1
|
Rosati D, Valentine M, Bruno M, Pradhan A, Dietschmann A, Jaeger M, Leaves I, van de Veerdonk FL, Joosten LA, Roy S, Stappers MHT, Gow NA, Hube B, Brown AJ, Gresnigt MS, Netea MG. Lactic acid in the vaginal milieu modulates the Candida-host interaction. Virulence 2025; 16:2451165. [PMID: 39843417 PMCID: PMC11760238 DOI: 10.1080/21505594.2025.2451165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/07/2024] [Accepted: 12/28/2024] [Indexed: 01/24/2025] Open
Abstract
Vulvovaginal candidiasis (VVC) is one of the most common infections caused by Candida albicans. VVC is characterized by an inadequate hyperinflammatory response and clinical symptoms associated with Candida colonization of the vaginal mucosa. Compared to other host niches in which C. albicans can cause infection, the vaginal environment is extremely rich in lactic acid that is produced by the vaginal microbiota. We examined how lactic acid abundance in the vaginal niche impacts the interaction between C. albicans and the human immune system using an in vitro culture in vaginal simulative medium (VSM). The presence of lactic acid in VSM (VSM+LA) increased C. albicans proliferation, hyphal length, and its ability to cause damage during subsequent infection of vaginal epithelial cells. The cell wall of C. albicans cells grown in VSM+LA displayed a robust mannan fibrillar structure, β-glucan exposure, and low chitin content. These cell wall changes were associated with altered immune responses and an increased ability of the fungus to induce trained immunity. Neutrophils were compromised in clearing C. albicans grown in VSM+LA conditions, despite mounting stronger oxidative responses. Collectively, we found that fungal adaptation to lactic acid in a vaginal simulative context increases its immunogenicity favouring a pro-inflammatory state. This potentially contributes to the immune response dysregulation and neutrophil recruitment observed during recurrent VVC.
Collapse
Affiliation(s)
- Diletta Rosati
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, T
he Netherlands
| | - Marisa Valentine
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany
| | - Mariolina Bruno
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, T
he Netherlands
| | - Arnab Pradhan
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Axel Dietschmann
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany
| | - Martin Jaeger
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, T
he Netherlands
| | - Ian Leaves
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Frank L. van de Veerdonk
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, T
he Netherlands
| | - Leo A.B. Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, T
he Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Sumita Roy
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Mark H. T. Stappers
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Neil A.R. Gow
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany
- Institute of Microbiology, Friedrich-Schiller-University, Jena, Germany
| | - Alistair J.P. Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Mark S. Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, T
he Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| |
Collapse
|
2
|
Puccetti M, Di Michele A, Pagano C, Pecorari E, Coletti A, Tensi L, Pariano M, Pecorari R, Ricci M, Perioli L. Griffonia simplicifolia seeds extract rich in 5-hydroxy-L-tryptophan reduces infection and inflammation in a mouse model of vulvovaginal candidiasis. J Pharm Pharmacol 2025:rgaf024. [PMID: 40414710 DOI: 10.1093/jpp/rgaf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 04/14/2025] [Indexed: 05/27/2025]
Abstract
BACKGROUND Griffonia simplicifolia seeds extracts, generally prepared by maceration, are most commonly used in food supplements intended for mental well-being promotion due to the high content of 5-hydroxy-L-tryptophan (5-HTP), direct serotonin precursor. As 5-HTP is involved in many different biochemical pathways, other applications of G. simplicifolia seed extracts were investigated. Considering the well-known serotonin immunomodulatory activity, the object of this study was to optimize 5-HTP yield by a new extraction procedure, exploit its immunomodulatory activity in a preclinical model of vulvovaginal candidiasis (VVC) for its responsiveness to immunomodulation, and formulate the extract in a suitable vaginal formulation. METHODS High-power ultrasonic technique (HPU) was used for the first time to obtain an extract from Griffonia seeds (GSE-HPU). The amount of 5-HTP was measured by UHPLC-MS/MS. The extract was assessed in C57BL/6 mice model intravaginally infected with C. albicans. RESULTS The results showed that the new extraction procedure greatly increased 5-HTP yield (82.8% w/w of the extract weight); formulated in "tablets for vaginal solution" properly characterized, the GSE-HPU showed a remarkable protective activity in VVC as reduces inflammation, tissue pathology, and fungal growth. CONCLUSIONS The protective efficacy of GSE-HPU in VVC suggests its potential use in vaginal infections and associated inflammatory pathology.
Collapse
Affiliation(s)
- Matteo Puccetti
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1 - 06123 Perugia, Italy
| | - Alessandro Di Michele
- Department of Physics and Geology, University of Perugia, via Pascoli, 06123 Perugia, Italy
| | - Cinzia Pagano
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1 - 06123 Perugia, Italy
| | - Elisa Pecorari
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1 - 06123 Perugia, Italy
| | - Alice Coletti
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1 - 06123 Perugia, Italy
| | - Leonardo Tensi
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1 - 06123 Perugia, Italy
| | - Marilena Pariano
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Rita Pecorari
- Linneus Consulting Services, Via Giorgio Scalia 10B, 00136 Roma, Italy
| | - Maurizio Ricci
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1 - 06123 Perugia, Italy
| | - Luana Perioli
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1 - 06123 Perugia, Italy
| |
Collapse
|
3
|
Liu Z, Yang H, Huang R, Li X, Sun T, Zhu L. Vaginal mycobiome characteristics and therapeutic strategies in vulvovaginal candidiasis (VVC): differentiating pathogenic species and microecological features for stratified treatment. Clin Microbiol Rev 2025:e0028424. [PMID: 40261031 DOI: 10.1128/cmr.00284-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025] Open
Abstract
SUMMARYVulvovaginal candidiasis (VVC) is a prevalent global health burden, particularly among reproductive-aged women. Recurrent VVC affects a significant proportion of this population, presenting therapeutic challenges. The predominant pathogen, Candida albicans, opportunistically transitions from a commensal organism to a pathogen when microenvironmental conditions become dysregulated. Recently, non-albicans Candida species have gained attention for their reduced antifungal susceptibility and recurrence tendencies. Diagnosis is constrained by the limitations of conventional microbiological techniques, while emerging molecular assays offer enhanced pathogen detection yet lack established thresholds to differentiate between commensal and pathogenic states. Increasing resistance issues are encountered by traditional azole-based antifungals, necessitating innovative approaches that integrate microbiota modulation and precision medicine. Therefore, this review aims to systematically explore the pathogenic diversity, drug resistance mechanisms, and biofilm effects of Candida species. Vaginal microbiota (VMB) alterations associated with VVC were also examined, focusing on the interaction between Lactobacillus spp. and pathogenic fungi, emphasizing the role of microbial dysbiosis in disease progression. Finally, the potential therapeutic approaches for VVC were summarized, with a particular focus on the use of probiotics to modulate the VMB composition and restore a healthy microbial ecosystem as a promising treatment strategy. This review addresses antifungal resistance and adopts a microbiota-centric approach, proposing a comprehensive framework for personalized VVC management to reduce recurrence and improve patient outcomes.
Collapse
Affiliation(s)
- Zimo Liu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, State Key Laboratory of Common Mechanism Research for Major Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hua Yang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, State Key Laboratory of Common Mechanism Research for Major Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Roujie Huang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, State Key Laboratory of Common Mechanism Research for Major Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiaochuan Li
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, State Key Laboratory of Common Mechanism Research for Major Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianshu Sun
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, State Key Laboratory of Common Mechanism Research for Major Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Clinical Biobank, Center for Biomedical Technology, Institute of Clinical Medicine, National Science and Technology Key Infrastructure on Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lan Zhu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, State Key Laboratory of Common Mechanism Research for Major Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Omosa-Manyonyi GS, Ponce IR, Rosati D, Bruno M, Kamau NW, Obimbo MM, Jaeger M, van der Ven AJAM, Netea MG, Kumar V, Oever JT. Genetic susceptibility to recurrent vulvovaginal candidiasis in an African population from Nairobi, Kenya. Sci Rep 2025; 15:12149. [PMID: 40204783 PMCID: PMC11982394 DOI: 10.1038/s41598-025-95772-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/24/2025] [Indexed: 04/11/2025] Open
Abstract
Vulvovaginal candidiasis (VVC) affects 75% of women worldwide at least once in their lifetime, with up to 9% of women experiencing recurrent episodes (RVVC). Genetic differences may play a role in women developing recurrent VVC infections. Thus, we investigated genetic host factors that may increase the risk of RVVC in women from an African population. We conducted a case-control study in women in Nairobi Kenya, to identify genetic risk factors for RVVC. Our genome-wide association study compared women with RVVC (n = 174) to those with acute VVC (n = 157), and with controls (n = 347). The control group included both symptomatic but uninfected women (n = 246) and asymptomatic/healthy women (n = 101). We identified several genomic variants linked to increased RVVC susceptibility (P < 10-5), with the key ones being SNP rs8181503 found near the MS4A12 gene (P = 9.28 × 10-7, odds ratio (OR) = 0.46), and SNP rs58936172 located near the TMEM39A gene (P = 8.96 × 10-6, OR = 2.42). Pathway enrichment analysis revealed enrichment of genetic variants linked to increased risk of RVVC in genes involved in metabolic, disease signalling, and cell adhesion pathways. These included pathways related to gluconeogenesis, fatty acid metabolism, linoleic acid metabolism, pentose phosphate, chemotaxis, and fibroblast growth factor signalling pathways. The genes and pathways identified in our study may help to understand the susceptibility to RVVC in African populations, to improve patient care.
Collapse
Affiliation(s)
- Gloria S Omosa-Manyonyi
- Faculty of Health Sciences, University of Nairobi, PO Box 19676, Nairobi, 00202, Kenya.
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands.
| | - Isis Ricano Ponce
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Diletta Rosati
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Mariolina Bruno
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Nelly W Kamau
- Faculty of Health Sciences, University of Nairobi, PO Box 19676, Nairobi, 00202, Kenya
| | - Moses M Obimbo
- Faculty of Health Sciences, University of Nairobi, PO Box 19676, Nairobi, 00202, Kenya
| | - Martin Jaeger
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Andre J A M van der Ven
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115, Bonn, Germany
| | - Vinod Kumar
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
- Department of Genetics, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Jaap Ten Oever
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Ambati S, Choudhury QJ, Peter JA, Moremen KW, Chapla DG, Lewis ZA, Lin X, Meagher RB. Siglec-targeted liposomes to identify sialoglycans present on fungal pathogens. Antimicrob Agents Chemother 2025; 69:e0172024. [PMID: 40084878 PMCID: PMC11963605 DOI: 10.1128/aac.01720-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/16/2025] [Indexed: 03/16/2025] Open
Abstract
The sialic acid Ig-like lectins Siglec-3 and Siglec-15 are pathogen receptors that bind sialic acid-modified glycoproteins, best characterized in metastatic cancers. Because fungi produce sialoglycans and sialo-glycoproteins, we wondered if Siglecs had the potential for targeted delivery of antifungal drugs. We purified the extracellular V-region Ig-like C2 ligand-binding domains and stalk regions of SIG3 and SIG15. We floated the two polypeptides on the surface of liposomes loaded with amphotericin B (AmB) and labeled with rhodamine B to prepare SIG3-Ls and SIG15-Ls. Using these two reagents, we explored the sialoglycans of two evolutionarily distant and deadly human fungal pathogens, the Mucormycete Rhizopus delemar and the Ascomycete Aspergillus fumigatus. We found that SIG3-Ls and SIG15-Ls localized in a continuous layer over the cell wall surface of germ tubes and hyphae of both fungal species and to the conidia of A. fumigatus. Binding was Neu5Ac-specific and appeared confined to N-linked sialoglycans on fungal proteins. SIG3 and SIG15 proteins bound to diverse sialo-glycoproteins extracted from the hyphae of both species. SIG3-Ls and SIG15-Ls delivering sub-micromolar concentrations of AmB were moderately more effective at inhibiting and/or killing both species relative to control liposomes. We discuss the roles that sialo-glycoproteins may play in fungal pathogens.
