1
|
Feng Z, Zuo Y, Shen J, Zhao Q, Cao ZQ, Li X, Wang Z. Bioengineering microspheres regulating mesenchymal stem cell fate accelerate spinal cord injury therapeutics. NANO TODAY 2025; 61:102574. [DOI: 10.1016/j.nantod.2024.102574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
He P, Zhang H, Wang J, Guo Y, Tian Q, Liu C, Gong P, Ye Q, Peng Y, Li M. Dental Pulp Stem Cells Attenuate Early Brain Injury After Subarachnoid Hemorrhage via miR-26a-5p/PTEN/AKT Pathway. Neurochem Res 2025; 50:91. [PMID: 39883266 DOI: 10.1007/s11064-025-04340-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/06/2025] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
Subarachnoid hemorrhage (SAH) is a type of hemorrhagic stroke with high morbidity, mortality and disability, and early brain injury (EBI) after SAH is crucial for prognosis. Recently, stem cell therapy has garnered significant attention in the treatment of neurological diseases. Compared to other stem cells, dental pulp stem cells (DPSCs) possess several advantages, including abundant sources, absence of ethical concerns, non-invasive procurement, non-tumorigenic history and neuroprotective potential. Therefore, we aim to investigate whether DPSCs can improve EBI after SAH, and explore the mechanisms. In our study, we utilized the endovascular perforation method to establish a SAH mouse model and investigated whether DPSCs administered via tail vein injection could improve EBI after SAH. Furthermore, we used hemin-stimulated HT22 cells to simulate neuronal cell injury induced by SAH and employed a co-culture approach to examine the effects of DPSCs on these cells. To gain insights into the potential mechanisms underlying the improvement of SAH-induced EBI by DPSCs, we conducted bioinformatics analysis. Finally, we further validated our findings through experiments. In vivo experiments, we found that DPSCs administration improved neurological dysfunction, reduced brain edema, and prevented neuronal apoptosis in SAH mice. Additionally, we observed a decrease in the expression level of miR-26a-5p in the cortical tissues of SAH mice, which was significantly increased following intravenous injection of DPSCs. Through bioinformatic analysis and luciferase reporter assay, we confirmed the target relationship between miR-26a-5p and PTEN. Moreover, we demonstrated that DPSCs exerted neuroprotective effects by modulating the miR-26a-5p/PTEN/AKT pathway. Our study demonstrates that DPSCs can improve EBI after SAH through the miR-26a-5p/PTEN/AKT pathway, laying a foundation for the application of DPSCs in SAH treatment. These findings provide a theoretical basis for further investigating the therapeutic mechanisms of DPSCs and developing novel treatment strategies in SAH.
Collapse
Affiliation(s)
- Peibang He
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Hui Zhang
- Center of Regenerative Medicine & Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Jianfeng Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Yujia Guo
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Qi Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Chengli Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Pian Gong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Qingsong Ye
- Center of Regenerative Medicine & Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Youjian Peng
- Center of Regenerative Medicine & Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
3
|
Lövljung V, Waldén M, Sandell M, Damberg P, Holmin S, Arnberg Sandor F. Trans-Vessel Wall Cell Transplantation, Engraftment, and Tumor Access in the VX2 Rabbit Model. Cell Transplant 2025; 34:9636897251313678. [PMID: 39871454 PMCID: PMC11773539 DOI: 10.1177/09636897251313678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/20/2024] [Accepted: 12/25/2024] [Indexed: 01/29/2025] Open
Abstract
The trans-vessel wall device (TW-device) is a new endovascular tool for precise and safe delivery of various payloads (cells, viral, modified RNA, chemotherapy, growth factors) in oncology and regenerative medicine. The twofold aim of this study was to assess cell engraftment and tumor growth using the TW-device for endovascular transplantation and to evaluate its ability to directly access solid tumors. We used the VX2 model in the rabbit kidney to compare percutaneously implanted fresh VX2 cells with TW-device injections of cryopreserved VX2 cells. We demonstrated the feasibility of endovascular transplantation (n = 7) of tumor cells, achieving a 57.1% engraftment rate despite cryopreservation, comparable with 70% for percutaneous delivery of fresh cells (n = 10). Re-access using the TW-device was 100% successful (n = 11) with super-selective intratumoral contrast administration without complications. In conclusion, endovascular transplantation of VX2 cells using the TW-device resulted in proliferating cell grafts in the rabbit kidney establishing functional proof that cells indeed survive handling, preparation, and device passage. We also show the TW-device is able to access solid tumor parenchyma allowing precise intraparenchymal administration.This proof-of-concept study open up possibilities for repeated direct parenchymal injections via the endovascular route in any hard to reach organ.
Collapse
Affiliation(s)
- Victoria Lövljung
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Mathias Waldén
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Sandell
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden
- MedTechLabs, Stockholm, Sweden
| | - Peter Damberg
- Karolinska Experimental Research and Imaging Centre, Karolinska University Hospital, Stockholm, Sweden
| | - Staffan Holmin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
- MedTechLabs, Stockholm, Sweden
| | - Fabian Arnberg Sandor
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
4
|
Wang W, Yang H, Fan Z, Shi R. STL Inhibited Angiogenesis of DPSCs Through Depressing Mitochondrial Respiration by Enhancing RNF217. Adv Biol (Weinh) 2024; 8:e2400042. [PMID: 38880848 DOI: 10.1002/adbi.202400042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/10/2024] [Indexed: 06/18/2024]
Abstract
Angiogenesis is the determining factor during dental pulp regeneration. Six-twelve leukemia (STL) is identified as a key regulatory factor on the biological function of dental pulp stem cells (DPSCs) under hypoxic conditions, but its effect on angiogenesis is unclear. Co-culture of DPSCs and human umbilical vein endothelial cells (HUVECs) is used to detect tubule formation ability in vitro and the angiogenesis ability in vivo. RNA-seq and bioinformatic analyses are performed to screen differentially expressed genes. Seahorse Cell Mito Stress Test is proceeded to exam mitochondrial respiration. STL decreased tubule formation and mitochondrial respiration of DPSCs in vitro and restrained the number of blood vessels and the expression of VEGF in new formed tissue in vivo. Furthermore, pretreating STL-depleted DPSCs with rotenone, a mitochondrial respiration inhibitor, counteracted the promoting effect of STL knockdown on tubule formation. Then, RNA-seq and bioinformatic analyses identified some angiogenesis relevant genes and pathways in STL-depleted DPSCs. And STL enhanced expression of mRNA-ring finger protein 217 (RNF217), which inhibited the tubule formation and mitochondrial respiration of DPSCs. STL inhibited the angiogenesis of DPSCs through depressing mitochondrial respiration by enhancing RNF217, indicating that STL is a potential target for angiogenesis of DPSCs.
