1
|
Wu X, Raymond JJ, Liu Y, Odermatt AJ, Sin WX, Teo DBL, Natarajan M, Ng IC, Birnbaum ME, Lu TK, Han J, Springs SL, Yu H. Rapid Universal Detection of High-Risk and Low-Abundance Microbial Contaminations in CAR-T Cell Therapy. SMALL METHODS 2025:e2500253. [PMID: 40159755 DOI: 10.1002/smtd.202500253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Indexed: 04/02/2025]
Abstract
Live microbial contamination poses high risks to cell and gene therapies, threatening manufacturing processes and patient safety. Rapid, sensitive detection of live microbes in complex environments, such as CAR-T cell cultures, remains an urgent need. Here, an innovative sample-to-result workflow is introduced using digital loop-mediated isothermal amplification (dLAMP), enhanced by Electrostatic Microfiltration (EM)-based enrichment, for rapid sterility testing. By rationally designing primers targeting 16S and 18S rRNA, dLAMP assay enables both universal detection (covering >80% of known species) and strain-specific identification of bacterial and fungal contaminants in CAR-T cell spent medium and final products, directly from microorganism lysates. Enhanced by EM-based enrichment of low-abundance live microbes, the workflow achieves unparalleled sensitivity and speed, detecting contamination levels as low as 1 CFU/mL in complex CAR-T cell cultures within 6 h. Compared to qPCR and 14-day compendial methods, the approach demonstrates superior accuracy and significantly faster turnaround times. This workflow holds transformative potential for real-time monitoring in cell therapy manufacturing and rapid safety assessments of CAR-T cell products prior to patient infusion. Beyond cell therapy, the method is broadly applicable to infectious disease diagnostics, biomanufacturing monitoring, food safety, and environmental surveillance.
Collapse
Affiliation(s)
- Xiaolin Wu
- Critical Analytics for Manufacturing Personalized Medicine Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre (SMART-CAMP), Singapore, 138602, Singapore
| | - Joshua Jebaraj Raymond
- Critical Analytics for Manufacturing Personalized Medicine Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre (SMART-CAMP), Singapore, 138602, Singapore
| | - Yaoping Liu
- Critical Analytics for Manufacturing Personalized Medicine Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre (SMART-CAMP), Singapore, 138602, Singapore
- AntiMicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre (SMART-AMR), Singapore, 138602, Singapore
| | - Alexander Jeremias Odermatt
- Critical Analytics for Manufacturing Personalized Medicine Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre (SMART-CAMP), Singapore, 138602, Singapore
- Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Wei-Xiang Sin
- Critical Analytics for Manufacturing Personalized Medicine Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre (SMART-CAMP), Singapore, 138602, Singapore
| | - Denise Bei Lin Teo
- Critical Analytics for Manufacturing Personalized Medicine Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre (SMART-CAMP), Singapore, 138602, Singapore
| | - Meenubharathi Natarajan
- Critical Analytics for Manufacturing Personalized Medicine Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre (SMART-CAMP), Singapore, 138602, Singapore
| | - Inn Chuan Ng
- Department of Physiology & the Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, 117593
| | - Michael E Birnbaum
- Critical Analytics for Manufacturing Personalized Medicine Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre (SMART-CAMP), Singapore, 138602, Singapore
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
| | - Timothy K Lu
- Critical Analytics for Manufacturing Personalized Medicine Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre (SMART-CAMP), Singapore, 138602, Singapore
- AntiMicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre (SMART-AMR), Singapore, 138602, Singapore
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
| | - Jongyoon Han
- Critical Analytics for Manufacturing Personalized Medicine Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre (SMART-CAMP), Singapore, 138602, Singapore
- AntiMicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre (SMART-AMR), Singapore, 138602, Singapore
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
| | - Stacy L Springs
- Critical Analytics for Manufacturing Personalized Medicine Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre (SMART-CAMP), Singapore, 138602, Singapore
- Center for Biomedical Innovation, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
| | - Hanry Yu
- Critical Analytics for Manufacturing Personalized Medicine Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre (SMART-CAMP), Singapore, 138602, Singapore
- Department of Physiology & the Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, 117593
- Mechanobiology Institute, National University of Singapore (NUS), Singapore, 117411, Singapore
| |
Collapse
|
2
|
Zhuang QQ, Lu LY, Lin YL, Yan XL, Chen QQ, Jiang YC, Hong L, Deng HH, Chen W. A Self-Calibrating Chemiluminescence Sensor for Rapid and Precise Antibiotic Prescribing Guidelines on Urinary Tract Infections. ACS Sens 2025; 10:2203-2211. [PMID: 40052751 DOI: 10.1021/acssensors.4c03503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Traditional antimicrobial-susceptibility testing methodologies, including the isolation and culture of bacteria from urine samples and antibiotic-susceptibility test (AST), are expensive and time-consuming. Therefore, a rapid, user-friendly phenotypic AST is urgently needed to guide treatment strategies. Several novel phenotypic AST platforms based on the physiological characteristics of bacteria obtained directly from clinical urine samples have been proposed as promising methods as rapid AST and appropriate antibiotic treatments. However, inaccurate bacterial quantification can lead to false results when high-accuracy quantitative assays are required using these procedures. Coupling the expression of catalase by pathogens with a chemiluminescence-based analytical method enables a convenient and low-cost operation. Herein, we demonstrate a rapid self-calibrating chemiluminescence sensor that can measure bacterial viability through the variation in catalase activity and its response to hydrogen peroxide after treatment with antibiotics. This rapid nanosensor platform can be utilized to determine the antibiotic susceptibility of uropathogenic Escherichia coli and Klebsiella pneumoniae, which account for 80% of all urinary tract infections, directly from clinical urine samples within 40 min without bacterial quantification. The proposed ultrafast and highly accurate AST can enable the precise guidance of antibiotic prescriptions and shorten the time required for clinical decision-making.
Collapse
Affiliation(s)
- Quan-Quan Zhuang
- Quanzhou Clinical Medication Management Quality Control Center, Department of Pharmacy, Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou 362000, China
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Lin-Yan Lu
- Quanzhou Clinical Medication Management Quality Control Center, Department of Pharmacy, Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou 362000, China
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Yu-Ling Lin
- Department of Laboratory Medicine, Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Xiao-Li Yan
- Department of Laboratory Medicine, Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Qing-Qing Chen
- Department of Laboratory Medicine, Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Yan-Cheng Jiang
- Department of Laboratory Medicine, Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Lei Hong
- Quanzhou Clinical Medication Management Quality Control Center, Department of Pharmacy, Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Hao-Hua Deng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Wei Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| |
Collapse
|
3
|
Pang Z, Shi L, Wang M, Tao J. An integrated microfluidic chip for rapid and multiple antimicrobial susceptibility testing. Analyst 2025; 150:1398-1408. [PMID: 40051257 DOI: 10.1039/d4an01430h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
The overuse and misuse of antibiotics have caused the development of antimicrobial resistance (AMR), which poses a significant threat to human health. Antimicrobial susceptibility testing (AST) serves as an effective tool for assessing the susceptibility of pathogens infecting patients and guiding the precise use of antibiotics. The conventional AST method, however, is limited by prolonged incubation times and high reagent consumption. In this study, we introduce an integrated microfluidic platform, enabling multiple AST and minimum inhibitory concentration (MIC) determination after 2 hours of incubation. Sample loading is achieved using a self-priming and vacuum-driven approach, enhancing operational feasibility and preventing cross-contamination during reagent pre-coating. Moreover, the use of chips with pre-coated antibiotics minimizes the need for reagent handling off-chip, thereby enhancing the flexibility of the microfluidic device and making the platform easy to use. The AST on-chip results for Klebsiella pneumoniae (K. pneumoniae) S1 correlate well with broth dilution methods. This integrated microfluidic platform offers a novel approach for rapid AST, demonstrating improved customization and efficiency for AST assays. It holds potential for addressing multi-drug resistant bacterial strains and accommodating diverse screening scenarios in modern clinical diagnostics.
Collapse
Affiliation(s)
- Zirui Pang
- Key Laboratory of Laser & Infrared System Ministry of Education, Shandong University, Binhai Rd. 72, Qingdao 266237, China
| | - Lulu Shi
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Binhai Rd. 72, Qingdao 266237, China.
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Binhai Rd. 72, Qingdao 266237, China.
| | - Jifang Tao
- Key Laboratory of Laser & Infrared System Ministry of Education, Shandong University, Binhai Rd. 72, Qingdao 266237, China
- School of Information Science and Engineering, Shandong University, Binhai Rd. 72, Qingdao 266237, China.
| |
Collapse
|
4
|
Xu Y, Wang Z, Li C, Tian S, Du W. Droplet microfluidics: unveiling the hidden complexity of the human microbiome. LAB ON A CHIP 2025; 25:1128-1148. [PMID: 39775305 DOI: 10.1039/d4lc00877d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The human body harbors diverse microbial communities essential for maintaining health and influencing disease processes. Droplet microfluidics, a precise and high-throughput platform for manipulating microscale droplets, has become vital in advancing microbiome research. This review introduces the foundational principles of droplet microfluidics, its operational capabilities, and wide-ranging applications. We emphasize its role in enhancing single-cell sequencing technologies, particularly genome and RNA sequencing, transforming our understanding of microbial diversity, gene expression, and community dynamics. We explore its critical function in isolating and cultivating traditionally unculturable microbes and investigating microbial activity and interactions, facilitating deeper insight into community behavior and metabolic functions. Lastly, we highlight its broader applications in microbial analysis and its potential to revolutionize human health research by driving innovations in diagnostics, therapeutic development, and personalized medicine. This review provides a comprehensive overview of droplet microfluidics' impact on microbiome research, underscoring its potential to transform our understanding of microbial dynamics and their relevance to health and disease.
Collapse
Affiliation(s)
- Yibin Xu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zhiyi Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
- Medical School and College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caiming Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
- Medical School and College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuiquan Tian
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Wenbin Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
- Medical School and College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Chen H, Hu X, Xiao J, Zhang Y, Liu Z, Tang Q, Zheng S, Shao H, Khoo BL, Liu L. Rapid and Visual Detection of Urinary Pathogens by Employing Bifunctional Deoxyribonucleic Acid Sensors and Aggregation of Gold Nanoparticles. Anal Chem 2025; 97:629-639. [PMID: 39723913 DOI: 10.1021/acs.analchem.4c04967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
A simple, rapid, and visual approach is developed to perform diagnosis of urinary tract infection (UTI) and antimicrobial susceptibility testing (AST) by employing smart bifunctional DNA (bfDNA) sensors, exonuclease III, concatermers of CuO nanoparticles (CuONPs), and gold NPs (AuNPs) aggregation [AuNPs agglutination (AA)], namely, the bfDEC-AA method. The bfDNA sensors serve as probes for identifying 16S rRNA genes of bacterium or 18S rRNA of fungus and as mediators connecting the concatermers of CuONPs. The AA as a signal source is triggered by Cu(I)-catalyzed azide-alkyne cycloaddition click chemistry. In this study, the urine samples are analyzed directly, eliminating the need for overnight incubation or bacterial isolation. A crucial color change from red to purple occurs at the UTI diagnostic threshold of 104 CFU mL-1; thus the results of UTI diagnosis can be qualitatively interpreted by the unaided eyes. Similarly, AST was performed visually under our optimal conditions. The color shift can also be quantified using a point-of-care (POC) device. UTI identification, bacteria strain identification, and AST were achieved within 55, 55, and 145 min for 96 samples, respectively. Here, 128 urine samples from suspected UTI patients were tested. Notably, the sensitivity and specificity of our method were 99% and 100% for Gram-negative bacteria (G-) infection, 100% and 100% for Gram-positive bacteria (G+) infection, and 98% and 100% for AST, respectively. Furthermore, the low cost of our POC device (US$156) is friendly to underdeveloped regions.
