1
|
Zeiser R. Immunotherapy in cancer. Semin Arthritis Rheum 2025; 72S:152666. [PMID: 40032535 DOI: 10.1016/j.semarthrit.2025.152666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/12/2025] [Indexed: 03/05/2025]
Abstract
Immunotherapy has revolutionized the treatment of cancer. However, therapy resistance and immune mediated side effects reduce the overall success. Recent developments in these two areas were reported at the 2024 ATT conference. Here we discuss that immunotherapy resistance relies on immune escape mechanisms of cancer cells. Malignant conversion of a cell encompasses oncogene activation causing altered intracellular signal transduction termed "oncogenic signaling". A functional connection between oncogenic signaling and immune evasion mechanisms was shown for different haematological malignancies such as the FLT3-ITD/ATF6/IL-15 inhibition axis in acute myeloid leukemia. A second clinical problem are Immune mediated side effects after cancer immunotherapy because they lead to treatment interruption and potentially loss of activity by introduction of immunosuppressive medication. Anti-PD-1 immunotherapy induced inflammation of the central nervous system is rare but has a high morbidity and mortality. Recent data show that spleen tyrosine kinase (Syk) activation and downstream signaling in microglia mediates anti-PD-1 immunotherapy induced inflammation of the central nervous system.
Collapse
Affiliation(s)
- Robert Zeiser
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
2
|
Lysandrou M, Zeiser R. Strategies to enhance anti-leukaemia immunotherapy. Curr Opin Pharmacol 2025; 82:102525. [PMID: 40267742 DOI: 10.1016/j.coph.2025.102525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/25/2025]
Abstract
Acute myeloid leukaemia (AML) was an incurable disease prior to allogeneic haematopoietic cell transplantation (allo-HCT), which was proven to be a potent cellular immunotherapy-approach. However, allo-HCT has major side effects, with disease relapse presenting as a frequent complication. Novel immunotherapies aim to reduce toxicity and increase the anti-leukaemia activity of allo-HCT. Technological advancements in genetic engineering approaches enable potent immunotherapeutic activity while limiting toxicities. A biology-driven application of small molecules that target AML vulnerabilities holds promise to enhance anti-leukaemia immunotherapy. Extensive preclinical testing of these approaches is essential to reduce toxicity and to find the ideal combination partners for future clinical testing.
Collapse
Affiliation(s)
- Memnon Lysandrou
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center University Freiburg, Albert-Ludwigs University of Freiburg, Germany
| | - Robert Zeiser
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center University Freiburg, Albert-Ludwigs University of Freiburg, Germany.
| |
Collapse
|
3
|
Gao F, Shah R, Xin G, Wang R. Metabolic Dialogue Shapes Immune Response in the Tumor Microenvironment. Eur J Immunol 2025; 55:e202451102. [PMID: 40223597 PMCID: PMC11995254 DOI: 10.1002/eji.202451102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/15/2025]
Abstract
The fate of immune cells is fundamentally linked to their metabolic program, which is also influenced by the metabolic landscape of their environment. The tumor microenvironment represents a unique system for intercellular metabolic interactions, where tumor-derived metabolites suppress effector CD8+ T cells and promote tumor-promoting macrophages, reinforcing an immune-suppressive niche. This review will discuss recent advancements in metabolism research, exploring the interplay between various metabolites and their effects on immune cells within the tumor microenvironment.
Collapse
Affiliation(s)
- Fengxia Gao
- Department of Microbial Infection and ImmunityPelotonia Institute for Immuno‐OncologyThe Ohio State UniversityColumbusOhioUSA
| | - Rushil Shah
- Center for Childhood Cancer ResearchHematology/Oncology & BMTAbigail Wexner Research Institute at Nationwide Children's HospitalDepartment of PediatricsThe Ohio State UniversityColumbusOhioUSA
| | - Gang Xin
- Department of Microbial Infection and ImmunityPelotonia Institute for Immuno‐OncologyThe Ohio State UniversityColumbusOhioUSA
| | - Ruoning Wang
- Center for Childhood Cancer ResearchHematology/Oncology & BMTAbigail Wexner Research Institute at Nationwide Children's HospitalDepartment of PediatricsThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
4
|
Hu MM, Zhao Y, Zhang N, Gong FY, Zhang W, Dong CS, Dai JF, Wang J. Tumor Microenvironment: Obstacles and Opportunities for T Cell-Based Tumor Immunotherapies. Mol Cancer Res 2025; 23:277-287. [PMID: 39898773 DOI: 10.1158/1541-7786.mcr-24-0747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/20/2024] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
The complex composition and dynamic change of the tumor microenvironment (TME), mainly consisting of tumor cells, immune cells, stromal cells, and extracellular components, significantly impede the effector function of cytotoxic T lymphocytes (CTL), thus representing a major obstacle for tumor immunotherapies. In this review, we summarize and discuss the impacts and underlying mechanisms of major elements in the TME (different cell types, extracellular matrix, nutrients and metabolites, etc.) on the infiltration, survival, and effector functions of T cells, mainly CD8+ CTLs. Moreover, we also highlight recent advances that may potentiate endogenous antitumor immunity and improve the efficacy of T cell-based immunotherapies in patients with cancer by manipulating components inside/outside of the TME. A deeper understanding of the effects and action mechanisms of TME components on the tumor-eradicating ability of CTLs may pave the way for discovering new targets to augment endogenous antitumor immunity and for designing combinational therapeutic regimens to enhance the efficacy of tumor immunotherapies in the clinic.
Collapse
Affiliation(s)
- Miao-Miao Hu
- Institutes of Biology and Medical Sciences, MOE Key Laboratory of Geriatric Diseases and Immunology, Jiangsu Key Laboratory of Infection and Immunity, Suzhou Medical College of Soochow University, Suzhou, China
| | - Ying Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Nan Zhang
- Institutes of Biology and Medical Sciences, MOE Key Laboratory of Geriatric Diseases and Immunology, Jiangsu Key Laboratory of Infection and Immunity, Suzhou Medical College of Soochow University, Suzhou, China
| | - Fang-Yuan Gong
- Department of Immunology, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Wei Zhang
- Institutes of Biology and Medical Sciences, MOE Key Laboratory of Geriatric Diseases and Immunology, Jiangsu Key Laboratory of Infection and Immunity, Suzhou Medical College of Soochow University, Suzhou, China
| | - Chun-Sheng Dong
- Institutes of Biology and Medical Sciences, MOE Key Laboratory of Geriatric Diseases and Immunology, Jiangsu Key Laboratory of Infection and Immunity, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jian-Feng Dai
- Institutes of Biology and Medical Sciences, MOE Key Laboratory of Geriatric Diseases and Immunology, Jiangsu Key Laboratory of Infection and Immunity, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jun Wang
- Institutes of Biology and Medical Sciences, MOE Key Laboratory of Geriatric Diseases and Immunology, Jiangsu Key Laboratory of Infection and Immunity, Suzhou Medical College of Soochow University, Suzhou, China
| |
Collapse
|
5
|
Gu XY, Yang JL, Lai R, Zhou ZJ, Tang D, Hu L, Zhao LJ. Impact of lactate on immune cell function in the tumor microenvironment: mechanisms and therapeutic perspectives. Front Immunol 2025; 16:1563303. [PMID: 40207222 PMCID: PMC11979165 DOI: 10.3389/fimmu.2025.1563303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 03/10/2025] [Indexed: 04/11/2025] Open
Abstract
Lactate has emerged as a key regulator in the tumor microenvironment (TME), influencing both tumor progression and immune dynamics. As a byproduct of aerobic glycolysis, lactate satisfies the metabolic needs of proliferating tumor cells while reshaping the TME to facilitate immune evasion. Elevated lactate levels inhibit effector immune cells such as CD8+ T and natural killer cells, while supporting immunosuppressive cells, such as regulatory T cells and myeloid-derived suppressor cells, thus fostering an immunosuppressive environment. Lactate promotes epigenetic reprogramming, stabilizes hypoxia-inducible factor-1α, and activates nuclear factor kappa B, leading to further immunological dysfunction. In this review, we examined the role of lactate in metabolic reprogramming, immune suppression, and treatment resistance. We also discuss promising therapeutic strategies targeting lactate metabolism, including lactate dehydrogenase inhibitors, monocarboxylate transporter inhibitors, and TME neutralization methods, all of which can restore immune function and enhance immunotherapy outcomes. By highlighting recent advances, this review provides a theoretical foundation for integrating lactate-targeted therapies into clinical practice. We also highlight the potential synergy between these therapies and current immunotherapeutic strategies, providing new avenues for addressing TME-related challenges and improving outcomes for patients with cancer.