Collapse
Affiliation(s)
- Wanqing Wang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Haoqing Yang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Zhipeng Fan
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Ruitang Shi
- Department of Endodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China
| |
Collapse
|
5
|
Pu M, Cao H, Zhang H, Wang T, Li Y, Xiao S, Gu Z. ROS-responsive hydrogels: from design and additive manufacturing to biomedical applications. MATERIALS HORIZONS 2024; 11:3721-3746. [PMID: 38894682 DOI: 10.1039/d4mh00289j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Hydrogels with intricate 3D networks and high hydrophilicity have qualities resembling those of biological tissues, making them ideal candidates for use as smart biomedical materials. Reactive oxygen species (ROS) responsive hydrogels are an innovative class of smart hydrogels, and are cross-linked by ROS-responsive modules through covalent interactions, coordination interactions, or supramolecular interactions. Due to the introduction of ROS response modules, this class of hydrogels exhibits a sensitive response to the oxidative stress microenvironment existing in organisms. Simultaneously, due to the modularity of the ROS-responsive structure, ROS-responsive hydrogels can be manufactured on a large scale through additive manufacturing. This review will delve into the design, fabrication, and applications of ROS-responsive hydrogels. The main goal is to clarify the chemical principles that govern the response mechanism of these hydrogels, further providing new perspectives and methods for designing responsive hydrogel materials.
Collapse
Affiliation(s)
- Minju Pu
- Department of Periodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China.
| | - Huan Cao
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610065, P. R. China
| | - Hengjie Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China.
| | - Tianyou Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China.
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China.
| | - Shimeng Xiao
- Department of Periodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China.
| |
Collapse
|
6
|
Rahimi Darehbagh R, Seyedoshohadaei SA, Ramezani R, Rezaei N. Stem cell therapies for neurological disorders: current progress, challenges, and future perspectives. Eur J Med Res 2024; 29:386. [PMID: 39054501 PMCID: PMC11270957 DOI: 10.1186/s40001-024-01987-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Abstract
Stem cell-based therapies have emerged as a promising approach for treating various neurological disorders by harnessing the regenerative potential of stem cells to restore damaged neural tissue and circuitry. This comprehensive review provides an in-depth analysis of the current state of stem cell applications in primary neurological conditions, including Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), stroke, spinal cord injury (SCI), and other related disorders. The review begins with a detailed introduction to stem cell biology, discussing the types, sources, and mechanisms of action of stem cells in neurological therapies. It then critically examines the preclinical evidence from animal models and early human trials investigating the safety, feasibility, and efficacy of different stem cell types, such as embryonic stem cells (ESCs), mesenchymal stem cells (MSCs), neural stem cells (NSCs), and induced pluripotent stem cells (iPSCs). While ESCs have been studied extensively in preclinical models, clinical trials have primarily focused on adult stem cells such as MSCs and NSCs, as well as iPSCs and their derivatives. We critically assess the current state of research for each cell type, highlighting their potential applications and limitations in different neurological conditions. The review synthesizes key findings from recent, high-quality studies for each neurological condition, discussing cell manufacturing, delivery methods, and therapeutic outcomes. While the potential of stem cells to replace lost neurons and directly reconstruct neural circuits is highlighted, the review emphasizes the critical role of paracrine and immunomodulatory mechanisms in mediating the therapeutic effects of stem cells in most neurological disorders. The article also explores the challenges and limitations associated with translating stem cell therapies into clinical practice, including issues related to cell sourcing, scalability, safety, and regulatory considerations. Furthermore, it discusses future directions and opportunities for advancing stem cell-based treatments, such as gene editing, biomaterials, personalized iPSC-derived therapies, and novel delivery strategies. The review concludes by emphasizing the transformative potential of stem cell therapies in revolutionizing the treatment of neurological disorders while acknowledging the need for rigorous clinical trials, standardized protocols, and multidisciplinary collaboration to realize their full therapeutic promise.
Collapse
Affiliation(s)
- Ramyar Rahimi Darehbagh
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Nanoclub Elites Association, Tehran, Iran
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Universal Scientific Education and Research Network (USERN), Sanandaj, Kurdistan, Iran
| | | | - Rojin Ramezani
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Zhang J, Suo M, Wang J, Liu X, Huang H, Wang K, Liu X, Sun T, Li Z, Liu J. Standardisation is the key to the sustained, rapid and healthy development of stem cell-based therapy. Clin Transl Med 2024; 14:e1646. [PMID: 38572666 PMCID: PMC10993161 DOI: 10.1002/ctm2.1646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/20/2024] [Accepted: 03/17/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Stem cell-based therapy (SCT) is an important component of regenerative therapy that brings hope to many patients. After decades of development, SCT has made significant progress in the research of various diseases, and the market size has also expanded significantly. The transition of SCT from small-scale, customized experiments to routine clinical practice requires the assistance of standards. Many countries and international organizations around the world have developed corresponding SCT standards, which have effectively promoted the further development of the SCT industry. METHODS We conducted a comprehensive literature review to introduce the clinical application progress of SCT and focus on the development status of SCT standardization. RESULTS We first briefly introduced the types and characteristics of stem cells, and summarized the current clinical application and market development of SCT. Subsequently, we focused on the development status of SCT-related standards as of now from three levels: the International Organization for Standardization (ISO), important international organizations, and national organizations. Finally, we provided perspectives and conclusions on the significance and challenges of SCT standardization. CONCLUSIONS Standardization plays an important role in the sustained, rapid and healthy development of SCT.