Collapse
Affiliation(s)
- Suresh Ambati
- Department of Genetics, University of Georgia, Athens, Georgia, USA
| | | | - Jesse Ann Peter
- Department of Genetics, University of Georgia, Athens, Georgia, USA
| | - Kelley W. Moremen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Digantkumar Gopaldas Chapla
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Zachary A. Lewis
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | | |
Collapse
|
6
|
Valentine M, Wilson D, Gresnigt MS, Hube B. Vaginal Candida albicans infections: host-pathogen-microbiome interactions. FEMS Microbiol Rev 2025; 49:fuaf013. [PMID: 40347186 PMCID: PMC12071381 DOI: 10.1093/femsre/fuaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 04/14/2025] [Accepted: 05/09/2025] [Indexed: 05/12/2025] Open
Abstract
Candida albicans is a fungus that colonizes the gut, oral, and vaginal mucosae of most humans without causing disease. However, under certain predisposing conditions this fungus can cause disease. Candida albicans has several factors and attributes that facilitate its commensal and pathogenic lifestyles including the transition from a yeast to a hyphal morphology, which is accompanied by the expression of virulence factors. These factors are central in candidiasis that can range from invasive to superficial. This review focuses on one example of a superficial disease, i.e. vulvovaginal candidiasis (VVC) that affects ~75% of women at least once with some experiencing four or more symptomatic infections per year (RVVC). During VVC, fungal factors trigger inflammation, which is maintained by a dysregulated innate immune response. This in turn leads to immunopathology and symptoms. Another unique characteristic of the vaginal niche, is its Lactobacillus-dominated microbiota with low species diversity that is believed to antagonize C. albicans pathogenicity. The importance of the interactions between C. albicans, the host, and vaginal microbiota during commensalism and (R)VVC is discussed in this review, which also addresses the application of this knowledge to identify novel treatment strategies and to study vaginal C. albicans infections.
Collapse
Affiliation(s)
- Marisa Valentine
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 23 Adolf-Reichwein-Straße, 07745, Jena, Germany
| | - Duncan Wilson
- Medical Research Council Centre for Medical Mycology at the University of Exeter, University of Exeter, Geoffrey Pope Building Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Mark S Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 23 Adolf-Reichwein-Straße, 07745, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 23 Adolf-Reichwein-Straße, 07745, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, 25 Neugasse, 07743, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 1 Fürstengraben, 07743, Jena, Germany
| |
Collapse
|
7
|
Arafat Hossain M. A comprehensive review of immune checkpoint inhibitors for cancer treatment. Int Immunopharmacol 2024; 143:113365. [PMID: 39447408 DOI: 10.1016/j.intimp.2024.113365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/28/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Immunology-based therapies are emerging as an effective cancer treatment, using the body's immune system to target tumors. Immune checkpoints, which regulate immune responses to prevent tissue damage and autoimmunity, are often exploited by cancer cells to avoid destruction. The discovery of checkpoint proteins like PD-1/PD-L1 and CTLA-4 was pivotal in developing cancer immunotherapy. Immune checkpoint inhibitors (ICIs) have shown great success, with FDA-approved drugs like PD-1 inhibitors (Nivolumab, Pembrolizumab, Cemiplimab), PD-L1 inhibitors (Atezolizumab, Durvalumab, Avelumab), and CTLA-4 inhibitors (Ipilimumab, Tremelimumab), alongside LAG-3 inhibitor Relatlimab. Research continues on new checkpoints like TIM-3, VISTA, B7-H3, BTLA, and TIGIT. Biomarkers like PDL-1 expression, tumor mutation burden, interferon-γ presence, microbiome composition, and extracellular matrix characteristics play a crucial role in predicting responses to immunotherapy with checkpoint inhibitors. Despite their effectiveness, not all patients experience the same level of benefit, and organ-specific immune-related adverse events (irAEs) such as rash or itching, colitis, diarrhea, hyperthyroidism, and hypothyroidism may occur. Given the rapid advancements in this field and the variability in patient outcomes, there is an urgent need for a comprehensive review that consolidates the latest findings on immune checkpoint inhibitors, covering their clinical status, biomarkers, resistance mechanisms, strategies to overcome resistance, and associated adverse effects. This review aims to fill this gap by providing an analysis of the current clinical status of ICIs, emerging biomarkers, mechanisms of resistance, strategies to enhance therapeutic efficacy, and assessment of adverse effects. This review is crucial to furthering our understanding of ICIs and optimizing their application in cancer therapy.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh.
| |
Collapse
|
8
|
Fan Y, Sun L, He J, Chen Y, Ma H, Ding H. Siglec15 in blood system diseases: from bench to bedside. Front Immunol 2024; 15:1490505. [PMID: 39697338 PMCID: PMC11652361 DOI: 10.3389/fimmu.2024.1490505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024] Open
Abstract
Inhibiting the PD-1/PD-L1 pathway using immunomodulators has demonstrated promising outcomes in clinics. Immunomodulators can effectively target immune checkpoints with a strong preference for the tumor microenvironment (TME). Besides, immunomodulators specifically target the recently discovered inhibitory immune checkpoint, sialic acid-binding immunoglobulin-like lectin (Siglec-15). Distinctive in its molecular composition, Siglec-15 has a unique molecular composition and been shown to be highly prevalent in numerous solid tumor tissues and tumor-associated macrophages (TAMs) in human subjects. Notably, Siglec-15 is up-regulated across various cancer types. As a result, Siglec-15 has attracted significant attention due to its exclusive nature concerning PD-L1 expression, suggesting its role in immune evasion in patients lacking PD-L1. Siglec-15 predominantly appears in certain populations and can promote tumor development by repressing T lymphocyte activation and proliferation, thereby facilitating tumor cell immune escape. Furthermore, Siglec-15 is implicated in osteoclast differentiation and bone remodeling, indicating that it is a promising target for next-generation cancer immunotherapies. Additionally, Siglec-15 can modulate immune responses to microbial infections. The current treatment strategies for hematological conditions predominantly include conventional intensive chemotherapy and transplantation methods. However, emerging immunotherapeutic approaches are increasingly recognized for their overall effectiveness, indicating that specific molecular targets should be identified. The expression of Siglec-15 within tumor cells may indicate a novel pathway for treating hematological malignancies. In this study, the biological attributes, expression patterns, and pathogenic mechanisms of Siglec-15 across various diseases were reviewed. The role of Siglec-15 in the pathogenesis and laboratory diagnosis of hematological disorders was also evaluated.
Collapse
Affiliation(s)
- Yujia Fan
- Baotou Medical College of Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Liangliang Sun
- Clinical Laboratory Medicine Centre, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia, China
| | - Juan He
- Clinical Laboratory Medicine Centre, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia, China
| | - Yuetong Chen
- Clinical Laboratory Medicine Centre, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia, China
| | - Hongli Ma
- Baotou Medical College of Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Haitao Ding
- Clinical Laboratory Medicine Centre, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia, China
| |
Collapse
|
9
|
Gautam A, Dasgupta A, Rout S, Bhattacharjee S, Pandit B. Genetic association of missense (rs2919643), intergenic (rs2057178) and a 3'UTR (rs1009170) variant with tuberculosis: A replication study from India. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 126:105690. [PMID: 39547490 DOI: 10.1016/j.meegid.2024.105690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
To investigate host genetic susceptibility to tuberculosis (TB), we conducted a replication study focussed on candidate SNPs, previously reported to be associated with TB. We examined nine candidate SNPs and genotyped them in an independent cohort of TB cases and household contacts from West Bengal, India. The association with TB was replicated for rs2919643 (Chr 18), rs2057178 (Chr 11) and rs1009170 (Chr 14). rs2919643-C (p=8.81E-5) was a risk allele and rs2057178-A (p=0.04188) was protective against TB in our population. Association of rs1009170; previously reported by us with TB was also replicated in the new set of samples (p=0.0359). rs2919643 is a missense variant present in linkage disequilibrium with a TB associated synonymous SNP rs61104666. The risk genotype rs2919643-CC was associated with higher levels of plasma RANTES and IL5 in household contacts. rs2919643 is an eQTL for an immunosuppressive gene SIGLEC15 and autophagy related gene EPG5. rs2057178 is an eQTL for a pseudogene and present within weak enhancer marks in the lungs. The genomic locus around this SNP rs1009170 encompasses an active transcription factor peak in CD14+ monocytes and also serves as an eQTL for NDUFB1, ATXN3 and SLC24A4. TB cases with rs1009170-TT genotype showed lower expression of plasma RANTES compared to the heterozygote. All three associated SNPs have putative regulatory role in lungs and immune associated cells and organs which may be relevant to TB pathogenesis.
Collapse
Affiliation(s)
- Anuradha Gautam
- BRIC-National Institute of Biomedical Genomics (NIBMG), Kalyani, West Bengal 741251, India
| | - Ahana Dasgupta
- BRIC-National Institute of Biomedical Genomics (NIBMG), Kalyani, West Bengal 741251, India
| | - Suvamita Rout
- BRIC-National Institute of Biomedical Genomics (NIBMG), Kalyani, West Bengal 741251, India
| | | | - Bhaswati Pandit
- BRIC-National Institute of Biomedical Genomics (NIBMG), Kalyani, West Bengal 741251, India.
| |
Collapse
|
10
|
MacAlpine J, Lionakis MS. Host-microbe interaction paradigms in acute and recurrent vulvovaginal candidiasis. Cell Host Microbe 2024; 32:1654-1667. [PMID: 39389030 PMCID: PMC11469575 DOI: 10.1016/j.chom.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 10/12/2024]
Abstract
Candida spp. are members of the human mucosal microbiota that can cause opportunistic diseases ranging from superficial infections to life-threatening invasive candidiasis. In humans, the most common infection caused by Candida spp. is vulvovaginal candidiasis (VVC), which affects >70% of women at least once in their lifetime. Of those women, ∼5%-10% develop recurrent VVC (RVVC). In this review, we summarize our current understanding of the host and fungal factors that contribute to susceptibility to VVC and RVVC. We synthesize key findings that support the notion that disease symptoms are driven by neutrophil-associated dysfunction and immunopathology and describe how antifungal immune mechanisms in the vagina are distinct from other mucosal barrier sites. Finally, we highlight key, unanswered research areas within the field that can help us better understand the immunopathogenesis of this infection and facilitate the development of novel preventive, therapeutic, and/or vaccination strategies to combat these common, poorly understood diseases.
Collapse
Affiliation(s)
- Jessie MacAlpine
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
11
|
Cheng KO, Montaño DE, Zelante T, Dietschmann A, Gresnigt MS. Inflammatory cytokine signalling in vulvovaginal candidiasis: a hot mess driving immunopathology. OXFORD OPEN IMMUNOLOGY 2024; 5:iqae010. [PMID: 39234208 PMCID: PMC11374039 DOI: 10.1093/oxfimm/iqae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 09/06/2024] Open
Abstract
Protective immunity to opportunistic fungal infections consists of tightly regulated innate and adaptive immune responses that clear the infection. Immune responses to infections of the vaginal mucosa by Candida species are, however, an exception. In the case of vulvovaginal candidiasis (VVC), the inflammatory response is associated with symptomatic disease, rather than that it results in pathogen clearance. As such VVC can be considered an inflammatory disease, which is a significant public health problem due to its predominance as a female-specific fungal infection. Particularly, women with recurrent VVC (RVVC) suffer from a significant negative impact on their quality of life and mental health. Knowledge of the inflammatory pathogenesis of (R)VVC may guide more effective diagnostic and therapeutic options to improve the quality of life of women with (R)VVC. Here, we review the immunopathogenesis of (R)VVC describing several elements that induce an inflammatory arson, starting with the activation threshold established by vaginal epithelial cells that prevent unnecessary ignition of inflammatory responses, epithelial and inflammasome-dependent immune responses. These inflammatory responses will drive neutrophil recruitment and dysfunctional neutrophil-mediated inflammation. We also review the, sometimes controversial, findings on the involvement of adaptive and systemic responses. Finally, we provide future perspectives on the potential of some unexplored cytokine axes and discuss whether VVC needs to be subdivided into subgroups to improve diagnosis and treatment.