Collapse
Affiliation(s)
- Hanren Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiumei Hu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiayi Xiao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yitong Zhang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Ze Liu
- BYD Auto Co., Ltd., Xi'an 710075, China
| | - Qing Tang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shiquan Zheng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huaze Shao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Bee Luan Khoo
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Lihong Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
6
|
Li F, Xin L, Wang J, Chen W. Platinum nanoparticles-based electrochemical H 2O 2 sensor for rapid antibiotic susceptibility testing. Talanta 2025; 281:126835. [PMID: 39265424 DOI: 10.1016/j.talanta.2024.126835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024]
Abstract
With the increase of antimicrobial resistance, rapid antibiotic susceptibility testing (AST) to guide precise antibiotic administration has become increasingly important. However, current gold standard AST approaches tend to take up to 24-48 h. In this work, based on the nature of catalase-positive bacteria decomposing H2O2, we developed a rapid, portable, straightforward, and cost-effective phenotypic AST approach by detecting residual H2O2 using a Pt nanoparticles-based electrochemical sensor. The pulse current of the sensor exhibited a linear increase with rising H2O2 concentration, demonstrating a high sensitivity of ∼382.2 μA cm-2 mM-1. This approach showed superb diagnostic performance, with an area under the curve of 1 for 24 clinical samples of Escherichia coli and Staphylococcus aureus, with a total detection time of 60 and 45 min, respectively. Furthermore, the performance of the sensor showed no degradation even after 100 detections, promising a substantial reduction in AST costs. Overall, the proposed approach exhibited immense potential for diagnosing bacterial antibiotic resistance.
Collapse
Affiliation(s)
- Feng Li
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Luhua Xin
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Jidong Wang
- Medical Research Center, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518052, China
| | - Wenwen Chen
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
7
|
Lee JH, Song J, Hong S, Kim Y, Song M, Cho B, Wu T, Riley LW, Landegren U, Lee LP. Nanoplasmonic Rapid Antimicrobial-Resistance Point-of-Care Identification Device: RAPIDx. Adv Healthc Mater 2025; 14:e2402044. [PMID: 39205550 DOI: 10.1002/adhm.202402044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/05/2024] [Indexed: 09/04/2024]
Abstract
The emergence of antibiotic resistance has become a global health crisis, and everyone must arm themselves with wisdom to effectively combat the "silent tsunami" of infections that are no longer treatable with antibiotics. However, the overuse or inappropriate use of unnecessary antibiotics is still routine for administering them due to the unavailability of rapid, precise, and point-of-care assays. Here, a rapid antimicrobial-resistance point-of-care identification device (RAPIDx) is reported for the accurate and simultaneous identification of bacterial species (genotype) and target enzyme activity (phenotype). First, a contamination-free active target enzyme is extracted via the photothermal lysis of preconcentrated bacteria cells on a nanoplasmonic functional layer on-chip. Second, the rapid, precise identification of pathogens is achieved by the photonic rolling circle amplification of DNA on a chip. Third, the simultaneous identification of bacterial species (genotype) and target enzyme activity (phenotype) is demonstrated within a sample-to-answer 45 min operation via the RAPIDx. It is believed that the RAPIDx will be a valuable method for solving the bottleneck of employing on-chip nanotechnology for antibiotic-resistant bioassay and other infectious diseases.
Collapse
Affiliation(s)
- Jong-Hwan Lee
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, 94720, USA
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea
| | - Jihwan Song
- Department of Mechanical Engineering, Hanbat National University, Daejeon, 34158, South Korea
| | - SoonGweon Hong
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, 94720, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yun Kim
- Department of Mechanical Engineering, Hanbat National University, Daejeon, 34158, South Korea
| | - Minsun Song
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, 94720, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Byungrae Cho
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Tiffany Wu
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Lee W Riley
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Ulf Landegren
- Departments of Immunology, Genetics and Pathology, Uppsala University, Uppsala, SE-751 08, Sweden
| | - Luke P Lee
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, 94720, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Electrical Engineering and Computer Science, University of California Berkeley, Berkeley, CA, 94720, USA
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, South Korea
| |
Collapse
|
8
|
Dong T, Qin L, Wang Z, Fan C, Shen C, Feng P, Kong Q, Ke B, Ying B, Li F. Point-of-Care Diagnosis of Tuberculosis Using a Portable Nucleic Acid Test with Distance-Based Readout. Anal Chem 2024; 96:20204-20212. [PMID: 39665389 DOI: 10.1021/acs.analchem.4c04180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Rapid and accurate diagnosis of tuberculosis (TB) infection in resource-limited settings is critically needed to stop the spread of the disease but remains difficult to achieve. Herein, we report a fast, inexpensive nucleic acid test with distance-based readout (FINDR) for TB. Based on the unique chromatographic behavior of DNA intercalating dye on unmodified cellulose paper, our FINDR platform converted the amplicons of loop-mediated isothermal amplification (LAMP) into the migration distance on a paper-based analytical device. A suite of innovations were further introduced to enhance the accessibility of FINDR, including (1) screening optimal LAMP primers for distance-based readout; (2) developing a chip-on-cover design capable of streamlining LAMP amplification and distance-based detection in a fully sealed FINDR chip with a simple hand-based swirling for liquid transfer; and (3) integrating FINDR with an upstream portable pipetting-free DNA extractor and a downstream smartphone app to simplify sample processing and data interpretation. With these innovations, FINDR demonstrated a high clinical sensitivity (96.6%) and specificity (100%) upon validation against clinical sputum samples. Successful clinical validation was also achieved when FINDR was deployed as a point-of-care test for detecting TB under resource-limited conditions.
Collapse
Affiliation(s)
- Tianyu Dong
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Liwen Qin
- Laboratory of Anesthesiology & Critical Care Medicine, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Zhiyin Wang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Chen Fan
- Department of Orthopedics Surgery, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu 610041, P. R. China
| | - Chenlan Shen
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
- Department of Laboratory Medicine, Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Pin Feng
- Department of Orthopedics Surgery, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu 610041, P. R. China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Qingquan Kong
- Department of Orthopedics Surgery, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu 610041, P. R. China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Bowen Ke
- Laboratory of Anesthesiology & Critical Care Medicine, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Binwu Ying
- Department of Laboratory Medicine, Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Feng Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
9
|
Lu Z, Wang X, Chen J. AI-empowered visualization of nucleic acid testing. Life Sci 2024; 359:123209. [PMID: 39488264 DOI: 10.1016/j.lfs.2024.123209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/25/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
AIMS The visualization of nucleic acid testing (NAT) results plays a critical role in diagnosing and monitoring infectious and genetic diseases. The review aims to review the current status of AI-based NAT result visualization. It systematically introduces commonly used AI-based methods and techniques for NAT, emphasizing the importance of result visualization for accessible, clear, and rapid interpretation. This highlights the importance of developing a NAT visualization platform that is user-friendly and efficient, setting a clear direction for future advancements in making nucleic acid testing more accessible and effective for everyday applications. METHOD This review explores both the commonly used NAT methods and AI-based techniques for NAT result visualization. The focus then shifts to AI-based methodologies, such as color detection and result interpretation through AI algorithms. The article presents the advantages and disadvantages of these techniques, while also comparing the performance of various NAT platforms in different experimental contexts. Furthermore, it explores the role of AI in enhancing the accuracy, speed, and user accessibility of NAT results, highlighting visualization technologies adapted from other fields of experimentation. SIGNIFICANCE This review offers valuable insights for researchers and everyday users, aiming to develop effective visualization platforms for NAT, ultimately enhancing disease diagnosis and monitoring.
Collapse
Affiliation(s)
- Zehua Lu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine & Shenzhen Institute of Beihang University, Beihang University, Beijing 10083, China
| | - Xiaogang Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine & Shenzhen Institute of Beihang University, Beihang University, Beijing 10083, China.
| | - Junge Chen
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine & Shenzhen Institute of Beihang University, Beihang University, Beijing 10083, China.
| |
Collapse
|
10
|
Wan C, Yi L, Yuan H, Li S, Wang X, Shu Y, Xie H, Lei M, Miao Z, Du W, Feng X, Li Y, Chen P, Liu BF. Atmospheric Pressure Enhanced Self-Sealing Rotation-SlipChip with Programmable Concentration Gradient Generation for Microbiological Applications. SMALL METHODS 2024; 8:e2400454. [PMID: 38818744 DOI: 10.1002/smtd.202400454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Indexed: 06/01/2024]
Abstract
In microbiological research, traditional methods for bacterial screening and antibiotic susceptibility testing are resource-intensive. Microfluidics offers an efficient alternative with rapid results and minimal sample consumption, but the demand for cost-effective, user-friendly platforms persists in communities and hospitals. Inspired by the Magdeburg hemispheres, the strategy adapts to local conditions, leveraging omnipresent atmospheric pressure for self-sealing of Rotation-SlipChip (RSC) equipped with a 3D circular Christmas tree-like microfluidic concentration gradient generator. This innovative approach provides an accessible and adaptable platform for microbiological research and testing in diverse settings. The RSC can avoid leakage concerns during multiple concentration gradient generation, chip-rotating, and final long-term incubation reaction (≥24 h). Furtherly, RSC subtypes adapted to different reactions can be fabricated in less than 15 min with cost less than $1, the result can be read through designated observational windows by naked-eye. Moreover, the RSC demonstrates its capability for evaluating bacterial biomarker activity, enabling the rapid assessment of β-galactosidase concentration and enzyme activity within 30 min, and the limit of detection can be reduced by 10-fold. It also rapidly determines the minimum antibiotic inhibitory concentration and antibiotic combined medications results within 4 h. Overall, these low-cost and user-friendly RSC make them invaluable tools in determinations at previously impractical environment.
Collapse
Affiliation(s)
- Chao Wan
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Longyu Yi
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Huijuan Yuan
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shunji Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xin Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yuxiao Shu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Han Xie
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mengcheng Lei
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zeyu Miao
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Du
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaojun Feng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
11
|
Hu J, Chen L, Zhang P, Chen F, Li H, Hsieh K, Li S, Melendez JH, Wang T. Exploiting β-Lactams-Induced Lysis and DNA Fragmentation for Rapid Molecular Antimicrobial Susceptibility Testing of Neisseria Gonorrhoeae via Dual-Digital PCR. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405272. [PMID: 39422167 PMCID: PMC11633544 DOI: 10.1002/advs.202405272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/17/2024] [Indexed: 10/19/2024]
Abstract
The evolution of antimicrobial resistance (AMR) presents substantial challenges to global medical health systems. Neisseria gonorrhoeae (N. gonorrhoeae), in particular, has developed resistance to all currently available antimicrobials. Addressing this issue necessitates not only discovering new antimicrobials but also deepening the understanding of bacterial responses to these agents, which can lead to new markers for rapid antimicrobial susceptibility testing (AST). Such advancements can enhance treatment outcomes and promote antimicrobial stewardship. In this study, single-cell techniques, including live-cell imaging, flow cytometry, and digital polymerase chain reaction (PCR) are utilized, to investigate the lysis dynamics and molecular features of N. gonorrhoeae upon exposure to β-lactam antimicrobials. Distinct patterns of bacterial lysis and DNA fragmentation are uncovered in susceptible strains. Leveraging these discoveries, a microfluidic dual-digital PCR approach that combines single-cell and single-molecule analyses, facilitate rapid and efficient phenotypic molecular AST for N. gonorrhoeae against β-lactams is developed. This proof-of-concept validation demonstrates the effectiveness of the method in accessing antimicrobial susceptibility across a range of bacterial strains, contributing valuable insights for advancing the battle against AMR.