Collapse
Affiliation(s)
- Jing Zhang
- Department of OrthopedicsFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic DiseasesDalianLiaoning ProvinceChina
| | - Moran Suo
- Department of OrthopedicsFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic DiseasesDalianLiaoning ProvinceChina
| | - Jinzuo Wang
- Department of OrthopedicsFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic DiseasesDalianLiaoning ProvinceChina
| | - Xin Liu
- Department of OrthopedicsFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic DiseasesDalianLiaoning ProvinceChina
| | - Huagui Huang
- Department of OrthopedicsFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic DiseasesDalianLiaoning ProvinceChina
| | - Kaizhong Wang
- Department of OrthopedicsFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic DiseasesDalianLiaoning ProvinceChina
| | - Xiangyan Liu
- Department of OrthopedicsFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic DiseasesDalianLiaoning ProvinceChina
| | - Tianze Sun
- Department of OrthopedicsFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic DiseasesDalianLiaoning ProvinceChina
| | - Zhonghai Li
- Department of OrthopedicsFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic DiseasesDalianLiaoning ProvinceChina
- Stem Cell Clinical Research CenterNational Joint Engineering LaboratoryFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Dalian Innovation Institute of Stem Cell and Precision MedicineDalianLiaoning ProvinceChina
| | - Jing Liu
- Stem Cell Clinical Research CenterNational Joint Engineering LaboratoryFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Dalian Innovation Institute of Stem Cell and Precision MedicineDalianLiaoning ProvinceChina
| |
Collapse
|
8
|
Stavas J, Silva AL, Wooldridge TD, Aqeel A, Saad T, Prakash R, Bakris G. Rilparencel (Renal Autologous Cell Therapy-REACT®) for Chronic Kidney Disease and Type 1 and Type 2 Diabetes: Phase 2 Trial Design Evaluating Bilateral Kidney Dosing and Redosing Triggers. Am J Nephrol 2024; 55:389-398. [PMID: 38423000 PMCID: PMC11151988 DOI: 10.1159/000537942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
INTRODUCTION Autologous cell-based therapies (CBT) to treat chronic kidney disease (CKD) with diabetes are novel and can potentially preserve renal function and decelerate disease progression. CBT dosing schedules are in early development and may benefit from individual bilateral organ dosing and kidney-dependent function to improve efficacy and durability. The objective of this open-label, phase 2 randomized controlled trial (RCT) is to evaluate participants' responses to rilparencel (Renal Autologous Cell Therapy-REACT®) following bilateral percutaneous kidney injections into the kidney cortex with a prescribed dosing schedule versus redosing based on biomarker triggers. METHODS Eligible participants with type 1 or 2 diabetes and CKD, eGFR 20-50 mL/min/1.73 m2, urine albumin-to-creatinine ratio (UACR) 30-5,000 mg/g, hemoglobin >10 g/dL, and glycosylated hemoglobin <10% were enrolled. After a percutaneous kidney biopsy and bioprocessing ex vivo expansion of selected renal cells, participants were randomized 1:1 into two cohorts determined by the dosing scheme. Cohort 1 receives 2 cell injections, one in each kidney 3 months apart, and cohort 2 receives one injection and the second dose only if there is a sustained eGFR decline of ≥20 mL/min/1.73 m2 and/or UACR increase of ≥30% and ≥30 mg/g, confirmed by re-testing. CONCLUSION The trial is fully enrolled with fifty-three participants. Cell injections and follow-up clinical visits are ongoing. This multicenter phase 2 RCT is designed to investigate the efficacy and safety of rilparencel with bilateral kidney dosing and compare two injection schedules with the potential of preserving or improving kidney function and delaying kidney disease progression among patients with stages 3a-4 CKD with diabetes.
Collapse
Affiliation(s)
| | | | | | - Ahmed Aqeel
- Paragon Health Nephrology Center, Kalamazoo, MI, USA
| | | | | | - George Bakris
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
9
|
Cao Y, Zhang H, Qiu M, Zheng Y, Shi X, Yang J. Biomimetic injectable and bilayered hydrogel scaffold based on collagen and chondroitin sulfate for the repair of osteochondral defects. Int J Biol Macromol 2024; 257:128593. [PMID: 38056750 DOI: 10.1016/j.ijbiomac.2023.128593] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/20/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
The simultaneous regeneration of articular cartilage and subchondral bone is a major challenge. Bioinspired scaffolds with distinct regions resembling stratified anatomical architecture provide a potential strategy for osteochondral defect repair. Here, we report the development of an injectable and bilayered hydrogel scaffold with a strong interface binding force. In this bilayer hydrogel, composed of carbonyl hydrazide grafted collagen (COL-CDH) and oxidized chondroitin sulfate (OCS), which are derivatives of osteochondral tissue components, in combination with poly (ethylene glycol) diacrylate (PEGDA), functions as a cartilage layer; while zinc-doped hydroxyapatite acts as a subchondral bone layer that is based on the cartilage layer. The strong interface between the two layers involves dynamic amide bonds formed between COL-CDH and OCS, and permanent CC bonds formed by PEGDA radical reactions. This bilayer hydrogel can be used to inoculate adipose mesenchymal stem cells which can then differentiate into chondrocytes and osteoblasts, secreting glycosaminoglycan, and promoting calcium deposition. This accelerates the regeneration of cartilage and subchondral bone. Micro-CT and tissue staining revealed an increase in the amount of bone present in new subchondral bone, and new tissues with a structure similar to normal cartilage. This study therefore demonstrates that injectable bilayer hydrogels are a promising scaffold for repairing osteochondral defects.
