1
|
Duan H, Tian B, Levine DT, Kaul H. Investigating resilience in the childcare context through the agent-based paradigm. CHILD ABUSE & NEGLECT 2025; 163:107402. [PMID: 40090102 DOI: 10.1016/j.chiabu.2025.107402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/18/2025]
Abstract
Resilience in child protection professional teams (CPP) involves complex interactions at the individual, team and organizational levels. Understanding these multiscale, multimodal dynamics is critical to improving the resilience of CPP teams under enormous stress due to factors such as high work demands, pandemics, and geopolitical events, etc. While resilience has been considered a systemic phenomenon, the dynamic interactions between the individual, team, and organization; how they inform resilience; and how they adapt in the face of adversity remains to be adequately formalized. This paper explores the study of the complex dynamics of team resilience in the context of CPP and how agent-based modelling (ABM) can be used to systematically investigate resilience. Specifically, we explore the attributes of ABM that make it ideal to capturing resilience, outline the steps the uninitiated can take to adopt ABM, and showcase investigations that have used ABM in the childcare and resilience context. This review highlights the potential of ABM in modelling the multifaceted nature of team resilience, predicting outcomes and developing strategies that are critical to long-term success and well-being in dynamic and challenging environments.
Collapse
Affiliation(s)
- Hedan Duan
- School of Criminology, Sociology and Social Policy, University of Leicester, Leicester LE1 7RH, UK
| | - Bo Tian
- School of Engineering, University of Leicester, Leicester LE1 7RH, UK
| | - Diane T Levine
- School of Criminology, Sociology and Social Policy, University of Leicester, Leicester LE1 7RH, UK
| | - Himanshu Kaul
- School of Engineering, University of Leicester, Leicester LE1 7RH, UK; Department of Respiratory Sciences, University of Leicester, Leicester LE1 7RH, UK.
| |
Collapse
|
2
|
Zhong B, Du J, Liu F, Sun S. The Role of Yes-Associated Protein in Inflammatory Diseases and Cancer. MedComm (Beijing) 2025; 6:e70128. [PMID: 40066231 PMCID: PMC11892025 DOI: 10.1002/mco2.70128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 02/02/2025] [Accepted: 02/11/2025] [Indexed: 03/17/2025] Open
Abstract
Yes-associated protein (YAP) plays a central role in the Hippo pathway, primarily governing cell proliferation, differentiation, and apoptosis. Its significance extends to tumorigenesis and inflammatory conditions, impacting disease initiation and progression. Given the increasing relevance of YAP in inflammatory disorders and cancer, this study aims to elucidate its pathological regulatory functions in these contexts. Specifically, we aim to investigate the involvement and molecular mechanisms of YAP in various inflammatory diseases and cancers. We particularly focus on how YAP activation, whether through Hippo-dependent or independent pathways, triggers the release of inflammation and inflammatory mediators in respiratory, cardiovascular, and digestive inflammatory conditions. In cancer, YAP not only promotes tumor cell proliferation and differentiation but also modulates the tumor immune microenvironment, thereby fostering tumor metastasis and progression. Additionally, we provide an overview of current YAP-targeted therapies. By emphasizing YAP's role in inflammatory diseases and cancer, this study aims to enhance our understanding of the protein's pivotal involvement in disease processes, elucidate the intricate pathological mechanisms of related diseases, and contribute to future drug development strategies targeting YAP.
Collapse
Affiliation(s)
- Bing Zhong
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jintao Du
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Feng Liu
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Silu Sun
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesChinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and ManagementWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| |
Collapse
|
3
|
Tiotiu A, Steiropoulos P, Novakova S, Nedeva D, Novakova P, Chong-Neto H, Fogelbach GG, Kowal K. Airway Remodeling in Asthma: Mechanisms, Diagnosis, Treatment, and Future Directions. Arch Bronconeumol 2025; 61:31-40. [PMID: 39368875 DOI: 10.1016/j.arbres.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/27/2024] [Accepted: 09/20/2024] [Indexed: 10/07/2024]
Abstract
Airway remodeling (AR) with chronic inflammation, are key features in asthma pathogenesis. AR characterized by structural changes in the bronchial wall is associated with a specific asthma phenotype with poor clinical outcomes, impaired lung function and reduced treatment response. Most studies focus on the role of inflammation, while understanding the mechanisms driving AR is crucial for developing disease-modifying therapeutic strategies. This review paper summarizes current knowledge on the mechanisms underlying AR, diagnostic tools, and therapeutic approaches. Mechanisms explored include the role of the resident cells and the inflammatory cascade in AR. Diagnostic methods such as bronchial biopsy, lung function testing, imaging, and possible biomarkers are described. The effectiveness on AR of different treatments of asthma including corticosteroids, leukotriene modifiers, bronchodilators, macrolides, biologics, and bronchial thermoplasty is discussed, as well as other possible therapeutic options. AR poses a significant challenge in asthma management, contributing to disease severity and treatment resistance. Current therapeutic approaches target mostly airway inflammation rather than smooth muscle cell dysfunction and showed limited benefits on AR. Future research should focus more on investigating the mechanisms involved in AR to identify novel therapeutic targets and to develop new effective treatments able to prevent irreversible structural changes and improve long-term asthma outcomes.
Collapse
Affiliation(s)
- Angelica Tiotiu
- Department of Pulmonology, University Hospital Saint-Luc, Brussels, Belgium; Pole Pneumology, ENT, and Dermatology - LUNS, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium.
| | - Paschalis Steiropoulos
- Department of Pulmonology, Medical School, Democritus University of Thrace, University General Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Silviya Novakova
- Department of Allergology, University Hospital "Sv. Georgi" Plovdiv, Bulgaria
| | - Denislava Nedeva
- Clinic of Asthma and Allergology, UMBAL Alexandrovska, Medical University Sofia, Sofia, Bulgaria
| | - Plamena Novakova
- Department of Allergy, Medical University Sofia, Sofia, Bulgaria
| | - Herberto Chong-Neto
- Division of Allergy and Immunology, Complexo Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil
| | | | - Krzysztof Kowal
- Department of Experimental Allergology and Immunology and Department of Allergology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
4
|
Ullah MA, Rittchen S, Li J, Curren BF, Namubiru P, Ahmed T, Howard DR, Rahman MM, Sikder MAA, Rashid RB, Collinson N, Lor M, Smythe ML, Phipps S. Dual therapy with corticosteroid ablates the beneficial effect of DP2 antagonism in chronic experimental asthma. Nat Commun 2024; 15:10253. [PMID: 39592603 PMCID: PMC11599388 DOI: 10.1038/s41467-024-54670-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Prostaglandin D2 (PGD2) signals via the DP1 and DP2 receptors. In Phase II trials, DP2 antagonism decreased airway inflammation and airway smooth muscle (ASM) area in moderate-to-severe asthma patients. However, in Phase III, DP2 antagonism failed to lower the rate of exacerbations, and DP2 as a target was shelved. Here, using a preclinical model of chronic experimental asthma, we demonstrate that rhinovirus-induced exacerbations increase PGD2 release, mucus production, transforming growth factor (TGF)-β1 and type-2 inflammation. DP2 antagonism or DP1 agonism ablates these phenotypes, increases epithelial EGF expression and decreases ASM area via increased IFN-γ. In contrast, dual DP1-DP2 antagonism or dual corticosteroid/DP2 antagonism, which attenuates endogenous PGD2, prevented ASM resolution. We demonstrate that DP2 antagonism resolves ASM remodelling via PGD2/DP1-mediated upregulation of IFN-γ expression, and that dual DP2 antagonism/corticosteroid therapy, as often occurred in the human trials, impairs the efficacy of DP2 antagonism by suppressing endogenous PGD2 and IFN-γ production.
Collapse
Affiliation(s)
- Md Ashik Ullah
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Sonja Rittchen
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, 8010, Austria
| | - Jia Li
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China
| | - Bodie F Curren
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Patricia Namubiru
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Tufael Ahmed
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Daniel R Howard
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Muhammed Mahfuzur Rahman
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Md Al Amin Sikder
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ridwan B Rashid
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Natasha Collinson
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Mary Lor
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Mark L Smythe
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Simon Phipps
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia.
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia.
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia.
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
| |
Collapse
|
5
|
Beaufils F, Berger P. Commentary: Effect of curcumin nanoparticles on proliferation and migration of mouse airway smooth muscle cells and airway inflammatory infiltration. Front Pharmacol 2024; 15:1432397. [PMID: 39114346 PMCID: PMC11303164 DOI: 10.3389/fphar.2024.1432397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Affiliation(s)
- Fabien Beaufils
- Centre de Recherche Cardio-thoracique de Bordeaux, INSERM U1045, Bordeaux Imaging Center, University Bordeaux, Pessac, France
- CHU Bordeaux, Département de Pédiatrie, CIC-P 1401, Service d’Anatomopathologie, Service d’Exploration Fonctionnelle Respiratoire, Bordeaux, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Centre d’Investigation Clinique (CIC-P 1401), Pessac, France
| | - Patrick Berger
- Centre de Recherche Cardio-thoracique de Bordeaux, INSERM U1045, Bordeaux Imaging Center, University Bordeaux, Pessac, France
- CHU Bordeaux, Département de Pédiatrie, CIC-P 1401, Service d’Anatomopathologie, Service d’Exploration Fonctionnelle Respiratoire, Bordeaux, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Centre d’Investigation Clinique (CIC-P 1401), Pessac, France
| |
Collapse
|
6
|
Bhattacharya S, Ristic N, Cohen AJ, Tsang D, Gwin M, Howell R, Young G, Jung E, Dela Cruz CS, Gautam S. A dual role for CRTH2 in acute lung injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2022.05.29.493897. [PMID: 35665001 PMCID: PMC9164436 DOI: 10.1101/2022.05.29.493897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening clinical condition defined by rapid-onset respiratory failure following acute lung injury (ALI). The high mortality rate and rising incidence of ARDS due to COVID-19 make it an important research priority. Here we sought to investigate the role of chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) in ARDS. CRTH2 is a G protein-coupled receptor best studied in the context of type 2 immunity, but it also exerts effects on neutrophilic inflammation. To evaluate its role in mouse models of ARDS, we first examined its expression pattern on murine neutrophils. We found it is expressed on neutrophils, but only after extravasation into the lung. Next, we showed that CRTH2 expression on extravasated lung neutrophils promotes cell survival, as genetic deletion of CRTH2 and pharmacologic inhibition of CRTH2 using fevipiprant both led to increased apoptosis in vitro. We then evaluated the role of CRTH2 in vivo using a murine model of LPS-induced ALI. In line with the pro-inflammatory effects of CRTH2 in vitro, we observed improvement of lung injury in CRTH2-deficient mice in terms of vascular leak, weight loss and survival after LPS administration. However, neutrophilic inflammation was elevated, not suppressed in the CRTH2 KO. This finding indicated a second mechanism offsetting the pro-survival effect of CRTH2 on neutrophils. Bulk RNAseq of lung tissue indicated impairments in type 2 immune signaling in the CRTH2 KO, and qPCR and ELISA confirmed downregulation of IL-4, which is known to suppress neutrophilic inflammation. Thus, CRTH2 may play a dual role in ALI, directly promoting neutrophil cell survival, but indirectly suppressing neutrophil effector function via IL-4.
Collapse
|
7
|
Ghonim MA, Boyd DF, Flerlage T, Thomas PG. Pulmonary inflammation and fibroblast immunoregulation: from bench to bedside. J Clin Invest 2023; 133:e170499. [PMID: 37655660 PMCID: PMC10471178 DOI: 10.1172/jci170499] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
In recent years, there has been an explosion of interest in how fibroblasts initiate, sustain, and resolve inflammation across disease states. Fibroblasts contain heterogeneous subsets with diverse functionality. The phenotypes of these populations vary depending on their spatial distribution within the tissue and the immunopathologic cues contributing to disease progression. In addition to their roles in structurally supporting organs and remodeling tissue, fibroblasts mediate critical interactions with diverse immune cells. These interactions have important implications for defining mechanisms of disease and identifying potential therapeutic targets. Fibroblasts in the respiratory tract, in particular, determine the severity and outcome of numerous acute and chronic lung diseases, including asthma, chronic obstructive pulmonary disease, acute respiratory distress syndrome, and idiopathic pulmonary fibrosis. Here, we review recent studies defining the spatiotemporal identity of the lung-derived fibroblasts and the mechanisms by which these subsets regulate immune responses to insult exposures and highlight past, current, and future therapeutic targets with relevance to fibroblast biology in the context of acute and chronic human respiratory diseases. This perspective highlights the importance of tissue context in defining fibroblast-immune crosstalk and paves the way for identifying therapeutic approaches to benefit patients with acute and chronic pulmonary disorders.