Collapse
Affiliation(s)
- Jiumei Hu
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Liben Chen
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Pengfei Zhang
- Department of Biomedical EngineeringJohns Hopkins School of MedicineBaltimoreMD21205USA
| | - Fan‐En Chen
- Department of Biomedical EngineeringJohns Hopkins School of MedicineBaltimoreMD21205USA
| | - Hui Li
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Kuangwen Hsieh
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Sixuan Li
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Johan H. Melendez
- Division of Infectious DiseasesDepartment of MedicineJohns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Tza‐Huei Wang
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
- Department of Biomedical EngineeringJohns Hopkins School of MedicineBaltimoreMD21205USA
- Institute for NanoBiotechnologyJohns Hopkins UniversityBaltimoreMD21218USA
| |
Collapse
|
12
|
Reszetnik G, Hammond K, Mahshid S, AbdElFatah T, Nguyen D, Corsini R, Caya C, Papenburg J, Cheng MP, Yansouni CP. Next-generation rapid phenotypic antimicrobial susceptibility testing. Nat Commun 2024; 15:9719. [PMID: 39521792 PMCID: PMC11550857 DOI: 10.1038/s41467-024-53930-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Slow progress towards implementation of conventional clinical bacteriology in low resource settings and strong interest in greater speed for antimicrobial susceptibility testing (AST) more generally has focused attention on next-generation rapid AST technologies. In this Review, we systematically synthesize publications and submissions to regulatory agencies describing technologies that provide phenotypic AST faster than conventional methods. We characterize over ninety technologies in terms of underlying technical innovations, technology readiness level, extent of clinical validation, and time-to-results. This work provides a guide for technology developers and clinical microbiologists to understand the rapid phenotypic AST technology landscape, current development pipeline, and AST-specific validation milestones.
Collapse
Affiliation(s)
- Grace Reszetnik
- Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, Quebec, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Keely Hammond
- Divisions of Infectious Diseases and Medical Microbiology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Sara Mahshid
- Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, Quebec, Canada
| | - Tamer AbdElFatah
- Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, Quebec, Canada
| | - Dao Nguyen
- McGill Antimicrobial Resistance Centre, McGill University, Montreal, Quebec, Canada
- Division of Respirology, McGill University Health Centre, Montreal, Quebec, Canada
- Research, Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Rachel Corsini
- Research, Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Chelsea Caya
- Research, Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Jesse Papenburg
- Research, Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Divisions of Pediatric Infectious Diseases and Medical Microbiology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Matthew P Cheng
- Divisions of Infectious Diseases and Medical Microbiology, McGill University Health Centre, Montreal, Quebec, Canada
- Research, Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Cedric P Yansouni
- Divisions of Infectious Diseases and Medical Microbiology, McGill University Health Centre, Montreal, Quebec, Canada.
- Research, Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
- J.D. MacLean Centre for Tropical and Geographic Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
13
|
Wang ZJ, Zhu YY, Bai LY, Tang DM, Zhou ZS, Wei MZ, He JB, Yu-Duan, Luo XD. A new therapeutic strategy for infectious diseases against intracellular multidrug-resistant bacteria. J Control Release 2024; 375:467-477. [PMID: 39293527 DOI: 10.1016/j.jconrel.2024.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/09/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
Bacterial infections result in 7,700,000 deaths per year globally, with intracellular bacteria causing repeated and resistant infection. No drug is currently licenced for the treatment of intracellular bacteria. A new screening platform mimicking the host milieu has been established to explore phytochemical antibiotic adjuvants. Previously neglected isoprenylated flavonoids were found to be effective against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE). Specifically, the synergistic effect between glabrol and streptomycin against intracellular bacteria was observed for the first time. The glabrol-streptomycin combination targets bacterial inner membrane phospholipids, disrupts arginine biosynthesis, inhibits cell wall proteins and biofilm formation genes (agrA/B/C/D), and promotes ROS production, causing subsequent membrane and wall damage. To enhance the selective uptake of combination drug into infected cells, hyaluronic acid-streptomycin-lipoic acid-glabrol nanoparticles (HSLGS-S) were designed and synthesized to trigger the intracellular delivery of the glabrol-streptomycin combination. Thus, the treatment can be transported into the infected intracellular region and selectively release the glabrol-streptomycin combination to the bacterial at site. The bioactivity of HSLGS-S in clearing intracellular bacteria was 20-fold higher than that of the glabrol-streptomycin combination alone in vitro and 2- to 10-fold higher in vivo.
Collapse
Affiliation(s)
- Zhao-Jie Wang
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China
| | - Yan-Yan Zhu
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China
| | - Li-Yu Bai
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China
| | - Dong-Mei Tang
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China
| | - Zhong-Shun Zhou
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China
| | - Mei-Zhen Wei
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China
| | - Jin-Biao He
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China
| | - Yu-Duan
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China
| | - Xiao-Dong Luo
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China.
| |
Collapse
|
14
|
Govindarajan DK, Eskeziyaw BM, Kandaswamy K, Mengistu DY. Diagnosis of extraintestinal pathogenic Escherichia coli pathogenesis in urinary tract infection. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100296. [PMID: 39553200 PMCID: PMC11565050 DOI: 10.1016/j.crmicr.2024.100296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Extra-intestinal pathogenic Escherichia coli (ExPEC) is a virulent pathogen found in humans that causes the majority of urinary tract infections, and other infections such as meningitis and sepsis. ExPEC can enter the urinary tract through two modes: ascending from the bladder or descending from the kidneys. Human anatomical structures generally prevent the transmission of pathogens between the extra-intestinal area, kidneys, bladder, and urinary tract. However, adhesins, a virulence protein of ExPEC, promote the initial bacterial attachment and invasion of host cells. In addition to adhesion proteins, ExPEC contains iron acquisition systems and toxins to evade the host immune system, acquire essential nutrients, and gain antibiotic resistance. The presence of antibiotic-resistant genes makes treating ExPEC in urinary tract infections (UTIs) more complicated. Therefore, screening for the presence of ExPEC among other uropathogens in UTI patients is essential, as it can potentially aid in the effective treatment and mitigation of ExPEC pathogens. Several diagnostic techniques are available for detecting ExPEC, including urine culture, polymerase chain reaction, serological testing, loop-mediated isothermal amplification, and biochemical tests. This review addresses strain-specific diagnostic techniques for screening ExPEC in UTI patients.
Collapse
Affiliation(s)
| | | | - Kumaravel Kandaswamy
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, India
| | | |
Collapse
|
15
|
Yang B, Xin X, Cao X, Nasifu L, Nie Z, He B. Phenotypic and genotypic perspectives on detection methods for bacterial antimicrobial resistance in a One Health context: research progress and prospects. Arch Microbiol 2024; 206:409. [PMID: 39302440 DOI: 10.1007/s00203-024-04131-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
The widespread spread of bacterial antimicrobial resistance (AMR) and multidrug-resistant bacteria poses a significant threat to global public health. Traditional methods for detecting bacterial AMR are simple, reproducible, and intuitive, requiring long time incubation and high labor intensity. To quickly identify and detect bacterial AMR is urgent for clinical treatment to reduce mortality rate, and many new methods and technologies were required to be developed. This review summarizes the current phenotypic and genotypic detection methods for bacterial AMR. Phenotypic detection methods mainly include antimicrobial susceptibility tests, while genotypic detection methods have higher sensitivity and specificity and can detect known or even unknown drug resistance genes. However, most of the current tests are either genotypic or phenotypic and rarely combined. Combining the advantages of phenotypic and genotypic methods, combined with the joint application of multiple rapid detection methods may be the trend for future AMR testing. Driven by rapid diagnostic technology, big data analysis, and artificial intelligence, detection methods of bacterial AMR are expected to constantly develop and innovate. Adopting rational detection methods and scientific data analysis can better address the challenges of bacterial AMR and ensure human health and social well-being.
Collapse
Affiliation(s)
- Bingbing Yang
- Department of Laboratory Medicine, Nanjing First Hospital, China Pharmaceutical University, Nanjing, 210006, China
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, Pharmaceutical University, Nanjing, 211198, China
| | - Xiaoqi Xin
- Department of Laboratory Medicine, Nanjing First Hospital, China Pharmaceutical University, Nanjing, 210006, China
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, Pharmaceutical University, Nanjing, 211198, China
| | - Xiaoqing Cao
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Lubanga Nasifu
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
- Department of Biology, Muni University, Arua, Uganda
| | - Zhenlin Nie
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| | - Bangshun He
- Department of Laboratory Medicine, Nanjing First Hospital, China Pharmaceutical University, Nanjing, 210006, China.
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| |
Collapse
|
16
|
Kim TH, Kang J, Jang H, Joo H, Lee GY, Kim H, Cho U, Bang H, Jang J, Han S, Kim DY, Lee CM, Kang CK, Choe PG, Kim NJ, Oh MD, Kim TS, Kim I, Park WB, Kwon S. Blood culture-free ultra-rapid antimicrobial susceptibility testing. Nature 2024; 632:893-902. [PMID: 39048820 DOI: 10.1038/s41586-024-07725-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 06/17/2024] [Indexed: 07/27/2024]
Abstract
Treatment assessment and patient outcome for sepsis depend predominantly on the timely administration of appropriate antibiotics1-3. However, the clinical protocols used to stratify and select patient-specific optimal therapy are extremely slow4. In particular, the major hurdle in performing rapid antimicrobial susceptibility testing (AST) remains in the lengthy blood culture procedure, which has long been considered unavoidable due to the limited number of pathogens present in the patient's blood. Here we describe an ultra-rapid AST method that bypasses the need for traditional blood culture, thereby demonstrating potential to reduce the turnaround time of reporting drug susceptibility profiles by more than 40-60 h compared with hospital AST workflows. Introducing a synthetic beta-2-glycoprotein I peptide, a broad range of microbial pathogens are selectively recovered from whole blood, subjected to species identification or instantly proliferated and phenotypically evaluated for various drug conditions using a low-inoculum AST chip. The platform was clinically evaluated by the enrolment of 190 hospitalized patients suspected of having infection, achieving 100% match in species identification. Among the eight positive cases, six clinical isolates were retrospectively tested for AST showing an overall categorical agreement of 94.90% with an average theoretical turnaround time of 13 ± 2.53 h starting from initial blood processing.
Collapse
Affiliation(s)
- Tae Hyun Kim
- Bio-MAX Institute, Seoul National University, Seoul, Korea
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| | - Junwon Kang
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Korea
- Integrated Major in Innovative Medical Science, Seoul National University, Seoul, Korea
| | - Haewook Jang
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Korea
| | - Hyelyn Joo
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Korea
| | - Gi Yoon Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| | - Hamin Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Korea
| | | | | | | | | | | | - Chan Mi Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Chang Kyung Kang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Pyoeng Gyun Choe
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Nam Joong Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Myoung-Don Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Taek Soo Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Inho Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.
| | - Wan Beom Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.
| | - Sunghoon Kwon
- Bio-MAX Institute, Seoul National University, Seoul, Korea.
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea.
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Korea.
- QuantaMatrix Inc., Seoul, Korea.
- Inter-University Semiconductor Research Center, Seoul National University, Seoul, Korea.
| |
Collapse
|
17
|
Lin YH, Hung YT, Chang W, Chiou CC. Integrated Droplet-Based Digital Loop-Mediated Isothermal Amplification Microfluidic Chip with Droplet Generation, Incubation, and Continuous Fluorescence Detection. BIOSENSORS 2024; 14:334. [PMID: 39056610 PMCID: PMC11275183 DOI: 10.3390/bios14070334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024]
Abstract
This study integrated sample partition, incubation, and continuous fluorescence detection on a single microfluidic chip for droplet-based digital Loop-Mediated Isothermal Amplification (LAMP) of nucleic acids. This integration eliminated the need to transfer reactions between different platforms, avoiding sample contamination and loss. Prior to the reaction, filling the channels with an oil phase and adding a glass cover slip on top of the chip overcame the problem of bubble generation in the channels during the LAMP reaction due to heating. Additionally, using two fluorescence intensity thresholds enabled simultaneous detection and counting of positive and negative droplets within a single fluorescence detection channel. The chip can partition approximately 6000 droplets from a 5 µL sample within 10 min, with a droplet diameter of around 110 µm and a coefficient of variation (CV) value of 0.82%. Staphylococcus aureus was quantified via the proposed platform. The results demonstrated a highly accurate correlation coefficient (R = 0.9998), and the detection limit reached a concentration of 1.7 × 102 copies/µL. The entire process of the droplet digital LAMP reaction, from droplet generation to incubation to quantitative results, took a maximum of 70 min.