Collapse
Affiliation(s)
- Yongjian Cao
- College of Chemistry, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Haijie Zhang
- College of Chemistry, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Mengjie Qiu
- College of Chemistry, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Yunquan Zheng
- College of Chemistry, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; International Joint Laboratory of Intelligent Health Care, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China.
| | - Xianai Shi
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; International Joint Laboratory of Intelligent Health Care, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Jianmin Yang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; International Joint Laboratory of Intelligent Health Care, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China.
| |
Collapse
|
10
|
Mbituyimana B, Adhikari M, Qi F, Shi Z, Fu L, Yang G. Microneedle-based cell delivery and cell sampling for biomedical applications. J Control Release 2023; 362:692-714. [PMID: 37689252 DOI: 10.1016/j.jconrel.2023.09.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/16/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Cell-based therapeutics are novel therapeutic strategies that can potentially treat many presently incurable diseases through novel mechanisms of action. Cell therapies may benefit from the ease, safety, and efficacy of administering therapeutic cells. Despite considerable recent technological and biological advances, several barriers remain to the clinical translation and commercialization of cell-based therapies, including low patient compliance, personal handling inconvenience, poor biosafety, and limited biocompatibility. Microneedles (MNs) are emerging as a promising biomedical device option for improved cell delivery with little invasion, pain-free administration, and simplicity of disposal. MNs have shown considerable promise in treating a wide range of diseases and present the potential to improve cell-based therapies. In this review, we first summarized the latest advances in the various types of MNs developed for cell delivery and cell sampling. Emphasis was given to the design and fabrication of various types of MNs based on their structures and materials. Then we focus on the recent biomedical applications status of MNs-mediated cell delivery and sampling, including tissue repair (wound healing, heart repair, and endothelial repair), cancer treatment, diabetes therapy, cell sampling, and other applications. Finally, the current status of clinical application, potential perspectives, and the challenges for clinical translation are also highlighted.
Collapse
Affiliation(s)
- Bricard Mbituyimana
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Manjila Adhikari
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Fuyu Qi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Lina Fu
- College of Medicine, Huanghuai University, Zhumadian, Henan 463000, China; Zhumadian Central Hospital, Zhumadian, Henan 463000, China.
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
11
|
Zhou H, Zhang Y, Pei P, Shen W, Yi X, Yang K. Liposome-anchored mesenchymal stem cells for radiation pneumonia/fibrosis treatment. Biomaterials 2023; 300:122202. [PMID: 37336116 DOI: 10.1016/j.biomaterials.2023.122202] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
The effectiveness of mesenchymal stem cells (MSCs) on inflammation-related disease is limited and the pharmaceutical preparation that was used to enhance the efficacy of MSCs cannot reach the diseased tissue in large quantities. Herein, antioxidant liposome (Lipo-OPC) is designed to anchor onto the surface of MSCs membrane via click chemical reaction (MSC-Lipo-OPC) without affecting the viability and physiological characteristics of MSCs, thus allowing efficient accumulation of MSC-Lipo-OPC in X-ray irradiated lung sites. More importantly, MSC-Lipo-OPC promotes the change of the quantity and polarity of innate immunocytes, mainly including neutrophils, macrophages and Tregs, in favor of anti-inflammatory, finally preventing the formation of radioactive pulmonary fibrosis. Therefore, it could enhance the treatment outcome of both of MSCs and drugs to radiation-induced lung injury via modifying the drug-loaded nanoparticle on the surface of MSCs membrane, further promoting the application of MSCs in radiation damage and protection.
Collapse
Affiliation(s)
- Hailin Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yanxiang Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Pei Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Wenhao Shen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xuan Yi
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu, 226001, China.
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
12
|
Nguyen TT, Phuong MT, Shrestha M, Park J, Le Minh P, Kim JO, Choi H, Nam JW, Jiang HL, Kim HS, Jeong JH, Park JB, Yook S. Scalable and Uniform Fabrication of Dexamethasone-Eluting Depot-Engineered Stem Cell Spheroids as a Microtissue Construct to Target Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2023; 15:26373-26384. [PMID: 37219569 DOI: 10.1021/acsami.3c03102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Potentiation of stem cell potency is critical for successful tissue engineering, especially for bone regeneration. Three-dimensional cell culture and bioactive molecule co-delivery with cells have been proposed to achieve this effect. Here, we provide a uniform and scalable fabrication of osteogenic microtissue constructs of mesenchymal stem cell (MSC) spheroids surface-engineered with dexamethasone-releasing polydopamine-coated microparticles (PD-DEXA/MPs) to target bone regeneration. The microparticle conjugation process was rapid and cell-friendly and did not affect the cell viability or key functionalities. The incorporation of DEXA in the conjugated system significantly enhanced the osteogenic differentiation of MSC spheroids, as evidenced by upregulating osteogenic gene expression and intense alkaline phosphatase and alizarin red S staining. In addition, the migration of MSCs from spheroids was tested on a biocompatible macroporous fibrin scaffold (MFS). The result showed that PD-DEXA/MPs were stably anchored on MSCs during cell migration over time. Finally, the implantation of PD-DEXA/MP-conjugated spheroid-loaded MFS into a calvarial defect in a mouse model showed substantial bone regeneration. In conclusion, the uniform fabrication of microtissue constructs containing MSC spheroids with drug depots shows a potential to improve the performance of MSCs in tissue engineering.