Collapse
Affiliation(s)
- Kar On Cheng
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (Leibniz-HKI), Beutenbergstraße 11a, Jena, 07749, Germany
| | - Dolly E Montaño
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (Leibniz-HKI), Beutenbergstraße 11a, Jena, 07749, Germany
| | - Teresa Zelante
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi 1, Perugia, 06132, Italy
| | - Axel Dietschmann
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (Leibniz-HKI), Beutenbergstraße 11a, Jena, 07749, Germany
| | - Mark S Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (Leibniz-HKI), Beutenbergstraße 11a, Jena, 07749, Germany
| |
Collapse
|
12
|
Hellier SD, Wrynn AF. Beyond fluconazole: A review of vulvovaginal candidiasis diagnosis and treatment. Nurse Pract 2023; 48:33-39. [PMID: 37643144 DOI: 10.1097/01.npr.0000000000000095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
ABSTRACT Vaginitis symptoms are among the most common reasons for patients to seek acute gynecological care. NPs who care for women and other patients with vaginas need to be up-to-date on diagnosis and treatment of vulvovaginal candidiasis (VVC) and recurrent VVC (RVVC). Two new antifungal medications for VVC are available. This article reviews vaginal physiology and provides an overview of VVC and RVVC pathophysiology, diagnosis, and treatment options.
Collapse
|
13
|
Chen Y, Chen H, Zheng Q. Siglecs family used by pathogens for immune escape may engaged in immune tolerance in pregnancy. J Reprod Immunol 2023; 159:104127. [PMID: 37572430 DOI: 10.1016/j.jri.2023.104127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
The Siglecs family is a group of type I sialic acid-binding immunoglobulin-like receptors that regulate cellular signaling by recognizing sialic acid epitopes. Siglecs are predominantly expressed on the surface of leukocytes, where they play a crucial role in regulating immune activity. Pathogens can exploit inhibitory Siglecs by utilizing their sialic acid components to promote invasion or suppress immune functions, facilitating immune evasion. The establishing of an immune-balanced maternal-fetal interface microenvironment is essential for a successful pregnancy. Dysfunctional immune cells may lead to adverse pregnancy outcomes. Siglecs are important for inducing a phenotypic switch in leukocytes at the maternal-fetal interface toward a less toxic and more tolerant phenotype. Recent discoveries regarding Siglecs in the reproductive system have drawn further attention to their potential roles in reproduction. In this review, we primarily discuss the latest advances in understanding the impact of Siglecs as immune regulators on infections and pregnancy.
Collapse
Affiliation(s)
- Ying Chen
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518033, PR China
| | - Huan Chen
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518033, PR China
| | - Qingliang Zheng
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518033, PR China.
| |
Collapse
|
14
|
Lenza MP, Egia-Mendikute L, Antoñana-Vildosola A, Soares CO, Coelho H, Corzana F, Bosch A, Manisha P, Quintana JI, Oyenarte I, Unione L, Moure MJ, Azkargorta M, Atxabal U, Sobczak K, Elortza F, Sutherland JD, Barrio R, Marcelo F, Jiménez-Barbero J, Palazon A, Ereño-Orbea J. Structural insights into Siglec-15 reveal glycosylation dependency for its interaction with T cells through integrin CD11b. Nat Commun 2023; 14:3496. [PMID: 37311743 DOI: 10.1038/s41467-023-39119-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/26/2023] [Indexed: 06/15/2023] Open
Abstract
Sialic acid-binding Ig-like lectin 15 (Siglec-15) is an immune modulator and emerging cancer immunotherapy target. However, limited understanding of its structure and mechanism of action restrains the development of drug candidates that unleash its full therapeutic potential. In this study, we elucidate the crystal structure of Siglec-15 and its binding epitope via co-crystallization with an anti-Siglec-15 blocking antibody. Using saturation transfer-difference nuclear magnetic resonance (STD-NMR) spectroscopy and molecular dynamics simulations, we reveal Siglec-15 binding mode to α(2,3)- and α(2,6)-linked sialic acids and the cancer-associated sialyl-Tn (STn) glycoform. We demonstrate that binding of Siglec-15 to T cells, which lack STn expression, depends on the presence of α(2,3)- and α(2,6)-linked sialoglycans. Furthermore, we identify the leukocyte integrin CD11b as a Siglec-15 binding partner on human T cells. Collectively, our findings provide an integrated understanding of the structural features of Siglec-15 and emphasize glycosylation as a crucial factor in controlling T cell responses.
Collapse
Affiliation(s)
- Maria Pia Lenza
- Chemical Glycobiology lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain
| | - Leire Egia-Mendikute
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Bizkaia, Spain
| | - Asier Antoñana-Vildosola
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Bizkaia, Spain
| | - Cátia O Soares
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Caparica campus, 2829-516, Caparica, Portugal
- UCIBIO, Department of Chemistry, NOVA School of Science and Technology, Caparica campus, 2829-516, Caparica, Portugal
| | - Helena Coelho
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Caparica campus, 2829-516, Caparica, Portugal
- UCIBIO, Department of Chemistry, NOVA School of Science and Technology, Caparica campus, 2829-516, Caparica, Portugal
| | - Francisco Corzana
- Department of Chemistry, University of La Rioja, The Center for Research in Chemical Synthesis, Madre de Dios 53, E-26006, Logroño, Spain
| | - Alexandre Bosch
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Bizkaia, Spain
| | - Prodhi Manisha
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Bizkaia, Spain
| | - Jon Imanol Quintana
- Chemical Glycobiology lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain
| | - Iker Oyenarte
- Chemical Glycobiology lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain
| | - Luca Unione
- Chemical Glycobiology lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - María Jesús Moure
- Chemical Glycobiology lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, CIBERehd, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Spain
| | - Unai Atxabal
- Chemical Glycobiology lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain
| | - Klaudia Sobczak
- Chemical Glycobiology lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, CIBERehd, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Spain
| | - James D Sutherland
- Ubiquitin-likes and Development Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Bizkaia, Spain
| | - Rosa Barrio
- Ubiquitin-likes and Development Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Bizkaia, Spain
| | - Filipa Marcelo
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Caparica campus, 2829-516, Caparica, Portugal
- UCIBIO, Department of Chemistry, NOVA School of Science and Technology, Caparica campus, 2829-516, Caparica, Portugal
| | - Jesús Jiménez-Barbero
- Chemical Glycobiology lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
- Department of Organic & Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country, EHU-UPV, 48940, Leioa, Bizkaia, Spain.
- Centro de Investigacion Biomedica En Red de Enfermedades Respiratorias, 28029, Madrid, Spain.
| | - Asis Palazon
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Bizkaia, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - June Ereño-Orbea
- Chemical Glycobiology lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
15
|
Lionakis MS. Exploiting antifungal immunity in the clinical context. Semin Immunol 2023; 67:101752. [PMID: 37001464 PMCID: PMC10192293 DOI: 10.1016/j.smim.2023.101752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Indexed: 03/31/2023]
Abstract
The continuous expansion of immunocompromised patient populations at-risk for developing life-threatening opportunistic fungal infections in recent decades has helped develop a deeper understanding of antifungal host defenses, which has provided the foundation for eventually devising immune-based targeted interventions in the clinic. This review outlines how genetic variation in certain immune pathway-related genes may contribute to the observed clinical variability in the risk of acquisition and/or severity of fungal infections and how immunogenetic-based patient stratification may enable the eventual development of personalized strategies for antifungal prophylaxis and/or vaccination. Moreover, this review synthesizes the emerging cytokine-based, cell-based, and other immunotherapeutic strategies that have shown promise as adjunctive therapies for boosting or modulating tissue-specific antifungal immune responses in the context of opportunistic fungal infections.
Collapse
Affiliation(s)
- Michail S Lionakis
- From the Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
16
|
Sala A, Ardizzoni A, Spaggiari L, Vaidya N, van der Schaaf J, Rizzato C, Cermelli C, Mogavero S, Krüger T, Himmel M, Kniemeyer O, Brakhage AA, King BL, Lupetti A, Comar M, de Seta F, Tavanti A, Blasi E, Wheeler RT, Pericolini E. A New Phenotype in Candida-Epithelial Cell Interaction Distinguishes Colonization- versus Vulvovaginal Candidiasis-Associated Strains. mBio 2023; 14:e0010723. [PMID: 36856418 PMCID: PMC10128025 DOI: 10.1128/mbio.00107-23] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
Vulvovaginal candidiasis (VVC) affects nearly 3/4 of women during their lifetime, and its symptoms seriously reduce quality of life. Although Candida albicans is a common commensal, it is unknown if VVC results from a switch from a commensal to pathogenic state, if only some strains can cause VVC, and/or if there is displacement of commensal strains with more pathogenic strains. We studied a set of VVC and colonizing C. albicans strains to identify consistent in vitro phenotypes associated with one group or the other. We find that the strains do not differ in overall genetic profile or behavior in culture media (i.e., multilocus sequence type [MLST] profile, rate of growth, and filamentation), but they show strikingly different behaviors during their interactions with vaginal epithelial cells. Epithelial infections with VVC-derived strains yielded stronger fungal proliferation and shedding of fungi and epithelial cells. Transcriptome sequencing (RNA-seq) analysis of representative epithelial cell infections with selected pathogenic or commensal isolates identified several differentially activated epithelial signaling pathways, including the integrin, ferroptosis, and type I interferon pathways; the latter has been implicated in damage protection. Strikingly, inhibition of type I interferon signaling selectively increases fungal shedding of strains in the colonizing cohort, suggesting that increased shedding correlates with lower interferon pathway activation. These data suggest that VVC strains may intrinsically have enhanced pathogenic potential via differential elicitation of epithelial responses, including the type I interferon pathway. Therefore, it may eventually be possible to evaluate pathogenic potential in vitro to refine VVC diagnosis. IMPORTANCE Despite a high incidence of VVC, we still have a poor understanding of this female-specific disease whose negative impact on women's quality of life has become a public health issue. It is not yet possible to determine by genotype or laboratory phenotype if a given Candida albicans strain is more or less likely to cause VVC. Here, we show that Candida strains causing VVC induce more fungal shedding from epithelial cells than strains from healthy women. This effect is also accompanied by increased epithelial cell detachment and differential activation of the type I interferon pathway. These distinguishing phenotypes suggest it may be possible to evaluate the VVC pathogenic potential of fungal isolates. This would permit more targeted antifungal treatments to spare commensals and could allow for displacement of pathogenic strains with nonpathogenic colonizers. We expect these new assays to provide a more targeted tool for identifying fungal virulence factors and epithelial responses that control fungal vaginitis.