Collapse
Affiliation(s)
- Mohamed A. Ghonim
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al Azhar University, Cairo, Egypt
| | - David F. Boyd
- Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Tim Flerlage
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
8
|
Eyraud E, Maurat E, Sac-Epée JM, Henrot P, Zysman M, Esteves P, Trian T, Dupuy JW, Leipold A, Saliba AE, Begueret H, Girodet PO, Thumerel M, Hustache-Castaing R, Marthan R, Levet F, Vallois P, Contin-Bordes C, Berger P, Dupin I. Short-range interactions between fibrocytes and CD8 + T cells in COPD bronchial inflammatory response. eLife 2023; 12:RP85875. [PMID: 37494277 PMCID: PMC10371228 DOI: 10.7554/elife.85875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023] Open
Abstract
Bronchi of chronic obstructive pulmonary disease (COPD) are the site of extensive cell infiltration, allowing persistent contact between resident cells and immune cells. Tissue fibrocytes interaction with CD8+ T cells and its consequences were investigated using a combination of in situ, in vitro experiments and mathematical modeling. We show that fibrocytes and CD8+ T cells are found in the vicinity of distal airways and that potential interactions are more frequent in tissues from COPD patients compared to those of control subjects. Increased proximity and clusterization between CD8+ T cells and fibrocytes are associated with altered lung function. Tissular CD8+ T cells from COPD patients promote fibrocyte chemotaxis via the CXCL8-CXCR1/2 axis. Live imaging shows that CD8+ T cells establish short-term interactions with fibrocytes, that trigger CD8+ T cell proliferation in a CD54- and CD86-dependent manner, pro-inflammatory cytokines production, CD8+ T cell cytotoxic activity against bronchial epithelial cells and fibrocyte immunomodulatory properties. We defined a computational model describing these intercellular interactions and calibrated the parameters based on our experimental measurements. We show the model's ability to reproduce histological ex vivo characteristics, and observe an important contribution of fibrocyte-mediated CD8+ T cell proliferation in COPD development. Using the model to test therapeutic scenarios, we predict a recovery time of several years, and the failure of targeting chemotaxis or interacting processes. Altogether, our study reveals that local interactions between fibrocytes and CD8+ T cells could jeopardize the balance between protective immunity and chronic inflammation in the bronchi of COPD patients.
Collapse
Affiliation(s)
- Edmée Eyraud
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC1401, Proteomics Facility, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Pessac, France
| | - Elise Maurat
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC1401, Proteomics Facility, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Pessac, France
| | - Jean-Marc Sac-Epée
- Univ-Lorraine, Institut Elie Cartan de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Pauline Henrot
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC1401, Proteomics Facility, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Pessac, France
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Maeva Zysman
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC1401, Proteomics Facility, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Pessac, France
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Pauline Esteves
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC1401, Proteomics Facility, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Pessac, France
| | - Thomas Trian
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC1401, Proteomics Facility, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Pessac, France
| | - Jean-William Dupuy
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC1401, Proteomics Facility, Pessac, France
| | - Alexander Leipold
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Hugues Begueret
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC1401, Proteomics Facility, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Pessac, France
- CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Pessac, France
| | - Pierre-Olivier Girodet
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC1401, Proteomics Facility, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Pessac, France
- CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Pessac, France
| | - Matthieu Thumerel
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC1401, Proteomics Facility, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Pessac, France
- CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Pessac, France
| | - Romain Hustache-Castaing
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC1401, Proteomics Facility, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Pessac, France
- CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Pessac, France
| | - Roger Marthan
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC1401, Proteomics Facility, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Pessac, France
- CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Pessac, France
| | - Florian Levet
- Univ. Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, Bordeaux, France
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, Bordeaux, France
| | - Pierre Vallois
- Univ-Lorraine, Institut Elie Cartan de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Cécile Contin-Bordes
- CNRS, UMR5164 ImmunoConcEpT, Université de Bordeaux, Bordeaux, France
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Bordeaux, France
| | - Patrick Berger
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC1401, Proteomics Facility, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Pessac, France
- CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Pessac, France
| | - Isabelle Dupin
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Pessac, France
| |
Collapse
|
9
|
Andrenacci B, De Filippo M, Votto M, Prevedoni Gorone MS, De Amici M, La Grutta S, Marseglia GL, Licari A. Severe pediatric asthma endotypes: current limits and future perspectives. Expert Rev Respir Med 2023; 17:675-690. [PMID: 37647343 DOI: 10.1080/17476348.2023.2254234] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/01/2023]
Abstract
INTRODUCTION Although rare, pediatric severe therapy-resistant asthma (STRA) is a highly heterogeneous, resource-demanding disease that differs significantly from severe adult asthma and whose pathogenesis is still poorly understood. AREAS COVERED This review summarizes the latest 10 years of English-written studies defining pediatric STRA endotypes using lung-specific techniques such as bronchoalveolar lavage and endobronchial biopsy. Results of the studies and limits on the field are discussed, together with some future perspectives. EXPERT OPINION Over the years, it has become increasingly clear that 'one size does not fit all" in asthma. However, "Does an extremely tailored size fit more than one?'. Only using multicentric, longitudinal pediatric studies, will we be able to answer. Three issues could be particularly critical for future research. First, to provide, if existing, a distinction between prepuberal STRA and puberal STRA endotypes to understand the transition from pediatric to adult STRA and to design effective, tailored therapies in adolescents, usually suffering from poorer asthma control. Second, design early treatments for pediatric airway remodeling to preserve lifelong good lung function. Finally, to better characterize inflammation before and during biological therapies, to provide clues on whether to stop or change treatments.
Collapse
Affiliation(s)
- Beatrice Andrenacci
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Maria De Filippo
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Martina Votto
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Maria Sole Prevedoni Gorone
- Pediatric Radiology Unit, Department of Diagnostic and Interventional Radiology and Neuroradiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Mara De Amici
- Immuno-Allergology Laboratory, Clinical Chemistry Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Stefania La Grutta
- Institute of Translational Pharmacology (IFT), National Research Council of Italy (CNR), Palermo, Italy
| | - Gian Luigi Marseglia
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Amelia Licari
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Institute of Translational Pharmacology (IFT), National Research Council of Italy (CNR), Palermo, Italy
| |
Collapse
|
10
|
Kaul H. Multiscale computational modeling offers key to understanding molecular logic underpinning development and disease. Biotechniques 2023; 74:282-285. [PMID: 37326337 DOI: 10.2144/btn-2023-0039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Affiliation(s)
- Himanshu Kaul
- University of Leicester, School of Engineering, Leicester, LE1 7RH, UK
- Department of Respiratory Sciences, University of Leicester, Leicester, LE1 9HN, UK
| |
Collapse
|
11
|
Dupin I, Eyraud E, Maurat É, Sac-Épée JM, Vallois P. Probabilistic cellular automata modelling of intercellular interactions in airways: complex pattern formation in patients with chronic obstructive pulmonary disease. J Theor Biol 2023; 564:111448. [PMID: 36878400 DOI: 10.1016/j.jtbi.2023.111448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/07/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a highly prevalent lung disease characterized by chronic inflammation and tissue remodeling possibly induced by unusual interactions between fibrocytes and CD8+ T lymphocytes in the peribronchial area. To investigate this phenomenon, we developed a probabilistic cellular automata type model where the two types of cells follow simple local interaction rules taking into account cell death, proliferation, migration and infiltration. We conducted a rigorous mathematical analysis using multiscale experimental data obtained in control and disease conditions to estimate the model's parameters accurately. The simulation of the model is straightforward to implement, and two distinct patterns emerged that we can analyse quantitatively. In particular, we show that the change in fibrocyte density in the COPD condition is mainly the consequence of their infiltration into the lung during exacerbations, suggesting possible explanations for experimental observations in normal and COPD tissue. Our integrated approach that combines a probabilistic cellular automata model and experimental findings will provide further insights into COPD in future studies.
Collapse
Affiliation(s)
- Isabelle Dupin
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, F-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, F-33000 Bordeaux, France.
| | - Edmée Eyraud
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, F-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, F-33000 Bordeaux, France
| | - Élise Maurat
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, F-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, F-33000 Bordeaux, France
| | | | - Pierre Vallois
- Université de Lorraine, CNRS, Inria, IECL., F-54000 Nancy, France
| |
Collapse
|
12
|
Wang CJ, Noble PB, Elliot JG, James AL, Wang KCW. From Beneath the Skin to the Airway Wall: Understanding the Pathological Role of Adipose Tissue in Comorbid Asthma-Obesity. Compr Physiol 2023; 13:4321-4353. [PMID: 36715283 DOI: 10.1002/cphy.c220011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This article provides a contemporary report on the role of adipose tissue in respiratory dysfunction. Adipose tissue is distributed throughout the body, accumulating beneath the skin (subcutaneous), around organs (visceral), and importantly in the context of respiratory disease, has recently been shown to accumulate within the airway wall: "airway-associated adipose tissue." Excessive adipose tissue deposition compromises respiratory function and increases the severity of diseases such as asthma. The mechanisms of respiratory impairment are inflammatory, structural, and mechanical in nature, vary depending on the anatomical site of deposition and adipose tissue subtype, and likely contribute to different phenotypes of comorbid asthma-obesity. An understanding of adipose tissue-driven pathophysiology provides an opportunity for diagnostic advancement and patient-specific treatment. As an exemplar, the potential impact of airway-associated adipose tissue is highlighted, and how this may change the management of a patient with asthma who is also obese. © 2023 American Physiological Society. Compr Physiol 13:4321-4353, 2023.
Collapse
Affiliation(s)
- Carolyn J Wang
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - John G Elliot
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Alan L James
- Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Kimberley C W Wang
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
13
|
Hsieh A, Assadinia N, Hackett TL. Airway remodeling heterogeneity in asthma and its relationship to disease outcomes. Front Physiol 2023; 14:1113100. [PMID: 36744026 PMCID: PMC9892557 DOI: 10.3389/fphys.2023.1113100] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
Asthma affects an estimated 262 million people worldwide and caused over 461,000 deaths in 2019. The disease is characterized by chronic airway inflammation, reversible bronchoconstriction, and airway remodeling. Longitudinal studies have shown that current treatments for asthma (inhaled bronchodilators and corticosteroids) can reduce the frequency of exacerbations, but do not modify disease outcomes over time. Further, longitudinal studies in children to adulthood have shown that these treatments do not improve asthma severity or fixed airflow obstruction over time. In asthma, fixed airflow obstruction is caused by remodeling of the airway wall, but such airway remodeling also significantly contributes to airway closure during bronchoconstriction in acute asthmatic episodes. The goal of the current review is to understand what is known about the heterogeneity of airway remodeling in asthma and how this contributes to the disease process. We provide an overview of the existing knowledge on airway remodeling features observed in asthma, including loss of epithelial integrity, mucous cell metaplasia, extracellular matrix remodeling in both the airways and vessels, angiogenesis, and increased smooth muscle mass. While such studies have provided extensive knowledge on different aspects of airway remodeling, they have relied on biopsy sampling or pathological assessment of lungs from fatal asthma patients, which have limitations for understanding airway heterogeneity and the entire asthma syndrome. To further understand the heterogeneity of airway remodeling in asthma, we highlight the potential of in vivo imaging tools such as computed tomography and magnetic resonance imaging. Such volumetric imaging tools provide the opportunity to assess the heterogeneity of airway remodeling within the whole lung and have led to the novel identification of heterogenous gas trapping and mucus plugging as important predictors of patient outcomes. Lastly, we summarize the current knowledge of modification of airway remodeling with available asthma therapeutics to highlight the need for future studies that use in vivo imaging tools to assess airway remodeling outcomes.
Collapse
Affiliation(s)
- Aileen Hsieh
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Najmeh Assadinia
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Tillie-Louise Hackett
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada,*Correspondence: Tillie-Louise Hackett,
| |
Collapse
|
14
|
Aghali A, Khalfaoui L, Lagnado AB, Drake LY, Teske JJ, Pabelick CM, Passos JF, Prakash YS. Cellular senescence is increased in airway smooth muscle cells of elderly persons with asthma. Am J Physiol Lung Cell Mol Physiol 2022; 323:L558-L568. [PMID: 36166734 PMCID: PMC9639764 DOI: 10.1152/ajplung.00146.2022] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/05/2022] [Accepted: 09/22/2022] [Indexed: 11/22/2022] Open
Abstract
Senescent cells can drive age-related tissue dysfunction partially via a senescence-associated secretory phenotype (SASP) involving proinflammatory and profibrotic factors. Cellular senescence has been associated with a structural and functional decline during normal lung aging and age-related diseases such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Asthma in the elderly (AIE) represents a major healthcare burden. AIE is associated with bronchial airway hyperresponsiveness and remodeling, which involves increased cell proliferation and higher rates of fibrosis, and resistant to standard therapy. Airway smooth muscle (ASM) cells play a major role in asthma such as remodeling via modulation of inflammation and the extracellular matrix (ECM) environment. Whether senescent ASM cells accumulate in AIE and contribute to airway structural or functional changes is unknown. Lung tissues from elderly persons with asthma showed greater airway fibrosis compared with age-matched elderly persons with nonasthma and young age controls. Lung tissue or isolated ASM cells from elderly persons with asthma showed increased expression of multiple senescent markers including phospho-p53, p21, telomere-associated foci (TAF), as well as multiple SASP components. Senescence and SASP components were also increased with aging per se. These data highlight the presence of cellular senescence in AIE that may contribute to airway remodeling.