Collapse
Affiliation(s)
- Tiep Tien Nguyen
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Mai Thi Phuong
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Manju Shrestha
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Junhyeung Park
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Pham Le Minh
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Hyukjae Choi
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Joo-Won Nam
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Hyung-Sik Kim
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jee-Heon Jeong
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jun-Beom Park
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Simmyung Yook
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
13
|
Wu G, Liu Z, Mu C, Song D, Wang J, Meng X, Li Z, Qing H, Dong Y, Xie HY, Pang DW. Enhanced Proliferation of Visualizable Mesenchymal Stem Cell-Platelet Hybrid Cell for Versatile Intracerebral Hemorrhage Treatment. ACS NANO 2023; 17:7352-7365. [PMID: 37037487 DOI: 10.1021/acsnano.2c11329] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The intrinsic features and functions of platelets and mesenchymal stem cells (MSCs) indicate their great potential in the treatment of intracerebral hemorrhage (ICH). However, neither of them can completely overcome ICH because of the stealth process and the complex pathology of ICH. Here, we fabricate hybrid cells for versatile and highly efficient ICH therapy by fusing MSCs with platelets and loading with lysophosphatidic acid-modified PbS quantum dots (LPA-QDs). The obtained LPA-QDs@FCs (FCs = fusion cells) not only inherit the capabilities of both platelets and MSCs but also exhibit clearly enhanced proliferation activated by LPA. After systemic administration, many proliferating LPA-QDs@FCs rapidly accumulate in ICH areas for responding to the vascular damage and inflammation and then efficiently prevent both the primary and secondary injuries of ICH but with no obvious side effects. Moreover, the treatment process can be tracked by near-infrared II fluorescence imaging with highly spatiotemporal resolution, providing a promising solution for ICH therapy.
Collapse
Affiliation(s)
- Guanghao Wu
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Zhenya Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
| | - Changwen Mu
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Da Song
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jiaxin Wang
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P. R. China
| | - Xiangxi Meng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Peking University, Beijing 100142, P. R. China
| | - Ziyuan Li
- Department of Biomedical Engineering, Peking University, Beijing 100871, P. R. China
| | - Hong Qing
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yuping Dong
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Hai-Yan Xie
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
14
|
Friberger I, Gontu V, Harris RA, Tran TA, Lundberg J, Holmin S. Phenotyping of Macrophages After Radiolabeling and Safety of Intra-arterial Transplantation Assessed by SPECT/CT and MRI. Cell Transplant 2023; 32:9636897231212780. [PMID: 38009543 PMCID: PMC10683405 DOI: 10.1177/09636897231212780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 10/04/2023] [Accepted: 10/23/2023] [Indexed: 11/29/2023] Open
Abstract
Cell therapy is an integral modality of regenerative medicine. Macrophages are known for their sensitivity to activation stimuli and capability to recruit other immune cells to the sites of injury and healing. In addition, the route of administration can impact engraftment and efficacy of cell therapy, and modern neuro-interventional techniques provide the possibility for selective intra-arterial (IA) delivery to the central nervous system (CNS) with very low risk. The effects of radiolabelling and catheter transport on differentially activated macrophages were evaluated. Furthermore, the safety of selective IA administration of these macrophages to the rabbit brain was assessed by single-photon emission computed tomography/computed tomography (SPECT/CT) and ultra-high-field (9.4 T) magnetic resonance imaging (MRI). Cells were successfully labeled with (111In)In-(oxinate)3 and passed through a microcatheter with preserved phenotype. No cells were retained in the healthy rabbit brain after IA administration, and no adverse events could be observed either 1 h (n = 6) or 24 h (n = 2) after cell administration. The procedure affected both lipopolysaccharide/gamma interferon (LPS/IFNγ) activated cells and interleukin 4 (IL4), interleukin 10 (IL10)/transforming growth factor beta 1 (TGFβ1) activated cells to some degree. The LPS/IFNγ activated cells had a significant increase in their phagocytotic function. Overall, the major impact on the cell phenotypes was due to the radiolabeling and not passage through the catheter. Unstimulated cells were substantially affected by both radiolabeling and catheter administration and are hence not suited for this procedure, while both activated macrophages retained their initial phenotypes. In conclusion, activated macrophages are suitable candidates for targeted IA administration without adverse effects on normal, healthy brain parenchyma.
Collapse
Affiliation(s)
- Ida Friberger
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Vamsi Gontu
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Robert A Harris
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Centre for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Thuy A Tran
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Radiopharmacy, Karolinska University Hospital, Stockholm, Sweden
| | - Johan Lundberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Staffan Holmin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
15
|
Nguyen TT, Pham DV, Park J, Phung CD, Nepal MR, Pandit M, Shrestha M, Son Y, Joshi M, Jeong TC, Park PH, Choi DY, Chang JH, Kim JH, Kim JR, Kim IK, Yong CS, Kim JO, Sung JH, Jiang HL, Kim HS, Yook S, Jeong JH. Engineering of hybrid spheroids of mesenchymal stem cells and drug depots for immunomodulating effect in islet xenotransplantation. SCIENCE ADVANCES 2022; 8:eabn8614. [PMID: 36001671 PMCID: PMC9401619 DOI: 10.1126/sciadv.abn8614] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Immunomodulation is an essential consideration for cell replacement procedures. Unfortunately, lifelong exposure to nonspecific systemic immunosuppression results in immunodeficiency and has toxic effects on nonimmune cells. Here, we engineered hybrid spheroids of mesenchymal stem cells (MSCs) with rapamycin-releasing poly(lactic-co-glycolic acid) microparticles (RAP-MPs) to prevent immune rejection of islet xenografts in diabetic C57BL/6 mice. Hybrid spheroids were rapidly formed by incubating cell-particle mixture in methylcellulose solution while maintaining high cell viability. RAP-MPs were uniformly distributed in hybrid spheroids and sustainably released RAP for ~3 weeks. Locoregional transplantation of hybrid spheroids containing low doses of RAP-MPs (200- to 4000-ng RAP per recipient) significantly prolonged islet survival times and promoted the generation of regional regulatory T cells. Enhanced programmed death-ligand 1 expression by MSCs was found to be responsible for the immunomodulatory performance of hybrid spheroids. Our results suggest that these hybrid spheroids offer a promising platform for the efficient use of MSCs in the transplantation field.