Collapse
Affiliation(s)
- Xuan-Yu Gu
- Department of General Surgery, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jia-Li Yang
- Department of General Surgery, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Rui Lai
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zheng-Jun Zhou
- Department of General Surgery, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dan Tang
- Department of General Surgery, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Hepatobiliary and Pancreatic Surgery, Suzhou Medical College of Soochow University, Suzhou, China
| | - Long Hu
- Wisdom Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Li-Jin Zhao
- Department of General Surgery, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
6
|
Ciantra Z, Paraskevopoulou V, Aifantis I. The rewired immune microenvironment in leukemia. Nat Immunol 2025; 26:351-365. [PMID: 40021898 DOI: 10.1038/s41590-025-02096-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 01/15/2025] [Indexed: 03/03/2025]
Abstract
Leukemias are a class of human cancers that originate from hematopoietic progenitors and are characterized by extensive remodeling of the immune microenvironment. Leukemic cells, on transformation, acquire the ability to evade immune recognition but, despite undergoing genetic and epigenetic changes, retain their characteristic immature immune signature. For this and other reasons, leukemias are often refractory to immune therapies. In the present Review, we cover these areas as a means of improving outcomes from a deeper understanding of immune rewiring, inflammatory signaling and the barriers to successful implementation of immune therapies.
Collapse
Affiliation(s)
- Zoe Ciantra
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Varvara Paraskevopoulou
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Iannis Aifantis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA.
- Laura & Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
7
|
Ricci JE. Tumor-induced metabolic immunosuppression: Mechanisms and therapeutic targets. Cell Rep 2025; 44:115206. [PMID: 39798090 DOI: 10.1016/j.celrep.2024.115206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/04/2024] [Accepted: 12/23/2024] [Indexed: 01/15/2025] Open
Abstract
Metabolic reprogramming in both immune and cancer cells plays a crucial role in the antitumor immune response. Recent studies indicate that cancer metabolism not only sustains carcinogenesis and survival via altered signaling but also modulates immune cell function. Metabolic crosstalk within the tumor microenvironment results in nutrient competition and acidosis, thereby hindering immune cell functionality. Interestingly, immune cells also undergo metabolic reprogramming that enables their proliferation, differentiation, and effector functions. This review highlights the regulation of antitumor immune responses through metabolic reprogramming in cancer and immune cells and explores therapeutic strategies that target these metabolic pathways in cancer immunotherapy, including using chimeric antigen receptor (CAR)-T cells. We discuss innovative combinations of immunotherapy, cellular therapies, and metabolic interventions that could optimize the efficacy of existing treatment protocols.
Collapse
Affiliation(s)
- Jean-Ehrland Ricci
- Université Côte d'Azur, INSERM, C3M, Nice, France; Équipe labellisée LIGUE Contre le Cancer, Nice, France.
| |
Collapse
|
8
|
Azhar Ud Din M, Lin Y, Lyu C, Yi C, Fang A, Mao F. Advancing therapeutic strategies for graft-versus-host disease by targeting gut microbiome dynamics in allogeneic hematopoietic stem cell transplantation: current evidence and future directions. Mol Med 2025; 31:2. [PMID: 39754054 PMCID: PMC11699782 DOI: 10.1186/s10020-024-01060-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is a highly effective therapy for malignant blood illnesses that pose a high risk, as well as diseases that are at risk due to other variables, such as genetics. However, the prevalence of graft-versus-host disease (GVHD) has impeded its widespread use. Ensuring the stability of microbial varieties and associated metabolites is crucial for supporting metabolic processes, preventing pathogen intrusion, and modulating the immune system. Consequently, it significantly affects the overall well-being and susceptibility of the host to disease. Patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT) may experience a disruption in the balance between the immune system and gut bacteria when treated with medicines and foreign cells. This can lead to secondary intestinal inflammation and GVHD. Thus, GM is both a reliable indicator of post-transplant mortality and a means of enhancing GVHD prevention and treatment after allo-HSCT. This can be achieved through various strategies, including nutritional support, probiotics, selective use of antibiotics, and fecal microbiota transplantation (FMT) to target gut microbes. This review examines research advancements and the practical use of intestinal bacteria in GVHD following allo-HSCT. These findings may offer novel insights into the prevention and treatment of GVHD after allo-HSCT.
Collapse
Affiliation(s)
- Muhammad Azhar Ud Din
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, No. 8 Dianli Road, Zhenjiang, 212002, Jiangsu, People's Republic of China
- Institute of Hematology, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yan Lin
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, 212399, Jiangsu, People's Republic of China
| | - Changkun Lyu
- School of Medical Technology, Shangqiu Medical College Shangqiu, Shangqiu, 476100, Henan, People's Republic of China
| | - Chengxue Yi
- School of Medical Technology, Zhenjiang College, Zhenjiang, 212028, Jiangsu, People's Republic of China
| | - Anning Fang
- Basic Medical School, Anhui Medical College, 632 Furong Road, Economic and Technological Development Zone, Hefei, 230061, Anhui, People's Republic of China.
| | - Fei Mao
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, No. 8 Dianli Road, Zhenjiang, 212002, Jiangsu, People's Republic of China.
- Institute of Hematology, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
9
|
Icard P, Prieto M, Coquerel A, Fournel L, Gligorov J, Noel J, Mouren A, Dohan A, Alifano M, Simula L. Why and how citrate may sensitize malignant tumors to immunotherapy. Drug Resist Updat 2025; 78:101177. [PMID: 39612545 DOI: 10.1016/j.drup.2024.101177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 11/12/2024] [Accepted: 11/23/2024] [Indexed: 12/01/2024]
Abstract
Immunotherapy, either alone or in combination with chemotherapy, has demonstrated limited efficacy in a variety of solid cancers. Several factors contribute to explaining primary or secondary resistance. Among them, cancer cells, whose metabolism frequently relies on aerobic glycolysis, promote exhaustion of cytotoxic immune cells by diverting the glucose in the tumor microenvironment (TME) to their own profit, while secreting lactic acid that sustains the oxidative metabolism of immunosuppressive cells. Here, we propose to combine current treatment based on the use of immune checkpoint inhibitors (ICIs) with high doses of sodium citrate (SCT) because citrate inhibits cancer cell metabolism (by targeting both glycolysis and oxidative metabolism) and may active anti-tumor immune response. Indeed, as showed in preclinical studies, SCT reduces cancer cell growth, promoting cell death and chemotherapy effectiveness. Furthermore, since the plasma membrane citrate carrier pmCIC is mainly expressed in cancer cells and low or not expressed in immune and non-transformed cells, we argue that the inhibition of cancer cell metabolism by SCT may increase glucose availability in the TME, thus promoting functionality of anti-tumor immune cells. Concomitantly, the decrease in the amount of lactic acid in the TME may reduce the functionality of immunosuppressive cells. Preclinical studies have shown that SCT can enhance the anti-tumor immune response through an enhancement of T cell infiltration and activation, and a repolarization of macrophages towards a TAM1-like phenotype. Therefore, this simple and cheap strategy may have a major impact to increase the efficacy of current immunotherapies in human solid tumors and we encourage testing it in clinical trials.