Collapse
Affiliation(s)
- Arbi Aghali
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Latifa Khalfaoui
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Anthony B. Lagnado
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Li Y. Drake
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Jacob J. Teske
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Christina M. Pabelick
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - João F. Passos
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Y. S. Prakash
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
15
|
Gadkar K, Feigelman J, Sukumaran S, Rodrigo MC, Staton T, Cai F, Bauer RN, Choy DF, Stokes CL, Scheerens H, Ramanujan S. Integrated systems modeling of severe asthma: Exploration of IL-33/ST2 antagonism. CPT Pharmacometrics Syst Pharmacol 2022; 11:1268-1277. [PMID: 35857704 PMCID: PMC9469696 DOI: 10.1002/psp4.12842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/27/2022] [Accepted: 06/09/2022] [Indexed: 01/12/2023] Open
Abstract
Asthma is a complex, heterogeneous disease with a high unmet medical need, despite therapies targeting a multitude of pathways. The ability to quantitatively integrate preclinical and clinical data on these pathways could aid in the development and testing of novel targets and therapeutics. In this work, we develop a computational model of asthma biology, including key cell types and mediators, and create a virtual population capturing clinical heterogeneity. The simulated responses to therapies targeting IL-13, IL-4Rα, IL-5, IgE, and TSLP demonstrate agreement with clinical endpoints and biomarkers of type 2 (T2) inflammation, including blood eosinophils, FEV1, IgE, and FeNO. We use the model to explore the potential benefit of targeting the IL-33 pathway with anti-IL-33 and anti-ST2. Model predictions are compared with data on blood eosinophils, FeNO, and FEV1 from recent anti-IL-33 and anti-ST2 trials and used to interpret trial results based on pathway biology and pharmacology. Results of sensitivity analyses on the contributions of IL-33 to the predicted biomarker changes suggest that anti-ST2 therapy reduces circulating blood eosinophil levels primarily through its impact on eosinophil progenitor maturation and IL-5-dependent survival, and induces changes in FeNO and FEV1 through its effect on immune cells involved in T2 cytokine production. Finally, we also investigate the impact of ST2 genetics on the conferred benefit of anti-ST2. The model includes representation of a wide array of biologic mechanisms and interventions that will provide mechanistic insight and support clinical program design for a wide range of novel therapies during drug development.
Collapse
Affiliation(s)
- Kapil Gadkar
- Genentech, Inc., South San Francisco, California, USA.,Denali Therapeutics, Inc., South San Francisco, California, USA
| | | | - Siddharth Sukumaran
- Genentech, Inc., South San Francisco, California, USA.,Janssen, Inc., Spring House, Pennsylvania, USA
| | - Manoj C Rodrigo
- Genentech, Inc., South San Francisco, California, USA.,Stryker, Inc., Fremont, California, USA
| | - Tracy Staton
- Genentech, Inc., South San Francisco, California, USA
| | - Fang Cai
- Genentech, Inc., South San Francisco, California, USA.,AbbVie, Inc., South San Francisco, California, USA
| | | | - David F Choy
- Genentech, Inc., South San Francisco, California, USA
| | | | | | | |
Collapse
|
16
|
Saunders RM, Biddle M, Amrani Y, Brightling CE. Stressed out - The role of oxidative stress in airway smooth muscle dysfunction in asthma and COPD. Free Radic Biol Med 2022; 185:97-119. [PMID: 35472411 DOI: 10.1016/j.freeradbiomed.2022.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/06/2022] [Accepted: 04/19/2022] [Indexed: 12/14/2022]
Abstract
The airway smooth muscle (ASM) surrounding the airways is dysfunctional in both asthma and chronic obstructive pulmonary disease (COPD), exhibiting; increased contraction, increased mass, increased inflammatory mediator release and decreased corticosteroid responsiveness. Due to this dysfunction, ASM is a key contributor to symptoms in patients that remain symptomatic despite optimal provision of currently available treatments. There is a significant body of research investigating the effects of oxidative stress/ROS on ASM behaviour, falling into the following categories; cigarette smoke and associated compounds, air pollutants, aero-allergens, asthma and COPD relevant mediators, and the anti-oxidant Nrf2/HO-1 signalling pathway. However, despite a number of recent reviews addressing the role of oxidative stress/ROS in asthma and COPD, the potential contribution of oxidative stress/ROS-related ASM dysfunction to asthma and COPD pathophysiology has not been comprehensively reviewed. We provide a thorough review of studies that have used primary airway, bronchial or tracheal smooth muscle cells to investigate the role of oxidative stress/ROS in ASM dysfunction and consider how they could contribute to the pathophysiology of asthma and COPD. We summarise the current state of play with regards to clinical trials/development of agents targeting oxidative stress and associated limitations, and the adverse effects of oxidative stress on the efficacy of current therapies, with reference to ASM related studies where appropriate. We also identify limitations in the current knowledge of the role of oxidative stress/ROS in ASM dysfunction and identify areas for future research.
Collapse
Affiliation(s)
- Ruth M Saunders
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK.
| | - Michael Biddle
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Yassine Amrani
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Christopher E Brightling
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| |
Collapse
|
17
|
Jackson D, Walum J, Banerjee P, Lewis BW, Prakash YS, Sathish V, Xu Z, Britt RD. Th1 cytokines synergize to change gene expression and promote corticosteroid insensitivity in pediatric airway smooth muscle. Respir Res 2022; 23:126. [PMID: 35578269 PMCID: PMC9109364 DOI: 10.1186/s12931-022-02046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 05/07/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Corticosteroids remain a key therapy for treating children with asthma. Patients with severe asthma are insensitive, resistant, or refractory to corticosteroids and have poorly controlled symptoms that involve airway inflammation, airflow obstruction, and frequent exacerbations. While the pathways that mediate corticosteroid insensitivity in asthma remain poorly defined, recent studies suggest that enhanced Th1 pathways, mediated by TNFα and IFNγ, may play a role. We previously reported that the combined effects of TNFα and IFNγ promote corticosteroid insensitivity in developing human airway smooth muscle (ASM).
Methods
To further understand the effects of TNFα and IFNγ on corticosteroid sensitivity in the context of neonatal and pediatric asthma, we performed RNA sequencing (RNA-seq) on human pediatric ASM treated with fluticasone propionate (FP), TNFα, and/or IFNγ.
Results
We found that TNFα had a greater effect on gene expression (~ 1000 differentially expressed genes) than IFNγ (~ 500 differentially expressed genes). Pathway and transcription factor analyses revealed enrichment of several pro-inflammatory responses and signaling pathways. Interestingly, treatment with TNFα and IFNγ augmented gene expression with more than 4000 differentially expressed genes. Effects of TNFα and IFNγ enhanced several pro-inflammatory genes and pathways related to ASM and its contributions to asthma pathogenesis, which persisted in the presence of corticosteroids. Co-expression analysis revealed several gene networks related to TNFα- and IFNγ-mediated signaling, pro-inflammatory mediator production, and smooth muscle contractility. Many of the co-expression network hubs were associated with genes that are insensitive to corticosteroids.
Conclusions
Together, these novel studies show the combined effects of TNFα and IFNγ on pediatric ASM and implicate Th1-associated cytokines in promoting ASM inflammation and hypercontractility in severe asthma.
Collapse
|
18
|
Meteran H, Tønnesen LL, Sivapalan P, Ingebrigtsen TS, Jensen JUS. Recent developments in the management of severe asthma. Breathe (Sheff) 2022; 18:210178. [PMID: 36338257 PMCID: PMC9584584 DOI: 10.1183/20734735.0178-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 04/07/2022] [Indexed: 12/03/2022] Open
Abstract
Fevipiprant is unlikely to be implemented as a future treatment for severe asthma, while tezepelumab may be a future treatment option for patients with severe asthma with and without eosinophilic inflammationhttps://bit.ly/3KE1BH4
Collapse
|
19
|
Busse WW, Kraft M. Current unmet needs and potential solutions to uncontrolled asthma. Eur Respir Rev 2022; 31:210176. [PMID: 35082128 PMCID: PMC9488919 DOI: 10.1183/16000617.0176-2021] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Despite the availability of effective inhaled therapies, many patients with asthma have poor asthma control. Uncontrolled asthma presents a significant burden on the patient and society, and, for many, remains largely preventable. There are numerous reasons why a patient may remain uncontrolled despite access to therapies, including incorrect inhaler technique, poor adherence to treatment, oversight of triggers and suboptimal medical care. Shared decision-making, good patient-clinician communication, supported self-management, multidisciplinary patient education, new technology and risk stratification may all provide solutions to this major unmet need in asthma. Novel treatments such as biologics could benefit patients' lives, while the investigations into biomarkers, non-Type 2 asthma, treatable traits and disease modification give an exciting glimpse into the future of asthma care.
Collapse
Affiliation(s)
- William W Busse
- Dept of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Monica Kraft
- University of Arizona College of Medicine, Tucson, AZ, USA
| |
Collapse
|
20
|
Busse WW, Melén E, Menzies-Gow AN. Holy Grail: the journey towards disease modification in asthma. Eur Respir Rev 2022; 31:31/163/210183. [PMID: 35197266 PMCID: PMC9488532 DOI: 10.1183/16000617.0183-2021] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/28/2021] [Indexed: 12/12/2022] Open
Abstract
At present, there is no cure for asthma, and treatment typically involves therapies that prevent or reduce asthma symptoms, without modifying the underlying disease. A “disease-modifying” treatment can be classed as able to address the pathogenesis of a disease, preventing progression or leading to a long-term reduction in symptoms. Such therapies have been investigated and approved in other indications, e.g. rheumatoid arthritis and immunoglobulin E-mediated allergic disease. Asthma's heterogeneous nature has made the discovery of similar therapies in asthma more difficult, although novel therapies (e.g. biologics) may have the potential to exhibit disease-modifying properties. To investigate the disease-modifying potential of a treatment, study design considerations can be made, including: appropriate end-point selection, length of trial, age of study population (key differences between adults/children in physiology, pathology and drug metabolism) and comorbidities in the patient population. Potential future focus areas for disease-modifying treatments in asthma include early assessments (e.g. to detect patterns of remodelling) and interventions for patients genetically susceptible to asthma, interventions to prevent virally induced asthma and therapies to promote a healthy microbiome. This review explores the pathophysiology of asthma, the disease-modifying potential of current asthma therapies and the direction future research may take to achieve full disease remission or prevention. Asthma is a complex, heterogeneous disease, which currently has no cure; this review explores the disease-modifying potential of asthma therapies and the direction future research may take to achieve disease remission or prevention.https://bit.ly/31AxYou
Collapse
Affiliation(s)
- William W Busse
- Dept of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Erik Melén
- Dept of Clinical Science and Education Södersjukhuset, Karolinska Institutet and Sachs' Children's Hospital, Stockholm, Sweden
| | | |
Collapse
|
21
|
Sokolowska M, Rovati GE, Diamant Z, Untersmayr E, Schwarze J, Lukasik Z, Sava F, Angelina A, Palomares O, Akdis C, O'Mahony L, Jesenak M, Pfaar O, Torres MJ, Sanak M, Dahlén S, Woszczek G. Effects of non-steroidal anti-inflammatory drugs and other eicosanoid pathway modifiers on antiviral and allergic responses: EAACI task force on eicosanoids consensus report in times of COVID-19. Allergy 2022; 77:2337-2354. [PMID: 35174512 PMCID: PMC9111413 DOI: 10.1111/all.15258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/25/2022] [Accepted: 02/11/2022] [Indexed: 11/29/2022]
Abstract
Non‐steroidal anti‐inflammatory drugs (NSAIDs) and other eicosanoid pathway modifiers are among the most ubiquitously used medications in the general population. Their broad anti‐inflammatory, antipyretic, and analgesic effects are applied against symptoms of respiratory infections, including SARS‐CoV‐2, as well as in other acute and chronic inflammatory diseases that often coexist with allergy and asthma. However, the current pandemic of COVID‐19 also revealed the gaps in our understanding of their mechanism of action, selectivity, and interactions not only during viral infections and inflammation, but also in asthma exacerbations, uncontrolled allergic inflammation, and NSAIDs‐exacerbated respiratory disease (NERD). In this context, the consensus report summarizes currently available knowledge, novel discoveries, and controversies regarding the use of NSAIDs in COVID‐19, and the role of NSAIDs in asthma and viral asthma exacerbations. We also describe here novel mechanisms of action of leukotriene receptor antagonists (LTRAs), outline how to predict responses to LTRA therapy and discuss a potential role of LTRA therapy in COVID‐19 treatment. Moreover, we discuss interactions of novel T2 biologicals and other eicosanoid pathway modifiers on the horizon, such as prostaglandin D2 antagonists and cannabinoids, with eicosanoid pathways, in context of viral infections and exacerbations of asthma and allergic diseases. Finally, we identify and summarize the major knowledge gaps and unmet needs in current eicosanoid research.