Collapse
Affiliation(s)
- Yen-Heng Lin
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 333, Taiwan
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
| | - Yuan-Ting Hung
- Department of Electronic Engineering, Chang Gung University, Taoyuan 333, Taiwan
| | - Wei Chang
- Master and PhD Program in Biotechnology Industry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Chiuan-Chian Chiou
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
- Master and PhD Program in Biotechnology Industry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
18
|
Fike BJ, Curtin K, Li P. Nucleic Acid Target Sensing Using a Vibrating Sharp-Tip Capillary and Digital Droplet Loop-Mediated Isothermal Amplification (ddLAMP). SENSORS (BASEL, SWITZERLAND) 2024; 24:4266. [PMID: 39001045 PMCID: PMC11243892 DOI: 10.3390/s24134266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024]
Abstract
Nucleic acid tests are key tools for the detection and diagnosis of many diseases. In many cases, the amplification of the nucleic acids is required to reach a detectable level. To make nucleic acid amplification tests more accessible to a point-of-care (POC) setting, isothermal amplification can be performed with a simple heating source. Although these tests are being performed in bulk reactions, the quantification is not as accurate as it would be with digital amplification. Here, we introduce the use of the vibrating sharp-tip capillary for a simple and portable system for tunable on-demand droplet generation. Because of the large range of droplet sizes possible and the tunability of the vibrating sharp-tip capillary, a high dynamic range (~2 to 6000 copies/µL) digital droplet loop-mediated isothermal amplification (ddLAMP) system has been developed. It was also noted that by changing the type of capillary on the vibrating sharp-tip capillary, the same mechanism can be used for simple and portable DNA fragmentation. With the incorporation of these elements, the present work paves the way for achieving digital nucleic acid tests in a POC setting with limited resources.
Collapse
Affiliation(s)
- Bethany J Fike
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA
| | - Kathrine Curtin
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
19
|
Tran TA, Sridhar S, Reece ST, Lunguya O, Jacobs J, Van Puyvelde S, Marks F, Dougan G, Thomson NR, Nguyen BT, Bao PT, Baker S. Combining machine learning with high-content imaging to infer ciprofloxacin susceptibility in isolates of Salmonella Typhimurium. Nat Commun 2024; 15:5074. [PMID: 38871710 PMCID: PMC11176356 DOI: 10.1038/s41467-024-49433-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 06/05/2024] [Indexed: 06/15/2024] Open
Abstract
Antimicrobial resistance (AMR) is a growing public health crisis that requires innovative solutions. Current susceptibility testing approaches limit our ability to rapidly distinguish between antimicrobial-susceptible and -resistant organisms. Salmonella Typhimurium (S. Typhimurium) is an enteric pathogen responsible for severe gastrointestinal illness and invasive disease. Despite widespread resistance, ciprofloxacin remains a common treatment for Salmonella infections, particularly in lower-resource settings, where the drug is given empirically. Here, we exploit high-content imaging to generate deep phenotyping of S. Typhimurium isolates longitudinally exposed to increasing concentrations of ciprofloxacin. We apply machine learning algorithms to the imaging data and demonstrate that individual isolates display distinct growth and morphological characteristics that cluster by time point and susceptibility to ciprofloxacin, which occur independently of ciprofloxacin exposure. Using a further set of S. Typhimurium clinical isolates, we find that machine learning classifiers can accurately predict ciprofloxacin susceptibility without exposure to it or any prior knowledge of resistance phenotype. These results demonstrate the principle of using high-content imaging with machine learning algorithms to predict drug susceptibility of clinical bacterial isolates. This technique may be an important tool in understanding the morphological impact of antimicrobials on the bacterial cell to identify drugs with new modes of action.
Collapse
Affiliation(s)
- Tuan-Anh Tran
- The Department of Medicine, University of Cambridge, Cambridge, UK
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sushmita Sridhar
- The Department of Medicine, University of Cambridge, Cambridge, UK
- The Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Stephen T Reece
- The Department of Medicine, University of Cambridge, Cambridge, UK
- Sanofi, Kymab, Babraham Research Campus, Cambridge, UK
| | - Octavie Lunguya
- Department of Microbiology, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of Congo
- Service de Microbiologie, Cliniques Universitaires de Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Jan Jacobs
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Sandra Van Puyvelde
- The Department of Medicine, University of Cambridge, Cambridge, UK
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Florian Marks
- The Department of Medicine, University of Cambridge, Cambridge, UK
- International Vaccine Institute, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Heidelberg Institute of Global Health, University of Heidelberg, Heidelberg, Germany
- Madagascar Institute for Vaccine Research, University of Antananarivo, Antananarivo, Madagascar
| | - Gordon Dougan
- The Department of Medicine, University of Cambridge, Cambridge, UK
| | - Nicholas R Thomson
- The Wellcome Sanger Institute, Hinxton, Cambridge, UK
- London School of Hygiene and Tropical Medicine, London, UK
| | - Binh T Nguyen
- Faculty of Mathematics and Computer Science, University of Science, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Pham The Bao
- Information Science Faculty, Saigon University, Ho Chi Minh City, Vietnam
| | - Stephen Baker
- The Department of Medicine, University of Cambridge, Cambridge, UK.
- IAVI, Chelsea and Westminster Hospital, London, UK.
| |
Collapse
|
20
|
Wu W, Mu Y. Microfluidic technologies for advanced antimicrobial susceptibility testing. BIOMICROFLUIDICS 2024; 18:031504. [PMID: 38855477 PMCID: PMC11162290 DOI: 10.1063/5.0190112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 05/23/2024] [Indexed: 06/11/2024]
Abstract
Antimicrobial resistance is getting serious and becoming a threat to public health worldwide. The improper and excessive use of antibiotics is responsible for this situation. The standard methods used in clinical laboratories, to diagnose bacterial infections, identify pathogens, and determine susceptibility profiles, are time-consuming and labor-intensive, leaving the empirical antimicrobial therapy as the only option for the first treatment. To prevent the situation from getting worse, evidence-based therapy should be given. The choosing of effective drugs requires powerful diagnostic tools to provide comprehensive information on infections. Recent progress in microfluidics is pushing infection diagnosis and antimicrobial susceptibility testing (AST) to be faster and easier. This review summarizes the recent development in microfluidic assays for rapid identification and AST in bacterial infections. Finally, we discuss the perspective of microfluidic-AST to develop the next-generation infection diagnosis technologies.
Collapse
Affiliation(s)
- Wenshuai Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ying Mu
- Author to whom correspondence should be addressed:
| |
Collapse
|
21
|
Cao H, Zhang G, Ma H, Xue Z, Huo R, Wang K, Liu Z. Sensitive and Extraction-Free Detection of Methicillin-Resistant Staphylococcus aureus through Ag + Aptamer-Based Color Reaction. J Microbiol Biotechnol 2024; 34:192-197. [PMID: 37957116 PMCID: PMC10840478 DOI: 10.4014/jmb.2308.08044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 11/15/2023]
Abstract
Refractory infections, such as hospital-acquired pneumonia, can be better diagnosed with the assistance of precise methicillin-resistant Staphylococcus aureus (MRSA) testing. However, traditional methods necessitate high-tech tools, rigorous temperature cycling, and the extraction of genetic material from MRSA cells. Herein, we propose a sensitive, specific, and extraction-free strategy for MRSA detection by integrating allosteric probe-based target recognition and exonuclease-III (Exo-III)-enhanced color reaction. The penicillin-binding protein 2a (PBP2a) aptamer in the allosteric probe binds with MRSA to convert protein signals to nucleic acid signals. This is followed by the DNA polymerase-assisted target recycle and the production of numerous single-strand DNA (ssDNA) chains which bind with silver ion (Ag+) aptamer to form a blunt terminus that can be identified by Exo-III. As a result, the Ag+ aptamer pre-coupled to magnetic nanoparticles is digested. After magnetic separation, the Ag+ in liquid supernatant catalyzes 3,3',5,5'-tetramethylbenzidine (TMB) for a color reaction. In addition, a concentration of 54 cfu/mL is predicted to be the lowest detectable value. Based on this, our assay has a wide linear detection range, covering 5 orders of magnitude and demonstrating a high specificity, which allows it to accurately distinguish the target MRSA from other microorganisms.
Collapse
Affiliation(s)
- Hongli Cao
- Emergency Department, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, P.R. China
| | - Guosheng Zhang
- Emergency Department, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, P.R. China
| | - Hui Ma
- Emergency Department, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, P.R. China
| | - Zhongwen Xue
- Emergency Department, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, P.R. China
| | - Ran Huo
- Emergency Department, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, P.R. China
| | - Kun Wang
- Emergency Department, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, P.R. China
| | - Zijin Liu
- Orthopedic Rehabilitation Department, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, P.R. China
| |
Collapse
|
22
|
Zhang J, Wang M, Xiao J, Wang M, Liu Y, Gao X. Metabolism-Triggered Plasmonic Nanosensor for Bacterial Detection and Antimicrobial Susceptibility Testing of Clinical Isolates. ACS Sens 2024; 9:379-387. [PMID: 38175523 DOI: 10.1021/acssensors.3c02144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Antimicrobial resistance (AMR) is predicted to become the leading cause of death worldwide in the coming decades. Rapid and on-site antibiotic susceptibility testing (AST) is crucial for guiding appropriate antibiotic choices to combat AMR. With this in mind, we have designed a simple and efficient plasmonic nanosensor consisting of Cu2+ and cysteine-modified AuNP (Au/Cys) that utilizes the metabolic activity of bacteria toward Cu2+ for bacterial detection and AST. When Cu2+ is present, it induces the aggregation of Au/Cys. However, in the presence of bacteria, Cu2+ is metabolized to varying extents, resulting in distinct levels of aggregation. Moreover, the metabolic activity of bacteria can be influenced by their antibiotic susceptibility, allowing us to differentiate between susceptible and resistant strains through direct color changes from the Cu2+-Au/Cys platform over approximately 3 h. These color changes can be easily detected using naked-eye observation, smartphone analysis, or absorption readout. We have validated the platform using four clinical isolates and six types of antibiotics, demonstrating a clinical sensitivity and specificity of 95.8%. Given its simplicity, low cost, high speed, and high accuracy, the plasmonic nanosensor holds great potential for point-of-care detection of antibiotic susceptibility across various settings.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mengna Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jinru Xiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mengqi Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yaqing Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xia Gao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
23
|
Wei S, Tang Q, Hu X, Ouyang W, Shao H, Li J, Yan H, Chen Y, Liu L. Rapid, Ultrasensitive, and Visual Detection of Pathogens Based on Cation Dye-Triggered Gold Nanoparticle Electrokinetic Agglutination Analysis. ACS Sens 2024; 9:325-336. [PMID: 38214583 DOI: 10.1021/acssensors.3c02014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Rapid prescribing of the right antibiotic is the key to treat infectious diseases and decelerate the challenge of bacterial antibiotic resistance. Herein, by targeting the 16S rRNA of bacteria, we developed a cation dye-triggered electrokinetic gold nanoparticle (AuNP) agglutination (CD-TEAA) method, which is rapid, visual, ultrasensitive, culture-independent, and low in cost. The limit of detection (LOD) is as low as 1 CFU mL-1 Escherichia coli. The infection identifications of aseptic fluid samples (n = 11) and urine samples with a clinically suspected urinary tract infection (UTI, n = 78) were accomplished within 50 and 30 min for each sample, respectively. The antimicrobial susceptibility testing (AST) of UTI urine samples was achieved within 2.5 h. In ROC analysis of urine, the sensitivity and specificity were 100 and 96% for infection identification, and 100 and 98% for AST, respectively. Moreover, the overall cost of materials for each test is about US$0.69. Therefore, the CD-TEAA method is a superior approach to existing, time-consuming, and expensive methods, especially in less developed areas.