Collapse
Affiliation(s)
- Arianna Sala
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Ardizzoni
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Luca Spaggiari
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Nikhil Vaidya
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Jane van der Schaaf
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Cosmeri Rizzato
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Claudio Cermelli
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Selene Mogavero
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Maximilian Himmel
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Benjamin L. King
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
| | - Antonella Lupetti
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Manola Comar
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Francesco de Seta
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | | | - Elisabetta Blasi
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Robert T. Wheeler
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
| | - Eva Pericolini
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
17
|
Raïch-Regué D, Resa-Infante P, Gallemí M, Laguia F, Muñiz-Trabudua X, Muñoz-Basagoiti J, Perez-Zsolt D, Chojnacki J, Benet S, Clotet B, Martinez-Picado J, Izquierdo-Useros N. Role of Siglecs in viral infections: A double-edged sword interaction. Mol Aspects Med 2023; 90:101113. [PMID: 35981912 PMCID: PMC9923124 DOI: 10.1016/j.mam.2022.101113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 01/21/2023]
Abstract
Sialic-acid-binding immunoglobulin-like lectins are cell surface immune receptors known as Siglecs that play a paramount role as modulators of immunity. In recent years, research has underscored how the underlaying biology of this family of receptors influences the outcome of viral infections. While Siglecs are needed to promote effective antiviral immune responses, they can also pave the way to viral dissemination within tissues. Here, we review how recent preclinical findings focusing on the interplay between Siglecs and viruses may translate into promising broad-spectrum therapeutic interventions or key biomarkers to monitor the course of viral infections.
Collapse
Affiliation(s)
- Dàlia Raïch-Regué
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, 08916, Badalona, Spain
| | - Patricia Resa-Infante
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, 08916, Badalona, Spain; University of Vic-Central University of Catalonia (UVic-UCC), 08500, Vic, Spain
| | - Marçal Gallemí
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, 08916, Badalona, Spain
| | - Fernando Laguia
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, 08916, Badalona, Spain
| | - Xabier Muñiz-Trabudua
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, 08916, Badalona, Spain
| | | | - Daniel Perez-Zsolt
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, 08916, Badalona, Spain
| | - Jakub Chojnacki
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, 08916, Badalona, Spain; Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916, Badalona, Spain
| | - Susana Benet
- Fundació lluita contra la SIDA, Infectious Diseases Department, Hospital Germans Trias i Pujol, 08916, Badalona, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, 08916, Badalona, Spain; University of Vic-Central University of Catalonia (UVic-UCC), 08500, Vic, Spain; Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916, Badalona, Spain; Fundació lluita contra la SIDA, Infectious Diseases Department, Hospital Germans Trias i Pujol, 08916, Badalona, Spain; Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, 08916, Badalona, Spain; University of Vic-Central University of Catalonia (UVic-UCC), 08500, Vic, Spain; Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916, Badalona, Spain; Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain; Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain
| | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, 08916, Badalona, Spain; Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916, Badalona, Spain; Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
18
|
Angata T, Varki A. Discovery, classification, evolution and diversity of Siglecs. Mol Aspects Med 2023; 90:101117. [PMID: 35989204 PMCID: PMC9905256 DOI: 10.1016/j.mam.2022.101117] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 02/08/2023]
Abstract
Immunoglobulin (Ig) superfamily proteins play diverse roles in vertebrates, including regulation of cellular responses by sensing endogenous or exogenous ligands. Siglecs are a family of glycan-recognizing proteins belonging to the Ig superfamily (i.e., I-type lectins). Siglecs are expressed on various leukocyte types and are involved in diverse aspects of immunity, including the regulation of inflammatory responses, leukocyte proliferation, host-microbe interaction, and cancer immunity. Sialoadhesin/Siglec-1, CD22/Siglec-2, and myelin-associated glycoprotein/Siglec-4 were among the first to be characterized as members of the Siglec family, and along with Siglec-15, they are relatively well-conserved among tetrapods. Conversely, CD33/Siglec-3-related Siglecs (CD33rSiglecs, so named as they show high sequence similarity with CD33/Siglec-3) are encoded in a gene cluster with many interspecies variations and even intraspecies variations within some lineages such as humans. The rapid evolution of CD33rSiglecs expressed on leukocytes involved in innate immunity likely reflects the selective pressure by pathogens that interact and possibly exploit these Siglecs. Human Siglecs have several additional unique and/or polymorphic properties as compared with closely related great apes, changes possibly related to the loss of the sialic acid Neu5Gc, another distinctly human event in sialobiology. Multiple changes in human CD33rSiglecs compared to great apes include many examples of human-specific expression in non-immune cells, coinciding with human-specific diseases involving such cell types. Some Siglec gene polymorphisms have dual consequences-beneficial in a situation but detrimental in another. The association of human Siglec gene polymorphisms with several infectious and non-infectious diseases likely reflects the ongoing competition between the host and microbial pathogens.
Collapse
Affiliation(s)
- Takashi Angata
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.
| | - Ajit Varki
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
19
|
Siddiqui SS. Non-canonical roles of Siglecs: Beyond sialic acid-binding and immune cell modulation. Mol Aspects Med 2023; 90:101145. [PMID: 36153172 DOI: 10.1016/j.mam.2022.101145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/11/2022] [Accepted: 09/13/2022] [Indexed: 02/08/2023]
Abstract
Siglecs (Sialic acid-binding immunoglobulin-type lectins) are I-type lectins that bind with sialic acid ligands (Sia). Most are expressed on the surface of leukocytes and are involved in immune regulation and possess immune tyrosine-based inhibitory motif (ITIM) in the intracellular domain, thus leading to inhibition of the immune response. This signaling is instrumental in maintaining quiescence under physiological conditions and acts as a brake for inflammatory cascades. By contrast, activating Siglecs carry positively charged residues in the transmembrane domain and interact with immune tyrosine-based activating motif (ITAM)-containing proteins, a DNAX-activating protein of 10-12 kDa (DAP10/12), to activate immune cells. There are various characteristics of Siglecs that do not fit within the classification of Siglec receptors as being either inhibitory or activating in nature. This review focuses on elucidating the non-canonical functions and interactions of Siglec receptors, which include Sia-independent interactions such as protein-protein interactions and interactions with lipids or other sugars. This review also summarizes Siglec expression and function on non-immune cells, and non-classical signaling of the receptor. Thus, this review will be beneficial to researchers interested in the field of Siglecs and sialic acid biology.
Collapse
Affiliation(s)
- Shoib Sarwar Siddiqui
- School of Life and Medical Sciences, University of Hertfordshire, College Lane Campus, Hatfield, AL10 9AB, United Kingdom.
| |
Collapse
|
20
|
Phillips NA, Rocktashel M, Merjanian L. Ibrexafungerp for the Treatment of Vulvovaginal Candidiasis: Design, Development and Place in Therapy. Drug Des Devel Ther 2023; 17:363-367. [PMID: 36785761 PMCID: PMC9921437 DOI: 10.2147/dddt.s339349] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/31/2022] [Indexed: 02/08/2023] Open
Abstract
Vulvovaginal candidiasis (VVC) is experienced by an estimated 75% of women at least once in their lifetime and is recurrent, defined as three or more infections per year (RVVC) in 5-9%. Candida albicans is the most common causative agent, but up to 19% of infections may be related to non-albicans species. Available treatment options for VVC have consisted of oral and topical azoles (except for topical nystatin, a polyene). Oral polyenes are not absorbed and therefore not effective for VVC. Fluconazole is the only oral medication FDA approved for VVC. None of these treatments are FDA approved for RVVC. Ibrexafungerp, a triterpenoid fungicidal agent, was FDA approved in 2021, becoming the first oral non-azole agent for VVC. Ibrexafungerp reaches concentrations up to 9-fold higher in vaginal tissues versus plasma. In Phase 2 clinical trials, ibrexafungerp had a clinical cure rate comparable to fluconazole at day 10, but significantly better at day 25. In Phase 3 clinical trials, ibrexafungerp had both a higher clinical and mycologic cure rate versus placebo at both days 10 and 25. In December 2022, Ibrexafungerp received FDA approval for once monthly dosing to decrease the incidence of RVVC. This approval was based on data from the CANDLE STUDY, which showed 65.4% resolution of symptoms and culture negative success through week 24, compared to 53.1% of placebo. Ibrexafungerp provides an alternative oral option for treatment of acute, severe VVC. It is the only FDA approved antifungal for RVVC. Currently, the population likely to benefit from this drug are those with azole allergy, non-albicans or azole resistant albicans species, or other azole contraindications such as drug interactions (like statins or tricyclics). Side effects are mostly gastrointestinal and mild in nature. Ibrexafungerp, like fluconazole, should be used with caution in women who are or may become pregnant.
Collapse
Affiliation(s)
- Nancy A Phillips
- Department Obstetrics, Gynecology & Reproductive Sciences, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA,Correspondence: Nancy A Phillips, Department Obstetrics, Gynecology & Reproductive Sciences, Rutgers Robert Wood Johnson Medical School, 125 Paterson Street CAB 2102, New Brunswick, NJ, 08901, USA, Tel +1 732-235-7755, Fax +1 732-235-6600, Email
| | - Maria Rocktashel
- Department Obstetrics, Gynecology & Reproductive Sciences, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Lena Merjanian
- Department Obstetrics, Gynecology & Reproductive Sciences, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
21
|
Huang R, Zheng J, Shao Y, Zhu L, Yang T. Siglec-15 as multifunctional molecule involved in osteoclast differentiation, cancer immunity and microbial infection. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:34-41. [PMID: 36265694 DOI: 10.1016/j.pbiomolbio.2022.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 09/19/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
Siglec-15 is a highly conserved member of the Siglec family, expressed on osteoclasts, a subset of myeloid cells and some cancer cells. Except for regulating osteoclast differentiation, Siglec-15 engages in immunoregulation as an immune suppressor. Siglec-15 functions as an immunosuppressive molecule in tumor-associated macrophage-mediated T cell immunity in the tumor microenvironment (TME), which makes Siglec-15 to be an emerging and promising target for normalization cancer immunotherapy. Besides, Siglec-15 interacts with sialylated pathogens and modulates host immune response against microbial pathogens by altering cytokine production and/or phagocytosis, which further broadens the underlying pathophysiological roles of Siglec-15. The fact that N-glycosylation and sialylation of Siglec-15 play a pivotal role in Siglec-15 biological function indicates that targeting certain post-translational modification may be an effective strategy for targeting Siglec-15 therapy. In-depth exploring Siglec-15 biology function is crucial for better design of Siglec-15-based therapy according to different clinical indications.
Collapse
Affiliation(s)
- Rui Huang
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, China; Department of Clinical Laboratory, Children's Hospital and Women Health Center of Shanxi, Taiyuan, China
| | - Jinxiu Zheng
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China
| | - Ying Shao
- Department of Pathophysiology, Shanxi Medical University, Taiyuan, China
| | - Lei Zhu
- Department of Clinical Laboratory, Children's Hospital and Women Health Center of Shanxi, Taiyuan, China
| | - Tao Yang
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China.
| |
Collapse
|
22
|
Jacobsen ID. The Role of Host and Fungal Factors in the Commensal-to-Pathogen Transition of Candida albicans. CURRENT CLINICAL MICROBIOLOGY REPORTS 2023; 10:55-65. [PMID: 37151578 PMCID: PMC10154278 DOI: 10.1007/s40588-023-00190-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 05/09/2023]
Abstract
Abstract Purpose of Review The fungus Candida albicans has evolved to live in close association with warm-blooded hosts and is found frequently on mucosal surfaces of healthy humans. As an opportunistic pathogen, C. albicans can also cause mucosal and disseminated infections (candidiasis). This review describes the features that differentiate the fungus in the commensal versus pathogenic state and the main factors underlying C. albicans commensal-to-pathogen transition. Recent Findings Adhesion, invasion, and tissue damage are critical steps in the infection process. Especially invasion and damage require transcriptional and morphological changes that differentiate C. albicans in the pathogenic from the commensal state. While the commensal-to-pathogen transition has some conserved causes and features in the oral cavity, the female urogenital tract, and the gut, site-specific differences have been identified in recent years. Summary This review highlights how specific factors in the different mucosal niches affect development of candidiasis. Recent evidence suggests that colonization of the gut is not only a risk factor for systemic candidiasis but might also provide beneficial effects to the host.