Collapse
Affiliation(s)
- Philippe Icard
- INSERM U1086 ANTICIPE, Interdisciplinary Research Unit for Cancers Prevention and Treatment, BioTICLA Laboratory, Université de Caen Normandie, Caen, France; Thoracic Surgery Department, Cochin Hospital, Paris Center University Hospitals, AP-HP, Paris, France.
| | - Mathilde Prieto
- Thoracic Surgery Department, Cochin Hospital, Paris Center University Hospitals, AP-HP, Paris, France
| | - Antoine Coquerel
- INSERM U1075, COMETE « Mobilités: Attention, Orientation, Chronobiologie », Université Caen, France
| | - Ludovic Fournel
- Thoracic Surgery Department, Cochin Hospital, Paris Center University Hospitals, AP-HP, Paris, France; INSERM UMR-S 1007, Cellular Homeostasis and Cancer, Paris-Descartes University, Paris
| | - Joseph Gligorov
- Oncology Department, Tenon Hospital, Pierre et Marie Curie University, Paris
| | - Johanna Noel
- Oncology Department, Cochin Hospital, Paris Center University Hospitals, AP-HP, Paris, France
| | - Adrien Mouren
- Département d'Innovation Thérapeutique et d´Essais Précoces (DITEP), Institut Gustave Roussy, Villejuif 94805, France
| | - Anthony Dohan
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Cité, Paris 75014, France; Radiology Department, Cochin Hospital, Paris Center University Hospitals, AP-HP, Paris, France
| | - Marco Alifano
- Thoracic Surgery Department, Cochin Hospital, Paris Center University Hospitals, AP-HP, Paris, France; INSERM U1138, Integrative Cancer Immunology, Paris-Descartes University, Paris, France
| | - Luca Simula
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Cité, Paris 75014, France.
| |
Collapse
|
10
|
Wen MY, Qi YT, Jiao YT, Zhang XW, Huang WH. Reference-Attached pH Nanosensor for Accurately Monitoring the Rapid Kinetics of Intracellular H + Oscillations. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406796. [PMID: 39573856 DOI: 10.1002/smll.202406796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Indexed: 01/23/2025]
Abstract
Intracellular pH (pHi) is an essential indicator of cellular metabolic activity, as its transient or small shift can significantly impact cellular homeostasis and reflect the cellular events. Real-time and precise tracking of these rapid pH changes within a single living cell is therefore important. However, achieving high dynamic response performance (subsecond) pH detection inside a living cell with high accuracy remains a challenge. Here a reference-attached pH nanosensor (R-pH-nanosensor) with fast and precise pHi sensing performance is introduced. The nanosensor comprises a highly conductive H+-sensitive IrRuOx nanowire (SiC@IrRuOx NW) as the intracellular working electrode and a SiC@Ag/AgCl NW as an intracellular reference electrode (RE) to diminish the interferences arising from cell membrane potential fluctuations. This whole-inside-cell detection mode ensures that the entire potential detection circuit is located within the same cell, and the R-pH-nanosensor is able to quantify the mild acidification of cytosol and completely record the fast pH variation within a single cell. It also enables real-time potentiometric monitoring of the pHi oscillations, which synchronize with the glycolysis oscillations in cancer cells. Furthermore, the asymmetry in glycolysis oscillations wave is disclosed and the inhibitory effect of just lactate to glycolysis oscillations is further confirmed.
Collapse
Affiliation(s)
- Ming-Yong Wen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu-Ting Qi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu-Ting Jiao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xin-Wei Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| |
Collapse
|
11
|
Zhang X, Zhang C, Lu S, Dong J, Tang N, Wang Y, Han W, Pan X, Zhang X, Liu D, Shyh-Chang N, Wang Y, Feng G, Wang H. Miltefosine reinvigorates exhausted T cells by targeting their bioenergetic state. Cell Rep Med 2024; 5:101869. [PMID: 39657666 PMCID: PMC11722131 DOI: 10.1016/j.xcrm.2024.101869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 09/05/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024]
Abstract
T cell exhaustion presents a major challenge for the efficacy of both immune checkpoint inhibitors (ICBs) and chimeric antigen receptor T (CAR-T) cell immunotherapies. To address this issue, we generate hypofunctional CAR-T cells that imitate the exhaustion state. By screening a Food and Drug Administration (FDA)-approved small molecule library using this model, we identify miltefosine as a potent molecule that restores the impaired function of CAR-T cells in a PD-1/PD-L1-independent manner. Impressively, in the terminally exhausted state where PD-1 antibody treatment is ineffective, miltefosine still enhances CAR-T cell activity. Single-cell sequencing analysis reveals that miltefosine treatment significantly increases the population of effector cells. Mechanistically, miltefosine improves impaired glycolysis and oxidative phosphorylation in hypofunctional CAR-T cells. In both allogeneic and syngeneic tumor models, miltefosine effectively enhances the solid tumor clearance ability of CAR-T cells and T cells, demonstrating its potential as an effective immunotherapeutic drug.
Collapse
Affiliation(s)
- Xingying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chenze Zhang
- National Key Laboratory of Efficacy and Mechanism on Chinese Medicine for Metabolic Diseases, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shan Lu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingxi Dong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Na Tang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yao Wang
- Chinese People's Liberation Army General Hospital, Beijing 100176, China
| | - Weidong Han
- Chinese People's Liberation Army General Hospital, Beijing 100176, China
| | - Xi Pan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Zhang
- National Key Laboratory of Efficacy and Mechanism on Chinese Medicine for Metabolic Diseases, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Duan Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ng Shyh-Chang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Wang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Guihai Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Haoyi Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
12
|
Orofino G, Vago L. Biology of post-transplant relapse: actionable features. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2024; 2024:736-743. [PMID: 39644002 DOI: 10.1182/hematology.2024000588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
In patients receiving allogeneic hematopoietic cell transplantation to cure acute myeloid leukemia (AML), recurrence of the underlying disease, or relapse, represents a crucial unanswered issue and prominent cause of mortality. Still, over recent years, advancements in omic technologies have allowed us to gain new insights into the dynamic changes occurring in cancer and the host over the course of treatments, providing a novel evolutionary perspective on the issue of disease relapse. In this review, we summarize current knowledge on the molecular features of relapsing AML, with a specific focus on changes in the mutational asset of the disease and in the interplay between the tumor and the donor-derived immune system. In particular, we discuss how this information can be translated into relevant indications for monitoring transplanted patients and selecting the most appropriate therapeutic options to prevent and treat relapse.
Collapse
Affiliation(s)
- Giorgio Orofino
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
| | - Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
| |
Collapse
|
13
|
Zhao J, Hu S, Qi Z, Xu X, Long X, Huang A, Liu J, Cheng P. Mitochondrial metabolic reprogramming of macrophages and T cells enhances CD47 antibody-engineered oncolytic virus antitumor immunity. J Immunother Cancer 2024; 12:e009768. [PMID: 39631851 PMCID: PMC11624815 DOI: 10.1136/jitc-2024-009768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Although immunotherapy can reinvigorate immune cells to clear tumors, the response rates are poor in some patients. Here, CD47 antibody-engineered oncolytic viruses (oAd-αCD47) were employed to lyse tumors and activate immunity. The oAd-αCD47 induced comprehensive remodeling of the tumor microenvironment (TME). However, whether the acidic TME affects the antitumor immunotherapeutic effects of oncolytic viruses-αCD47 has not been clarified. METHODS To assess the impact of oAd-αCD47 treatment on the TME, we employed multicolor flow cytometry. Glucose uptake was quantified using 2NBDG, while mitochondrial content was evaluated with MitoTracker FM dye. pH imaging of tumors was performed using the pH-sensitive fluorophore SNARF-4F. Moreover, changes in the calmodulin-dependent protein kinase II (CaMKII)/cyclic AMP activates-responsive element-binding proteins (CREB) and peroxisome proliferator-activated receptor gamma coactivator-1α (PGC1α) signaling pathway were confirmed through western blotting and flow cytometry. RESULTS Here, we identified sodium bicarbonate (NaBi) as the potent metabolic reprogramming agent that enhanced antitumor responses in the acidic TME. The combination of NaBi and oAd-αCD47 therapy significantly inhibited tumor growth and produced complete immune control in various tumor-bearing mouse models. Mechanistically, combination therapy mainly reduced the number of regulatory T cells and enriched the ratio of M1-type macrophages TAMs (M1.TAMs) to M2-type macrophages TAMs (M2.TAMs), while decreasing the abundance of PD-1+TIM3+ expression and increasing the expression of CD107a in the CD8+ T cells. Furthermore, the combination therapy enhanced the metabolic function of T cells and macrophages by upregulating PGC1α, a key regulator of mitochondrial biogenesis. This metabolic improvement contributed to a robust antitumor response. Notably, the combination therapy also promoted the generation of memory T cells, suggesting its potential as an effective neoadjuvant treatment for preventing postoperative tumor recurrence and metastasis. CONCLUSIONS Tumor acidic microenvironment impairs mitochondrial energy metabolism in macrophages and T cells inducing oAd-αCD47 immunotherapeutic resistance. NaBi improves the acidity of the TME and activates the CaMKII/CREB/PGC1α mitochondrial biosynthesis signaling pathway, which reprograms the energy metabolism of macrophages and T cells in the TME, and oral NaBi enhances the antitumor effect of oAd-αCD47.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shichuan Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhongbing Qi
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xianglin Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangyu Long
- Department of Oncology, Guangan People’s Hospital, Sichuan, Guangan, China
| | - Anliang Huang
- Department of Pathology, Chengdu Fifth People's Hospital, Chengdu, China
| | - Jiyan Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Cheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Šimunić E, Podgorski II, Pinterić M, Hadžija MP, Belužić R, Paradžik M, Dončević L, Balog T, Kaloper M, Habisch H, Madl T, Korać A, Sobočanec S. Sirtuin 3 drives sex-specific responses to age-related changes in mouse embryonic fibroblasts. Mech Ageing Dev 2024; 222:111996. [PMID: 39395563 DOI: 10.1016/j.mad.2024.111996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024]
Abstract
The aging process is a complex phenomenon characterised by a gradual decline in physiological functions and an increased susceptibility to age-related diseases. An important factor in aging is mitochondrial dysfunction, which leads to an accumulation of cellular damage over time. Mitochondrial Sirtuin 3 (Sirt3), an important regulator of energy metabolism, plays a central role in maintaining mitochondrial function. Loss of Sirt3 can lead to reduced energy levels and an impaired ability to repair cellular damage, a hallmark of the aging process. In this study we investigated the impact of Sirt3 loss on mitochondrial function, metabolic responses and cellular aging processes in male and female mouse embryonic fibroblasts (MEF) exposed to etoposide-induced DNA damage, which is commonly associated with cellular dysfunction and senescence. We found that Sirt3 contributes to the sex-specific metabolic response to etoposide treatment. While male MEF exhibited minimal damage suggesting potential prior adaptation to stress due to Sirt3 loss, female MEF lacking Sirt3 experienced higher vulnerability to genotoxic stress, implying a pivotal role of Sirt3 in their resistance to such challenges. These findings offer potential insights into therapeutic strategies targeting Sirt3- and sex-specific signalling pathways in diseases associated with DNA damage that play a critical role in the aging process.