Collapse
Affiliation(s)
- Siqi Wei
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qing Tang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiumei Hu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wei Ouyang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Huaze Shao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jincheng Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hong Yan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yue Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lihong Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
24
|
Iseri E, Nilsson S, van Belkum A, van der Wijngaart W, Özenci V. Performance of an innovative culture-based digital dipstick for detection of bacteriuria. Microbiol Spectr 2024; 12:e0361323. [PMID: 38088544 PMCID: PMC10783013 DOI: 10.1128/spectrum.03613-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/17/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE In this study, we explore the transformative potential of UTI-lizer, an emerging technology not yet commercially available. Our manuscript shows that UTI-lizer is a promising alternative for detecting the five main pathogens that cause urinary tract infections (UTIs). The results also indicate that digital dipsticks have the potential to uniquely provide UTI diagnostic quality on par with that of gold-standard testing, with the added benefits of ease of testing, rapid test handling time, and simple test equipment. This technology can be helpful in quickly ruling out bacterial infections and reducing the unnecessary use of antibiotics, especially in primary care settings or at the point of care. Moreover, the UTI-lizer test can reduce the number of negative urine samples sent to central laboratories, thus easing the burden of UTI diagnostics on the healthcare system. We believe our study, as well as current and upcoming research based on this technology, is highly relevant for clinical microbiologists, microbiology scientists, general practitioners, and urologists.
Collapse
Affiliation(s)
- Emre Iseri
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden
- UTIlizer AB, Stockholm, Sweden
| | - Sara Nilsson
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | | | | | - Volkan Özenci
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
25
|
Gillespie SH, Hammond RJH. Rapid Drug Susceptibility Testing to Preserve Antibiotics. Methods Mol Biol 2024; 2833:129-143. [PMID: 38949707 DOI: 10.1007/978-1-0716-3981-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Antibiotic resistance is a global challenge likely to cost trillions of dollars in excess costs in the health system and more importantly, millions of lives every year. A major driver of resistance is the absence of susceptibility testing at the time a healthcare worker needs to prescribe an antimicrobial. The effect is that many prescriptions are unintentionally wasted and expose mutable organisms to antibiotics increasing the risk of resistance emerging. Often simplistic solutions are applied to this growing issue, such as a naïve drive to increase the speed of drug susceptibility testing. This puts a spotlight on a technological solution and there is a multiplicity of such candidate DST tests in development. Yet, if we do not define the necessary information and the speed at which it needs to be available in the clinical decision-making progress as well as the necessary integration into clinical pathways, then little progress will be made. In this chapter, we place the technological challenge in a clinical and systems context. Further, we will review the landscape of some promising technologies that are emerging and attempt to place them in the clinic where they will have to succeed.
Collapse
Affiliation(s)
- Stephen H Gillespie
- Division of Infection and Global Health, School of Medicine, University of St Andrews, St Andrews, Scotland, UK.
| | - Robert J H Hammond
- Division of Infection and Global Health, School of Medicine, University of St Andrews, St Andrews, Scotland, UK
| |
Collapse
|
26
|
Yin W, Zhuang J, Li J, Xia L, Hu K, Yin J, Mu Y. Digital Recombinase Polymerase Amplification, Digital Loop-Mediated Isothermal Amplification, and Digital CRISPR-Cas Assisted Assay: Current Status, Challenges, and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303398. [PMID: 37612816 DOI: 10.1002/smll.202303398] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/29/2023] [Indexed: 08/25/2023]
Abstract
Digital nucleic acid detection based on microfluidics technology can quantify the initial amount of nucleic acid in the sample with low equipment requirements and simple operations, which can be widely used in clinical and in vitro diagnosis. Recently, isothermal amplification technologies such as recombinase polymerase amplification (RPA), loop-mediated isothermal amplification (LAMP), and clustered regularly interspaced short palindromic repeats-CRISPR associated proteins (CRISPR-Cas) assisted technologies have become a hot spot of attention and state-of-the-art digital nucleic acid chips have provided a powerful tool for these technologies. Herein, isothermal amplification technologies including RPA, LAMP, and CRISPR-Cas assisted methods, based on digital nucleic acid microfluidics chips recently, have been reviewed. Moreover, the challenges of digital isothermal amplification and possible strategies to address them are discussed. Finally, future directions of digital isothermal amplification technology, such as microfluidic chip and device manufacturing, multiplex detection, and one-pot detection, are outlined.
Collapse
Affiliation(s)
- Weihong Yin
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jianjian Zhuang
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, 310006, P. R. China
| | - Jiale Li
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Liping Xia
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Kai Hu
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Juxin Yin
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310027, P. R. China
- School of information and Electrical Engineering, Hangzhou City University, Hangzhou, 310015, P. R. China
| | - Ying Mu
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
27
|
Wu W, Suo Y, Zhao Q, Cai G, Liu Y, Jin W, Mu Y, Zhang B. Inoculum size-insensitive susceptibility determination of urine sample based on in-situ measurement of inducible enzyme activity after 20 min of antibiotic exposure. Anal Chim Acta 2023; 1282:341858. [PMID: 37923403 DOI: 10.1016/j.aca.2023.341858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND The empirical antibiotic therapies for bacterial infections cause the emergence and propagation of multi-drug resistant bacteria, which not only impair the effectiveness of existing antibiotics but also raise healthcare costs. To reduce the empirical treatments, rapid antimicrobial susceptibility testing (AST) of causative microorganisms in clinical samples should be conducted for prescribing evidence-based antibiotics. However, most of culture-based ASTs suffer from inoculum effect and lack differentiation of target pathogen and commensals, hampering their adoption for evidence-based antibiotic prescription. Therefore, rapid ASTs which can specifically determine pathogens' susceptibilities, regardless of the bacterial load in clinical samples, are in urgent need. RESULTS We present a pathogen-specific and inoculum size-insensitive AST to achieve the reliable susceptibility determination on Escherichia coli (E. coli) in urine samples. The developed AST is featured with an 1 h sample-to-result workflow in a filter, termed on-filter AST. The AST results can be obtained by using an inducible enzymatic assay to in-situ measure the cell response of E. coli collected from urine after 20 min of antibiotic exposure. The calculated detection limit of our AST (1.95 × 104 CFU/mL) is much lower than the diagnosis threshold of urinary tract infections. The specific expression of the inducible enzyme enables on-filter AST to correctly profile the susceptibilities of target pathogen to multi-type antibiotics without the interference from commensals. We performed the on-filter AST on 1 mL urine samples with bacterial loads varying from 105 CFU/mL to 107 CFU/mL and compared the results to that of standard method, demonstrating its insensitivity to inoculum size. SIGNIFICANCE The developed AST is demonstrated to be of high sensitivity, specificity, and insensitive to inoculum size. With further developments for additional bacteria and clinical validation, on-filter AST is promising as a rapid and reliable surrogate of culture-based AST to promote the evidence-based prescription at the first visit and minimize the emergency of new multi-drug resistant microorganisms.
Collapse
Affiliation(s)
- Wenshuai Wu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310027, China
| | - Yuanjie Suo
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310027, China
| | - Qianbin Zhao
- Center of Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, Hebei University of Technology, Tianjin, 300131, China
| | - Gaozhe Cai
- School of Microelectronics, Shanghai University, Shanghai, 200444, China
| | - Yang Liu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 102401, China
| | - Wei Jin
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310027, China; Huzhou Institute of Zhejiang University, Huzhou, 313002, China
| | - Ying Mu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310027, China.
| | - Boran Zhang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
28
|
Wu W, Zhang B, Yin W, Xia L, Suo Y, Cai G, Liu Y, Jin W, Zhao Q, Mu Y. Enzymatic Antimicrobial Susceptibility Testing with Bacteria Identification in 30 min. Anal Chem 2023; 95:16426-16432. [PMID: 37874622 DOI: 10.1021/acs.analchem.3c04316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Rapid antimicrobial susceptibility testing (AST) with the ability of bacterial identification is urgently needed for evidence-based antibiotic prescription. Herein, we propose an enzymatic AST (enzyAST) that employs β-d-glucuronidase as a biomarker to identify pathogens and profile phenotypic susceptibilities simultaneously. EnzyAST enables to offer binary AST results within 30 min, much faster than standard methods (>16 h). The general applicability of enzyAST was verified by testing the susceptibility of two Escherichia coli strains to three antibiotics with different action mechanisms. The pilot study also shows that the minimal inhibitory concentrations can be determined by enzyAST with the statistical analysis of enzymatic activity of the bacteria population exposed to varying antibiotic concentrations. With further development of multiple bacteria and sample treatment, enzyAST could be able to evaluate the susceptibility of pathogens in clinical samples directly to facilitate the evidence-based therapy.
Collapse
Affiliation(s)
- Wenshuai Wu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China
| | - Boran Zhang
- Department of Hydraulic Engineering, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
| | - Weihong Yin
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China
| | - Liping Xia
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China
| | - Yuanjie Suo
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China
| | - Gaozhe Cai
- School of Microelectronics, Shanghai University, Shanghai 200444, China
| | - Yang Liu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 102401, China
| | - Wei Jin
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China
- Huzhou Institute of Zhejiang University, Huzhou 313002, China
| | - Qianbin Zhao
- Center of Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, Hebei University of Technology, Tianjin 300131, China
| | - Ying Mu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
29
|
Jiang X, Borkum T, Shprits S, Boen J, Arshavsky-Graham S, Rofman B, Strauss M, Colodner R, Sulam J, Halachmi S, Leonard H, Segal E. Accurate Prediction of Antimicrobial Susceptibility for Point-of-Care Testing of Urine in Less than 90 Minutes via iPRISM Cassettes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303285. [PMID: 37587020 PMCID: PMC10625094 DOI: 10.1002/advs.202303285] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/04/2023] [Indexed: 08/18/2023]
Abstract
The extensive and improper use of antibiotics has led to a dramatic increase in the frequency of antibiotic resistance among human pathogens, complicating infectious disease treatments. In this work, a method for rapid antimicrobial susceptibility testing (AST) is presented using microstructured silicon diffraction gratings integrated into prototype devices, which enhance bacteria-surface interactions and promote bacterial colonization. The silicon microstructures act also as optical sensors for monitoring bacterial growth upon exposure to antibiotics in a real-time and label-free manner via intensity-based phase-shift reflectometric interference spectroscopic measurements (iPRISM). Rapid AST using clinical isolates of Escherichia coli (E. coli) from urine is established and the assay is applied directly on unprocessed urine samples from urinary tract infection patients. When coupled with a machine learning algorithm trained on clinical samples, the iPRISM AST is able to predict the resistance or susceptibility of a new clinical sample with an Area Under the Receiver Operating Characteristic curve (AUC) of ∼ 0.85 in 1 h, and AUC > 0.9 in 90 min, when compared to state-of-the-art automated AST methods used in the clinic while being an order of magnitude faster.
Collapse
Affiliation(s)
- Xin Jiang
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Talya Borkum
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Sagi Shprits
- Department of Urology, Bnai Zion Medical Center, Haifa, 3104800, Israel
| | - Joseph Boen
- Department of Biomedical Engineering, Johns Hopkins University, Clark 320B, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Sofia Arshavsky-Graham
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Baruch Rofman
- Department of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Merav Strauss
- Laboratory of Clinical Microbiology, Emek Medical Center, Afula, 1834111, Israel
| | - Raul Colodner
- Laboratory of Clinical Microbiology, Emek Medical Center, Afula, 1834111, Israel
| | - Jeremias Sulam
- Department of Biomedical Engineering, Johns Hopkins University, Clark 320B, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Sarel Halachmi
- Department of Urology, Bnai Zion Medical Center, Haifa, 3104800, Israel
- The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Heidi Leonard
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
30
|
Hertenstein T, Tang Y, Day AS, Reynolds J, Viboolmate PV, Yoon JY. Rapid and sensitive detection of miRNA via light scatter-aided emulsion-based isothermal amplification using a custom low-cost device. Biosens Bioelectron 2023; 237:115444. [PMID: 37329805 DOI: 10.1016/j.bios.2023.115444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/12/2023] [Accepted: 05/31/2023] [Indexed: 06/19/2023]
Abstract
MicroRNAs are likely to be a next-generation clinical biomarker for many diseases. While gold-standard technologies, e.g., reverse transcription-quantitative polymerase chain reaction (RT-qPCR), exist for microRNA detection, there is a need for rapid and low-cost testing. Here, an emulsion loop-mediated isothermal amplification (eLAMP) assay was developed for miRNA that compartmentalizes a LAMP reaction and shortens the time-to-detection. The miRNA was a primer to facilitate the overall amplification rate of template DNA. Light scatter intensity decreased when the emulsion droplet got smaller during the ongoing amplification, which was utilized to moitor the amplification non-invasively. A custom low-cost device was designed and fabricated using a computer cooling fan, a Peltier heater, an LED, a photoresistor, and a temperature controller. It allowed more stable vortexing and accurate light scatter detection. Three miRNAs, miR-21, miR-16, and miR-192, were successfully detected using the custom device. Specifically, new template and primer sequences were developed for miR-16 and miR-192. Zeta potential measurements and microscopic observations confirmed emulsion size reduction and amplicon adsorption. The detection limit was 0.01 fM, corresponding to 2.4 copies per reaction, and the detection could be made in 5 min. Since the assays were rapid and both template and miRNA + template could eventually be amplified, we introduced the success rate (compared to the 95% confidence interval of the template result) as a new measure, which worked well with lower concentrations and inefficient amplifications. This assay brings us one step closer to allowing circulating miRNA biomarker detection to become commonplace in the clinical world.