Collapse
Affiliation(s)
- Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne ‐ Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - G Enrico Rovati
- Department of Pharmaceutical Sciences Section of Pharmacology and Biosciences University of Milan Milano Italy
| | - Zuzana Diamant
- Department of Respiratory Medicine and Allergology Skane University Hospital Lund Sweden
- Department Microbiology Immunology and Transplantation Ku Leuven, Catholic University of Leuven Belgium
- Department of Respiratory Medicine First Faculty of Medicine Charles University and Thomayer Hospital Prague Czech Republic
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Jürgen Schwarze
- Child Life and Health and Centre for Inflammation Research The University of Edinburgh Edinburgh UK
| | - Zuzanna Lukasik
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- VIB Center for Inflammation Research Ghent University Ghent Belgium
| | - Florentina Sava
- London North Genomic Laboratory Hub Great Ormond Street Hospital for Children NHS Foundation Trust London UK
| | - Alba Angelina
- Department of Biochemistry and Molecular Biology School of Chemistry Complutense University Madrid Spain
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology School of Chemistry Complutense University Madrid Spain
| | - Cezmi Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne ‐ Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - Liam O'Mahony
- Departments of Medicine and Microbiology APC Microbiome IrelandUniversity College Cork Cork Ireland
| | - Milos Jesenak
- Department of Pulmonology and Phthisiology Department of Allergology and Clinical Immunology Department of Pediatrics Jessenius Faculty of Medicine in Martin Comenius University in BratislavaUniversity Teaching Hospital in Martin Slovakia
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery Section of Rhinology and Allergy University Hospital MarburgPhilipps‐Universität Marburg Marburg Germany
| | - María José Torres
- Allergy Unit Málaga Regional University Hospital‐IBIMA‐UMA Málaga Spain
| | - Marek Sanak
- Department of Medicine Jagiellonian University Medical College Krakow Poland
| | - Sven‐Erik Dahlén
- Institute of Environmental Medicine and the Centre for Allergy Research, Karolinska Institute, and the Department of Respiratory Medicine Karolinska University Hospital Stockholm Sweden
| | - Grzegorz Woszczek
- Asthma UK Centre in Allergic Mechanisms of Asthma School of Immunology and Microbial Sciences King's College London London UK
| |
Collapse
|
22
|
Celle A, Esteves P, Cardouat G, Beaufils F, Eyraud E, Dupin I, Maurat E, Lacomme S, Ousova O, Begueret H, Thumerel M, Marthan R, Girodet PO, Berger P, Trian T. Rhinovirus infection of bronchial epithelium induces specific bronchial smooth muscle cell migration of severe asthmatic patients. J Allergy Clin Immunol 2022; 150:104-113. [PMID: 35143808 DOI: 10.1016/j.jaci.2022.01.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Patients with severe asthma show an increase in both exacerbation frequency and bronchial smooth muscle (BSM) mass. Rhinovirus (RV) infection of the bronchial epithelium (BE) is the main trigger of asthma exacerbations. Histological analysis of biopsies shows that a close connection between BE and hypertrophic BSM is a criterion for severity of asthma. OBJECTIVE We hypothesized that RV infection of BE specifically increases asthmatic BSM cell migration. METHODS Serum samples, biopsies or BSM cells were obtained from 86 patients with severe asthma and 31 non-asthmatic subjects. BE cells from non-asthmatic subjects were cultured in an air-liquid interface and exposed to RV-16. Migration of BSM cells was assessed in response to BE supernatant using chemotaxis assays. Chemokine concentrations were analyzed by transcriptomics and ELISAs. Immunocytochemistry, western blotting and flow cytometry were used to quantify CXCR3 isoform distribution. CXCR3 downstream signaling pathways were assessed by calcium imaging and western blots. RESULTS BSM cells from severe asthmatic patients specifically migrated toward RV-infected BE, whereas those from non-asthmatic subjects did not. This specific migration is driven by BE CXCL10, which was increased in vitro in response to RV infection as well as in vivo in serum from exacerbating patients with severe asthma. The mechanism is related to both decreased expression and activation of the CXCR3-B-specific isoform in severe asthmatic BSM cells. CONCLUSION We have demonstrated a novel mechanism of BSM remodeling in severe asthmatic patients following RV exacerbation. This study highlights the CXCL10/CXCR3-A axis as a potential therapeutic target in severe asthma.
Collapse
Affiliation(s)
- Alexis Celle
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France
| | - Pauline Esteves
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France
| | - Guillaume Cardouat
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France
| | - Fabien Beaufils
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France; CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Service de chirurgie, CIC 1401
| | - Edmée Eyraud
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France
| | - Isabelle Dupin
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France
| | - Elise Maurat
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France
| | - Sabrina Lacomme
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France
| | - Olga Ousova
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France
| | - Hugues Begueret
- CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Service de chirurgie, CIC 1401
| | - Matthieu Thumerel
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France; CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Service de chirurgie, CIC 1401
| | - Roger Marthan
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France; CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Service de chirurgie, CIC 1401
| | - Pierre-Olivier Girodet
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France; CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Service de chirurgie, CIC 1401
| | - Patrick Berger
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France; CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Service de chirurgie, CIC 1401
| | - Thomas Trian
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France.
| |
Collapse
|
23
|
Salter B, Lacy P, Mukherjee M. Biologics in Asthma: A Molecular Perspective to Precision Medicine. Front Pharmacol 2022; 12:793409. [PMID: 35126131 PMCID: PMC8807637 DOI: 10.3389/fphar.2021.793409] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022] Open
Abstract
Recent developments in therapeutic strategies have provided alternatives to corticosteroids as the cornerstone treatment for managing airway inflammation in asthma. The past two decades have witnessed a tremendous boost in the development of anti-cytokine monoclonal antibody (mAb) therapies for the management of severe asthma. Novel biologics that target eosinophilic inflammation (or type 2, T2 inflammation) have been the most successful at treating asthma symptoms, though there are a few in the drug development pipeline for treating non-eosinophilic or T2-low asthma. There has been significant improvement in clinical outcomes for asthmatics treated with currently available monoclonal antibodies (mAbs), including anti-immunoglobulin (Ig) E, anti-interleukin (IL)-4 receptor α subunit, anti-IL-5, anti-IL-5Rα, anti-IL-6, anti-IL-33, and anti-thymic stromal lymphopoietin (TSLP). Despite these initiatives in precision medicine for asthma therapy, a significant disease burden remains, as evident from modest reduction of exacerbation rates, i.e., approximately 40-60%. There are numerous studies that highlight predictors of good responses to these biologics, but few have focused on those who fail to respond adequately despite targeted treatment. Phenotyping asthmatics based on blood eosinophils is proving to be inadequate for choosing the right drug for the right patient. It is therefore pertinent to understand the underlying immunology, and perhaps, carry out immune endotyping of patients before prescribing appropriate drugs. This review summarizes the immunology of asthma, the cytokines or receptors currently targeted, the possible mechanisms of sub-optimal responses, and the importance of determining the immune make-up of individual patients prior to prescribing mAb therapy, in the age of precision medicine for asthma.
Collapse
Affiliation(s)
- Brittany Salter
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare, Hamilton, ON, Canada
| | - Paige Lacy
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Manali Mukherjee
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare, Hamilton, ON, Canada
| |
Collapse
|
24
|
Maspero J, Agache IO, Kamei T, Yoshida M, Boone B, Felser JM, Kawakami F, Knorr B, Lawrence D, Lehmann T, Wang W, Pedinoff AJ. Long-term safety and exploratory efficacy of fevipiprant in patients with inadequately controlled asthma: the SPIRIT randomised clinical trial. Respir Res 2021; 22:311. [PMID: 34895218 PMCID: PMC8666007 DOI: 10.1186/s12931-021-01904-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The prostaglandin D2 (PGD2) receptor 2 (DP2 receptor) pathway is an important regulator of the inflammatory cascade in asthma, which can be stimulated by allergic or non-allergic triggers. Fevipiprant is an oral, non-steroidal, highly selective, reversible antagonist of the DP2 receptor that inhibits the binding of PGD2 and its metabolites. METHODS SPIRIT, a 2-treatment period (52-week, double-blind and optional 104-week single-blind), randomised, placebo-controlled, multicentre, parallel-group study, assessed the long-term safety of fevipiprant (150 mg and 450 mg o.d.) added to standard of care in patients ≥ 12 years with uncontrolled asthma. Stratified block randomisation was used. Patients were randomised in an approximate ratio of 3:3:1 (fevipiprant 150 mg, fevipiprant 450 mg or placebo). Patients were either newly enrolled or had participated in a previous fevipiprant Phase 3 trial. Primary endpoints were: time-to-first treatment emergent adverse event (AE); serious AE; and AE leading to discontinuation from study treatment. Data from both treatment periods were combined for analyses. Data were collected during study site visits. RESULTS In total, 1093 patients were randomised to receive fevipiprant 150 mg, 1085 to fevipiprant 450 mg, and 360 to placebo. Overall, 1184 patients had ≥ 52 weeks' treatment, while 163 received ≥ 104 weeks' treatment. Both doses were well tolerated, with a safety profile similar to placebo both in new patients and in those enrolled from previous studies. In exploratory analyses, reduced rates of moderate-to-severe asthma exacerbations, increased time-to-first moderate-to-severe asthma exacerbation and improved FEV1 were observed for both doses of fevipiprant versus placebo; these were without multiplicity adjustment and should be interpreted with caution. SPIRIT was terminated early, on 16 December 2019, by the Sponsor. CONCLUSIONS In patients with uncontrolled asthma, the addition of fevipiprant had a favourable long-term safety profile. TRIAL REGISTRATION Clinicaltrials.gov, NCT03052517, prospectively registered 23 January 2017, https://clinicaltrials.gov/ct2/show/NCT03052517 .
Collapse
Affiliation(s)
- Jorge Maspero
- Allergy and Respiratory Research Unit, Fundación CIDEA, Buenos Aires, Argentina.
| | | | - Tadashi Kamei
- Kamei Internal Medicine and Respiratory Clinic, Takamatsu-city, Kagawa, Japan
| | - Makoto Yoshida
- National Hospital Organization Fukuoka National Hospital, Fukuoka-city, Fukuoka, Japan
| | - Bryan Boone
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | - James M Felser
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | | | - Barbara Knorr
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | | | | | - Wei Wang
- Novartis Institutes for Biomedical Research Co., Ltd, Shanghai, China
| | | |
Collapse
|
25
|
Carstensen S, Gress C, Erpenbeck VJ, Kazani SD, Hohlfeld JM, Sandham DA, Müller M. Prostaglandin D 2 metabolites activate asthmatic patient-derived type 2 innate lymphoid cells and eosinophils via the DP 2 receptor. Respir Res 2021; 22:262. [PMID: 34620168 PMCID: PMC8499518 DOI: 10.1186/s12931-021-01852-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/27/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Prostaglandin D2 (PGD2) signaling via prostaglandin D2 receptor 2 (DP2) contributes to atopic and non-atopic asthma. Inhibiting DP2 has shown therapeutic benefit in certain subsets of asthma patients, improving eosinophilic airway inflammation. PGD2 metabolites prolong the inflammatory response in asthmatic patients via DP2 signaling. The role of PGD2 metabolites on eosinophil and ILC2 activity is not fully understood. METHODS Eosinophils and ILC2s were isolated from peripheral blood of atopic asthmatic patients. Eosinophil shape change, ILC2 migration and IL-5/IL-13 cytokine secretion were measured after stimulation with seven PGD2 metabolites in presence or absence of the selective DP2 antagonist fevipiprant. RESULTS Selected metabolites induced eosinophil shape change with similar nanomolar potencies except for 9α,11β-PGF2. Maximal values in forward scatter of eosinophils were comparable between metabolites. ILC2s migrated dose-dependently in the presence of selected metabolites except for 9α,11β-PGF2 with EC50 values ranging from 17.4 to 91.7 nM. Compared to PGD2, the absolute cell migration was enhanced in the presence of Δ12-PGD2, 15-deoxy-Δ12,14-PGD2, PGJ2, Δ12-PGJ2 and 15-deoxy-Δ12,14-PGJ2. ILC2 cytokine production was dose dependent as well but with an average sixfold reduced potency compared to cell migration (IL-5 range 108.1 to 526.9 nM, IL-13 range: 125.2 to 788.3 nM). Compared to PGD2, the absolute cytokine secretion was reduced in the presence of most metabolites. Fevipiprant dose-dependently inhibited eosinophil shape change, ILC2 migration and ILC2 cytokine secretion with (sub)-nanomolar potencies. CONCLUSION Prostaglandin D2 metabolites initiate ILC2 migration and IL-5 and IL-13 cytokine secretion in a DP2 dependent manner. Our data indicate that metabolites may be important for in vivo eosinophil activation and ILC2 migration and to a lesser extent for ILC2 cytokine secretion.
Collapse
Affiliation(s)
- Saskia Carstensen
- Department of Biomarker Analysis and Development, Clinical Airway Research, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Christina Gress
- Department of Biomarker Analysis and Development, Clinical Airway Research, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | | | | | - Jens M Hohlfeld
- Department of Biomarker Analysis and Development, Clinical Airway Research, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
- German Center for Lung Research (BREATH), Hannover, Germany
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - David A Sandham
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Meike Müller
- Department of Biomarker Analysis and Development, Clinical Airway Research, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany.
| |
Collapse
|
26
|
Yang D, Guo X, Liu T, Li Y, Du Z, Liu C. Efficacy and Safety of Prostaglandin D2 Receptor 2 Antagonism with Fevipiprant for Patients with Asthma: a Systematic Review and Meta-analysis of Randomized Controlled Trials. Curr Allergy Asthma Rep 2021; 21:39. [PMID: 34387775 DOI: 10.1007/s11882-021-01017-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE OF REVIEW Accumulating evidence has shown that prostaglandin D2 (PGD2)-chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) pathway plays an important role in promoting eosinophilic airway inflammation in asthma. We aimed to assess the efficacy and safety of CRTH2 antagonist fevipiprant in patients with persistent asthma compared with placebo. RECENT FINDINGS We identified eligible studies by searching PubMed, EMBASE, the Cochrane Central Register of Controlled Trials and ClinicalTrials.gov. The study was registered as CRD 42020221714 ( http://www.crd.york.ac.uk/PROSPERO ). Ten randomized controlled trials with 7902 patients met our inclusion criteria. A statistically significant benefit of fevipiprant compared with placebo was shown in improving forced expiratory volume in 1 s (MD 0.05 L, 95% CI: 0.02 to 0.07; p < 0.0001), Asthma Control Questionnaire score (MD -0.10, 95% CI: -0.16 to -0.04; p = 0.001), and Asthma Quality of Life Questionnaire score (MD 0.08, 95% CI: 0.03 to 0.13; p = 0.003). Fevipiprant decreased number of patients with at least one asthma exacerbation requiring administration of systemic corticosteroids for 3 days or more (RR 0.86, 95% CI: 0.77 to 0.97; p = 0.01). Some benefits were a little more pronounced in the high eosinophil population (with an elevated blood eosinophil count or sputum eosinophil percentage) and in the 450 mg dose group. Fevipiprant was well tolerated with no safety issues compared with placebo. Fevipiprant could safely improve asthma outcomes compared to placebo. However, most of the differences didn't reach the minimal clinically important difference (MCID), thus the clinical benefits remained to be confirmed.