Collapse
Affiliation(s)
- Ena Šimunić
- Division for Molecular Medicine, Rudjer Boskovic Institute, Bijenička cesta 54, Zagreb 10 000, Croatia.
| | - Iva I Podgorski
- Division for Molecular Medicine, Rudjer Boskovic Institute, Bijenička cesta 54, Zagreb 10 000, Croatia.
| | - Marija Pinterić
- Division for Molecular Medicine, Rudjer Boskovic Institute, Bijenička cesta 54, Zagreb 10 000, Croatia.
| | - Marijana Popović Hadžija
- Division for Molecular Medicine, Rudjer Boskovic Institute, Bijenička cesta 54, Zagreb 10 000, Croatia.
| | - Robert Belužić
- Division for Molecular Medicine, Rudjer Boskovic Institute, Bijenička cesta 54, Zagreb 10 000, Croatia.
| | - Mladen Paradžik
- Division for Molecular Medicine, Rudjer Boskovic Institute, Bijenička cesta 54, Zagreb 10 000, Croatia.
| | - Lucija Dončević
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb 10 000, Croatia.
| | - Tihomir Balog
- Division for Molecular Medicine, Rudjer Boskovic Institute, Bijenička cesta 54, Zagreb 10 000, Croatia.
| | - Marta Kaloper
- Division of Molecular Biology, Faculty of Science, University of Zagreb, Ravnice 48, Zagreb 10 000, Croatia.
| | - Hansjörg Habisch
- Division of Medicinal Chemistry, Medical University of Graz, Neue Stiftingtalstraße 6, Graz 8010, Austria.
| | - Tobias Madl
- BioTechMed Graz, Mozartgasse 12/II, Graz 8010, Austria.
| | - Aleksandra Korać
- Faculty of Biology, University of Belgrade, Studentski trg 16, Beograd 11158, Serbia.
| | - Sandra Sobočanec
- Division for Molecular Medicine, Rudjer Boskovic Institute, Bijenička cesta 54, Zagreb 10 000, Croatia.
| |
Collapse
|
15
|
Zhou Y, Lou J, Tian Y, Ding J, Wang X, Tang B. How lactate affects immune strategies in lymphoma. Front Mol Biosci 2024; 11:1480884. [PMID: 39464313 PMCID: PMC11502318 DOI: 10.3389/fmolb.2024.1480884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024] Open
Abstract
Tumor cells undergo metabolic reprogramming through shared pathways, resulting in a hypoxic, acidic, and highly permeable internal tumor microenvironment (TME). Lactate, once only regarded as a waste product of glycolysis, has an inseparable dual role with tumor immunity. It can not only provide a carbon source for immune cells to enhance immunity but also help the immune escape through a variety of ways. Lymphoma also depends on the proliferation signal of TME. This review focuses on the dynamic process of lactate metabolism and immune function changes in lymphoma and aims to comprehensively summarize and explore which genes, transcription factors, and pathways affect the biological changes and functions of immune cells. To deeply understand the complex and multifaceted role of lactate metabolism and immunity in lymphoma, the combination of lactate targeted therapy and classical immunotherapy will be a promising development direction in the future.
Collapse
Affiliation(s)
- Yuehan Zhou
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jinzhan Lou
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuqin Tian
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jinlei Ding
- Department of Thoracic Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaobo Wang
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bo Tang
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
16
|
Zhao D, Ravikumar V, Leach TJ, Kraushaar D, Lauder E, Li L, Sun Y, Oravecz-Wilson K, Keller ET, Chen F, Maneix L, Jenq RR, Britton R, King KY, Santibanez AE, Creighton CJ, Rao A, Reddy P. Inflammation-induced epigenetic imprinting regulates intestinal stem cells. Cell Stem Cell 2024; 31:1447-1464.e6. [PMID: 39232559 PMCID: PMC11963838 DOI: 10.1016/j.stem.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/25/2024] [Accepted: 08/09/2024] [Indexed: 09/06/2024]
Abstract
It remains unknown whether and how intestinal stem cells (ISCs) adapt to inflammatory exposure and whether the adaptation leaves scars that will affect their subsequent regeneration. We investigated the consequences of inflammation on Lgr5+ ISCs in well-defined clinically relevant models of acute gastrointestinal graft-versus-host disease (GI GVHD). Utilizing single-cell transcriptomics, as well as organoid, metabolic, epigenomic, and in vivo models, we found that Lgr5+ ISCs undergo metabolic changes that lead to the accumulation of succinate, which reprograms their epigenome. These changes reduced the ability of ISCs to differentiate and regenerate ex vivo in serial organoid cultures and also in vivo following serial transplantation. Furthermore, ISCs demonstrated a reduced capacity for in vivo regeneration despite resolution of the initial inflammatory exposure, demonstrating the persistence of the maladaptive impact induced by the inflammatory encounter. Thus, inflammation imprints the epigenome of ISCs in a manner that persists and affects their sensitivity to adapt to future stress or challenges.
Collapse
Affiliation(s)
- Dongchang Zhao
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Department of Internal Medicine, Houston, TX 77030, USA
| | - Visweswaran Ravikumar
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tyler J Leach
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Department of Internal Medicine, Houston, TX 77030, USA
| | - Daniel Kraushaar
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Department of Internal Medicine, Houston, TX 77030, USA
| | - Emma Lauder
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Department of Internal Medicine, Houston, TX 77030, USA; Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI 48109, USA
| | - Lu Li
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Department of Internal Medicine, Houston, TX 77030, USA
| | - Yaping Sun
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Department of Internal Medicine, Houston, TX 77030, USA
| | - Katherine Oravecz-Wilson
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI 48109, USA
| | - Evan T Keller
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Fengju Chen
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Department of Internal Medicine, Houston, TX 77030, USA
| | - Laure Maneix
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Department of Internal Medicine, Houston, TX 77030, USA
| | - Robert R Jenq
- Department of Genomic Medicine and Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Robert Britton
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Department of Internal Medicine, Houston, TX 77030, USA
| | - Katherine Y King
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Department of Internal Medicine, Houston, TX 77030, USA
| | - Ana E Santibanez
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Department of Internal Medicine, Houston, TX 77030, USA
| | - Chad J Creighton
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Department of Internal Medicine, Houston, TX 77030, USA
| | - Arvind Rao
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pavan Reddy
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Department of Internal Medicine, Houston, TX 77030, USA; Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI 48109, USA.