Collapse
Affiliation(s)
- Tyler Hertenstein
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Yisha Tang
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Alexander S Day
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Jocelyn Reynolds
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Patrick V Viboolmate
- Department of Chemical and Environmental Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Jeong-Yeol Yoon
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States.
| |
Collapse
|
31
|
Trinh TND, Do HDK, Nam NN, Dan TT, Trinh KTL, Lee NY. Droplet-Based Microfluidics: Applications in Pharmaceuticals. Pharmaceuticals (Basel) 2023; 16:937. [PMID: 37513850 PMCID: PMC10385691 DOI: 10.3390/ph16070937] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Droplet-based microfluidics offer great opportunities for applications in various fields, such as diagnostics, food sciences, and drug discovery. A droplet provides an isolated environment for performing a single reaction within a microscale-volume sample, allowing for a fast reaction with a high sensitivity, high throughput, and low risk of cross-contamination. Owing to several remarkable features, droplet-based microfluidic techniques have been intensively studied. In this review, we discuss the impact of droplet microfluidics, particularly focusing on drug screening and development. In addition, we surveyed various methods of device fabrication and droplet generation/manipulation. We further highlight some promising studies covering drug synthesis and delivery that were updated within the last 5 years. This review provides researchers with a quick guide that includes the most up-to-date and relevant information on the latest scientific findings on the development of droplet-based microfluidics in the pharmaceutical field.
Collapse
Affiliation(s)
- Thi Ngoc Diep Trinh
- Department of Materials Science, School of Applied Chemistry, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ward 13, District 04, Ho Chi Minh City 70000, Vietnam
| | - Nguyen Nhat Nam
- Biotechnology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Thach Thi Dan
- Department of Materials Science, School of Applied Chemistry, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
32
|
Mumtaz Z, Rashid Z, Ali A, Arif A, Ameen F, AlTami MS, Yousaf MZ. Prospects of Microfluidic Technology in Nucleic Acid Detection Approaches. BIOSENSORS 2023; 13:584. [PMID: 37366949 DOI: 10.3390/bios13060584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 06/28/2023]
Abstract
Conventional diagnostic techniques are based on the utilization of analyte sampling, sensing and signaling on separate platforms for detection purposes, which must be integrated to a single step procedure in point of care (POC) testing devices. Due to the expeditious nature of microfluidic platforms, the trend has been shifted toward the implementation of these systems for the detection of analytes in biochemical, clinical and food technology. Microfluidic systems molded with substances such as polymers or glass offer the specific and sensitive detection of infectious and noninfectious diseases by providing innumerable benefits, including less cost, good biological affinity, strong capillary action and simple process of fabrication. In the case of nanosensors for nucleic acid detection, some challenges need to be addressed, such as cellular lysis, isolation and amplification of nucleic acid before its detection. To avoid the utilization of laborious steps for executing these processes, advances have been deployed in this perspective for on-chip sample preparation, amplification and detection by the introduction of an emerging field of modular microfluidics that has multiple advantages over integrated microfluidics. This review emphasizes the significance of microfluidic technology for the nucleic acid detection of infectious and non-infectious diseases. The implementation of isothermal amplification in conjunction with the lateral flow assay greatly increases the binding efficiency of nanoparticles and biomolecules and improves the limit of detection and sensitivity. Most importantly, the deployment of paper-based material made of cellulose reduces the overall cost. Microfluidic technology in nucleic acid testing has been discussed by explicating its applications in different fields. Next-generation diagnostic methods can be improved by using CRISPR/Cas technology in microfluidic systems. This review concludes with the comparison and future prospects of various microfluidic systems, detection methods and plasma separation techniques used in microfluidic devices.
Collapse
Affiliation(s)
- Zilwa Mumtaz
- KAM School of Life Sciences, Forman Christian College University, Ferozpur Road, Lahore 54600, Pakistan
| | - Zubia Rashid
- Pure Health Laboratory, Mafraq Hospital, Abu Dhabi 1227788, United Arab Emirates
| | - Ashaq Ali
- State Key Laboratory of Virology, Center for Biosafety MegaScience, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Afsheen Arif
- Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi 75270, Pakistan
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Suad University, Riyadh 11451, Saudi Arabia
| | - Mona S AlTami
- Biology Department, College of Science, Qassim University, Burydah 52571, Saudi Arabia
| | - Muhammad Zubair Yousaf
- KAM School of Life Sciences, Forman Christian College University, Ferozpur Road, Lahore 54600, Pakistan
| |
Collapse
|
33
|
Needs SH, Pivetal J, Hayward J, Kidd SP, Lam H, Diep T, Gill K, Woodward M, Reis NM, Edwards AD. Moving microcapillary antibiotic susceptibility testing (mcAST) towards the clinic: unravelling kinetics of detection of uropathogenic E. coli, mass-manufacturing and usability for detection of urinary tract infections in human urine. SENSORS & DIAGNOSTICS 2023; 2:736-750. [PMID: 37216011 PMCID: PMC10197089 DOI: 10.1039/d2sd00138a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 04/20/2023] [Indexed: 05/24/2023]
Abstract
Innovation in infection based point-of-care (PoC) diagnostics is vital to avoid unnecessary use of antibiotics and the development of antimicrobial resistance. Several groups including our research team have in recent years successfully miniaturised phenotypic antibiotic susceptibility tests (AST) of isolated bacterial strains, providing validation that miniaturised AST can match conventional microbiological methods. Some studies have also shown the feasibility of direct testing (without isolation or purification), specifically for urinary tract infections, paving the way for direct microfluidic AST systems at PoC. As rate of bacteria growth is intrinsically linked to the temperature of incubation, transferring miniaturised AST nearer the patient requires building new capabilities in terms of temperature control at PoC, furthermore widespread clinical use will require mass-manufacturing of microfluidic test strips and direct testing of urine samples. This study shows for the first-time application of microcapillary antibiotic susceptibility testing (mcAST) directly from clinical samples, using minimal equipment and simple liquid handling, and with kinetics of growth recorded using a smartphone camera. A complete PoC-mcAST system was presented and tested using 12 clinical samples sent to a clinical laboratory for microbiological analysis. The test showed 100% accuracy for determining bacteria in urine above the clinical threshold (5 out of 12 positive) and achieved 95% categorical agreement for 5 positive urines tested with 4 antibiotics (nitrofurantoin, ciprofloxacin, trimethoprim and cephalexin) within 6 h compared to the reference standard overnight AST method. A kinetic model is presented for metabolization of resazurin, demonstrating kinetics of degradation of resazurin in microcapillaries follow those observed for a microtiter plate, with time for AST dependent on the initial CFU ml-1 of uropathogenic bacteria in the urine sample. In addition, we show for the first time that use of air-drying for mass-manufacturing and deposition of AST reagents within the inner surface of mcAST strips matches results obtained with standard AST methods. These results take mcAST a step closer to clinical application, for example as PoC support for antibiotic prescription decisions within a day.
Collapse
Affiliation(s)
- Sarah H Needs
- Reading School of Pharmacy, University of Reading Whiteknights Campus Reading RG6 6AD UK +44(0)7906014116 +44(0)118 378 4253
| | - Jeremy Pivetal
- Reading School of Pharmacy, University of Reading Whiteknights Campus Reading RG6 6AD UK +44(0)7906014116 +44(0)118 378 4253
| | - Jessica Hayward
- Reading School of Pharmacy, University of Reading Whiteknights Campus Reading RG6 6AD UK +44(0)7906014116 +44(0)118 378 4253
| | - Stephen P Kidd
- Hampshire Hospitals NHS Foundation Trust Basingstoke and North Hampshire Hospital Basingstoke RG24 9NA UK
| | - HoYin Lam
- Hampshire Hospitals NHS Foundation Trust Basingstoke and North Hampshire Hospital Basingstoke RG24 9NA UK
| | - Tai Diep
- Reading School of Pharmacy, University of Reading Whiteknights Campus Reading RG6 6AD UK +44(0)7906014116 +44(0)118 378 4253
| | - Kiran Gill
- Reading School of Pharmacy, University of Reading Whiteknights Campus Reading RG6 6AD UK +44(0)7906014116 +44(0)118 378 4253
| | - Martin Woodward
- Department of Food and Nutrition Sciences, University of Reading Whiteknights Campus Reading RG6 6DX UK
| | - Nuno M Reis
- Department of Chemical Engineering and Centre for Biosensors, Biodevices and Bioelectronics (C3Bio), University of Bath Claverton Down Bath BA2 7AY UK +44(0)1225 383 369
- Capillary Film Technology (CFT) Daux Road Billingshurst RH14 9SJ UK
| | - Alexander D Edwards
- Reading School of Pharmacy, University of Reading Whiteknights Campus Reading RG6 6AD UK +44(0)7906014116 +44(0)118 378 4253
- Capillary Film Technology (CFT) Daux Road Billingshurst RH14 9SJ UK
| |
Collapse
|
34
|
Wu W, Cai G, Liu Y, Suo Y, Zhang B, Jin W, Yu Y, Mu Y. Direct single-cell antimicrobial susceptibility testing of Escherichia coli in urine using a ready-to-use 3D microwell array chip. LAB ON A CHIP 2023; 23:2399-2410. [PMID: 36806255 DOI: 10.1039/d2lc01095j] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Empirical antibiotic therapies are prescribed for treating uncomplicated urinary tract infections (UTIs) due to the long turnaround time of conventional antimicrobial susceptibility testing (AST), leading to the prevalence of multi-drug resistant pathogens. We present a ready-to-use 3D microwell array chip to directly conduct comprehensive AST of pathogenic agents in urine at the single-cell level. The developed device features a highly integrated 3D microwell array, offering a dynamic range from 102 to 107 CFU mL-1, and a capillary valve-based flow distributor for flow equidistribution in dispensing channels and uniform sample distribution. The chip with pre-loaded reagents and negative pressure inside only requires the user to initiate AST by loading samples (∼3 s) and can work independently. We demonstrate an accessible sample-to-result workflow, including syringe filter-based bacteria separation and rapid single-cell AST on chip, which enables us to bypass the time-consuming bacteria isolation and pre-culture, speeding up the AST in ∼3 h from 2 days of conventional methods. Moreover, the bacterial concentration and AST with minimum inhibitory concentrations can be assessed simultaneously to provide comprehensive information on infections. With further development for multiple antibiotic conditions, the Dsc-AST assay could contribute to timely prescription of targeted drugs for better patient outcomes and mitigation of the threat of drug-resistant bacteria.
Collapse
Affiliation(s)
- Wenshuai Wu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China.
| | - Gaozhe Cai
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Yang Liu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 102401, China
| | - Yuanjie Suo
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China.
| | - Boran Zhang
- Department of Hydraulic Engineering, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
| | - Wei Jin
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China.