Collapse
Affiliation(s)
- Ilse D. Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
23
|
Lopes JP, Lionakis MS. Pathogenesis and virulence of Candida albicans. Virulence 2022; 13:89-121. [PMID: 34964702 PMCID: PMC9728475 DOI: 10.1080/21505594.2021.2019950] [Citation(s) in RCA: 203] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022] Open
Abstract
Candida albicans is a commensal yeast fungus of the human oral, gastrointestinal, and genital mucosal surfaces, and skin. Antibiotic-induced dysbiosis, iatrogenic immunosuppression, and/or medical interventions that impair the integrity of the mucocutaneous barrier and/or perturb protective host defense mechanisms enable C. albicans to become an opportunistic pathogen and cause debilitating mucocutaneous disease and/or life-threatening systemic infections. In this review, we synthesize our current knowledge of the tissue-specific determinants of C. albicans pathogenicity and host immune defense mechanisms.
Collapse
Affiliation(s)
- José Pedro Lopes
- From the Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, USA
| | - Michail S. Lionakis
- From the Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, USA
| |
Collapse
|
24
|
Hou X, Chen C, Lan X, He X. Unveiling the molecular features, relevant immune and clinical characteristics of SIGLEC15 in thyroid cancer. Front Immunol 2022; 13:975787. [PMID: 36159823 PMCID: PMC9500188 DOI: 10.3389/fimmu.2022.975787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/17/2022] [Indexed: 12/24/2022] Open
Abstract
The groundbreaking research work about SIGLEC15 has raised it as a potential promising target in cancer immunotherapy. Unfortunately, the role of SIGLEC15 in thyroid carcinoma (THCA) remains obscure. Public and home multi-omics data were collected to investigate the role of SIGLEC15 in THCA in our study. SIGLEC15 was upregulated in THCA tumor tissue compared to nontumor tissue in both mRNA and protein levels; gene set enrichment analysis (GSEA) results showed that high SIGLEC15 mRNA expression was positively correlated to many immune pathways. Results of the examination of immunological landscape characteristics displayed high SIGLEC15 mRNA expression that mainly positively correlated with a large number of cancer immunity immunomodulators and pathways. In addition, upregulation of SIGLEC15 was positively correlated with an enhanced immune score, stromal score, and estimate score. However, higher SIGLEC15 mRNA also met high immune exhausted status. The majority of CpG methylation sites negatively correlated with SIGLEC15 mRNA expression. Analysis of clinical characteristics supported increased SIGLEC15 expression that was positively correlated with more extrathyroid extension and lymph node metastasis. We observed different single nucleotide variant (SNV) and copy number variation (CNV) patterns in high and low SIGLEC15 mRNA expression subgroups; some vital DNA damage repair deficiency scores addressed a negative correlation with SIGLEC15 mRNA expression. We also found that some commonly used chemotherapy drugs might be suitable for different SIGLEC15 mRNA expression subgroups. This study highlighted the vital role of SIGLEC15 in THCA. Targeting SIGLEC15 may offer a potential novel therapeutic opportunity for THCA patients. However, the detailed exact cellular mechanisms of SIGLEC15 in THCA still needed to be elucidated by further studies.
Collapse
Affiliation(s)
- Xiaofeng Hou
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Head & Neck Oncology Surgery, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, China
| | - Chao Chen
- Department of Head & Neck Oncology Surgery, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, China
| | - Xiabin Lan
- Department of Head & Neck Oncology Surgery, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, China
- *Correspondence: Xiaodong He, ; Xiabin Lan,
| | - Xiaodong He
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- *Correspondence: Xiaodong He, ; Xiabin Lan,
| |
Collapse
|
25
|
Jafarzadeh L, Ranjbar M, Nazari T, Naeimi Eshkaleti M, Aghaei Gharehbolagh S, Sobel JD, Mahmoudi S. Vulvovaginal candidiasis: An overview of mycological, clinical, and immunological aspects. J Obstet Gynaecol Res 2022; 48:1546-1560. [PMID: 35445492 DOI: 10.1111/jog.15267] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/11/2022] [Accepted: 04/04/2022] [Indexed: 12/28/2022]
Abstract
AIM To provide an overview of clinical, immunological, and mycological aspects of vulvovaginal candidiasis (VVC). METHODS A literature search was conducted to find relevant articles about different aspects of VVC. Related data from retrieved articles were summarized in different headings. RESULTS VVC has a global distribution and Candida albicans is the leading cause of infection except for specific patient groups like postmenopausal, diabetic, or immunocompromised women. VVC has a range of clinical presentations, accordingly, its diagnosis should be based on clinical examination coupled with laboratory investigations. The best therapeutic regimen depends on the patient's conditions and the causative agent. Moreover, factors like drug resistance of the causative agents and different mutations in the immunity-related genes could affect the treatment outcome. CONCLUSION As a globally distributed disease, VVC needs further attention, especially in areas related to the treatment failure and recurrence of the disease.
Collapse
Affiliation(s)
- Leila Jafarzadeh
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Maryam Ranjbar
- Department of Persian Medicine, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tina Nazari
- Department of Medical Geriatrics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Naeimi Eshkaleti
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sanaz Aghaei Gharehbolagh
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Jack D Sobel
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Shahram Mahmoudi
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Song K, Ma J, Gao Y, Qu Y, Ren C, Yan P, Zheng B, Yue B. Knocking down Siglec-15 in osteosarcoma cells inhibits proliferation while promoting apoptosis and pyroptosis by targeting the Siglec-15/STAT3/Bcl-2 pathway. Adv Med Sci 2022; 67:187-195. [PMID: 35398779 DOI: 10.1016/j.advms.2022.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/26/2022] [Accepted: 03/29/2022] [Indexed: 12/01/2022]
Abstract
PURPOSE Sialic acid-bound immunoglobulin lectin 15 (Siglec-15) plays a crucial role in many kinds of tumors. The relationship between Siglec-15 and the prognosis of osteosarcoma patients and its role in the apoptosis and pyroptosis of osteosarcoma cells are not sufficiently understood. Our study aimed to investigate the function of Siglec-15 in osteosarcoma cells and its effect on tumor cell proliferation, apoptosis and pyroptosis. MATERIALS AND METHODS The Siglec-15 expression in pathological sections of osteosarcoma patients was analyzed and the overall survival time related to the expression of Siglec-15 was further analyzed. Next, we detected the expression of Siglec-15 in osteosarcoma cells and downregulated the expression of Siglec-15 by small interfering RNA (siRNA). The proliferation, apoptosis and pyroptosis of osteosarcoma cells were studied by proliferation and apoptosis kits and Western blotting. Furthermore, the Siglec-15 signaling pathway was examined, which may be involved in the observed cellular effects. RESULTS We demonstrated the expression of Siglec-15 in osteosarcoma cells. SiRNA-mediated downregulation of Siglec-15 was successful. We found that knockdown of Siglec-15 in osteosarcoma cell lines significantly inhibited proliferation while promoting apoptosis. Further investigation showed that the expression of proliferation-related proteins was downregulated and that apoptosis- and pyroptosis-related proteins were upregulated. In addition, we found that Siglec-15 may inhibit proliferation while inducing apoptosis and pyroptosis via the (Signal Transducer and Activator of Transcription 3) STAT3/Bcl-2 pathway in osteosarcoma. CONCLUSIONS In this study, we demonstrated that the ablation of Siglec-15 in osteosarcoma inhibited proliferation and promoted apoptosis and pyroptosis by targeting the Siglec-15/STAT3/Bcl-2 pathway.
Collapse
Affiliation(s)
- Keliang Song
- Department of Orthopedic Oncology, the Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China; Qingdao Medical College of Qingdao University, Qingdao, People's Republic of China
| | - Jinfeng Ma
- Qingdao Medical College of Qingdao University, Qingdao, People's Republic of China; Department of Spinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Yang Gao
- Medical Department, the Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Yan Qu
- Industrial Investment Department, Haier, Qingdao, People's Republic of China
| | - Chongmin Ren
- Department of Orthopedic Oncology, the Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China; Qingdao Medical College of Qingdao University, Qingdao, People's Republic of China
| | - Peng Yan
- Department of Orthopedic Oncology, the Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China; Qingdao Medical College of Qingdao University, Qingdao, People's Republic of China
| | - Bingxin Zheng
- Department of Orthopedic Oncology, the Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China; Qingdao Medical College of Qingdao University, Qingdao, People's Republic of China.
| | - Bin Yue
- Department of Orthopedic Oncology, the Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China; Qingdao Medical College of Qingdao University, Qingdao, People's Republic of China.
| |
Collapse
|
27
|
Gonçalves SM, Cunha C, Carvalho A. Understanding the genetic basis of immune responses to fungal infection. Expert Rev Anti Infect Ther 2022; 20:987-996. [PMID: 35385368 DOI: 10.1080/14787210.2022.2063839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Fungal infections represent a global public health problem that affect millions of people. Despite remarkable advances achieved over the last decades, available diagnostic and therapeutic tools remain insufficient for the optimal management of these diseases. The clinical course of fungal infection is highly variable, and evidence accumulated from patients with rare mutations and cohort-based studies suggests that the trajectory of disease is largely defined by patient genetics and its impact on immune responses. Therefore, there is an urgent need to elucidate the precise mechanisms by which which genetic variants influence the risk, progression, and outcome of fungal infection. AREAS COVERED In this review, we highlight recent advances in our understanding of the genetic factors that influence antifungal immune responses based on candidate gene studies and genome-wide approaches performed in different experimental and clinical models. EXPERT OPINION Research on genetics of susceptibility to infection is expected to lead to a detailed knowledge framework for the pathogenesis of human fungal infections and unveil novel targets and pathways amenable to clinical intervention.
Collapse
Affiliation(s)
- Samuel M Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
28
|
Hsu AP, Holland SM. Host genetics of innate immune system in infection. Curr Opin Immunol 2022; 74:140-149. [DOI: 10.1016/j.coi.2021.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/21/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023]
|
29
|
Candida albicans Modulates Murine and Human Beta Defensin-1 during Vaginitis. J Fungi (Basel) 2021; 8:jof8010020. [PMID: 35049960 PMCID: PMC8778459 DOI: 10.3390/jof8010020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 02/06/2023] Open
Abstract
Vulvovaginal candidiasis (VVC) and recurrent vulvovaginal candidiasis (RVVC) are two forms of a disease caused by Candida spp. β-defensin (BD) is one of the most important families of antimicrobial peptides in the female genital tract and includes molecules that exert essential local functions as antimicrobial and PMN chemoattractant peptides. However, the information on their role during murine and human VVC and RVVC is limited. Thus, we analyzed the behavior and contribution of BD1 to the local response in a VVC mice model and the local cytokine profile and human BD1 and BD3 expression in cervicovaginal lavage from patients with VVC and RVVC. We demonstrated that, in patients with RVVC BD1, mRNA and protein expression were severely diminished and that the aspartate proteinase and lipase secreted by C. albicans are involved in that decrease. This study provides novel information about the pathogenesis of VVC and describes a highly efficient C. albicans escape strategy for perpetuating the infection; these results may contribute to the development of new or combined treatment approaches.
