of the contributing factors of anti-cancer activity of Wi-A and Wi-N, warranting further in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Vidhi Malik
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT)-Delhi, Hauz Khas, New Delhi 110-016, India; (V.M.); (N.R.)
| | - Navaneethan Radhakrishnan
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT)-Delhi, Hauz Khas, New Delhi 110-016, India; (V.M.); (N.R.)
| | - Sunil C. Kaul
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan; (S.C.K.); (R.W.)
| | - Renu Wadhwa
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan; (S.C.K.); (R.W.)
| | - Durai Sundar
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT)-Delhi, Hauz Khas, New Delhi 110-016, India; (V.M.); (N.R.)
- School of Artificial Intelligence, Indian Institute of Technology (IIT) Delhi, New Delhi 110-016, India
- Correspondence: ; Tel.: +91-11-2659-1066
| |
Collapse
|
48
|
BCR-ABL1 Tyrosine Kinase Complex Signaling Transduction: Challenges to Overcome Resistance in Chronic Myeloid Leukemia. Pharmaceutics 2022; 14:pharmaceutics14010215. [PMID: 35057108 PMCID: PMC8780254 DOI: 10.3390/pharmaceutics14010215] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 01/27/2023] Open
Abstract
The constitutively active BCR-ABL1 tyrosine kinase, found in t(9;22)(q34;q11) chromosomal translocation-derived leukemia, initiates an extremely complex signaling transduction cascade that induces a strong state of resistance to chemotherapy. Targeted therapies based on tyrosine kinase inhibitors (TKIs), such as imatinib, dasatinib, nilotinib, bosutinib, and ponatinib, have revolutionized the treatment of BCR-ABL1-driven leukemia, particularly chronic myeloid leukemia (CML). However, TKIs do not cure CML patients, as some develop TKI resistance and the majority relapse upon withdrawal from treatment. Importantly, although BCR-ABL1 tyrosine kinase is necessary to initiate and establish the malignant phenotype of Ph-related leukemia, in the later advanced phase of the disease, BCR-ABL1-independent mechanisms are also in place. Here, we present an overview of the signaling pathways initiated by BCR-ABL1 and discuss the major challenges regarding immunologic/pharmacologic combined therapies.
Collapse
|
49
|
Andretta E, Costa C, Longobardi C, Damiano S, Giordano A, Pagnini F, Montagnaro S, Quintiliani M, Lauritano C, Ciarcia R. Potential Approaches Versus Approved or Developing Chronic Myeloid Leukemia Therapy. Front Oncol 2022; 11:801779. [PMID: 34993151 PMCID: PMC8724906 DOI: 10.3389/fonc.2021.801779] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/12/2021] [Indexed: 12/22/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) have revolutionized the treatment of patients with chronic myeloid leukemia (CML). However, continued use of these inhibitors has contributed to the increase in clinical resistance and the persistence of resistant leukemic stem cells (LSCs). So, there is an urgent need to introduce additional targeted and selective therapies to eradicate quiescent LSCs, and to avoid the relapse and disease progression. Here, we focused on emerging BCR-ABL targeted and non-BCR-ABL targeted drugs employed in clinical trials and on alternative CML treatments, including antioxidants, oncolytic virus, engineered exosomes, and natural products obtained from marine organisms that could pave the way for new therapeutic approaches for CML patients.
Collapse
Affiliation(s)
- Emanuela Andretta
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Naples, Italy
| | - Caterina Costa
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Consiglia Longobardi
- Department of Mental, Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Largo Madonna delle Grazie, Naples, Italy
| | - Sara Damiano
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Naples, Italy
| | - Antonio Giordano
- Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Francesco Pagnini
- Unit of Radiology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Serena Montagnaro
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Naples, Italy
| | | | - Chiara Lauritano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Roberto Ciarcia
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
50
|
Tan T, Gray DHD, Teh CE. Single-Cell Profiling of the Intrinsic Apoptotic Pathway by Mass Cytometry (CyTOF). Methods Mol Biol 2022; 2543:83-97. [PMID: 36087261 DOI: 10.1007/978-1-0716-2553-8_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mass cytometry time-of-flight (CyTOF) is a technology for the study of complex biological processes at the single-cell level. The technology enables measurement of >50 protein moieties on the surface and inside the cell. The power of CyTOF lies in the application of purpose-built panels of antibody probes that resolve features of key biological processes in a cell. Here, we describe this technology's use to profile changes in the intrinsic apoptotic (cell death) protein machinery at a single-cell level. We provide a comprehensive overview of a tailor-made set of cell survival/death antibodies, ideal staining conditions, and high-dimensional data analysis.
Collapse
Affiliation(s)
- Tania Tan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Daniel H D Gray
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Charis E Teh
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, Australia.
| |
Collapse
|