| |
Collapse
|
17
|
Schmidt D, Endres C, Hoefflin R, Andrieux G, Zwick M, Karantzelis N, Staehle HF, Vinnakota JM, Duquesne S, Mozaffari M, Pfeifer D, Becker H, Blazar BR, Zähringer A, Duyster J, Brummer T, Boerries M, Baumeister J, Shoumariyeh K, Li J, Green AR, Heidel FH, Tirosh I, Pahl HL, Leimkühler N, Köhler N, de Toledo MAS, Koschmieder S, Zeiser R. Oncogenic Calreticulin Induces Immune Escape by Stimulating TGFβ Expression and Regulatory T-cell Expansion in the Bone Marrow Microenvironment. Cancer Res 2024; 84:2985-3003. [PMID: 38885318 PMCID: PMC11405138 DOI: 10.1158/0008-5472.can-23-3553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/12/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
Increasing evidence supports the interplay between oncogenic mutations and immune escape mechanisms. Strategies to counteract the immune escape mediated by oncogenic signaling could provide improved therapeutic options for patients with various malignancies. As mutant calreticulin (CALR) is a common driver of myeloproliferative neoplasms (MPN), we analyzed the impact of oncogenic CALRdel52 on the bone marrow (BM) microenvironment in MPN. Single-cell RNA sequencing revealed that CALRdel52 led to the expansion of TGFβ1-producing erythroid progenitor cells and promoted the expansion of FoxP3+ regulatory T cells (Treg) in a murine MPN model. Treatment with an anti-TGFβ antibody improved mouse survival and increased the glycolytic activity in CD4+ and CD8+ T cells in vivo, whereas T-cell depletion abrogated the protective effects conferred by neutralizing TGFβ. TGFβ1 reduced perforin and TNFα production by T cells in vitro. TGFβ1 production by CALRdel52 cells was dependent on JAK1/2, PI3K, and ERK activity, which activated the transcription factor Sp1 to induce TGFβ1 expression. In four independent patient cohorts, TGFβ1 expression was increased in the BM of patients with MPN compared with healthy individuals, and the BM of patients with MPN contained a higher frequency of Treg compared with healthy individuals. Together, this study identified an ERK/Sp1/TGFβ1 axis in CALRdel52 MPNs as a mechanism of immunosuppression that can be targeted to elicit T-cell-mediated cytotoxicity. Significance: Targeting the mutant calreticulin/TGFβ1 axis increases T-cell activity and glycolytic capacity, providing the rationale for conducting clinical trials on TGFβ antagonists as an immunotherapeutic strategy in patients with myeloproliferative neoplasms.
Collapse
Affiliation(s)
- Dominik Schmidt
- Department of Medicine I - Medical centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University, Freiburg, Germany
| | - Cornelia Endres
- Department of Medicine I - Medical centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University, Freiburg, Germany
| | - Rouven Hoefflin
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Melissa Zwick
- Department of Medicine I - Medical centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University, Freiburg, Germany
| | - Nikolaos Karantzelis
- Department of Medicine I - Medical centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Hans F. Staehle
- Department of Medicine I - Medical centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Janaki Manoja Vinnakota
- Department of Medicine I - Medical centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Sandra Duquesne
- Department of Medicine I - Medical centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Miriam Mozaffari
- Department of Medicine I - Medical centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Dietmar Pfeifer
- Department of Medicine I - Medical centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Heiko Becker
- Department of Medicine I - Medical centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Bruce R. Blazar
- Masonic Cancer Center and Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Alexander Zähringer
- Department of Medicine I - Medical centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Justus Duyster
- Department of Medicine I - Medical centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Tilman Brummer
- IMMZ, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- German Cancer Consortium (DKTK), Partner site Freiburg, a partnership between DKFZ and Medical Center - University of Freiburg
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner site Freiburg, a partnership between DKFZ and Medical Center - University of Freiburg
| | - Julian Baumeister
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, and Center for Integrated Oncology, Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Khalid Shoumariyeh
- Department of Medicine I - Medical centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Juan Li
- Department of Hematology, University of Cambridge, Cambridge, UK
| | - Anthony R. Green
- Department of Hematology, University of Cambridge, Cambridge, UK
| | - Florian H. Heidel
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany
- Leibniz Institute on Aging, Fritz-Lipmann Institute, Jena, Germany
| | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Heike L. Pahl
- Department of Medicine I - Medical centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Nils Leimkühler
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Germany
| | - Natalie Köhler
- Department of Medicine I - Medical centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS – Centre for Integrative Biological Signalling Studies, University of Freiburg
| | - Marcelo A. S. de Toledo
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, and Center for Integrated Oncology, Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, and Center for Integrated Oncology, Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Robert Zeiser
- Department of Medicine I - Medical centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- German Cancer Consortium (DKTK), Partner site Freiburg, a partnership between DKFZ and Medical Center - University of Freiburg
- Signalling Research Centres BIOSS and CIBSS – Centre for Integrative Biological Signalling Studies, University of Freiburg
| |
Collapse
|
18
|
Krakow EF, Brault M, Summers C, Cunningham TM, Biernacki MA, Black RG, Woodward KB, Vartanian N, Kanaan SB, Yeh AC, Dossa RG, Bar M, Cassaday RD, Dahlberg A, Till BG, Denker AE, Yeung CCS, Gooley TA, Maloney DG, Riddell SR, Greenberg PD, Chapuis AG, Newell EW, Furlan SN, Bleakley M. HA-1-targeted T-cell receptor T-cell therapy for recurrent leukemia after hematopoietic stem cell transplantation. Blood 2024; 144:1069-1082. [PMID: 38683966 PMCID: PMC11406181 DOI: 10.1182/blood.2024024105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/27/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
ABSTRACT Relapse is the leading cause of death after allogeneic hematopoietic stem cell transplantation (HCT) for leukemia. T cells engineered by gene transfer to express T cell receptors (TCR; TCR-T) specific for hematopoietic-restricted minor histocompatibility (H) antigens may provide a potent selective antileukemic effect post-HCT. We conducted a phase 1 clinical trial using a novel TCR-T product targeting the minor H antigen, HA-1, to treat or consolidate treatment of persistent or recurrent leukemia and myeloid neoplasms. The primary objective was to evaluate the feasibility and safety of administration of HA-1 TCR-T after HCT. CD8+ and CD4+ T cells expressing the HA-1 TCR and a CD8 coreceptor were successfully manufactured from HA-1-disparate HCT donors. One or more infusions of HA-1 TCR-T following lymphodepleting chemotherapy were administered to 9 HCT recipients who had developed disease recurrence after HCT. TCR-T cells expanded and persisted in vivo after adoptive transfer. No dose-limiting toxicities occurred. Although the study was not designed to assess efficacy, 4 patients achieved or maintained complete remissions following lymphodepletion and HA-1 TCR-T, with 1 patient still in remission at >2 years. Single-cell RNA sequencing of relapsing/progressive leukemia after TCR-T therapy identified upregulated molecules associated with T-cell dysfunction or cancer cell survival. HA-1 TCR-T therapy appears feasible and safe and shows preliminary signals of efficacy. This clinical trial was registered at ClinicalTrials.gov as #NCT03326921.