Collapse
|
30
|
Paulovičová E, Hrubiško M. Humoral immune responses against facultative pathogen Candida utilis in atopic patients with vulvovaginal candidiasis. Candida utilis glucomannan - New serologic biomarker. Immunobiology 2021; 227:152154. [PMID: 34826687 DOI: 10.1016/j.imbio.2021.152154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 11/05/2022]
Abstract
Vulvovaginal candidiasis is one of the most commonly reported female genital tract infections, affecting approximately 70-75% of childbearing age women at least once during their lifetime. Approximately 50% of patients have refractory episodes and in 5-10% of cases the disease has a chronic course. The fungal cell wall represents the important host-invader interface. Cell-wall polysaccharides represent biological response modifiers and the pathogen-associated molecular patterns and virulence factors. Glycans are sensed by germ-line encoded pattern recognition receptors and reactively participate in immune system cell signaling. The most dominant cell-wall antigenic structures of Candida species as ß-glucan, α- and ß-mannans, glucomannan and other immunogenic polysaccharides are of particular relevancy for specific in vitro diagnosis and long-term follow-up of the Candida infection. In this study we assessed the immunobiological activity of facultative pathogen Candida utilis cell glucomannan and its effectivity as in vitro serological marker for antibody testing. The novel serologic assay has been developed and optimized for C. utilis serodiagnosis. The comparison assays were performed to establish relationship between antibodies against C. utilis, C. albicans and S. cerevisiae main cell-wall antigens in patient sera. The study evaluates applicability of glucomannan as serodiagnostic antigen and as a trigger of antigenspecific IgG, IgM and IgA antibody isotypes in the cohort of 35 atopic female subjects with recurrent vulvovaginal candidiasis. Statistically significant sera values of specific anti-glycan IgM and IgA class antibodies were revealed. The results are suggestive for efficient serological application of C.utilis glucomannan as in vitro disease marker and prospectively for follow-up of the specific long-term antimycotic therapy.
Collapse
Affiliation(s)
- E Paulovičová
- Immunol. & Cell Culture Labs, Dept. Glycoconjugate Immunochemistry, Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - M Hrubiško
- Dept. Clin. Immunol .and Allergy, Oncology Institute of St. Elisabeth and Slovak Medical University, Bratislava, Slovakia
| |
Collapse
|
31
|
Faria-Gonçalves P, Rolo J, Gaspar C, Palmeira-de-Oliveira R, Martinez-de-Oliveira J, Palmeira-de-Oliveira A. Virulence Factors as Promoters of Chronic Vulvovaginal Candidosis: A Review. Mycopathologia 2021; 186:755-773. [PMID: 34613569 DOI: 10.1007/s11046-021-00592-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/09/2021] [Indexed: 01/09/2023]
Abstract
INTRODUCTION The vast majority of the species of the genus Candida spp. is commensal in humans; however, some are opportunistic pathogens that can cause infection, called candidosis. Among the different types of candidosis, we highlight the vulvovaginal (VVC) which can occur in two main clinical variants: chronic (cVVC) and episodic or sporadic. The incidence of cVVC has been worrying the scientific community, promoting the research on genotypic and phenotypic causes of its occurrence. We summarize important findings on factors that favor chronic vulvovaginal candidosis with respect to molecular epidemiology and the expression of various virulence factors, while clarifying the terminology involving these infections. AIM AND METHODOLOGY The aim of this review was to gather research that linked virulence factors to VVC and its persistence and recurrence, using two databases (Pubmed and Google Scholar). Predisposing factors in women for the occurrence of cVVC and some studies that refer new preventive and alternative therapies were also included, where appropriate. RESULTS AND DISCUSSION Several studies have been shedding light on the increasing number of persistence and recurrences of VVC. The expression of virulence factors has been related to both chronic forms of VVC and antifungal resistance. Other studies report mutations occurring in the genome of Candida spp. during the infection phase which may be important indications for new therapies. The introduction of preventive therapies and new therapies has revealed great importance and is also highlighted here.
Collapse
Affiliation(s)
- Paula Faria-Gonçalves
- Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.,Faculty of Medicine, University Mandume Ya Ndemufayo, Lubango, Angola.,Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Joana Rolo
- Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
| | - Carlos Gaspar
- Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.,Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,Health Products Research and Development Lda, Covilhã, Portugal
| | - Rita Palmeira-de-Oliveira
- Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.,Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,Health Products Research and Development Lda, Covilhã, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal
| | - José Martinez-de-Oliveira
- Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Ana Palmeira-de-Oliveira
- Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.,Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,Health Products Research and Development Lda, Covilhã, Portugal
| |
Collapse
|
32
|
Last A, Maurer M, S. Mosig A, S. Gresnigt M, Hube B. In vitro infection models to study fungal-host interactions. FEMS Microbiol Rev 2021; 45:fuab005. [PMID: 33524102 PMCID: PMC8498566 DOI: 10.1093/femsre/fuab005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
Fungal infections (mycoses) affect over a billion people per year. Approximately, two million of these infections are life-threatening, especially for patients with a compromised immune system. Fungi of the genera Aspergillus, Candida, Histoplasma and Cryptococcus are opportunistic pathogens that contribute to a substantial number of mycoses. To optimize the diagnosis and treatment of mycoses, we need to understand the complex fungal-host interplay during pathogenesis, the fungal attributes causing virulence and how the host resists infection via immunological defenses. In vitro models can be used to mimic fungal infections of various tissues and organs and the corresponding immune responses at near-physiological conditions. Furthermore, models can include fungal interactions with the host-microbiota to mimic the in vivo situation on skin and mucosal surfaces. This article reviews currently used in vitro models of fungal infections ranging from cell monolayers to microfluidic 3D organ-on-chip (OOC) platforms. We also discuss how OOC models can expand the toolbox for investigating interactions of fungi and their human hosts in the future.
Collapse
Affiliation(s)
- Antonia Last
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knoell Institute, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Michelle Maurer
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Institute of Biochemistry II, Jena University Hospital, Nonnenplan 2,07743, Jena, Germany
| | - Alexander S. Mosig
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Institute of Biochemistry II, Jena University Hospital, Nonnenplan 2,07743, Jena, Germany
| | - Mark S. Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knoell Institute, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knoell Institute, Beutenbergstrasse 11a, 07745, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Neugasse 24, 07743, Jena, Germany
| |
Collapse
|
33
|
Challenges and Opportunities in Understanding Genetics of Fungal Diseases: Towards a Functional Genomics Approach. Infect Immun 2021; 89:e0000521. [PMID: 34031131 DOI: 10.1128/iai.00005-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Infectious diseases are a leading cause of morbidity and mortality worldwide, and human pathogens have long been recognized as one of the main sources of evolutionary pressure, resulting in a high variable genetic background in immune-related genes. The study of the genetic contribution to infectious diseases has undergone tremendous advances over the last decades. Here, focusing on genetic predisposition to fungal diseases, we provide an overview of the available approaches for studying human genetic susceptibility to infections, reviewing current methodological and practical limitations. We describe how the classical methods available, such as family-based studies and candidate gene studies, have contributed to the discovery of crucial susceptibility factors for fungal infections. We will also discuss the contribution of novel unbiased approaches to the field, highlighting their success but also their limitations for the fungal immunology field. Finally, we show how a systems genomics approach can overcome those limitations and can lead to efficient prioritization and identification of genes and pathways with a critical role in susceptibility to fungal diseases. This knowledge will help to stratify at-risk patient groups and, subsequently, develop early appropriate prophylactic and treatment strategies.
Collapse
|
34
|
Ardizzoni A, Wheeler RT, Pericolini E. It Takes Two to Tango: How a Dysregulation of the Innate Immunity, Coupled With Candida Virulence, Triggers VVC Onset. Front Microbiol 2021; 12:692491. [PMID: 34163460 PMCID: PMC8215348 DOI: 10.3389/fmicb.2021.692491] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/12/2021] [Indexed: 12/11/2022] Open
Abstract
Vulvovaginal candidiasis (VVC) is a symptomatic inflammation of the vagina mainly caused by C. albicans. Other species, such as C. parapsilosis, C. glabrata, C. tropicalis, and C. krusei, are mainly associated to the recurrent form of the disease (RVVC), although with a lower frequency. In its yeast form, C. albicans is tolerated by the vaginal epithelium, but switching to the invasive hyphal form, co-regulated with the expression of genes encoding virulence factors such as secreted aspartyl proteases (Sap) and candidalysin, allows for tissue damage. Vaginal epithelial cells play an important role by impairing C. albicans tissue invasion through several mechanisms such as epithelial shedding, secretion of mucin and strong interepithelial cell connections. However, morphotype switching coupled to increasing of the fungal burden can overcome the tolerance threshold and trigger an intense inflammatory response. Pathological inflammation is believed to be facilitated by an altered vaginal microbiome, i.e., Lactobacillus dysbiosis. Notwithstanding the damage caused by the fungus itself, the host response to the fungus plays an important role in the onset of VVC, exacerbating fungal-mediated damage. This response can be triggered by host PRR-fungal PAMP interaction and other more complex mechanisms (i.e., Sap-mediated NLRP3 activation and candidalysin), ultimately leading to strong neutrophil recruitment. However, recruited neutrophils appear to be ineffective at reducing fungal burden and invasion; therefore, they seem to contribute more to the symptoms associated with vaginitis than to protection against the disease. Recently, two aspects of the vulvovaginal environment have been found to associate with VVC and induce neutrophil anergy in vitro: perinuclear anti-neutrophil cytoplasmic antibodies (pANCA) and heparan sulfate. Interestingly, CAGTA antibodies have also been found with higher frequency in VVC as compared to asymptomatic colonized women. This review highlights and discusses recent advances on understanding the VVC pathogenesis mechanisms as well as the role of host defenses during the disease.
Collapse
Affiliation(s)
- Andrea Ardizzoni
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Robert T Wheeler
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, United States.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
| | - Eva Pericolini
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy.,Graduate School of Microbiology and Virology, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
35
|
Dewi IM, Cunha C, Jaeger M, Gresnigt MS, Gkountzinopoulou ME, Garishah FM, Duarte-Oliveira C, Campos CF, Vanderbeke L, Sharpe AR, Brüggemann RJ, Verweij PE, Lagrou K, Vande Velde G, de Mast Q, Joosten LA, Netea MG, van der Ven AJ, Wauters J, Carvalho A, van de Veerdonk FL. Neuraminidase and SIGLEC15 modulate the host defense against pulmonary aspergillosis. Cell Rep Med 2021; 2:100289. [PMID: 34095887 PMCID: PMC8149467 DOI: 10.1016/j.xcrm.2021.100289] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 09/01/2020] [Accepted: 04/23/2021] [Indexed: 11/30/2022]
Abstract
Influenza-associated pulmonary aspergillosis (IAPA) has been reported increasingly since the advent of use of neuraminidase (NA) inhibitors following the 2009 influenza pandemic. We hypothesize that blocking host NA modulates the immune response against Aspergillus fumigatus. We demonstrate that NA influences the host response against A. fumigatus in vitro and that oseltamivir increases the susceptibility of mice to pulmonary aspergillosis. Oseltamivir impairs the mouse splenocyte and human peripheral blood mononuclear cell (PBMC) killing capacity of A. fumigatus, and adding NA restores this defect in PBMCs. Furthermore, the sialic acid-binding receptor SIGLEC15 is upregulated in PBMCs stimulated with A. fumigatus. Silencing of SIGLEC15 decrease PBMC killing of A. fumigatus. We provide evidence that host NA activity and sialic acid recognition are important for anti-Aspergillus defense. NA inhibitors might predispose individuals with severe influenza to invasive aspergillosis. These data shed light on the pathogenesis of invasive fungal infections and may identify potential therapeutic targets.