Collapse
Affiliation(s)
- Tiep Tien Nguyen
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Duc-Vinh Pham
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Junhyeung Park
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Cao Dai Phung
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Mahesh Raj Nepal
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Mahesh Pandit
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Manju Shrestha
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Youlim Son
- College of Medicine, Yeungnam University, Daegu, 42415, Republic of Korea
| | - Mili Joshi
- College of Medicine, Yeungnam University, Daegu, 42415, Republic of Korea
| | - Tae Cheon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Dong-Young Choi
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Jae-Hoon Chang
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Ju-Hyun Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Jae-Ryong Kim
- College of Medicine, Yeungnam University, Daegu, 42415, Republic of Korea
| | - Il-Kug Kim
- College of Medicine, Yeungnam University, Daegu, 42415, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Jong-Hyuk Sung
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
- Epibiotech Co. Ltd., Incheon, 21983, Republic of Korea
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, China
| | - Hyung-Sik Kim
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan, 50612, Republic of Korea
- Dental and Life Science Institute, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Simmyung Yook
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
16
|
Huang QY, Chen SR, Zhao YX, Chen JM, Chen WH, Lin S, Shi QY. Melatonin enhances autologous adipose-derived stem cells to improve mouse ovarian function in relation to the SIRT6/NF-κB pathway. Stem Cell Res Ther 2022; 13:399. [PMID: 35927704 PMCID: PMC9351187 DOI: 10.1186/s13287-022-03060-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background Premature ovarian insufficiency (POI) is the main cause of female infertility. Adipose-derived stem cells (ADSCs) are ideal candidates for the treatment of POI. However, some deficient biological characteristics of ADSCs limit their utility. This study investigated whether melatonin (MLT)-pretreated autologous ADSCs were superior to ADSCs alone in the treatment of the POI mouse model. Methods Autologous ADSCs were isolated and cultured in MLT-containing medium. Surface markers of ADSCs were detected by flow cytometry. To determine the effect of MLT on ADSCs, CCK-8 assay was used to detect ADSCs proliferation and enzyme-linked immunosorbent assay (ELISA) was used to detect the secretion of cytokines. The POI model was established by intraperitoneal injection of cyclophosphamide and busulfan. Then, MLT-pretreated autologous ADSCs were transplanted into mice by intraovarian injection. After 7 days of treatment, ovarian morphology, follicle counts, and sex hormones levels were evaluated by hematoxylin and eosin (H&E) staining and ELISA, and the recovery of fertility was also observed. The expressions of SIRT6 and NF-κB were detected by immunohistochemical (IHC) staining and quantitative real-time polymerase chain reaction (qRT-PCR). Results Flow cytometry showed that autologous ADSCs expressed CD90 (99.7%) and CD29 (97.5%). MLT can not only promote the proliferation of ADSCs but also boost their secretory function, especially when ADSCs were pretreated with 5 µM MLT for 3 days, improving the interference effect. After transplantation of autologous ADSCs pretreated with 5 µM MLT, the serum hormone levels and reproductive function were significantly recovered, and the mean counts of primordial follicle increased. At the same time, the expression of SIRT6 was remarkably increased and the expression of NF-κB was significantly decreased in this group. Conclusions MLT enhances several effects of ADSCs in restoring hormone levels, mean primordial follicle counts, and reproductive capacity in POI mice. Meanwhile, our results suggest that the SIRT6/NF-κB signal pathway may be the potential therapeutic mechanism for ADSCs to treat POI.
Collapse
Affiliation(s)
- Qiao-Yi Huang
- Department of Gynaecology and Obstetrics, Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Shao-Rong Chen
- Department of Gynaecology and Obstetrics, Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Yun-Xia Zhao
- Department of Gynaecology and Obstetrics, University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jia-Ming Chen
- Department of Gynaecology and Obstetrics, Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Wei-Hong Chen
- Department of Gynaecology and Obstetrics, Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China. .,Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia.
| | - Qi-Yang Shi
- Department of Gynaecology and Obstetrics, Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China.
| |
Collapse
|
17
|
Fang J, Li JJ, Zhong X, Zhou Y, Lee RJ, Cheng K, Li S. Engineering stem cell therapeutics for cardiac repair. J Mol Cell Cardiol 2022; 171:56-68. [PMID: 35863282 DOI: 10.1016/j.yjmcc.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 05/18/2022] [Accepted: 06/25/2022] [Indexed: 10/17/2022]
Abstract
Cardiovascular disease is the leading cause of death in the world. Stem cell-based therapies have been widely investigated for cardiac regeneration in patients with heart failure or myocardial infarction (MI) and surged ahead on multiple fronts over the past two decades. To enhance cellular therapy for cardiac regeneration, numerous engineering techniques have been explored to engineer cells, develop novel scaffolds, make constructs, and deliver cells or their derivatives. This review summarizes the state-of-art stem cell-based therapeutics for cardiac regeneration and discusses the emerged bioengineering approaches toward the enhancement of therapeutic efficacy of stem cell therapies in cardiac repair. We cover the topics in stem cell source and engineering, followed by stem cell-based therapies such as cell aggregates and cell sheets, and biomaterial-mediated stem cell therapies such as stem cell delivery with injectable hydrogel, three-dimensional scaffolds, and microneedle patches. Finally, we discuss future directions and challenges of engineering stem cell therapies for clinical translation.