- Huzhou Institute of Zhejiang University, Huzhou 313002, China
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Ying Mu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
35
|
Yi Q, Cui J, Xiao M, Tang MZ, Zhang HC, Zhang G, Yang WH, Xu YC. Rapid Phenotypic Antimicrobial Susceptibility Testing Using a Coulter Counter and Proliferation Rate Discrepancy. ACS OMEGA 2023; 8:16298-16305. [PMID: 37179622 PMCID: PMC10173340 DOI: 10.1021/acsomega.3c00947] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/07/2023] [Indexed: 05/15/2023]
Abstract
The rapid determination of antimicrobial susceptibility and evidence-based antimicrobial prescription is necessary to combat widespread antimicrobial resistance and promote effectively treatment for bacterial infections. This study developed a rapid phenotypic antimicrobial susceptibility determination method competent for seamless clinical implementation. A laboratory-friendly Coulter counter-based antimicrobial susceptibility testing (CAST) was developed and integrated with bacterial incubation, population growth monitoring, and result analysis to quantitatively detect differences in bacterial growth between resistant and susceptible strains following a 2 h exposure to antimicrobial agents. The distinct proliferation rates of the different strains enabled the rapid determination of their antimicrobial susceptibility phenotypes. We evaluated the performance efficacy of CAST for 74 clinically isolated Enterobacteriaceae subjected to 15 antimicrobials. The results were consistent with those obtained via the 24 h broth microdilution method, showing 90.18% absolute categorical agreement.
Collapse
Affiliation(s)
- Qiaolian Yi
- Department
of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union
Medical College, Beijing 100730, China
- Beijing
Key Laboratory for Mechanisms Research and Precision Diagnosis of
Invasive Fungal Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union
Medical College, Beijing 100730, China
| | - Jing Cui
- Scenker
Biological Technology Co., Ltd, Liaocheng, Shandong 252200, China
| | - Meng Xiao
- Department
of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union
Medical College, Beijing 100730, China
- Beijing
Key Laboratory for Mechanisms Research and Precision Diagnosis of
Invasive Fungal Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union
Medical College, Beijing 100730, China
| | - Ming-Zhong Tang
- Scenker
Biological Technology Co., Ltd, Liaocheng, Shandong 252200, China
| | - Hui-Cui Zhang
- Scenker
Biological Technology Co., Ltd, Liaocheng, Shandong 252200, China
| | - Ge Zhang
- Department
of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union
Medical College, Beijing 100730, China
- Beijing
Key Laboratory for Mechanisms Research and Precision Diagnosis of
Invasive Fungal Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union
Medical College, Beijing 100730, China
| | - Wen-Hang Yang
- Department
of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union
Medical College, Beijing 100730, China
- Beijing
Key Laboratory for Mechanisms Research and Precision Diagnosis of
Invasive Fungal Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union
Medical College, Beijing 100730, China
| | - Ying-Chun Xu
- Department
of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union
Medical College, Beijing 100730, China
- Beijing
Key Laboratory for Mechanisms Research and Precision Diagnosis of
Invasive Fungal Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union
Medical College, Beijing 100730, China
- State
Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical
College Hospital, Chinese Academy of Medical
Science and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
36
|
Rong N, Chen K, Shao J, Ouyang Q, Luo C. A 3D Scalable Chamber-Array Chip for Digital LAMP. Anal Chem 2023; 95:7830-7838. [PMID: 37115526 DOI: 10.1021/acs.analchem.2c05288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
As an absolute quantification method at the single-molecule level, digital PCR (dPCR) offers the highest accuracy. In this work, we developed a 3D scalable chamber-array chip that multiplied the number of partitions by stacking chamber-array layers and realized digital loop-mediated isothermal amplification to quantify DNA molecules. It greatly increases the number of partitions to improve the performance of dPCR without increasing the chip size, the operation workflow complicity, and operation time. For the three-chamber-array-layer chip which contains 200,000 reactors of a 0.125 nL volume, it has been proved that the reagent filling and partition were finished within 3 min, and the whole detection could be finished within 1 h. The method demonstrated that it could be scalable to a six-chamber-array layer, which contains 400,000 reactors without increasing the size of the chip and the complication of filling/partition workflow but only takes an additional hour for scanning. Due to its potential for high throughput, low cost, and simple operation, our device may significantly expand the clinical application range of dPCR.
Collapse
Affiliation(s)
- Nan Rong
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Kaiyue Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Jiqi Shao
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Qi Ouyang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Chunxiong Luo
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
37
|
Li H, Hsieh K, Wong PK, Mach KE, Liao JC, Wang TH. Single-cell pathogen diagnostics for combating antibiotic resistance. NATURE REVIEWS. METHODS PRIMERS 2023; 3:6. [PMID: 39917628 PMCID: PMC11800871 DOI: 10.1038/s43586-022-00190-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 02/09/2025]
Abstract
Bacterial infections and antimicrobial resistance are a major cause for morbidity and mortality worldwide. Antimicrobial resistance often arises from antimicrobial misuse, where physicians empirically treat suspected bacterial infections with broad-spectrum antibiotics until standard culture-based diagnostic tests can be completed. There has been a tremendous effort to develop rapid diagnostics in support of the transition from empirical treatment of bacterial infections towards a more precise and personalized approach. Single-cell pathogen diagnostics hold particular promise, enabling unprecedented quantitative precision and rapid turnaround times. This Primer provides a guide for assessing, designing, implementing and applying single-cell pathogen diagnostics. First, single-cell pathogen diagnostic platforms are introduced based on three essential capabilities: cell isolation, detection assay and output measurement. Representative results, common analysis methods and key applications are highlighted, with an emphasis on initial screening of bacterial infection, bacterial species identification and antimicrobial susceptibility testing. Finally, the limitations of existing platforms are discussed, with perspectives offered and an outlook towards clinical deployment. This Primer hopes to inspire and propel new platforms that can realize the vision of precise and personalized bacterial infection treatments in the near future.
Collapse
Affiliation(s)
- Hui Li
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Present address: School of Electrical, Computer and Biomedical Engineering, Southern Illinois University, Carbondale, IL, USA
- These authors contributed equally: Hui Li, Kuangwen Hsieh
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
- These authors contributed equally: Hui Li, Kuangwen Hsieh
| | - Pak Kin Wong
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Kathleen E. Mach
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph C. Liao
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | - Tza-Huei Wang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
38
|
Guo Z, Bai Y, Zhang M, Lan L, Cheng JX. High-Throughput Antimicrobial Susceptibility Testing of Escherichia coli by Wide-Field Mid-Infrared Photothermal Imaging of Protein Synthesis. Anal Chem 2023; 95:2238-2244. [PMID: 36651850 DOI: 10.1021/acs.analchem.2c03683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Antimicrobial resistance poses great threats to global health and economics. Current gold-standard antimicrobial susceptibility testing (AST) requires extensive culture time (36-72 h) to determine susceptibility. There is an urgent need for rapid AST methods to slow down antimicrobial resistance. Here, we present a rapid AST method based on wide-field mid-infrared photothermal imaging of protein synthesis from 13C-glucose in Escherichia coli. Our wide-field approach achieved metabolic imaging for hundreds of bacteria at the single-cell resolution within seconds. The perturbed microbial protein synthesis can be probed within 1 h after antibiotic treatment in E. coli cells. The susceptibility of antibiotics with various mechanisms of action has been probed through monitoring protein synthesis, which promises great potential of the proposed platform toward clinical translation.
Collapse
Affiliation(s)
- Zhongyue Guo
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States.,Photonics Center, Boston University, Boston, Massachusetts 02215, United States
| | - Yeran Bai
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States.,Photonics Center, Boston University, Boston, Massachusetts 02215, United States
| | - Meng Zhang
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States.,Photonics Center, Boston University, Boston, Massachusetts 02215, United States
| | - Lu Lan
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States.,Photonics Center, Boston University, Boston, Massachusetts 02215, United States
| | - Ji-Xin Cheng
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States.,Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States.,Photonics Center, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
39
|
Wang Y, Cai D, Ouyang X, He H, Liu Y, Zou J, Chen Z, Wu B, Wu H, Liu D. Cascade filtration and droplet digital detection integrated microfluidic assay enables isolating culture-free phenotypic identification of carbapenem-resistant organisms. Biosens Bioelectron 2023; 220:114863. [DOI: 10.1016/j.bios.2022.114863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022]
|
40
|
Sieskind R, Cortajarena AL, Manteca A. Cell-Free Production Systems in Droplet Microfluidics. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 185:91-127. [PMID: 37306704 DOI: 10.1007/10_2023_224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The use of cell-free production systems in droplet microfluidic devices has gained significant interest during the last decade. Encapsulating DNA replication, RNA transcription, and protein expression systems in water-in-oil drops allows for the interrogation of unique molecules and high-throughput screening of libraries of industrial and biomedical interest. Furthermore, the use of such systems in closed compartments enables the evaluation of various properties of novel synthetic or minimal cells. In this chapter, we review the latest advances in the usage of the cell-free macromolecule production toolbox in droplets, with a special emphasis on new on-chip technologies for the amplification, transcription, expression, screening, and directed evolution of biomolecules.
Collapse
Affiliation(s)
- Rémi Sieskind
- Institut Pasteur, Université de Paris, Unité d'Architecture et de Dynamique des Macromolécules Biologiques, Paris, France
| | - Aitziber L Cortajarena
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Aitor Manteca
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain.
| |
Collapse
|
41
|
Wu W, Zhao Q, Cai G, Zhang B, Suo Y, Liu Y, Jin W, Mu Y. All-In-One Escherichia coli Viability Assay for Multi-dimensional Detection of Uncomplicated Urinary Tract Infections. Anal Chem 2022; 94:17853-17860. [PMID: 36524619 DOI: 10.1021/acs.analchem.2c03604] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The urinary tract infections by antibiotic-resistant bacteria have been a serious public health problem and increase the healthcare costs. The conventional technologies of diagnosis and antimicrobial susceptibility testing (AST) relying on multiple culture-based assays are time-consuming and labor-intensive and thus compel the empirical antimicrobial therapies to be prescribed, fueling the prevalence of antimicrobial resistance. Herein, we propose an all-in-one Escherichia coli viability assay in an enclosed 3D microwell array chip, termed digital β-d-glucuronidase (GUS)-AST assay. It employs GUS, a specific metabolism-related enzyme, to convert the presence of E. coli into bright fluorescence. The random distribution of single bacteria in microwell array enables to quantify the E. coli concentrations by counting the positive microwells. We incorporate the most probable number with digital quantification to lower the limit of detection and expand the dynamic range to 7 orders. The digital GUS-AST assay is able to indicate the potency of antibiotics and determine the minimum inhibitory concentrations. A streamlined procedure of urine removal, bacterial separation, and digital GUS-AST is established to perform the direct analysis of bacteria population in urine. The sample-to-result workflow can be finished in 4.5 h with a limit of detection of 39 CFU/mL. With further development for additional pathogens and multiple antibiotic conditions, the digital GUS-AST assay could help physicians to prescribe timely targeted therapies for better patient outcomes and the minimum emergence of resistant bacteria.
Collapse
Affiliation(s)
- Wenshuai Wu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China
| | - Qianbin Zhao
- Center of Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, Hebei University of Technology, Tianjin 300131, China
| | - Gaozhe Cai
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Boran Zhang
- Department of Hydraulic Engineering, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
| | - Yuanjie Suo
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China
| | - Yang Liu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 102401, China
| | - Wei Jin
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China.,Huzhou Institute of Zhejiang University, Huzhou 313002, China
| | - Ying Mu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
42
|
Shirshikov FV, Bespyatykh JA. Loop-Mediated Isothermal Amplification: From Theory to Practice. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022; 48:1159-1174. [PMID: 36590469 PMCID: PMC9788664 DOI: 10.1134/s106816202206022x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/01/2022] [Accepted: 06/17/2022] [Indexed: 12/24/2022]
Abstract
Increasing the accuracy of pathogen identification and reducing the duration of analysis remain relevant for modern molecular diagnostics up to this day. In laboratory and clinical practice, detection of pathogens mostly relies on methods of nucleic acid amplification, among which the polymerase chain reaction (PCR) is considered the "gold standard." Nevertheless, in some cases, isothermal amplification methods act as an alternative to PCR diagnostics. Upon more than thirty years of the development of isothermal DNA synthesis, the appearance of loop-mediated isothermal amplification (LAMP) has enabled new directions of in-field diagnostics of bacterial and viral infections. This review examines the key characteristics of the LAMP method and corresponding features in practice. We discuss the structure of LAMP amplicons with single-stranded loops, which have the sites for primer annealing under isothermal conditions. The latest achievements in the modification of the LAMP method are analyzed, which allow considering it as a unique platform for creating the next-generation diagnostic assays.