Collapse
Affiliation(s)
- Dan Yang
- Department of Respiratory and Critical Care Medicine, School of Medicine and West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, West China, China
| | - Xinning Guo
- Department of Respiratory and Critical Care Medicine, School of Medicine and West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, West China, China
| | - Ting Liu
- Department of Respiratory and Critical Care Medicine, School of Medicine and West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, West China, China
| | - Yina Li
- Department of Respiratory and Critical Care Medicine, School of Medicine and West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, West China, China
| | - Zhuman Du
- Department of Respiratory and Critical Care Medicine, School of Medicine and West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, West China, China
| | - Chuntao Liu
- Department of Respiratory and Critical Care Medicine, School of Medicine and West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, West China, China.
| |
Collapse
|
27
|
Fricker M, McDonald VM, Winter NA, Baines KJ, Wark PAB, Simpson JL, Gibson PG. Molecular markers of type 2 airway inflammation are similar between eosinophilic severe asthma and eosinophilic chronic obstructive pulmonary disease. Allergy 2021; 76:2079-2089. [PMID: 33470427 DOI: 10.1111/all.14741] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/25/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Airway and systemic eosinophilia are important treatable traits in both severe asthma and COPD. The molecular basis of eosinophilia in COPD is poorly understood but could involve type 2 cytokines (IL5, IL13) and prostaglandin D2 (PGD2 ). METHODS This study included non-obstructive airways disease (OAD) controls (n = 19), a COPD cohort (n = 96) and a severe asthma cohort (n = 84). Demographics, exacerbation history, disease impact (SGRQ) and spirometry were assessed. Participants were categorized as eosinophilic using either sputum eosinophil proportion (≥3%) or blood eosinophil count (≥300/μL). Sputum type 2 inflammatory measures included PGD2 by ELISA and gene expression (qPCR) of IL5, IL13 and the haematopoietic PGD2 synthase (HPGDS). RESULTS Type 2 markers did not differ across groups except HPGDS mRNA which was highest in non-OAD controls and lowest in COPD. IL5 and IL13 mRNA and PGD2 levels were significantly increased in eosinophilic vs non-eosinophilic severe asthma but did not differ between eosinophilic COPD and eosinophilic severe asthma or non-eosinophilic COPD. HPGDS expression was higher in eosinophilic severe asthma compared with eosinophilic COPD. Results were similar using sputum or blood eosinophil cut-offs. Sputum IL5 and IL13 were highly intercorrelated in severe asthma (r = 0.907, p < 0.001) and COPD (r = 0.824, p < 0.001), were moderately correlated with sputum eosinophils in severe asthma (IL5 r = 0.440, p < 0.001; IL13 r = 0.428, p < 0.001) and were weakly correlated in COPD (IL5 r = 0.245, p < 0.05; IL13 r = 0.317, p < 0.05). CONCLUSIONS Molecular markers of type 2 airway inflammation do not differ between eosinophilic asthma and eosinophilic COPD; however, the relationship between eosinophilia and type 2 airway markers appears weaker in COPD than in severe asthma.
Collapse
Affiliation(s)
- Michael Fricker
- School of Medicine and Public Health Faculty of Health and Medicine and Priority Research Centre for Healthy Lungs The University of Newcastle Callaghan NSW Australia
- National Health and Medical Research Council Centre for Excellence in Severe Asthma Newcastle NSW Australia
- Hunter Medical Research Institute Newcastle NSW Australia
| | - Vanessa M. McDonald
- National Health and Medical Research Council Centre for Excellence in Severe Asthma Newcastle NSW Australia
- Hunter Medical Research Institute Newcastle NSW Australia
- School of Nursing and Midwifery Faculty of Health and Medicine and Priority Research Centre for Healthy Lungs The University of Newcastle Callaghan NSW Australia
- Department of Respiratory and Sleep Medicine John Hunter Hospital Newcastle NSW Australia
| | - Natasha A. Winter
- School of Medicine and Public Health Faculty of Health and Medicine and Priority Research Centre for Healthy Lungs The University of Newcastle Callaghan NSW Australia
- National Health and Medical Research Council Centre for Excellence in Severe Asthma Newcastle NSW Australia
| | - Katherine J. Baines
- School of Medicine and Public Health Faculty of Health and Medicine and Priority Research Centre for Healthy Lungs The University of Newcastle Callaghan NSW Australia
- Hunter Medical Research Institute Newcastle NSW Australia
| | - Peter A. B. Wark
- School of Medicine and Public Health Faculty of Health and Medicine and Priority Research Centre for Healthy Lungs The University of Newcastle Callaghan NSW Australia
- Hunter Medical Research Institute Newcastle NSW Australia
- Department of Respiratory and Sleep Medicine John Hunter Hospital Newcastle NSW Australia
| | - Jodie L. Simpson
- School of Medicine and Public Health Faculty of Health and Medicine and Priority Research Centre for Healthy Lungs The University of Newcastle Callaghan NSW Australia
- Hunter Medical Research Institute Newcastle NSW Australia
- Department of Respiratory and Sleep Medicine John Hunter Hospital Newcastle NSW Australia
| | - Peter G. Gibson
- School of Medicine and Public Health Faculty of Health and Medicine and Priority Research Centre for Healthy Lungs The University of Newcastle Callaghan NSW Australia
- National Health and Medical Research Council Centre for Excellence in Severe Asthma Newcastle NSW Australia
- Hunter Medical Research Institute Newcastle NSW Australia
- Department of Respiratory and Sleep Medicine John Hunter Hospital Newcastle NSW Australia
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Allergic asthma reflects the interplay between inflammatory mediators and immune, airway epithelial, and other cells. This review summarizes key insights in these areas over the past year. RECENT FINDINGS Key findings over the past year demonstrate that epithelial cells mediate tight junction breakdown to facilitate the development of asthma-like disease in mice. Innate lymph lymphoid cells (ILC), while previously shown to promote allergic airway disease, have now been shown to inhibit the development of severe allergic disease in mice. Fibrinogen cleavage products (previously shown to mediate allergic airway disease and macrophage fungistatic immunity by signaling through Toll-like receptor 4) have now been shown to first bind to the integrin Mac-1 (CD11c/CD18). Therapeutically, recent discoveries include the development of the antiasthma drug PM-43I that inhibits the allergy-related transcription factors STAT5 and STAT6 in mice, and confirmatory evidence of the efficacy of the antifungal agent voriconazole in human asthma. SUMMARY Studies over the past year provide critical new insight into the mechanisms by which epithelial cells, ILC, and coagulation factors contribute to the expression of asthma-like disease and further support the development antiasthma drugs that block STAT factors and inhibit fungal growth in the airways.
Collapse
|
29
|
Chen W, Luo J, Ye Y, Hoyle R, Liu W, Borst R, Kazani S, Shikatani EA, Erpenbeck VJ, Pavord ID, Klenerman P, Sandham DA, Xue L. The Roles of Type 2 Cytotoxic T Cells in Inflammation, Tissue Remodeling, and Prostaglandin (PG) D 2 Production Are Attenuated by PGD 2 Receptor 2 Antagonism. THE JOURNAL OF IMMUNOLOGY 2021; 206:2714-2724. [PMID: 34011519 PMCID: PMC7610864 DOI: 10.4049/jimmunol.2001245] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/20/2021] [Indexed: 12/13/2022]
Abstract
Multiple proinflammatory effects of Tc2 cells are inhibited by DP2 antagonism. Tissue-remodeling functions of Tc2 cells are attenuated by DP2 antagonism. Autocrine/paracrine PGD2 production in Tc2 cells is reduced by DP2 antagonism.
Human type 2 cytotoxic T (Tc2) cells are enriched in severe eosinophilic asthma and can contribute to airway eosinophilia. PGD2 and its receptor PGD2 receptor 2 (DP2) play important roles in Tc2 cell activation, including migration, cytokine production, and survival. In this study, we revealed novel, to our knowledge, functions of the PGD2/DP2 axis in Tc2 cells to induce tissue-remodeling effects and IgE-independent PGD2 autocrine production. PGD2 upregulated the expression of tissue-remodeling genes in Tc2 cells that enhanced the fibroblast proliferation and protein production required for tissue repair and myofibroblast differentiation. PGD2 stimulated Tc2 cells to produce PGD2 using the routine PGD2 synthesis pathway, which also contributed to TCR-dependent PGD2 production in Tc2 cells. Using fevipiprant, a specific DP2 antagonist, we demonstrated that competitive inhibition of DP2 not only completely blocked the cell migration, adhesion, proinflammatory cytokine production, and survival of Tc2 cells triggered by PGD2 but also attenuated the tissue-remodeling effects and autocrine/paracrine PGD2 production in Tc2 induced by PGD2 and other stimulators. These findings further confirmed the anti-inflammatory effect of fevipiprant and provided a better understanding of the role of Tc2 cells in the pathogenesis of asthma.
Collapse
Affiliation(s)
- Wentao Chen
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Jian Luo
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Yuan Ye
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Ryan Hoyle
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Wei Liu
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Rowie Borst
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Shamsah Kazani
- Novartis Institutes for BioMedical Research, Cambridge MA
| | | | | | - Ian D Pavord
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Paul Klenerman
- Translational Gastroenterology Unit and Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | | | - Luzheng Xue
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom;
| |
Collapse
|
30
|
Castro M, Kerwin E, Miller D, Pedinoff A, Sher L, Cardenas P, Knorr B, Lawrence D, Ossa D, Wang W, Maspero JF. Efficacy and safety of fevipiprant in patients with uncontrolled asthma: Two replicate, phase 3, randomised, double-blind, placebo-controlled trials (ZEAL-1 and ZEAL-2). EClinicalMedicine 2021; 35:100847. [PMID: 33997741 PMCID: PMC8099656 DOI: 10.1016/j.eclinm.2021.100847] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND These studies assessed the efficacy and safety of fevipiprant, an oral antagonist of the prostaglandin D2 (PGD2) receptor (DP2), compared with placebo when added to standard-of-care (SoC) asthma therapy in patients with uncontrolled asthma. METHODS ZEAL-1 (NCT03215758) and ZEAL-2 (NCT03226392) are two replicate, phase 3, multicentre, randomised, double-blind, placebo-controlled, parallel-group studies in which fevipiprant 150 mg once daily (o.d.) or placebo was added to SoC asthma therapy in patients aged ≥12 years with uncontrolled asthma. Primary endpoint: change from baseline in pre-dose forced expiratory volume in 1 s (FEV1) after 12 weeks' treatment. Key secondary endpoints: daytime asthma symptom score, short-acting β-agonist (SABA) use and Asthma Quality-of-Life Questionnaire (AQLQ+12) score after 12-weeks treatment. FINDINGS 662 patients in ZEAL-1 and 685 patients in ZEAL-2 completed the treatment period. In ZEAL-1, the least squares (LS) mean change from baseline in pre-dose FEV1 was 112 mL in fevipiprant vs 71 mL in placebo group (difference [∆]:41 mL; 95% CI: -6, 88; adjusted p-value 0·088). In ZEAL-2, the LS mean change in pre-dose FEV1 was 126 mL and 157 mL in the fevipiprant and placebo groups, respectively (∆:-31 mL; 95% CI: -80, 18; adjusted p-value 0·214). For both studies, there were no statistically significant differences in the key secondary objectives between the treatment groups. INTERPRETATION The ZEAL studies did not demonstrate significant improvement in lung function or other clinical outcomes. These results suggest that DP2 receptor inhibition with fevipiprant is not effective in the studied patient population.
Collapse
Affiliation(s)
- Mario Castro
- Division of Pulmonary, Critical Care Medicine, University of Kansas School of Medicine, Kansas City, KS, USA
- Corresponding author.
| | - Edward Kerwin
- Clinical Research Institute of Southern Oregon, Medford, OR, USA
| | - David Miller
- Northeast Medical Research Associates, Inc., North Dartmouth, MA, USA
| | | | - Lawrence Sher
- Peninsula Research Associates, Rolling Hills Estates, CA, USA
| | | | - Barbara Knorr
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | | | | | - Wei Wang
- Novartis Institutes for Biomedical Research Co., Ltd, Shanghai, China
| | - Jorge F Maspero
- Allergy and Respiratory Research Unit, Fundación CIDEA, Buenos Aires, Argentina
| |
Collapse
|
31
|
The pharmacology of the prostaglandin D 2 receptor 2 (DP 2) receptor antagonist, fevipiprant. Pulm Pharmacol Ther 2021; 68:102030. [PMID: 33826946 DOI: 10.1016/j.pupt.2021.102030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 11/23/2022]
Abstract
Fevipiprant is an oral, non-steroidal, highly selective, reversible antagonist of the prostaglandin D2 (DP2) receptor. The DP2 receptor is a mediator of inflammation expressed on the membrane of key inflammatory cells, including eosinophils, Th2 cells, type 2 innate lymphoid cells, CD8+ cytotoxic T cells, basophils and monocytes, as well as airway smooth muscle and epithelial cells. The DP2 receptor pathway regulates the allergic and non-allergic asthma inflammatory cascade and is activated by the binding of prostaglandin D2. Fevipiprant is metabolised by several uridine 5'-diphospho glucuronosyltransferase enzymes to an inactive acyl-glucuronide (AG) metabolite, the only major human metabolite. Both fevipiprant and its AG metabolite are eliminated by urinary excretion; fevipiprant is also possibly cleared by biliary excretion. These parallel elimination pathways suggested a low risk of major drug-drug interactions (DDI), pharmacogenetic or ethnic variability for fevipiprant, which was supported by DDI and clinical studies of fevipiprant. Phase II clinical trials of fevipiprant showed reduction in sputum eosinophilia, as well as improvement in lung function, symptoms and quality of life in patients with asthma. While fevipiprant reached the most advanced state of development to date of an oral DP2 receptor antagonist in a worldwide Phase III clinical trial programme, the demonstrated efficacy did not support further clinical development in asthma.