Collapse
Affiliation(s)
- Jun Fang
- Department of Bioengineering, Department of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jennifer J Li
- Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; Department of Medicine, Cardiovascular Research Institute and Institute for Regeneration Medicine, University of California, San Francisco, CA 94143, USA
| | - Xintong Zhong
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue Zhou
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Randall J Lee
- Department of Medicine, Cardiovascular Research Institute and Institute for Regeneration Medicine, University of California, San Francisco, CA 94143, USA
| | - Ke Cheng
- Department of Biomedical Engineering, North Carolina State University, NC, USA
| | - Song Li
- Department of Bioengineering, Department of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA; Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, California 90095, USA.
| |
Collapse
|
18
|
Yuan X, Li L, Liu H, Luo J, Zhao Y, Pan C, Zhang X, Chen Y, Gou M. Strategies for improving adipose-derived stem cells for tissue regeneration. BURNS & TRAUMA 2022; 10:tkac028. [PMID: 35992369 PMCID: PMC9382096 DOI: 10.1093/burnst/tkac028] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/27/2022] [Indexed: 11/13/2022]
Abstract
Abstract
Adipose-derived stem cells (ADSCs) have promising applications in tissue regeneration. Currently, there are only a few ADSC products that have been approved for clinical use. The clinical application of ADSCs still faces many challenges. Here, we review emerging strategies to improve the therapeutic efficacy of ADSCs in tissue regeneration. First, a great quantity of cells is often needed for the stem cell therapies, which requires the advanced cell expansion technologies. In addition cell-derived products are also required for the development of ‘cell-free’ therapies to overcome the drawbacks of cell-based therapies. Second, it is necessary to strengthen the regenerative functions of ADSCs, including viability, differentiation and paracrine ability, for the tissue repair and regeneration required for different physiological and pathophysiological conditions. Third, poor delivery efficiency also restricts the therapeutic effect of ADSCs. Effective methods to improve cell delivery include alleviating harsh microenvironments, enhancing targeting ability and prolonging cell retention. Moreover, we also point out some critical issues about the sources, effectiveness and safety of ADSCs. With these advanced strategies to improve the therapeutic efficacy of ADSCs, ADSC-based treatment holds great promise for clinical applications in tissue regeneration.
Collapse
Affiliation(s)
- Xin Yuan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University , Chengdu, 610041, China
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University , Chengdu, 610041, China
| | - Li Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University , Chengdu, 610041, China
| | - Haofan Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University , Chengdu, 610041, China
| | - Jing Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University , Chengdu, 610041, China
| | - Yongchao Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University , Chengdu, 610041, China
| | - Cheng Pan
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University , Chengdu, 610041, China
| | - Xue Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University , Chengdu, 610041, China
| | - Yuwen Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University , Chengdu, 610041, China
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University , Chengdu, 610041, China
| |
Collapse
|
19
|
Yu H, Commander CW, Stavas JM. Stem Cell-Based Therapies: What Interventional Radiologists Need to Know. Semin Intervent Radiol 2021; 38:523-534. [PMID: 34853498 DOI: 10.1055/s-0041-1736657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
As the basic units of biological organization, stem cells and their progenitors are essential for developing and regenerating organs and tissue systems using their unique self-renewal capability and differentiation potential into multiple cell lineages. Stem cells are consistently present throughout the entire human development, from the zygote to adulthood. Over the past decades, significant efforts have been made in biology, genetics, and biotechnology to develop stem cell-based therapies using embryonic and adult autologous or allogeneic stem cells for diseases without therapies or difficult to treat. Stem cell-based therapies require optimum administration of stem cells into damaged organs to promote structural regeneration and improve function. Maximum clinical efficacy is highly dependent on the successful delivery of stem cells to the target tissue. Direct image-guided locoregional injections into target tissues offer an option to increase therapeutic outcomes. Interventional radiologists have the opportunity to perform a key role in delivering stem cells more efficiently using minimally invasive techniques. This review discusses the types and sources of stem cells and the current clinical applications of stem cell-based therapies. In addition, the regulatory considerations, logistics, and potential roles of interventional Radiology are also discussed with the review of the literature.