Collapse
Affiliation(s)
- Intan M.W. Dewi
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Microbiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Martin Jaeger
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mark S. Gresnigt
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoll Institute, Jena, Germany
| | | | - Fadel M. Garishah
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cláudio Duarte-Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Cláudia F. Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Lore Vanderbeke
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | | | - Roger J. Brüggemann
- Department of Pharmacy, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Paul E. Verweij
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Katrien Lagrou
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Greetje Vande Velde
- Biomedical MRI/Molecular Small Animal Imaging Center, Department of Imaging and Pathology, KU Leuven, Belgium
| | - Quirijn de Mast
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leo A.B. Joosten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mihai G. Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Joost Wauters
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | | |
Collapse
|
36
|
d'Enfert C, Kaune AK, Alaban LR, Chakraborty S, Cole N, Delavy M, Kosmala D, Marsaux B, Fróis-Martins R, Morelli M, Rosati D, Valentine M, Xie Z, Emritloll Y, Warn PA, Bequet F, Bougnoux ME, Bornes S, Gresnigt MS, Hube B, Jacobsen ID, Legrand M, Leibundgut-Landmann S, Manichanh C, Munro CA, Netea MG, Queiroz K, Roget K, Thomas V, Thoral C, Van den Abbeele P, Walker AW, Brown AJP. The impact of the Fungus-Host-Microbiota interplay upon Candida albicans infections: current knowledge and new perspectives. FEMS Microbiol Rev 2021; 45:fuaa060. [PMID: 33232448 PMCID: PMC8100220 DOI: 10.1093/femsre/fuaa060] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Candida albicans is a major fungal pathogen of humans. It exists as a commensal in the oral cavity, gut or genital tract of most individuals, constrained by the local microbiota, epithelial barriers and immune defences. Their perturbation can lead to fungal outgrowth and the development of mucosal infections such as oropharyngeal or vulvovaginal candidiasis, and patients with compromised immunity are susceptible to life-threatening systemic infections. The importance of the interplay between fungus, host and microbiota in driving the transition from C. albicans commensalism to pathogenicity is widely appreciated. However, the complexity of these interactions, and the significant impact of fungal, host and microbiota variability upon disease severity and outcome, are less well understood. Therefore, we summarise the features of the fungus that promote infection, and how genetic variation between clinical isolates influences pathogenicity. We discuss antifungal immunity, how this differs between mucosae, and how individual variation influences a person's susceptibility to infection. Also, we describe factors that influence the composition of gut, oral and vaginal microbiotas, and how these affect fungal colonisation and antifungal immunity. We argue that a detailed understanding of these variables, which underlie fungal-host-microbiota interactions, will present opportunities for directed antifungal therapies that benefit vulnerable patients.
Collapse
Affiliation(s)
- Christophe d'Enfert
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Ann-Kristin Kaune
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Leovigildo-Rey Alaban
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Sayoni Chakraborty
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Neugasse 25, 07743 Jena, Germany
| | - Nathaniel Cole
- Gut Microbiology Group, Rowett Institute, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Margot Delavy
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Daria Kosmala
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Benoît Marsaux
- ProDigest BV, Technologiepark 94, B-9052 Gent, Belgium
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links, 9000 Ghent, Belgium
| | - Ricardo Fróis-Martins
- Immunology Section, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, Zurich 8057, Switzerland
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Moran Morelli
- Mimetas, Biopartner Building 2, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | - Diletta Rosati
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Marisa Valentine
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Zixuan Xie
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Yoan Emritloll
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Peter A Warn
- Magic Bullet Consulting, Biddlecombe House, Ugbrook, Chudleigh Devon, TQ130AD, UK
| | - Frédéric Bequet
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
| | - Marie-Elisabeth Bougnoux
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Stephanie Bornes
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF0545, 20 Côte de Reyne, 15000 Aurillac, France
| | - Mark S Gresnigt
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Bernhard Hube
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Ilse D Jacobsen
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Mélanie Legrand
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Salomé Leibundgut-Landmann
- Immunology Section, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, Zurich 8057, Switzerland
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Chaysavanh Manichanh
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Carol A Munro
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Karla Queiroz
- Mimetas, Biopartner Building 2, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | - Karine Roget
- NEXBIOME Therapeutics, 22 allée Alan Turing, 63000 Clermont-Ferrand, France
| | - Vincent Thomas
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
| | - Claudia Thoral
- NEXBIOME Therapeutics, 22 allée Alan Turing, 63000 Clermont-Ferrand, France
| | | | - Alan W Walker
- Gut Microbiology Group, Rowett Institute, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Alistair J P Brown
- MRC Centre for Medical Mycology, Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
37
|
Peters BM, Coleman BM, Willems HME, Barker KS, Aggor FEY, Cipolla E, Verma AH, Bishu S, Huppler AH, Bruno VM, Gaffen SL. The Interleukin (IL) 17R/IL-22R Signaling Axis Is Dispensable for Vulvovaginal Candidiasis Regardless of Estrogen Status. J Infect Dis 2021; 221:1554-1563. [PMID: 31805183 DOI: 10.1093/infdis/jiz649] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/04/2019] [Indexed: 12/20/2022] Open
Abstract
Candida albicans, a ubiquitous commensal fungus that colonizes human mucosal tissues and skin, can become pathogenic, clinically manifesting most commonly as oropharyngeal candidiasis and vulvovaginal candidiasis (VVC). Studies in mice and humans convincingly show that T-helper 17 (Th17)/interleukin 17 (IL-17)-driven immunity is essential to control oral and dermal candidiasis. However, the role of the IL-17 pathway during VVC remains controversial, with conflicting reports from human data and mouse models. Like others, we observed induction of a strong IL-17-related gene signature in the vagina during estrogen-dependent murine VVC. As estrogen increases susceptibility to vaginal colonization and resulting immunopathology, we asked whether estrogen use in the standard VVC model masks a role for the Th17/IL-17 axis. We demonstrate that mice lacking IL-17RA, Act1, or interleukin 22 showed no evidence for altered VVC susceptibility or immunopathology, regardless of estrogen administration. Hence, these data support the emerging consensus that Th17/IL-17 axis signaling is dispensable for the immunopathogenesis of VVC.
Collapse
Affiliation(s)
- Brian M Peters
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Microbiology, Immunology and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Bianca M Coleman
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hubertine M E Willems
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Katherine S Barker
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Felix E Y Aggor
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ellyse Cipolla
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Akash H Verma
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Srinivas Bishu
- Division of Gastroenterology, Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Anna H Huppler
- Division of Infectious Diseases, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Vincent M Bruno
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sarah L Gaffen
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
38
|
Sun J, Lu Q, Sanmamed MF, Wang J. Siglec-15 as an Emerging Target for Next-generation Cancer Immunotherapy. Clin Cancer Res 2021; 27:680-688. [PMID: 32958700 PMCID: PMC9942711 DOI: 10.1158/1078-0432.ccr-19-2925] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/07/2020] [Accepted: 09/16/2020] [Indexed: 01/21/2023]
Abstract
Immunomodulatory agents blocking the PD-1/PD-L1 pathway have shown a new way to treat cancer. The explanation underlying the success of these agents may be the selective expression of PD-L1 with dominant immune-suppressive activities in the tumor microenvironment (TME), supporting a more favorable tumor response-to-toxicity ratio. However, despite the big success of these drugs, most patients with cancer show primary or acquired resistance, calling for the identification of new immune modulators in the TME. Using a genome-scale T-cell activity array in combination with bioinformatic analysis of human cancer databases, we identified Siglec-15 as a critical immune suppressor with broad upregulation on various cancer types and a potential target for cancer immunotherapy. Siglec-15 has unique molecular features compared with many other known checkpoint inhibitory ligands. It shows prominent expression on macrophages and cancer cells and a mutually exclusive expression with PD-L1, suggesting that it may be a critical immune evasion mechanism in PD-L1-negative patients. Interestingly, Siglec-15 has also been identified as a key regulator for osteoclast differentiation and may have potential implications in bone disorders not limited to osteoporosis. Here, we provide an overview of Siglec-15 biology, its role in cancer immune regulation, the preliminary and encouraging clinical data related to the first-in-class Siglec-15 targeting mAb, as well as many unsolved questions in this pathway. As a new player in the cancer immunotherapeutic arena, Siglec-15 may represent a novel class of immune inhibitors with tumor-associated expression and divergent mechanisms of action to PD-L1, with potential implications in anti-PD-1/PD-L1-resistant patients.
Collapse
Affiliation(s)
- Jingwei Sun
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut
| | - Qiao Lu
- Department of Pathology, New York University Grossman School of Medicine, New York, New York
- The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, New York
| | - Miguel F Sanmamed
- Program of Immunology and Immunotherapy, CIMA, University of Navarra, Pamplona, Spain
| | - Jun Wang
- Department of Pathology, New York University Grossman School of Medicine, New York, New York.
- The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, New York
| |
Collapse
|
39
|
Murugesan G, Correia VG, Palma AS, Chai W, Li C, Feizi T, Martin E, Laux B, Franz A, Fuchs K, Weigle B, Crocker PR. Siglec-15 recognition of sialoglycans on tumor cell lines can occur independently of sialyl Tn antigen expression. Glycobiology 2021; 31:44-54. [PMID: 32501471 PMCID: PMC7799145 DOI: 10.1093/glycob/cwaa048] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/21/2020] [Accepted: 06/01/2020] [Indexed: 12/15/2022] Open
Abstract
Siglec-15 is a conserved sialic acid-binding Ig-like lectin expressed on osteoclast progenitors, which plays an important role in osteoclast development and function. It is also expressed by tumor-associated macrophages and by some tumors, where it is thought to contribute to the immunosuppressive microenvironment. It was shown previously that engagement of macrophage-expressed Siglec-15 with tumor cells expressing its ligand, sialyl Tn (sTn), triggered production of TGF-β. In the present study, we have further investigated the interaction between Siglec-15 and sTn on tumor cells and its functional consequences. Based on binding assays with lung and breast cancer cell lines and glycan-modified cells, we failed to see evidence for recognition of sTn by Siglec-15. However, using a microarray of diverse, structurally defined glycans, we show that Siglec-15 binds with higher avidity to sialylated glycans other than sTn or related antigen sequences. In addition, we were unable to demonstrate enhanced TGF-β secretion following co-culture of Siglec-15-expressing monocytic cell lines with tumor cells expressing sTn or following Siglec-15 cross-linking with monoclonal antibodies. However, we did observe activation of the SYK/MAPK signaling pathway following antibody cross-linking of Siglec-15 that may modulate the functional activity of macrophages.
Collapse
Affiliation(s)
- Gavuthami Murugesan
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Viviana G Correia
- Applied Molecular Biosciences Unit, Faculty of Science and Technology, NOVA University of Lisbon, Lisbon, Portugal
| | - Angelina S Palma
- Applied Molecular Biosciences Unit, Department of Chemistry, Faculty of Science and Technology, NOVA University of Lisbon, Lisbon, Portugal
| | - Wengang Chai
- Glycosciences Laboratory, Imperial College London, London, United Kingdom
| | - Chunxia Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy and Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Ocean University of China, Qingdao 266003, China
| | - Ten Feizi
- Glycosciences Laboratory, Imperial College London, London, United Kingdom
| | - Eva Martin
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Str. 65, 88397 Biberach/Riss, Germany
| | - Brigitte Laux
- Cancer Immunology & Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Str. 65, 88397 Biberach/Riss, Germany
| | - Alexandra Franz
- Cancer Immunology & Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Str. 65, 88397 Biberach/Riss, Germany
| | - Klaus Fuchs
- Biotherapeutics Discovery, Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Str. 65, 88397 Biberach/Riss, Germany
| | - Bernd Weigle
- Cancer Immunology & Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Str. 65, 88397 Biberach/Riss, Germany
| | - Paul R Crocker
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| |
Collapse
|
40
|
Li W, Shi W, Yin Y, Chen J, Luo L. <p>Association of <em>IL-17</em> and <em>IL-23</em> Gene Variants with Plasma Levels and Risk of Vulvovaginal Candidiasis in a Chinese Han Population</p>. Pharmgenomics Pers Med 2020; 13:725-733. [PMID: 33364812 PMCID: PMC7751320 DOI: 10.2147/pgpm.s275073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 11/16/2020] [Indexed: 12/02/2022] Open
Abstract
Background Vulvovaginal candidiasis (VVC) is a common vaginal inflammatory disease in females. The interleukin (IL)-23/IL-17 axis was involved in vaginal inflammation. Nevertheless, the relationship between gene polymorphisms in the IL-23/IL-17 axis and VVC risk is still unexplored. Methods We enrolled 217 VCC cases and 326 controls in this study. The genotyping of all polymorphisms was implemented by PCR-RFLP methods. Results Data indicated that IL-17F gene rs763780, IL-17A gene rs2275913, and IL-23R rs11209026 polymorphisms were linked with an elevated risk of VVC in Chinese ethnicity. Subgroup analyses uncovered that IL-23R rs11209026, IL-17A rs10484879 and IL-17F rs763780 polymorphisms increased the risk of VVC among smokers or individuals with BMI ≥25 kg/m2. Additionally, IL-17F rs763780 polymorphism was shown to increase the risk of recurrent VVC (RVVC). Furthermore, IL-23 and IL-17 serum levels were higher among VVC cases than controls. We also observed that IL-23 and IL-17 gene polymorphisms were related to their serum levels. Receiver operating characteristics (ROC) curve analysis found that IL-17 and IL-23 serum levels were associated with the relapse of VVC. Conclusion In conclusion, this study indicates that polymorphisms in the IL-23/IL-17 axis increase the risk of VVC.