Collapse
|
32
|
Wang X, Bartels C, Kulkarni S, Sangana R, Jain M, Zack J, Yu J. Population Pharmacokinetic Analysis of Fevipiprant in Healthy Subjects and Asthma Patients using a Tukey’s g-and-h Distribution. Drug Res (Stuttg) 2021; 71:326-334. [PMID: 33682912 DOI: 10.1055/a-1381-6579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
Aim The objective of this analysis was to characterize the population pharmacokinetics (PK) of fevipiprant in asthma patients and to evaluate the effect of baseline covariates on the PK of fevipiprant.
Methods PK data from 1281 healthy subjects or asthma patients were available after single or once daily dosing of fevipiprant. Population PK analysis was conducted to describe fevipiprant plasma concentration data using a non-linear mixed effect modeling approach.
Results Fevipiprant PK was described by a two-compartment model with first-order absorption and first-order elimination. Exploration of fevipiprant PK in the population from the phase III studies revealed an over-dispersed and skewed distribution. This unusual distribution was described using Tukey’s g-and-h distribution (TGH) on the between-subject variability of apparent clearance (CL/F). The model identified a significant impact of disease status on CL/F, with the value in healthy subjects being 62% higher than that in asthma patients. Bodyweight, age and renal function showed statistically significant impact on fevipiprant clearance; however, compared with a typical asthma patient, the simulated difference in steady-state exposure was at most 16%.
Conclusion Fevipiprant PK was described by a two-compartment model with first-order absorption and first-order elimination. The TGH distribution was appropriate to describe the over-dispersed and skewed PK data as observed in the current studies. Asthma patients had approximately 37% higher exposure than healthy subjects did. Other covariates changed exposure by at most 16%.
Collapse
Affiliation(s)
- Xinting Wang
- Biostatistics & Pharmacometrics, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Christian Bartels
- Biostatistics & Pharmacometrics, Novartis Pharma AG, Basel, Switzerland
| | - Swarupa Kulkarni
- PK Science, Novartis Pharmaceutics Corporation, East Hanover, NJ, USA
| | | | - Monish Jain
- PK Science, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Julia Zack
- PK Science, Novartis Pharmaceutics Corporation, East Hanover, NJ, USA
| | - Jing Yu
- Biostatistics & Pharmacometrics, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| |
Collapse
|
33
|
Li Y, Kim WM, Kim SH, You HE, Kang DH, Lee HG, Choi JI, Yoon MH. Prostaglandin D 2 contributes to cisplatin-induced neuropathic pain in rats via DP2 receptor in the spinal cord. Korean J Pain 2021; 34:27-34. [PMID: 33380565 PMCID: PMC7783857 DOI: 10.3344/kjp.2021.34.1.27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/24/2020] [Accepted: 10/28/2020] [Indexed: 11/05/2022] Open
Abstract
Background Chemotherapy-induced peripheral neuropathy (CIPN) is a major reason for stopping or changing anticancer therapy. Among the proposed pathomechanisms underlying CIPN, proinflammatory processes have attracted increasing attention. Here we assessed the role of prostaglandin D2 (PGD2) signaling in cisplatin-induced neuropathic pain. Methods CIPN was induced by intraperitoneal administration of cisplatin 2 mg/kg for 4 consecutive days using adult male Sprague-Dawley rats. PGD2 receptor DP1 and/or DP2 antagonists were administered intrathecally and the paw withdrawal thresholds were measured using von Frey filaments. Spinal expression of DP1, DP2, hematopoietic PGD synthase (H-PGDS), and lipocalin PGD synthase (L-PGDS) proteins were analyzed by western blotting. Results The DP1 and DP2 antagonist AMG 853 and the selective DP2 antagonist CAY10471, but not the DP1 antagonist MK0524, significantly increased the paw withdrawal threshold compared to vehicle controls (P = 0.004 and P < 0.001, respectively). Western blotting analyses revealed comparable protein expression levels in DP1 and DP2 in the spinal cord. In the CIPN group the protein expression level of L-PGDS, but not of H-PGDS, was significantly increased compared to the control group (P < 0.001). Conclusions The findings presented here indicate that enhanced PGD2 signaling, via upregulation of L-PGDS in the spinal cord, contributes to mechanical allodynia via DP2 receptors in a cisplatin-induced neuropathic pain model in rats, and that a blockade of DP2 receptor activation may present a novel therapeutic target for managing CIPN.
Collapse
Affiliation(s)
- Yaqun Li
- Department of Anesthesiology and Pain Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Woong Mo Kim
- Department of Anesthesiology and Pain Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea.,Department of Anesthesiology and Pain Medicine, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Seung Hoon Kim
- Department of Anesthesiology and Pain Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Hyun Eung You
- Department of Anesthesiology and Pain Medicine, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Dong Ho Kang
- Department of Anesthesiology and Pain Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Hyung Gon Lee
- Department of Anesthesiology and Pain Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea.,Center for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju, Korea
| | - Jeong Il Choi
- Department of Anesthesiology and Pain Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea.,Center for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju, Korea
| | - Myung Ha Yoon
- Department of Anesthesiology and Pain Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea.,Center for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
34
|
Sokolowska M, Rovati GE, Diamant Z, Untersmayr E, Schwarze J, Lukasik Z, Sava F, Angelina A, Palomares O, Akdis CA, O’Mahony L, Sanak M, Dahlen S, Woszczek G. Current perspective on eicosanoids in asthma and allergic diseases: EAACI Task Force consensus report, part I. Allergy 2021; 76:114-130. [PMID: 32279330 DOI: 10.1111/all.14295] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/13/2020] [Accepted: 03/25/2020] [Indexed: 12/25/2022]
Abstract
Eicosanoids are biologically active lipid mediators, comprising prostaglandins, leukotrienes, thromboxanes, and lipoxins, involved in several pathophysiological processes relevant to asthma, allergies, and allied diseases. Prostaglandins and leukotrienes are the most studied eicosanoids and established inducers of airway pathophysiology including bronchoconstriction and airway inflammation. Drugs inhibiting the synthesis of lipid mediators or their effects, such as leukotriene synthesis inhibitors, leukotriene receptors antagonists, and more recently prostaglandin D2 receptor antagonists, have been shown to modulate features of asthma and allergic diseases. This review, produced by an European Academy of Allergy and Clinical Immunology (EAACI) task force, highlights our current understanding of eicosanoid biology and its role in mediating human pathology, with a focus on new findings relevant for clinical practice, development of novel therapeutics, and future research opportunities.
Collapse
Affiliation(s)
- Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
- Christine Kühne ‐ Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - G. Enrico Rovati
- Department of Pharmaceutical Sciences University of Milan Milan Italy
| | - Zuzana Diamant
- Department of Respiratory Medicine & Allergology Skane University Hospital Lund Sweden
- Department of Respiratory Medicine First Faculty of Medicine Charles University and Thomayer Hospital Prague Czech Republic
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Jargen Schwarze
- Child Life and Health and Centre for Inflammation Research The University of Edinburgh Edinburgh UK
| | - Zuzanna Lukasik
- Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
| | - Florentina Sava
- London North Genomic Laboratory Hub Great Ormond Street Hospital for Children NHS Foundation Trust London UK
| | - Alba Angelina
- Department of Biochemistry and Molecular Biology School of Chemistry Complutense University Madrid Spain
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology School of Chemistry Complutense University Madrid Spain
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
- Christine Kühne ‐ Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - Liam O’Mahony
- Departments of Medicine and Microbiology APC Microbiome Ireland University College Cork Cork Ireland
| | - Marek Sanak
- Department of Medicine Jagiellonian University Medical College Krakow Poland
| | - Sven‐Erik Dahlen
- Institute of Environmental Medicine Karolinska Institute Stockholm Sweden
- Centre for Allergy Research Karolinska Institute Stockholm Sweden
| | - Grzegorz Woszczek
- MRC/Asthma UK Centre in Allergic Mechanisms of Asthma School of Immunology & Microbial Sciences King's College London London UK
| |
Collapse
|
35
|
Saunders R, Kaur D, Desai D, Berair R, Chachi L, Thompson RD, Siddiqui SH, Brightling CE. Fibrocyte localisation to the ASM bundle in asthma: bidirectional effects on cell phenotype and behaviour. Clin Transl Immunology 2020; 9:e1205. [PMID: 33209301 PMCID: PMC7662089 DOI: 10.1002/cti2.1205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/21/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Objectives Airway hyper‐responsiveness and persistent airflow obstruction contribute to asthma pathogenesis and symptoms, due in part to airway smooth muscle (ASM) hypercontractility and increased ASM mass. Fibrocytes have been shown to localise to the ASM in asthma however it is not known whether fibrocytes localise to the ASM in nonasthmatic eosinophilic bronchitis (NAEB) and chronic obstructive pulmonary disease (COPD). In addition, the potential consequences of fibrocyte localisation to ASM as regards asthma pathophysiology has not been widely studied. Methods Fibrocytes and proliferating cells were enumerated in ASM in bronchial tissue using immunohistochemistry. The effects of primary ASM and fibrocytes upon each other in terms of phenotype and behaviour following co‐culture were investigated by assessing cell number, size, apoptotic status, phenotype and contractility in in vitro cell‐based assays. Results Increased fibrocyte number in the ASM was observed in asthma versus NAEB, but not NAEB and COPD versus controls, and confirmed in asthma versus controls. ASM proliferation was not detectably different in asthmatics versus healthy controls in vivo. No difference in proliferation, apoptotic status or size of ASM was seen following culture with/without fibrocytes. Following co‐culture with ASM from asthmatics versus nonasthmatics, fibrocyte smooth muscle marker expression and collagen gel contraction were greater. Following co‐culture, fibrocyte CD14 expression was restored with the potential to contribute to asthma pathogenesis via monocyte‐mediated processes dependent on the inflammatory milieu. Conclusion Further understanding of mechanisms of fibrocyte recruitment to and/or differentiation within the ASM may identify novel therapeutic targets to modulate ASM dysfunction in asthma.
Collapse
Affiliation(s)
- Ruth Saunders
- Department of Respiratory Sciences Institute for Lung Health University of Leicester Leicester UK
| | - Davinder Kaur
- Department of Respiratory Sciences Institute for Lung Health University of Leicester Leicester UK
| | - Dhananjay Desai
- Department of Respiratory Sciences Institute for Lung Health University of Leicester Leicester UK.,Present address: University Hospitals Coventry & Warwickshire NHS Trust Coventry UK
| | - Rachid Berair
- Department of Respiratory Sciences Institute for Lung Health University of Leicester Leicester UK.,Present address: The Royal Wolverhampton NHS Trust Wolverhampton UK
| | - Latifa Chachi
- Department of Respiratory Sciences Institute for Lung Health University of Leicester Leicester UK
| | | | - Salman H Siddiqui
- Department of Respiratory Sciences Institute for Lung Health University of Leicester Leicester UK
| | - Christopher E Brightling
- Department of Respiratory Sciences Institute for Lung Health University of Leicester Leicester UK
| |
Collapse
|
36
|
Weiss HM, Umehara KI, Erpenbeck VJ, Cain M, Vemula J, Elbast W, Zollinger M. A Study of the Effect of Cyclosporine on Fevipiprant Pharmacokinetics and its Absolute Bioavailability Using an Intravenous Microdose Approach. Drug Metab Dispos 2020; 48:917-924. [PMID: 32739890 DOI: 10.1124/dmd.120.090852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/17/2020] [Indexed: 12/21/2022] Open
Abstract
This drug-drug interaction study determined the effect of cyclosporine, an inhibitor of organic anion transporting polypeptide (OATP) 1B3 and P-gp, on the pharmacokinetics (PK) of fevipiprant, an oral, highly selective, competitive antagonist of the prostaglandin D2 receptor 2 and a substrate of the two transporters. The concomitant administration of an intravenous microdose of stable isotope-labeled fevipiprant provided the absolute bioavailability of fevipiprant as well as mechanistic insights into its PK and sensitivity to drug interactions. Liquid chromatography-mass spectrometry/mass spectrometry was used to measure plasma and urine concentrations. Geometric mean ratios [90% confidence interval (CI)] for oral fevipiprant with or without cyclosporine were 3.02 (2.38, 3.82) for C max, 2.50 (2.17, 2.88) for AUClast, and 2.35 (1.99, 2.77) for AUCinf The geometric mean ratios (90% CI) for fevipiprant intravenous microdose with or without cyclosporine were 1.04 (0.86, 1.25) for C max, 2.04 (1.83, 2.28) for AUClast, and 1.95 (1.76, 2.16) for AUCinf The absolute bioavailability for fevipiprant was approximately 0.3 to 0.4 in the absence and 0.5 in the presence of cyclosporine. The intravenous microdose allowed differentiation between systemic and presystemic effects of cyclosporine on fevipiprant, demonstrating a small (approximately 1.2-fold) presystemic effect of cyclosporine and a larger (approximately twofold) effect on systemic elimination of fevipiprant. Uptake by OATP1B3 appears to be the rate-limiting step in the hepatic elimination of fevipiprant, whereas P-gp does not have a relevant effect on oral absorption. SIGNIFICANCE STATEMENT: The drug interaction investigated here with cyclosporine, an inhibitor of several drug transporters, provides a refined quantitative understanding of the role of active transport processes in liver and intestine for the absorption and elimination of fevipiprant as well as the basis to assess the need for dose adjustment in the presence of transporter inhibitors. The applied intravenous microdose approach presents a strategy to maximize learnings from a trial, limit the number and duration of clinical trials, and enhance mechanistic drug-drug interaction understanding.