Collapse
Affiliation(s)
- Hyeon Yu
- Division of Vascular and Interventional Radiology, Department of Radiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina.,ProKidney LLC, Winston Salem, North Carolina
| | - Clayton W Commander
- Division of Vascular and Interventional Radiology, Department of Radiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Joseph M Stavas
- Department of Radiology, Creighton University School of Medicine, Omaha, Nebraska
| |
Collapse
|
20
|
Yang H, Xie Y, Li T, Liu S, Zeng S, Wang B. A novel minimally invasive OFM technique with orthotopic transplantation of hUC-MSCs and in vivo monitoring of liver metabolic microenvironment in liver fibrosis treatment. Stem Cell Res Ther 2021; 12:534. [PMID: 34627378 PMCID: PMC8502355 DOI: 10.1186/s13287-021-02599-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Background Mesenchymal stromal cells (MSCs) transplantation showed promising therapeutic results in liver fibrosis. However, efficient cell delivery method is urgently needed and the therapeutic mechanism remains unclear. This study focused on developing a minimally invasive open-flow microperfusion (OFM) technique, which combined orthotopic transplantation of human umbilical cord-derived (hUC)-MSCs to liver and in vivo monitoring of liver microenvironment in mice with CCl4-induced liver fibrosis. Methods The therapeutic potential of OFM route was evaluated by comparing OFM with intravenous (IV) injection route in terms of hUC-MSCs engraftment at the fibrosis liver, liver histopathological features, liver function and fibrotic markers expression after hUC-MSCs administration. OFM was also applied to sample liver interstitial fluid in vivo, and subsequent metabolomic analysis was performed to investigate metabolic changes in liver microenvironment. Results Compared with IV route, OFM route caused more hUC-MSCs accumulation in the liver and was more effective in improving the remodeling of liver structure and reducing collagen deposition in fibrotic liver. OFM transplantation of hUC-MSCs reduced blood ALT, AST, ALP and TBIL levels and increased ALB levels, to a greater extent than IV route. And OFM route appeared to have a more pronounced effect on ameliorating the CCl4-induced up-regulation of the fibrotic markers, such as α-SMA, collagen I and TGF-β. In vivo monitoring of liver microenvironment demonstrated the metabolic perturbations induced by pathological condition and treatment intervention. Two metabolites and eight metabolic pathways, which were most likely to be associated with the liver fibrosis progression, were regulated by hUC-MSCs administration. Conclusion The results demonstrated that the novel OFM technique would be useful for hUC-MSCs transplantation in liver fibrosis treatment and for monitoring of the liver metabolic microenvironment to explore the underlying therapeutic mechanisms. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02599-w.
Collapse
Affiliation(s)
- Hui Yang
- Center for Clinic Stem Cell Research, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Yuanyuan Xie
- Center for Clinic Stem Cell Research, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Tuo Li
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Shuo Liu
- Center for Clinic Stem Cell Research, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Sheng Zeng
- Center for Clinic Stem Cell Research, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Bin Wang
- Center for Clinic Stem Cell Research, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
21
|
Tseng WC, Lee PY, Tsai MT, Chang FP, Chen NJ, Chien CT, Hung SC, Tarng DC. Hypoxic mesenchymal stem cells ameliorate acute kidney ischemia-reperfusion injury via enhancing renal tubular autophagy. Stem Cell Res Ther 2021; 12:367. [PMID: 34183058 PMCID: PMC8240301 DOI: 10.1186/s13287-021-02374-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/09/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is an emerging global healthcare issue without effective therapy yet. Autophagy recycles damaged organelles and helps maintain tissue homeostasis in acute renal ischemia-reperfusion (I/R) injury. Hypoxic mesenchymal stem cells (HMSCs) represent an innovative cell-based therapy in AKI. Moreover, the conditioned medium of HMSCs (HMSC-CM) rich in beneficial trophic factors may serve as a cell-free alternative therapy. Nonetheless, whether HMSCs or HMSC-CM mitigate renal I/R injury via modulating tubular autophagy remains unclear. METHODS Renal I/R injury was induced by clamping of the left renal artery with right nephrectomy in male Sprague-Dawley rats. The rats were injected with either PBS, HMSCs, or HMSC-CM immediately after the surgery and sacrificed 48 h later. Renal tubular NRK-52E cells subjected to hypoxia-reoxygenation (H/R) injury were co-cultured with HMSCs or treated with HMSC-CM to assess the regulatory effects of HSMCs on tubular autophagy and apoptosis. The association of tubular autophagy gene expression and renal recovery was also investigated in patients with ischemic AKI. RESULT HMSCs had a superior anti-oxidative effect in I/R-injured rat kidneys as compared to normoxia-cultured mesenchymal stem cells. HMSCs further attenuated renal macrophage infiltration and inflammation, reduced tubular apoptosis, enhanced tubular proliferation, and improved kidney function decline in rats with renal I/R injury. Moreover, HMSCs suppressed superoxide formation, reduced DNA damage and lipid peroxidation, and increased anti-oxidants expression in renal tubular epithelial cells during I/R injury. Co-culture of HMSCs with H/R-injured NRK-52E cells also lessened tubular cell death. Mechanistically, HMSCs downregulated the expression of pro-inflammatory interleukin-1β, proapoptotic Bax, and caspase 3. Notably, HMSCs also upregulated the expression of autophagy-related LC3B, Atg5 and Beclin 1 in renal tubular cells both in vivo and in vitro. Addition of 3-methyladenine suppressed the activity of autophagy and abrogated the renoprotective effects of HMSCs. The renoprotective effect of tubular autophagy was further validated in patients with ischemic AKI. AKI patients with higher renal LC3B expression were associated with better renal recovery. CONCLUSION The present study describes that the enhancing effect of MSCs, and especially of HMCSs, on tissue autophagy can be applied to suppress renal tubular apoptosis and attenuate renal impairment during renal I/R injury in the rat. Our findings provide further mechanistic support to HMSCs therapy and its investigation in clinical trials of ischemic AKI.
Collapse
Affiliation(s)
- Wei-Cheng Tseng
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei, 11217, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao-Tung University, Hsinchu, Taiwan.,Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pei-Ying Lee
- Holistic Education Center, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Ming-Tsun Tsai
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei, 11217, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Fu-Pang Chang
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Nien-Jung Chen
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Microbiology and Immunology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chiang-Ting Chien
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Shih-Chieh Hung
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan. .,Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Integrative Stem Cell Center, Department of Orthopedics, and Institute of New Drug Development, New Drug Development Center, China Medical University, Taichung, Taiwan. .,Institute of Biomedical Sciences, Academia Sinica, 128, Section 2, Academia Road, Taipei, 11529, Taiwan.
| | - Der-Cherng Tarng
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei, 11217, Taiwan. .,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan. .,Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan. .,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao-Tung University, Hsinchu, Taiwan. .,Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan. .,Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao-Tung University, Hsinchu, Taiwan.
| |
Collapse
|