Collapse
Affiliation(s)
- Elizabeth F. Krakow
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Michelle Brault
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Corinne Summers
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Cancer and Blood Disorders Center, Seattle Children's Hospital, Seattle, WA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA
| | - Tanya M. Cunningham
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Melinda A. Biernacki
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - R. Graeme Black
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Kyle B. Woodward
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Nicole Vartanian
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Sami B. Kanaan
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Albert C. Yeh
- Department of Medicine, University of Washington School of Medicine, Seattle, WA
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Robson G. Dossa
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Merav Bar
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Ryan D. Cassaday
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Ann Dahlberg
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Cancer and Blood Disorders Center, Seattle Children's Hospital, Seattle, WA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA
| | - Brian G. Till
- Department of Medicine, University of Washington School of Medicine, Seattle, WA
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | | | - Cecilia C. S. Yeung
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA
| | - Ted A. Gooley
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - David G. Maloney
- Department of Medicine, University of Washington School of Medicine, Seattle, WA
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Stanley R. Riddell
- Department of Medicine, University of Washington School of Medicine, Seattle, WA
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Philip D. Greenberg
- Department of Medicine, University of Washington School of Medicine, Seattle, WA
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Immunology, University of Washington School of Medicine, Seattle, WA
| | - Aude G. Chapuis
- Department of Medicine, University of Washington School of Medicine, Seattle, WA
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Evan W. Newell
- Vaccine and Infection Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Scott N. Furlan
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
- Cancer and Blood Disorders Center, Seattle Children's Hospital, Seattle, WA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA
| | - Marie Bleakley
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
- Cancer and Blood Disorders Center, Seattle Children's Hospital, Seattle, WA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
19
|
Wenger V, Zeiser R. Deciphering the role of the major histocompatibility complex, the intestinal microbiome and metabolites in the pathogenesis of acute graft-versus-host disease. Best Pract Res Clin Haematol 2024; 37:101567. [PMID: 39396261 DOI: 10.1016/j.beha.2024.101567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 07/01/2024] [Accepted: 07/23/2024] [Indexed: 10/15/2024]
Abstract
Allogeneic hematologic stem cell transplantation is a cornerstone in modern hematological treatment, yet its efficacy is compromised by acute Graft-versus-Host Disease. In acute Graft-versus-Host Disease, conditioning regimen induced epithelial damage leads to release of damage and pathogen associated molecular patters which in turns triggers activation of alloreactive donor T cells, ultimately resulting in destruction of healthy tissue. Advances in major histocompatibility complex typing and preclinical studies using tissue specific major histocompatibility complex deletion have illuminated the contributions of both, hematopoietic and non-hematopoietic cells to acute Graft-versus-Host Disease pathophysiology. Concurrently, high-throughput sequencing techniques have enabled researchers to recognize the significant impact of the intestinal microbiome and newly discovered metabolites in the pathophysiology of acute Graft-versus-Host Disease. In this review, we discuss the implications of major histocompatibility complex expression on hematopoietic and non-hematopoietic cells, the effect on the intestinal microbiome and the metabolic alterations that contribute to acute Graft-versus-Host Disease. By combining these findings, we hope to untangle the complexity of acute Graft-versus-Host Disease, ultimately paving the way for the development of novel and more effective treatmen options in patients.
Collapse
Affiliation(s)
- Valentin Wenger
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, Albert Ludwigs University (ALU), Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, Albert Ludwigs University (ALU), Freiburg, Germany; German Cancer Consortium (DKTK), Freiburg, and German Cancer Research Center (DKFZ), Heidelberg, Germany; Signalling Research Centres BIOSS and CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Germany.
| |
Collapse
|
20
|
Notarantonio AB, Robin M, D'Aveni M. Current challenges in conditioning regimens for MDS transplantation. Blood Rev 2024; 67:101223. [PMID: 39089962 DOI: 10.1016/j.blre.2024.101223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024]
Abstract
Myelodysplastic syndrome (MDS) is a very heterogeneous clonal disorder. Patients with "higher-risk" MDS, defined by specific recurrent genetic abnormalities, have a poor prognosis because of a high risk of progression to secondary acute myeloid leukemia with low chemosensitivity. Allogeneic hematopoietic stem cell transplantation remains the only treatment that offers durable disease control because the donor immune system allows graft-versus-MDS effects. In terms of preparation steps before transplantation, targeting the malignant clone by increasing the conditioning regimen intensity is still a matter of intense debate. MDS is mainly diagnosed in older patients, and high toxicity related to common myeloablative conditioning regimens has been reported. Efforts to include new drugs in the conditioning regimen to achieve the best malignant clone control without increasing toxicity have been made over the past 20 years. We summarized these retrospective and prospective studies and evaluated the limitations of the available evidence to delineate the ideal conditioning regimen.
Collapse
Affiliation(s)
- A B Notarantonio
- Hematology Department, University Hospital of Nancy, France; CNRS 7365, IMoPA, University of Lorraine, F-54000, France
| | - M Robin
- Hematology Department, Saint-Louis Hospital, APHP, Paris, France
| | - M D'Aveni
- Hematology Department, University Hospital of Nancy, France; CNRS 7365, IMoPA, University of Lorraine, F-54000, France.
| |
Collapse
|
21
|
Zebley CC, Zehn D, Gottschalk S, Chi H. T cell dysfunction and therapeutic intervention in cancer. Nat Immunol 2024; 25:1344-1354. [PMID: 39025962 PMCID: PMC11616736 DOI: 10.1038/s41590-024-01896-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024]
Abstract
Recent advances in immunotherapy have affirmed the curative potential of T cell-based approaches for treating relapsed and refractory cancers. However, the therapeutic efficacy is limited in part owing to the ability of cancers to evade immunosurveillance and adapt to immunological pressure. In this Review, we provide a brief overview of cancer-mediated immunosuppressive mechanisms with a specific focus on the repression of the surveillance and effector function of T cells. We discuss CD8+ T cell exhaustion and functional heterogeneity and describe strategies for targeting the molecular checkpoints that restrict T cell differentiation and effector function to bolster immunotherapeutic effects. We also delineate the emerging contributions of the tumor microenvironment to T cell metabolism and conclude by highlighting discovery-based approaches for developing future cellular therapies. Continued exploration of T cell biology and engineering hold great promise for advancing therapeutic interventions for cancer.
Collapse
Affiliation(s)
- Caitlin C Zebley
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan and Center for Infection Prevention (ZIP), Technical University of Munich, Freising, Germany
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
22
|
Hammon K, Renner K, Althammer M, Voll F, Babl N, Decking SM, Siska PJ, Matos C, Conejo ZEC, Mendes K, Einwag F, Siegmund H, Iberl S, Berger RS, Dettmer K, Schoenmehl R, Brochhausen C, Herr W, Oefner PJ, Rehli M, Thomas S, Kreutz M. D-2-hydroxyglutarate supports a tolerogenic phenotype with lowered major histocompatibility class II expression in non-malignant dendritic cells and acute myeloid leukemia cells. Haematologica 2024; 109:2500-2514. [PMID: 38235501 PMCID: PMC11290548 DOI: 10.3324/haematol.2023.283597] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/11/2024] [Indexed: 01/19/2024] Open
Abstract
D-2-hydroxyglutarate (D-2-HG) accumulates in patients with acute myeloid leukemia (AML) with mutated isocitrate dehydrogenase (IDH) and in other malignancies. D-2-HG suppresses antitumor T-cell immunity but little is known about potential effects on non-malignant myeloid cells. Here we show that D-2-HG impairs human but not murine dendritic cell differentiation, resulting in a tolerogenic phenotype with low major histocompatibility class II expression. In line with this, IDH-mutated AML blasts exhibited lower expression of HLA-DP and were less susceptible to lysis by HLA-DP-specific T cells. Interestingly, besides its expected impact on DNA demethylation, D-2-HG reprogrammed metabolism towards increased lactate production in dendritic cells and AML. Vitamin C accelerated DNA demethylation, but only the combination of vitamin C and glycolytic inhibition lowered lactate levels and supported major histocompatibility complex class II expression. Our results indicate an unexpected link between the immunosuppressive metabolites 2-HG and lactic acid and suggest a potentially novel therapeutic strategy with combinations of anti-glycolytic drugs and epigenetic modulators (hypomethylating agents) or other therapeutics for the treatment of AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Dendritic Cells/drug effects
- Glutarates/metabolism
- Glutarates/pharmacology
- Mice
- Animals
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/metabolism
- Phenotype
- Cell Differentiation/drug effects
- Lactic Acid/metabolism
- Immune Tolerance/drug effects
- Isocitrate Dehydrogenase/genetics
Collapse
Affiliation(s)
- Kathrin Hammon
- Department of Internal Medicine III, University Hospital Regensburg; Regensburg, Germany; LIT - Leibniz Institute for Immunotherapy; Regensburg
| | - Kathrin Renner
- Department of Internal Medicine III, University Hospital Regensburg; Regensburg, Germany; LIT - Leibniz Institute for Immunotherapy; Regensburg, Germany; Department of Otorhinolaryngology, University Hospital Regensburg, Regensburg
| | - Michael Althammer
- Department of Internal Medicine III, University Hospital Regensburg; Regensburg
| | - Florian Voll
- LIT - Leibniz Institute for Immunotherapy; Regensburg
| | - Nathalie Babl
- Department of Internal Medicine III, University Hospital Regensburg; Regensburg
| | - Sonja-Maria Decking
- Department of Otorhinolaryngology, University Hospital Regensburg, Regensburg
| | - Peter J Siska
- Department of Internal Medicine III, University Hospital Regensburg; Regensburg
| | - Carina Matos
- Department of Internal Medicine III, University Hospital Regensburg; Regensburg
| | | | - Karina Mendes
- Department of Internal Medicine III, University Hospital Regensburg; Regensburg, Germany; Present address: Universidade Católica Portuguesa, Center for Interdisciplinary Research in Health (CIIS), Institute of Health Sciences (ICS); Viseu
| | - Friederike Einwag
- Department of Internal Medicine III, University Hospital Regensburg; Regensburg
| | - Heiko Siegmund
- Institute of Pathology, University of Regensburg; Regensburg
| | - Sabine Iberl
- Department of Internal Medicine III, University Hospital Regensburg; Regensburg
| | - Raffaela S Berger
- Institute of Functional Genomics, University of Regensburg; Regensburg
| | - Katja Dettmer
- Institute of Functional Genomics, University of Regensburg; Regensburg
| | - Rebecca Schoenmehl
- Institute of Pathology, University Medical Center Mannheim, University Heidelberg, Mannheim
| | - Christoph Brochhausen
- Institute of Pathology, University of Regensburg; Regensburg, Germany; Institute of Pathology, University Medical Center Mannheim, University Heidelberg, Mannheim
| | - Wolfgang Herr
- Department of Internal Medicine III, University Hospital Regensburg; Regensburg
| | - Peter J Oefner
- Institute of Functional Genomics, University of Regensburg; Regensburg
| | - Michael Rehli
- Department of Internal Medicine III, University Hospital Regensburg; Regensburg, Germany; LIT - Leibniz Institute for Immunotherapy; Regensburg
| | - Simone Thomas
- Department of Internal Medicine III, University Hospital Regensburg; Regensburg, Germany; LIT - Leibniz Institute for Immunotherapy; Regensburg
| | - Marina Kreutz
- Department of Internal Medicine III, University Hospital Regensburg; Regensburg, Germany; LIT - Leibniz Institute for Immunotherapy; Regensburg.