Collapse
Affiliation(s)
- F. V. Shirshikov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - J. A. Bespyatykh
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| |
Collapse
|
43
|
Wang J, Hui P, Zhang X, Cai X, Lian J, Liu X, Lu X, Chen W. Rapid Antimicrobial Susceptibility Testing Based on a Bio-Inspired Chemiluminescence Sensor. Anal Chem 2022; 94:17240-17247. [PMID: 36459659 DOI: 10.1021/acs.analchem.2c04020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Indiscriminate usage of antibiotics has caused accelerating growth and global expansion of antimicrobial resistance. Therefore, rapid antimicrobial susceptibility testing (AST) for guiding antibiotic prescription and preventing the spread of antimicrobial resistance is in urgent need. Phenotypic AST is the clinical gold standard method; however, no phenotypic AST has realized a colony-to-answer at about 1 h by utilizing the chemiluminescence sensor to detect the enzyme expressed by bacteria. Inspired by the bubble formation in the mixture of Escherichia coli and H2O2, we demonstrate a strategy based on the chemiluminescence sensor for rapid AST. Compared with the gold standard methods, the values of AUC are 0.960 for E. coli and 0.950 for Staphylococcus aureus, close to 1, indicating superb diagnostic performance as an AST method. The whole process from colonies to answer is 55 min for E. coli and 70 min for S. aureus. The chemiluminescence readout is based on the common equipment in the laboratory of the hospital, which is conducive to follow-up clinical promotion. Our sensor promises great potential in rapid AST, facilitating antimicrobial stewardship.
Collapse
Affiliation(s)
- Jidong Wang
- Medical Research Center, Huazhong University of Science and Technology Union Shenzhen Hospital, the 6th Affiliated Hospital, Shenzhen University Health Science Center, Shenzhen 518052, P. R. China
| | - Ping Hui
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
| | - Xinyu Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
| | - Xiaoqing Cai
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
| | - Jie Lian
- Medical Research Center, Huazhong University of Science and Technology Union Shenzhen Hospital, the 6th Affiliated Hospital, Shenzhen University Health Science Center, Shenzhen 518052, P. R. China
| | - Xiaolei Liu
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
| | - Xi Lu
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
| | - Wenwen Chen
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
| |
Collapse
|
44
|
Huang R, Cai X, Du J, Lian J, Hui P, Gu M, Li F, Wang J, Chen W. Bioinspired Plasmonic Nanosensor for on-Site Antimicrobial Susceptibility Testing in Urine Samples. ACS NANO 2022; 16:19229-19239. [PMID: 36282067 DOI: 10.1021/acsnano.2c08532] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Delayed use of appropriate antibiotics for superbugs, particularly for extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pn), has caused extensive morbidity and mortality worldwide. Therefore, rapid and on-site antimicrobial susceptibility testing (AST) is urgently required. Unfortunately, currently, no phenotypic AST can realize a sample-to-answer result within 2 h directly from a clinical sample and without using laboratory equipment or customized devices. Inspired by observing that E. coli and K. pn can rapidly catalyze H2O2, we developed a plasmonic nanosensor that responds to the proliferation of bacteria for realizing rapid AST. The results can be determined with the naked eye, digitized using a smartphone, and validated using ultraviolet-visible spectrometry. Our assay achieved superb area under the curves of 0.9752 and 1 in a receiver operating characteristic analysis directly obtained from uncultured clinical urine samples infected by E. coli and K. pn, respectively. The entire process from sample collection to analysis takes 100 min for E. coli and 85 min for K. pn detection. Our platform provides a practical approach for performing on-site AST in clinics to improve the survival of patients. It releases the burden of superbugs and avoids the abuse of antibiotics.
Collapse
Affiliation(s)
- Ruijia Huang
- Medical Research Center, Huazhong University of Science and Technology Union Shenzhen Hospital, the Sixth Affiliated Hospital, Shenzhen University Health Science Center, Shenzhen 518052, PR China
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, PR China
| | - Xiaoqing Cai
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, PR China
| | - Jihui Du
- Medical Research Center, Huazhong University of Science and Technology Union Shenzhen Hospital, the Sixth Affiliated Hospital, Shenzhen University Health Science Center, Shenzhen 518052, PR China
| | - Jie Lian
- Medical Research Center, Huazhong University of Science and Technology Union Shenzhen Hospital, the Sixth Affiliated Hospital, Shenzhen University Health Science Center, Shenzhen 518052, PR China
| | - Ping Hui
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, PR China
| | - Minxuan Gu
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, PR China
| | - Feng Li
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, PR China
| | - Jidong Wang
- Medical Research Center, Huazhong University of Science and Technology Union Shenzhen Hospital, the Sixth Affiliated Hospital, Shenzhen University Health Science Center, Shenzhen 518052, PR China
| | - Wenwen Chen
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, PR China
| |
Collapse
|
45
|
Anyaduba TD, Otoo JA, Schlappi TS. Picoliter Droplet Generation and Dense Bead-in-Droplet Encapsulation via Microfluidic Devices Fabricated via 3D Printed Molds. MICROMACHINES 2022; 13:1946. [PMID: 36363966 PMCID: PMC9695966 DOI: 10.3390/mi13111946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Picoliter-scale droplets have many applications in chemistry and biology, such as biomolecule synthesis, drug discovery, nucleic acid quantification, and single cell analysis. However, due to the complicated processes used to fabricate microfluidic channels, most picoliter (pL) droplet generation methods are limited to research in laboratories with cleanroom facilities and complex instrumentation. The purpose of this work is to investigate a method that uses 3D printing to fabricate microfluidic devices that can generate droplets with sizes <100 pL and encapsulate single dense beads mechanistically. Our device generated monodisperse droplets as small as ~48 pL and we demonstrated the usefulness of this droplet generation technique in biomolecule analysis by detecting Lactobacillus acidophillus 16s rRNA via digital loop-mediated isothermal amplification (dLAMP). We also designed a mixer that can be integrated into a syringe to overcome dense bead sedimentation and found that the bead-in-droplet (BiD) emulsions created from our device had <2% of the droplets populated with more than 1 bead. This study will enable researchers to create devices that generate pL-scale droplets and encapsulate dense beads with inexpensive and simple instrumentation (3D printer and syringe pump). The rapid prototyping and integration ability of this module with other components or processes can accelerate the development of point-of-care microfluidic devices that use droplet-bead emulsions to analyze biological or chemical samples with high throughput and precision.
Collapse
Affiliation(s)
- Tochukwu D. Anyaduba
- Keck Graduate Institute, Riggs School of Applied Life Sciences, Claremont, CA 91711, USA
- Abbott Rapid Diagnostics, 4545 Towne Center Ct, La Jolla, San Diego, CA 92121, USA
| | - Jonas A. Otoo
- Keck Graduate Institute, Riggs School of Applied Life Sciences, Claremont, CA 91711, USA
| | - Travis S. Schlappi
- Keck Graduate Institute, Riggs School of Applied Life Sciences, Claremont, CA 91711, USA
| |
Collapse
|
46
|
Rapid antibiotic susceptibility testing and species identification for mixed samples. Nat Commun 2022; 13:6215. [PMID: 36266330 PMCID: PMC9584937 DOI: 10.1038/s41467-022-33659-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 09/28/2022] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial resistance is an increasing problem on a global scale. Rapid antibiotic susceptibility testing (AST) is urgently needed in the clinic to enable personalized prescriptions in high-resistance environments and to limit the use of broad-spectrum drugs. Current rapid phenotypic AST methods do not include species identification (ID), leaving time-consuming plating or culturing as the only available option when ID is needed to make the sensitivity call. Here we describe a method to perform phenotypic AST at the single-cell level in a microfluidic chip that allows subsequent genotyping by in situ FISH. By stratifying the phenotypic AST response on the species of individual cells, it is possible to determine the susceptibility profile for each species in a mixed sample in 2 h. In this proof-of-principle study, we demonstrate the operation with four antibiotics and mixed samples with combinations of seven species.
Collapse
|
47
|
Li X, Liu X, Yu Z, Luo Y, Hu Q, Xu Z, Dai J, Wu N, Shen F. Combinatorial screening SlipChip for rapid phenotypic antimicrobial susceptibility testing. LAB ON A CHIP 2022; 22:3952-3960. [PMID: 36106408 DOI: 10.1039/d2lc00661h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Antimicrobial resistance (AMR) by bacteria is a serious global threat, and a rapid, high-throughput, and easy-to-use phenotypic antimicrobial susceptibility testing (AST) method is essential for making timely treatment decisions and controlling the spread of antibiotic resistant micro-organisms. Traditional culture-based methods are time-consuming, and their capability to screen against a large number of different conditions is limited; meanwhile genotypic based methods, including sequencing and PCR based methods, are constrained by rarely identified resistance genes and complicated resistance mechanisms. Here, a combinatorial-screening SlipChip (cs-SlipChip) containing 192 nanoliter-sized compartments is developed which can perform high-throughput phenotypic AST within three hours by monitoring the bacterial growth within nanoliter-sized droplets with bright-field imaging and analyzing the changes in bacterial number and morphology. The minimum inhibitory concentration (MIC) of Escherichia coli ATCC 25922 against four antibiotics (ampicillin, ciprofloxacin, ceftazidime, and nitrofurantoin) can be measured in one chip within 3 hours. Furthermore, five antibiotic-resistant E. coli strains were isolated from patients diagnosed with urinary tract infections (UTIs), and an individual isolate was tested using four antibiotics and eleven antibiotic combinations simultaneously with three different concentrations of each. The results from the cs-SlipChip agree with those of a VITEK 2 automated system. This cs-SlipChip provides a practical high-throughput and rapid phenotypic method for AST and can also be used to screen different chemicals and antibiotic combinations for the treatment of multiple antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Xiang Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, China.
| | - Xu Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, China.
| | - Ziqing Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, China.
| | - Yang Luo
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, China.
| | - Qixin Hu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, China.
| | - Zhenye Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, China.
| | - Jia Dai
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| | - Nannan Wu
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
- CreatiPhage Biotechnology Co., Ltd, Shanghai, China
| | - Feng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, China.
| |
Collapse
|
48
|
Aptamer-based colorimetric detection of methicillin-resistant Staphylococcus aureus by using a CRISPR/Cas12a system and recombinase polymerase amplification. Anal Chim Acta 2022; 1230:340357. [DOI: 10.1016/j.aca.2022.340357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022]
|
49
|
Postek W, Pacocha N, Garstecki P. Microfluidics for antibiotic susceptibility testing. LAB ON A CHIP 2022; 22:3637-3662. [PMID: 36069631 DOI: 10.1039/d2lc00394e] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The rise of antibiotic resistance is a threat to global health. Rapid and comprehensive analysis of infectious strains is critical to reducing the global use of antibiotics, as informed antibiotic use could slow down the emergence of resistant strains worldwide. Multiple platforms for antibiotic susceptibility testing (AST) have been developed with the use of microfluidic solutions. Here we describe microfluidic systems that have been proposed to aid AST. We identify the key contributions in overcoming outstanding challenges associated with the required degree of multiplexing, reduction of detection time, scalability, ease of use, and capacity for commercialization. We introduce the reader to microfluidics in general, and we analyze the challenges and opportunities related to the field of microfluidic AST.
Collapse
Affiliation(s)
- Witold Postek
- Institute of Physical Chemistry of the Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa, Poland.
- Broad Institute of MIT and Harvard, Merkin Building, 415 Main St, Cambridge, MA 02142, USA.
| | - Natalia Pacocha
- Institute of Physical Chemistry of the Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa, Poland.
| | - Piotr Garstecki
- Institute of Physical Chemistry of the Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa, Poland.
| |
Collapse
|
50
|
Current Trends and Challenges in Point-of-care Urinalysis of Biomarkers in Trace Amounts. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|