Collapse
Affiliation(s)
- H Markus Weiss
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | | | - Meredith Cain
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | - Walid Elbast
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | |
Collapse
|
37
|
Zhang J, Dong L. Status and prospects: personalized treatment and biomarker for airway remodeling in asthma. J Thorac Dis 2020; 12:6090-6101. [PMID: 33209441 PMCID: PMC7656354 DOI: 10.21037/jtd-20-1024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Airway remodeling, as a major characteristic of bronchial asthma, is critical to the progression of this disease, whereas it is of less importance in clinical management. Complying with the current stepwise treatment standard for asthma, the choice of intervention on the clinical status is primarily determined by the patient’s treatment response to airway inflammation. However, a considerable number of asthmatic patients, especially severe asthmatic subjects, remain uncontrolled though they have undergone fortified anti-inflammation treatment. In the past few years, a growing number of biologics specific to asthma phenotypes have emerged, bringing new hope for patients with refractory asthma and severe asthma. While at the same time, the effect of airway remodeling on asthma treatment has become progressively prominent. In the era of personalized treatment, it has become one of the development directions for asthma treatment to find reliable airway remodeling biomarkers to assist in asthma phenotypes classification, and to further combine multiple phenotypes to accurately treat patients. In the present study, the research status of airway remodeling in asthma is reviewed to show the basis for classifying and treating such disease. Besides, several selected airway remodeling biomarkers and possibility to use them in individual treatment are discussed as well. This study considers that continuously optimized mechanisms and emerging biomarkers for airway remodeling in the future may further support individual therapy for asthma patients.
Collapse
Affiliation(s)
- Jintao Zhang
- Department of Respiratory and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Liang Dong
- Department of Respiratory and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
38
|
Brightling CE, Gaga M, Inoue H, Li J, Maspero J, Wenzel S, Maitra S, Lawrence D, Brockhaus F, Lehmann T, Brindicci C, Knorr B, Bleecker ER. Effectiveness of fevipiprant in reducing exacerbations in patients with severe asthma (LUSTER-1 and LUSTER-2): two phase 3 randomised controlled trials. THE LANCET RESPIRATORY MEDICINE 2020; 9:43-56. [PMID: 32979986 DOI: 10.1016/s2213-2600(20)30412-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Fevipiprant, an oral antagonist of the prostaglandin D2 receptor 2, reduced sputum eosinophils and improved lung function in phase 2 trials of patients with asthma. We aimed to investigate whether fevipiprant reduces asthma exacerbations in patients with severe asthma. METHODS LUSTER-1 and LUSTER-2 were two phase 3 randomised, double-blind, placebo-controlled, parallel-group, replicate 52-week studies; LUSTER-1 took place at 174 clinical sites in 25 countries and LUSTER 2 took place at 169 clinical sites in 19 countries. Fevipiprant or placebo was added to Global Initiative for Asthma Steps 4 and 5 therapy in adolescents and adults with severe asthma. Patients aged 12 years or older with uncontrolled asthma on dual or triple asthma therapy were randomly assigned by use of interactive response technology to one of three treatment groups (once-daily fevipiprant 150 mg, fevipiprant 450 mg, or placebo) in a 1:1:1 ratio within each of the randomisation strata: peripheral blood eosinophil counts (<250 cells per μL or ≥250 cells per μL), patient age (<18 years or ≥18 years), and use or non-use of oral corticosteroids as part of their standard of care asthma therapy. The primary efficacy endpoint was the annualised rate of moderate to severe asthma exacerbations with 150 mg or 450 mg doses of fevipiprant once daily compared with placebo over 52 weeks, in patients with high blood eosinophil counts (≥250 cells per μL) and in the overall study population. All patients who underwent randomisation and received at least one dose of study medication were included in efficacy and safety analyses. These trials are registered with ClinicalTrials.gov, NCT02555683 (LUSTER-1) and NCT02563067 (LUSTER-2), and are complete and no longer recruiting. FINDINGS Between Dec 11, 2015, and Oct 25, 2018, 894 patients were randomly assigned to fevipiprant 150 mg (n=301), fevipiprant 450 mg (n=295), or placebo (n=298) in LUSTER-1. Between Dec 3, 2015, and July 10, 2018, 877 patients were randomly assigned to fevipiprant 150 mg (n=296), fevipiprant 450 mg (n=294), or placebo (n=287) in LUSTER-2. In the high eosinophil population, in LUSTER-1 the annualised rate ratio of moderate to severe exacerbations compared with placebo was 1·04 (95% CI 0·77-1·41) for fevipiprant 150 mg and 0·83 (0·61-1·14) for fevipiprant 450 mg, and in LUSTER-2 it was 0·69 (0·50-0·96) for fevipiprant 150 mg and 0·72 (0·52-1·01) for fevipiprant 450 mg. In the overall population, in LUSTER-1 the annualised rate ratio of moderate to severe exacerbations compared with placebo was 0·96 (95% CI 0·75-1·22) for fevipiprant 150 mg and 0·78 (0·61-1·01) for fevipiprant 450 mg and in LUSTER-2 it was 0·82 (0·62-1·07) for fevipiprant 150 mg and 0·76 (0·58-1·00) for fevipiprant 450 mg. In the overall pooled population of both studies, serious adverse events occurred in 53 (9%) patients in the fevipiprant 150 mg group, 50 (9%) in the fevipiprant 450 mg group, and 50 (9%) in the placebo group. Adverse events leading to death occurred in two (<1%) patients in the fevipiprant 450 mg group and three (<1%) in the placebo group. INTERPRETATION Although neither trial showed a statistically significant reduction in asthma exacerbations after adjusting for multiple testing, consistent and modest reductions in exacerbations rates were observed in both studies with the 450 mg dose of fevipiprant. FUNDING Novartis.
Collapse
Affiliation(s)
- Christopher E Brightling
- Department of Respiratory Science, NIHR Biomedical Research Centre, Institute for Lung Health University of Leicester, Leicester, UK.
| | - Mina Gaga
- 7th Respiratory Medicine Dept and Asthma Centre, Athens Chest Hospital Sotiria, Athens, Greece
| | - Hiromasa Inoue
- Department of Pulmonary Medicine, Kagoshima University, Kagoshima, Japan
| | - Jing Li
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital Guangzhou Medical University, Guangzhou, China
| | - Jorge Maspero
- Fundación CIDEA (Centro de Investigación de Enfermedades Alérgicas y Respiratorias), Buenos Aires, Argentina
| | - Sally Wenzel
- University of Pittsburgh Asthma Institute at the University of Pittsburgh Medical Center-University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | | | | | | - Barbara Knorr
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | - Eugene R Bleecker
- Division of Genetics, Genomics and Precision Medicine, Department of Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
39
|
Stasiak SE, Jamieson RR, Bouffard J, Cram EJ, Parameswaran H. Intercellular communication controls agonist-induced calcium oscillations independently of gap junctions in smooth muscle cells. SCIENCE ADVANCES 2020; 6:eaba1149. [PMID: 32821820 PMCID: PMC7406377 DOI: 10.1126/sciadv.aba1149] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
In this study, we report the existence of a communication system among human smooth muscle cells that uses mechanical forces to frequency modulate long-range calcium waves. An important consequence of this mechanical signaling is that changes in stiffness of the underlying extracellular matrix can interfere with the frequency modulation of Ca2+ waves, causing smooth muscle cells from healthy human donors to falsely perceive a much higher agonist dose than they actually received. This aberrant sensing of contractile agonist dose on stiffer matrices is completely absent in isolated smooth muscle cells, although the isolated cells can sense matrix rigidity. We show that the intercellular communication that enables this collective Ca2+ response in smooth muscle cells does not involve transport across gap junctions or extracellular diffusion of signaling molecules. Instead, our data support a collective model in which mechanical signaling among smooth muscle cells regulates their response to contractile agonists.
Collapse
Affiliation(s)
- S. E. Stasiak
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - R. R. Jamieson
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - J. Bouffard
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - E. J. Cram
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - H. Parameswaran
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
40
|
Wang KCW, Donovan GM, James AL, Noble PB. Asthma: Pharmacological degradation of the airway smooth muscle layer. Int J Biochem Cell Biol 2020; 126:105818. [PMID: 32707120 DOI: 10.1016/j.biocel.2020.105818] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 12/23/2022]
Abstract
Asthma: A disease characterised by excessive and variable airway narrowing, and pathologies of inflammation and remodelling, particularly thickening of the airway smooth muscle (ASM). Treatment approaches dilate narrowed airways and reduce inflammation; however, remodelling seems largely neglected. This review considers the evolution of remodelling in asthma and whether conventional hypotheses that inflammation causes ASM thickening has mislead the medical community into thinking that anti-inflammatories will remedy this ASM defect. There is instead reasonable evidence that ASM thickening occurs independently of inflammation, such that therapies should employ strategies to directly modify ASM growth. Lessons have been learned from the use of untargeted bronchial thermoplasty and there should also be consideration of pharmacological therapies to ablate ASM. We discuss several new approaches to target ASM remodelling in asthma. A major current obstacle is our inability to image the ASM layer and assess treatment response. In this regard, polarisation-sensitive optical coherence tomography offers future promise.
Collapse
Affiliation(s)
- Kimberley C W Wang
- School of Human Sciences, The University of Western Australia, Crawley, 6009, Western Australia, Australia; Telethon Kids Institute, The University of Western Australia, Nedlands, 6009, Western Australia, Australia.
| | - Graham M Donovan
- Department of Mathematics, University of Auckland, Auckland, 1142, New Zealand
| | - Alan L James
- Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, 6009, Western Australia, Australia; Medical School, The University of Western Australia, Nedlands, 6009, Western Australia, Australia
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Crawley, 6009, Western Australia, Australia
| |
Collapse
|
41
|
Hough KP, Curtiss ML, Blain TJ, Liu RM, Trevor J, Deshane JS, Thannickal VJ. Airway Remodeling in Asthma. Front Med (Lausanne) 2020; 7:191. [PMID: 32509793 PMCID: PMC7253669 DOI: 10.3389/fmed.2020.00191] [Citation(s) in RCA: 240] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
Asthma is an inflammatory disease of the airways that may result from exposure to allergens or other environmental irritants, resulting in bronchoconstriction, wheezing, and shortness of breath. The structural changes of the airways associated with asthma, broadly referred to as airway remodeling, is a pathological feature of chronic asthma that contributes to the clinical manifestations of the disease. Airway remodeling in asthma constitutes cellular and extracellular matrix changes in the large and small airways, epithelial cell apoptosis, airway smooth muscle cell proliferation, and fibroblast activation. These pathological changes in the airway are orchestrated by crosstalk of different cell types within the airway wall and submucosa. Environmental exposures to dust, chemicals, and cigarette smoke can initiate the cascade of pro-inflammatory responses that trigger airway remodeling through paracrine signaling and mechanostimulatory cues that drive airway remodeling. In this review, we explore three integrated and dynamic processes in airway remodeling: (1) initiation by epithelial cells; (2) amplification by immune cells; and (3) mesenchymal effector functions. Furthermore, we explore the role of inflammaging in the dysregulated and persistent inflammatory response that perpetuates airway remodeling in elderly asthmatics.
Collapse
Affiliation(s)
- Kenneth P Hough
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Miranda L Curtiss
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Trevor J Blain
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rui-Ming Liu
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jennifer Trevor
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jessy S Deshane
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Victor J Thannickal
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
42
|
Fricker M, Qin L, Niessen N, Baines KJ, McDonald VM, Scott HA, Simpson JL, Gibson PG. Relationship of sputum mast cells with clinical and inflammatory characteristics of asthma. Clin Exp Allergy 2020; 50:696-707. [PMID: 32291815 DOI: 10.1111/cea.13609] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/04/2020] [Accepted: 03/26/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Mast cells (MCs) are innate immune cells that regulate atopic and non-atopic inflammation in the airways. MCs play a critical role in the pathogenesis of asthma, yet their relationship to airway and systemic inflammation and clinical characteristics of asthma is poorly understood. OBJECTIVE To quantify MCs in induced sputum samples and understand their relationship to airway and circulatory immune cells, and clinical variables in asthma. METHODS We employed flow cytometry of sputum samples to quantify MCs, basophils and other immune cells in 51 participants (45 asthma and 6 non-asthma controls). Relationship of MCs to airway (n = 45) and blood (n = 19) immune cells, participant demographics, asthma history, spirometry and airways hyperresponsiveness (AHR) to hypertonic saline was determined by correlation and comparison of cut-off-based sputum MC high vs low participants. RESULTS Mast cells, basophils and eosinophils were increased in asthma vs non-asthma control sputum. In asthma sputum, MCs, basophils and eosinophils were significantly intercorrelated, and MCs and basophils were elevated in participants with eosinophilic asthma. MCs and basophils, but not eosinophils, correlated with AHR. Sputum MC high asthma was characterized by an increased proportion of participants with uncontrolled asthma and reduced FEV1 and FVC. Trends towards similar clinical associations with elevated MCs were observed in a paucigranulocytic subpopulation (n = 15) lacking airway eosinophilia or neutrophilia. Receiver operator characteristic (ROC) analysis showed peripheral blood eosinophil (PBE) count predicted elevated sputum eosinophils and basophils, but not MCs. CONCLUSIONS AND CLINICAL RELEVANCE Sputum MCs are elevated in asthma, and their measurement may be useful as they relate to key clinical features of asthma (spirometry, asthma control, AHR). PBE count did not predict airway MC status, suggesting direct measurement of airway MCs by sensitive methods such as flow cytometry should be further developed.