| |
Collapse
|
23
|
Vadakekolathu J, Rutella S. Escape from T-cell-targeting immunotherapies in acute myeloid leukemia. Blood 2024; 143:2689-2700. [PMID: 37467496 PMCID: PMC11251208 DOI: 10.1182/blood.2023019961] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023] Open
Abstract
ABSTRACT Single-cell and spatial multimodal technologies have propelled discoveries of the solid tumor microenvironment (TME) molecular features and their correlation with clinical response and resistance to immunotherapy. Computational tools are incessantly being developed to characterize tumor-infiltrating immune cells and to model tumor immune escape. These advances have led to substantial research into T-cell hypofunctional states in the TME and their reinvigoration with T-cell-targeting approaches, including checkpoint inhibitors (CPIs). Until recently, we lacked a high-dimensional picture of the acute myeloid leukemia (AML) TME, including compositional and functional differences in immune cells between disease onset and postchemotherapy or posttransplantation relapse, and the dynamic interplay between immune cells and AML blasts at various maturation stages. AML subgroups with heightened interferon gamma (IFN-γ) signaling were shown to derive clinical benefit from CD123×CD3-bispecific dual-affinity retargeting molecules and CPIs, while being less likely to respond to standard-of-care cytotoxic chemotherapy. In this review, we first highlight recent progress into deciphering immune effector states in AML (including T-cell exhaustion and senescence), oncogenic signaling mechanisms that could reduce the susceptibility of AML cells to T-cell-mediated killing, and the dichotomous roles of type I and II IFN in antitumor immunity. In the second part, we discuss how this knowledge could be translated into opportunities to manipulate the AML TME with the aim to overcome resistance to CPIs and other T-cell immunotherapies, building on recent success stories in the solid tumor field, and we provide an outlook for the future.
Collapse
Affiliation(s)
- Jayakumar Vadakekolathu
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, United Kingdom
| | - Sergio Rutella
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
24
|
Tameni A, Toffalori C, Vago L. Tricking the trickster: precision medicine approaches to counteract leukemia immune escape after transplant. Blood 2024; 143:2710-2721. [PMID: 38728431 DOI: 10.1182/blood.2023019962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/08/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
ABSTRACT Over the last decades, significant improvements in reducing the toxicities of allogeneic hematopoietic cell transplantation (allo-HCT) have widened its use as consolidation or salvage therapy for high-risk hematological malignancies. Nevertheless, relapse of the original malignant disease remains an open issue with unsatisfactory salvage options and limited rationales to select among them. In the last years, several studies have highlighted that relapse is often associated with specific genomic and nongenomic mechanisms of immune escape. In this review we summarize the current knowledge about these modalities of immune evasion, focusing on the mechanisms that leverage antigen presentation and pathologic rewiring of the bone marrow microenvironment. We present examples of how this biologic information can be translated into specific approaches to treat relapse, discuss the status of the clinical trials for patients who relapsed after a transplant, and show how dissecting the complex immunobiology of allo-HCT represents a crucial step toward developing new personalized approaches to improve clinical outcomes.
Collapse
Affiliation(s)
- Annalisa Tameni
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Cristina Toffalori
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
25
|
Talvard-Balland N, Braun LM, Dixon KO, Zwick M, Engel H, Hartmann A, Duquesne S, Penter L, Andrieux G, Rindlisbacher L, Acerbis A, Ehmann J, Köllerer C, Ansuinelli M, Rettig A, Moschallski K, Apostolova P, Brummer T, Illert AL, Schramm MA, Cheng Y, Köttgen A, Duyster J, Menssen HD, Ritz J, Blazar BR, Boerries M, Schmitt-Gräff A, Sariipek N, Van Galen P, Buescher JM, Cabezas-Wallscheid N, Pahl HL, Pearce EL, Soiffer RJ, Wu CJ, Vago L, Becher B, Köhler N, Wertheimer T, Kuchroo VK, Zeiser R. Oncogene-induced TIM-3 ligand expression dictates susceptibility to anti-TIM-3 therapy in mice. J Clin Invest 2024; 134:e177460. [PMID: 38916965 PMCID: PMC11324309 DOI: 10.1172/jci177460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/20/2024] [Indexed: 06/27/2024] Open
Abstract
Leukemia relapse is a major cause of death after allogeneic hematopoietic cell transplantation (allo-HCT). We tested the potential of targeting T cell (Tc) immunoglobulin and mucin-containing molecule 3 (TIM-3) for improving graft-versus-leukemia (GVL) effects. We observed differential expression of TIM-3 ligands when hematopoietic stem cells overexpressed certain oncogenic-driver mutations. Anti-TIM-3 Ab treatment improved survival of mice bearing leukemia with oncogene-induced TIM-3 ligand expression. Conversely, leukemia cells with low ligand expression were anti-TIM-3 treatment resistant. In vitro, TIM-3 blockade or genetic deletion in CD8+ Tc enhanced Tc activation, proliferation, and IFN-γ production while enhancing GVL effects, preventing Tc exhaustion, and improving Tc cytotoxicity and glycolysis in vivo. Conversely, TIM-3 deletion in myeloid cells did not affect allogeneic Tc proliferation and activation in vitro, suggesting that anti-TIM-3 treatment-mediated GVL effects are Tc induced. In contrast to anti-programmed cell death protein 1 (anti-PD-1) and anti-cytotoxic T lymphocyte-associated protein 4 (anti-CTLA-4) treatment, anti-TIM-3-treatment did not enhance acute graft-versus-host disease (aGVHD). TIM-3 and its ligands were frequently expressed in acute myeloid leukemia (AML) cells of patients with post-allo-HCT relapse. We decipher the connections between oncogenic mutations found in AML and TIM-3 ligand expression and identify anti-TIM-3 treatment as a strategy for enhancing GVL effects via metabolic and transcriptional Tc reprogramming without exacerbation of aGVHD. Our findings support clinical testing of anti-TIM-3 Ab in patients with AML relapse after allo-HCT.