Collapse
Affiliation(s)
- Wei Li
- Department of Gynecology, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Wenyin Shi
- Department of Gynecology, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Yujun Yin
- Department of Gynaecology and Obstetrics, Dantu District People’s Hospital, Zhenjiang, Jiangsu, People’s Republic of China
| | - Juan Chen
- Department of Gynecology, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Lanlan Luo
- Department of Obstetrics and Gynecology, Taizhou People’s Hospital, Taizhou, People’s Republic of China
- Correspondence: Lanlan Luo Tel/Fax +86-523-86606267 Email
| |
Collapse
|
41
|
Rosati D, Bruno M, Jaeger M, Kullberg BJ, van de Veerdonk F, Netea MG, Ten Oever J. An exaggerated monocyte-derived cytokine response to Candida hyphae in patients with recurrent vulvovaginal candidiasis. J Infect Dis 2020; 225:1796-1806. [PMID: 32702099 PMCID: PMC9113504 DOI: 10.1093/infdis/jiaa444] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/23/2020] [Indexed: 01/05/2023] Open
Abstract
Background Recurrent vulvovaginal candidiasis (RVVC) affects up to 8% of women. The immunopathogenesis is poorly understood but it has been suggested that RVVC might be due to dysregulated innate immune response. The aim of this study was to compare cytokine profiles in stimulated primary mononuclear cells (PBMCs) from RVVC and healthy individuals. Methods PBMCs isolated from RVVC patients (n = 24) and healthy volunteers (n = 30) were stimulated with unspecific and pathogen-specific antigens. Cytokine production was assessed after 24 hours, 48 hours, and 7 days using ELISA. Results No significant differences in cytokine production were found in T helper 1 (Th1), Th2, and Th17 immunity in response to both unspecific and pathogen-specific stimulations. Tumor necrosis factor-α (TNF-α) production in response to C. albicans hyphae was significantly higher in patients than controls and within the patient group, a significant positive correlation was found between interleukin-1β (IL-1β) and both TNF-α and IL-6. Both IL-1β/IL-1Ra and TNF-α/IL-10 ratios in Candida hyphae-stimulated PBMCs were significantly higher in patients than controls. Conclusions Women affected by RVVC showed increased monocytes-derived cytokine production, which might contribute to an exaggerated vaginal immune response to Candida hyphae. RVVC patients show no defective Th-dependent adaptive immune response upon Candida stimulation.
Collapse
Affiliation(s)
- Diletta Rosati
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mariolina Bruno
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Martin Jaeger
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bart-Jan Kullberg
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Frank van de Veerdonk
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.,Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Germany
| | - Jaap Ten Oever
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
42
|
Abstract
Growing interest in host-fungal interactions has implications for human health and disease
Collapse
Affiliation(s)
- Heidi H Kong
- Cutaneous Microbiome and Inflammation Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA.
| | - Julia A Segre
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
43
|
van de Wall S, Santegoets KC, van Houtum EJ, Büll C, Adema GJ. Sialoglycans and Siglecs Can Shape the Tumor Immune Microenvironment. Trends Immunol 2020; 41:274-285. [DOI: 10.1016/j.it.2020.02.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 12/23/2022]
|
44
|
Abstract
Siglecs are sialic acid (Sia) recognizing immunoglobulin-like receptors expressed on the surface of all the major leukocyte lineages in mammals. Siglecs recognize ubiquitous Sia epitopes on various glycoconjugates in the cell glycocalyx and transduce signals to regulate immunological and inflammatory activities of these cells. The subset known as CD33-related Siglecs is principally inhibitory receptors that suppress leukocyte activation, and recent research has shown that a number of bacterial pathogens use Sia mimicry to engage these Siglecs as an immune evasion strategy. Conversely, Siglec-1 is a macrophage phagocytic receptor that engages GBS and other sialylated bacteria to promote effective phagocytosis and antigen presentation for the adaptive immune response, whereas certain viruses and parasites use Siglec-1 to gain entry to immune cells as a proximal step in the infectious process. Siglecs are positioned in crosstalk with other host innate immune sensing pathways to modulate the immune response to infection in complex ways. This chapter summarizes the current understanding of Siglecs at the host-pathogen interface, a field of study expanding in breadth and medical importance, and which provides potential targets for immune-based anti-infective strategies.
Collapse
Affiliation(s)
- Yung-Chi Chang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, No. 1, Sec. 1, Jen-Ai Rd., Taipei, 10051, Taiwan.
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, and Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, 9500 Gilman Drive Mail Code 0760, La Jolla, CA, 92093, USA
| |
Collapse
|
45
|
Merkhofer RM, Klein BS. Advances in Understanding Human Genetic Variations That Influence Innate Immunity to Fungi. Front Cell Infect Microbiol 2020; 10:69. [PMID: 32185141 PMCID: PMC7058545 DOI: 10.3389/fcimb.2020.00069] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/12/2020] [Indexed: 12/30/2022] Open
Abstract
Fungi are ubiquitous. Yet, despite our frequent exposure to commensal fungi of the normal mammalian microbiota and environmental fungi, serious, systemic fungal infections are rare in the general population. Few, if any, fungi are obligate pathogens that rely on infection of mammalian hosts to complete their lifecycle; however, many fungal species are able to cause disease under select conditions. The distinction between fungal saprophyte, commensal, and pathogen is artificial and heavily determined by the ability of an individual host's immune system to limit infection. Dramatic examples of commensal fungi acting as opportunistic pathogens are seen in hosts that are immune compromised due to congenital or acquired immune deficiency. Genetic variants that lead to immunological susceptibility to fungi have long been sought and recognized. Decreased myeloperoxidase activity in neutrophils was first reported as a mechanism for susceptibility to Candida infection in 1969. The ability to detect genetic variants and mutations that lead to rare or subtle susceptibilities has improved with techniques such as single nucleotide polymorphism (SNP) microarrays, whole exome sequencing (WES), and whole genome sequencing (WGS). Still, these approaches have been limited by logistical considerations and cost, and they have been applied primarily to Mendelian impairments in anti-fungal responses. For example, loss-of-function mutations in CARD9 were discovered by studying an extended family with a history of fungal infection. While discovery of such mutations furthers the understanding of human antifungal immunity, major Mendelian susceptibility loci are unlikely to explain genetic disparities in the rate or severity of fungal infection on the population level. Recent work using unbiased techniques has revealed, for example, polygenic mechanisms contributing to candidiasis. Understanding the genetic underpinnings of susceptibility to fungal infections will be a powerful tool in the age of personalized medicine. Future application of this knowledge may enable targeted health interventions for susceptible individuals, and guide clinical decision making based on a patient's individual susceptibility profile.
Collapse
Affiliation(s)
- Richard M Merkhofer
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Bruce S Klein
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States.,Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, United States.,Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States.,Department of Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
46
|
Willems HME, Ahmed SS, Liu J, Xu Z, Peters BM. Vulvovaginal Candidiasis: A Current Understanding and Burning Questions. J Fungi (Basel) 2020; 6:jof6010027. [PMID: 32106438 PMCID: PMC7151053 DOI: 10.3390/jof6010027] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/22/2022] Open
Abstract
Candida albicans, along with other closely related Candida species, are the primary causative agents of vulvovaginal candidiasis (VVC)-a multifactorial infectious disease of the lower female reproductive tract resulting in pathologic inflammation. Unlike other forms of candidiasis, VVC is a disease of immunocompetent and otherwise healthy women, most predominant during their child-bearing years. While VVC is non-lethal, its high global incidence and profound negative impact on quality-of-life necessitates further understanding of the host and fungal factors that drive disease pathogenesis. In this review, we cover the current state of our understanding of the epidemiology, host response, fungal pathogenicity mechanisms, impact of the microbiome, and novel approaches to treatment of this most prevalent human candidal infection. We also offer insight into the latest advancements in the VVC field and identify important questions that still remain.
Collapse
Affiliation(s)
- Hubertine M. E. Willems
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (H.M.E.W.); (J.L.); (Z.X.)
| | - Salman S. Ahmed
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China;
| | - Junyan Liu
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (H.M.E.W.); (J.L.); (Z.X.)
| | - Zhenbo Xu
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (H.M.E.W.); (J.L.); (Z.X.)
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China;
| | - Brian M. Peters
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (H.M.E.W.); (J.L.); (Z.X.)
- Correspondence:
| |
Collapse
|
47
|
Recurrent Vulvovaginal Candidiasis: An Immunological Perspective. Microorganisms 2020; 8:microorganisms8020144. [PMID: 31972980 PMCID: PMC7074770 DOI: 10.3390/microorganisms8020144] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 12/19/2022] Open
Abstract
Vulvovaginal candidiasis (VVC) is a widespread vaginal infection primarily caused by Candida albicans. VVC affects up to 75% of women of childbearing age once in their life, and up to 9% of women in different populations experience more than three episodes per year, which is defined as recurrent vulvovaginal candidiasis (RVVC). RVVC results in diminished quality of life as well as increased associated healthcare costs. For a long time, VVC has been considered the outcome of inadequate host defenses against Candida colonization, as in the case of primary immunodeficiencies associated with persistent fungal infections and insufficient clearance. Intensive research in recent decades has led to a new hypothesis that points toward a local mucosal overreaction of the immune system rather than a defective host response to Candida colonization. This review provides an overview of the current understanding of the host immune response in VVC pathogenesis and suggests that a tightly regulated fungus-host-microbiota interplay might exert a protective role against recurrent Candida infections.
Collapse
|
48
|
Angata T. Siglec-15: a potential regulator of osteoporosis, cancer, and infectious diseases. J Biomed Sci 2020; 27:10. [PMID: 31900164 PMCID: PMC6941304 DOI: 10.1186/s12929-019-0610-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
Siglec-15 is a member of the Siglec family of glycan-recognition proteins, primarily expressed on a subset of myeloid cells. Siglec-15 has been known to be involved in osteoclast differentiation, and is considered to be a potential therapeutic target for osteoporosis. Recent studies revealed unexpected roles of Siglec-15 in microbial infection and the cancer microenvironment, expanding the potential pathophysiological roles of Siglec-15. Chemical biology has advanced our understanding of the nature of Siglec-15 ligands, but the exact nature of Siglec-15 ligand depends on the biological context, leaving plenty of room for further exploration.
Collapse
Affiliation(s)
- Takashi Angata
- Institute of Biological Chemistry, Academia Sinica, 128, Section 2, Academia Road, Nankang District, Taipei, Taiwan.
| |
Collapse
|