Collapse
Affiliation(s)
- Michael Fricker
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia.,National Health and Medical Research Council Centre of Excellence in Severe Asthma, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Ling Qin
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia
| | - Natalie Niessen
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia.,National Health and Medical Research Council Centre of Excellence in Severe Asthma, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Katherine J Baines
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Vanessa M McDonald
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia.,National Health and Medical Research Council Centre of Excellence in Severe Asthma, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia.,Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| | - Hayley A Scott
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Jodie L Simpson
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia.,Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| | - Peter G Gibson
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia.,National Health and Medical Research Council Centre of Excellence in Severe Asthma, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia.,Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| |
Collapse
|
43
|
Beaufils F, Marthan R, Berger P. Bnip3 as a potential target to treat airway smooth muscle remodeling in asthma? Am J Physiol Lung Cell Mol Physiol 2020; 318:L212. [PMID: 31910033 DOI: 10.1152/ajplung.00431.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Fabien Beaufils
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Université de Bordeaux, Bordeaux, France.,Service d'Explorations Fonctionnelles Respiratoires, Centre Hospitalier Universitaire de Bordeaux, Pessac, France
| | - Roger Marthan
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Université de Bordeaux, Bordeaux, France.,Service d'Explorations Fonctionnelles Respiratoires, Centre Hospitalier Universitaire de Bordeaux, Pessac, France
| | - Patrick Berger
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Université de Bordeaux, Bordeaux, France.,Service d'Explorations Fonctionnelles Respiratoires, Centre Hospitalier Universitaire de Bordeaux, Pessac, France
| |
Collapse
|
44
|
Brightling CE, Brusselle G, Altman P. The impact of the prostaglandin D 2 receptor 2 and its downstream effects on the pathophysiology of asthma. Allergy 2020; 75:761-768. [PMID: 31355946 DOI: 10.1111/all.14001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/24/2019] [Accepted: 07/17/2019] [Indexed: 02/03/2023]
Abstract
Current research suggests that the prostaglandin D2 (PGD2 ) receptor 2 (DP2 ) is a principal regulator in the pathophysiology of asthma, because it stimulates and amplifies the inflammatory response in this condition. The DP2 receptor can be activated by both allergic and nonallergic stimuli, leading to several pro-inflammatory events, including eosinophil activation and migration, release of the type 2 cytokines interleukin (IL)-4, IL-5 and IL-13 from T helper 2 (Th2) cells and innate lymphoid cells type 2 (ILCs), and increased airway smooth muscle mass via recruitment of mesenchymal progenitors to the airway smooth muscle bundle. Activation of the DP2 receptor pathway has potential downstream effects on asthma pathophysiology, including on airway epithelial cells, mucus hypersecretion, and airway remodelling, and consequently might impact asthma symptoms and exacerbations. Given the broad distribution of DP2 receptors on immune and structural cells involved in asthma, this receptor is being explored as a novel therapeutic target.
Collapse
Affiliation(s)
| | - Guy Brusselle
- Department of Respiratory Diseases Ghent University Hospital Ghent Belgium
| | - Pablo Altman
- Novartis Pharmaceuticals Corporation East Hanover NJ USA
| |
Collapse
|
45
|
Lee K, Lee SH, Kim TH. The Biology of Prostaglandins and Their Role as a Target for Allergic Airway Disease Therapy. Int J Mol Sci 2020; 21:ijms21051851. [PMID: 32182661 PMCID: PMC7084947 DOI: 10.3390/ijms21051851] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 12/11/2022] Open
Abstract
Prostaglandins (PGs) are a family of lipid compounds that are derived from arachidonic acid via the cyclooxygenase pathway, and consist of PGD2, PGI2, PGE2, PGF2, and thromboxane B2. PGs signal through G-protein coupled receptors, and individual PGs affect allergic inflammation through different mechanisms according to the receptors with which they are associated. In this review article, we have focused on the metabolism of the cyclooxygenase pathway, and the distinct biological effect of each PG type on various cell types involved in allergic airway diseases, including asthma, allergic rhinitis, nasal polyposis, and aspirin-exacerbated respiratory disease.
Collapse
|
46
|
Eyerich S, Metz M, Bossios A, Eyerich K. New biological treatments for asthma and skin allergies. Allergy 2020; 75:546-560. [PMID: 31444793 DOI: 10.1111/all.14027] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023]
Abstract
Allergies are typically endemic, complex and heterogeneous diseases with a high impact at quality of life. Mechanistically, type 2 immune responses involving eosinophil and basophil granulocytes, mast cells and humoral factors such as IgE are key drivers of allergic diseases. Fighting allergic diseases knows three strategies: prevention, symptomatic and causative therapy. While remarkable progress was made in understanding molecular events in allergies as a prerequisite for effective prevention and desensitization, this review article focuses on the most efficient symptomatic treatments-that is using more and more specific antibodies neutralizing particular immune pathways. We highlight and classify recent and upcoming developments in the three prototype chronic allergic diseases allergic asthma, chronic spontaneous urticaria and atopic eczema. In all three examples, biologics such as dupilumab or omalizumab become reliable and efficient therapeutic options. Finally, we give an outlook how a diagnostic and therapeutic workflow might look like in the near future for these three major burdens of society.
Collapse
Affiliation(s)
- Stefanie Eyerich
- Center of Allergy and Environment (ZAUM) Helmholtz Center and Technical University of Munich Munich Germany
| | - Martin Metz
- Dermatological Allergology Department of Dermatology and Allergy Charité‐Universitätsmedizin Berlin Germany
| | - Apostolos Bossios
- Department of Respiratory Medicine and Allergy Karolinska University Hospital, Huddinge, and Department of Medicine, Huddinge Karolinska Institutet Stockholm Sweden
- Centre for Allergy Research Karolinska Institutet Stockholm Sweden
| | - Kilian Eyerich
- Department of Dermatology and Allergy Technical University of Munich Munich Germany
- Unit of Dermatology and Venerology Department of Medicine Karolinska Institutet Karolinska University Hospital Stockholm Sweden
| |
Collapse
|
47
|
Fang L, Sun Q, Roth M. Immunologic and Non-Immunologic Mechanisms Leading to Airway Remodeling in Asthma. Int J Mol Sci 2020; 21:ijms21030757. [PMID: 31979396 PMCID: PMC7037330 DOI: 10.3390/ijms21030757] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023] Open
Abstract
Asthma increases worldwide without any definite reason and patient numbers double every 10 years. Drugs used for asthma therapy relax the muscles and reduce inflammation, but none of them inhibited airway wall remodeling in clinical studies. Airway wall remodeling can either be induced through pro-inflammatory cytokines released by immune cells, or direct binding of IgE to smooth muscle cells, or non-immunological stimuli. Increasing evidence suggests that airway wall remodeling is initiated early in life by epigenetic events that lead to cell type specific pathologies, and modulate the interaction between epithelial and sub-epithelial cells. Animal models are only available for remodeling in allergic asthma, but none for non-allergic asthma. In human asthma, the mechanisms leading to airway wall remodeling are not well understood. In order to improve the understanding of this asthma pathology, the definition of “remodeling” needs to be better specified as it summarizes a wide range of tissue structural changes. Second, it needs to be assessed if specific remodeling patterns occur in specific asthma pheno- or endo-types. Third, the interaction of the immune cells with tissue forming cells needs to be assessed in both directions; e.g., do immune cells always stimulate tissue cells or are inflamed tissue cells calling immune cells to the rescue? This review aims to provide an overview on immunologic and non-immunologic mechanisms controlling airway wall remodeling in asthma.
Collapse
Affiliation(s)
- Lei Fang
- Pulmonary Cell Research & Pneumology, University Hospital & University of Basel, Petersgraben 4, CH-4031 Basel, Switzerland;
| | - Qinzhu Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China;
| | - Michael Roth
- Pulmonary Cell Research & Pneumology, University Hospital & University of Basel, Petersgraben 4, CH-4031 Basel, Switzerland;
- Correspondence: ; Tel.: +41-61-265-2337
| |
Collapse
|
48
|
Ingram JL. Give Me Some Room to Breathe! Can Targeting SPHK2 Reduce Airway Smooth Muscle Thickening in Asthma? Am J Respir Cell Mol Biol 2020; 62:1-2. [PMID: 31298926 PMCID: PMC6938127 DOI: 10.1165/rcmb.2019-0240ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Jennifer L Ingram
- Department of MedicineDepartment of Surgeryand
- Department of PathologyDuke University Medical CenterDurham, North Carolina
| |
Collapse
|
49
|
Ortega H, Fitzgerald M, Raghupathi K, Tompkins CA, Shen J, Dittrich K, Pattwell C, Singh D. A phase 2 study to evaluate the safety, efficacy and pharmacokinetics of DP2 antagonist GB001 and to explore biomarkers of airway inflammation in mild-to-moderate asthma. Clin Exp Allergy 2019; 50:189-197. [PMID: 31659803 PMCID: PMC7027764 DOI: 10.1111/cea.13524] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/11/2019] [Accepted: 10/11/2019] [Indexed: 12/13/2022]
Abstract
Background GB001 is an oral antagonist of the prostaglandin D2 receptor that may inhibit recruitment and activation of airway eosinophils, reducing airway inflammation. Objective To assess GB001 safety, efficacy and pharmacokinetics from a Phase 2 study and explore the association between type 2 biomarkers (fractional exhaled nitric oxide and blood eosinophils) and asthma control markers following GB001 administration. Methods A randomized, placebo‐controlled, double‐blind study evaluating 36 patients with mild‐to‐moderate atopic asthma. Patients receiving fluticasone propionate ≤500 mcg/day or equivalent were randomized (2:1) to GB001 (30 mg) or placebo once daily for 28 days. Safety, pharmacokinetics, forced expiratory volume in 1 second, asthma control questionnaire and rescue medication use were assessed. Clinical outcomes were analysed post hoc by baseline fractional exhaled nitric oxide (<35 and ≥35 ppb) and blood eosinophil (<250 and ≥250 cells/µL) subgroups. Results GB001 was well tolerated and rapidly absorbed with a 14.5‐hour terminal half‐life. Overall, GB001 demonstrated greater improvement relative to placebo in forced expiratory volume in 1 second at Day 28 (102 mL [95% CI: −110, 314]). Greater effects on forced expiratory volume in 1 second were observed in the high baseline fractional exhaled nitric oxide and blood eosinophil subgroups (207 mL [95% CI: −283, 698];133 mL [95% CI: −422, 687], respectively). These effects were observed as early as Day 2 (229 mL [95% CI: −170, 628]; 163 mL [95% CI: −223, 550] for the high baseline fractional exhaled nitric oxide and blood eosinophil subgroups, respectively) and were sustained through treatment completion. Conclusion and clinical relevance GB001 was well tolerated, with the estimated half‐life supporting once‐daily (QD) dosing. GB001 may have a rapid and sustained effect on lung function, particularly in patients with type 2 phenotype. Further studies are needed to confirm these findings.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Caroline Pattwell
- Medicines Evaluation Unit, Manchester University Hospital Trust, Manchester, UK
| | - Dave Singh
- Medicines Evaluation Unit, Manchester University Hospital Trust, Manchester, UK.,The University of Manchester, Manchester, UK
| |
Collapse
|
50
|
Chachi L, Diver S, Kaul H, Rebelatto MC, Boutrin A, Nisa P, Newbold P, Brightling C. Computational modelling prediction and clinical validation of impact of benralizumab on airway smooth muscle mass in asthma. Eur Respir J 2019; 54:13993003.00930-2019. [PMID: 31391226 DOI: 10.1183/13993003.00930-2019] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/25/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Latifa Chachi
- IHR Leicester Biomedical Research Centre, Respiratory, Dept of Respiratory Sciences, Glenfield Hospital, University of Leicester, Leicester, UK.,These authors contributed equally
| | - Sarah Diver
- IHR Leicester Biomedical Research Centre, Respiratory, Dept of Respiratory Sciences, Glenfield Hospital, University of Leicester, Leicester, UK.,These authors contributed equally
| | - Himanshu Kaul
- University of British Columbia, Vancouver, BC, Canada.,These authors contributed equally
| | | | | | - Patricia Nisa
- IHR Leicester Biomedical Research Centre, Respiratory, Dept of Respiratory Sciences, Glenfield Hospital, University of Leicester, Leicester, UK
| | | | - Christopher Brightling
- IHR Leicester Biomedical Research Centre, Respiratory, Dept of Respiratory Sciences, Glenfield Hospital, University of Leicester, Leicester, UK
| |
Collapse
|