Collapse
MESH Headings
- Animals
- Hepatitis A Virus Cellular Receptor 2/genetics
- Hepatitis A Virus Cellular Receptor 2/metabolism
- Mice
- Hematopoietic Stem Cell Transplantation
- Graft vs Leukemia Effect/immunology
- Graft vs Leukemia Effect/genetics
- Humans
- Allografts
- Ligands
- Oncogenes
- CD8-Positive T-Lymphocytes/immunology
- Mice, Knockout
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/pathology
- CTLA-4 Antigen/genetics
- CTLA-4 Antigen/immunology
- CTLA-4 Antigen/metabolism
- CTLA-4 Antigen/antagonists & inhibitors
- Gene Expression Regulation, Leukemic
Collapse
Affiliation(s)
- Nana Talvard-Balland
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
- CIBSS–Centre for Integrative Biological Signalling Studies, and
| | - Lukas M. Braun
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Karen O. Dixon
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women’s Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, USA
- Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Melissa Zwick
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Helena Engel
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Alina Hartmann
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Sandra Duquesne
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Livius Penter
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts, USA
- Department of Hematology, Oncology, and Tumorimmunology, Campus Virchow Klinikum, Berlin, Charité–Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lukas Rindlisbacher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Andrea Acerbis
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Jule Ehmann
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Christoph Köllerer
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Michela Ansuinelli
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts, USA
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Andres Rettig
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Kevin Moschallski
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Petya Apostolova
- German Cancer Consortium (DKTK) Partner Site Freiburg, a partnership between German Cancer Research Center (DKFZ) and Medical Center, University of Freiburg, Freiburg, Germany
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tilman Brummer
- German Cancer Consortium (DKTK) Partner Site Freiburg, a partnership between German Cancer Research Center (DKFZ) and Medical Center, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS–Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Institute of Molecular Medicine and Cell Research (IMMZ), Freiburg, Germany
| | - Anna L. Illert
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
- German Cancer Consortium (DKTK) Partner Site Freiburg, a partnership between German Cancer Research Center (DKFZ) and Medical Center, University of Freiburg, Freiburg, Germany
- Department of Internal Medicine III, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Yurong Cheng
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center–University of Freiburg, Freiburg, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center–University of Freiburg, Freiburg, Germany
| | - Justus Duyster
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | | | - Jerome Ritz
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts, USA
| | - Bruce R. Blazar
- University of Minnesota, Department of Pediatrics, Division of Blood and Marrow Transplant & Cellular Therapy, Minneapolis, Minnesota, USA
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, a partnership between German Cancer Research Center (DKFZ) and Medical Center, University of Freiburg, Freiburg, Germany
| | | | - Nurefsan Sariipek
- Division of Hematology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Peter Van Galen
- Division of Hematology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Joerg M. Buescher
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | - Heike L. Pahl
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Erika L. Pearce
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert J. Soiffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts, USA
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts, USA
| | - Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Natalie Köhler
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
- CIBSS–Centre for Integrative Biological Signalling Studies, and
| | - Tobias Wertheimer
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Vijay K. Kuchroo
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women’s Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Robert Zeiser
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
- German Cancer Consortium (DKTK) Partner Site Freiburg, a partnership between German Cancer Research Center (DKFZ) and Medical Center, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS–Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
26
|
Wen D, Xiao H, Gao Y, Zeng H, Deng J. N6-methyladenosine-modified SENP1, identified by IGF2BP3, is a novel molecular marker in acute myeloid leukemia and aggravates progression by activating AKT signal via de-SUMOylating HDAC2. Mol Cancer 2024; 23:116. [PMID: 38822351 PMCID: PMC11141000 DOI: 10.1186/s12943-024-02013-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/30/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Elevated evidence suggests that the SENPs family plays an important role in tumor progression. However, the role of SENPs in AML remains unclear. METHODS We evaluated the expression pattern of SENP1 based on RNA sequencing data obtained from OHSU, TCGA, TARGET, and MILE datasets. Clinical samples were used to verify the expression of SENP1 in the AML cells. Lentiviral vectors shRNA and sgRNA were used to intervene in SENP1 expression in AML cells, and the effects of SENP1 on AML proliferation and anti-apoptosis were detected using in vitro and in vivo models. Chip-qPCR, MERIP-qPCR, CO-IP, RNA pulldown, and dual-luciferase reporter gene assays were used to explore the regulatory mechanisms of SNEP1 in AML. RESULTS SENP1 was significantly upregulated in high-risk AML patients and closely related to poor prognosis. The AKT/mTOR signaling pathway is a key downstream pathway that mediates SENP1's regulation of AML proliferation and anti-apoptosis. Mechanistically, the CO-IP assay revealed binding between SENP1 and HDAC2. SUMO and Chip-qPCR assays suggested that SENP1 can desumoylate HDAC2, which enhances EGFR transcription and activates the AKT pathway. In addition, we found that IGF2BP3 expression was upregulated in high-risk AML patients and was positively correlated with SENP1 expression. MERIP-qPCR and RIP-qPCR showed that IGF2BP3 binds SENP1 3-UTR in an m6A manner, enhances SENP1 expression, and promotes AKT pathway conduction. CONCLUSIONS Our findings reveal a distinct mechanism of SENP1-mediated HDAC2-AKT activation and establish the critical role of the IGF2BP3/SENP1signaling axis in AML development.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Cysteine Endopeptidases/metabolism
- Cysteine Endopeptidases/genetics
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Histone Deacetylase 2/metabolism
- Histone Deacetylase 2/genetics
- Mice
- Animals
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
- Cell Proliferation
- Sumoylation
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
- Signal Transduction
- Disease Progression
- Cell Line, Tumor
- Apoptosis
- Prognosis
- Female
- Male
- Gene Expression Regulation, Leukemic
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Diguang Wen
- Department of Hematology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Hang Xiao
- Department of Hematology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yueyi Gao
- Department of Hematology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Hanqing Zeng
- Department of Hematology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| | - Jianchuan Deng
- Department of Hematology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
27
|
Pacini CP, Soares MVD, Lacerda JF. The impact of regulatory T cells on the graft-versus-leukemia effect. Front Immunol 2024; 15:1339318. [PMID: 38711496 PMCID: PMC11070504 DOI: 10.3389/fimmu.2024.1339318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/08/2024] [Indexed: 05/08/2024] Open
Abstract
Allogeneic Hematopoietic Stem Cell Transplantation (allo-HSCT) is the only curative therapy for many hematologic malignancies, whereby the Graft-versus-Leukemia (GVL) effect plays a pivotal role in controlling relapse. However, the success of GVL is hindered by Graft-versus-Host Disease (GVHD), where donor T cells attack healthy tissues in the recipient. The ability of natural regulatory T cells (Treg) to suppress immune responses has been exploited as a therapeutical option against GVHD. Still, it is crucial to evaluate if the ability of Treg to suppress GVHD does not compromise the benefits of GVL. Initial studies in animal models suggest that Treg can attenuate GVHD while preserving GVL, but results vary according to tumor type. Human trials using Treg as GVHD prophylaxis or treatment show promising results, emphasizing the importance of infusion timing and Treg/Tcon ratios. In this review, we discuss strategies that can be used aiming to enhance GVL post-Treg infusion and the proposed mechanisms for the maintenance of the GVL effect upon the adoptive Treg transfer. In order to optimize the therapeutic outcomes of Treg administration in allo-HSCT, future efforts should focus on refining Treg sources for infusion and evaluating their specificity for antigens mediating GVHD while preserving GVL responses.
Collapse
Affiliation(s)
- Carolina P. Pacini
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Maria V. D. Soares
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - João F. Lacerda
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Serviço de Hematologia e Transplantação de Medula, Hospital de Santa Maria, ULS Santa Maria, Lisbon, Portugal
| |
Collapse
|
28
|
Li Z, Wang J, Deng L, Liu X, Kong F, Zhao Y, Hou Y, Zhou F. The predictive value of T-cell chimerism for disease relapse after allogeneic hematopoietic stem cell transplantation. Front Immunol 2024; 15:1382099. [PMID: 38665912 PMCID: PMC11043518 DOI: 10.3389/fimmu.2024.1382099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Introduction Chimerism is closely correlated with disease relapse after allogeneic hematopoietic stem cell transplantation (allo-HSCT). However, chimerism rate is dynamic changes, and the sensitivity of different chimerism requires further research. Methods To investigate the predictive value of distinct chimerism for relapse, we measured bone marrow (BM), peripheral blood (PB), and T-cell (isolated from BM) chimerism in 178 patients after allo-HSCT. Results Receiver operating characteristic (ROC) curve showed that T-cell chimerism was more suitable to predict relapse after allo-HSCT compared with PB and BM chimerism. The cutoff value of T-cell chimerism for predicting relapse was 99.45%. Leukemia and myelodysplastic syndrome (MDS) relapse patients' T-cell chimerism was a gradual decline from 2 months to 9 months after allo-HSCT. Higher risk of relapse and death within 1 year after allo-HSCT. The T-cell chimerism rates in remission and relapse patients were 99.43% and 94.28% at 3 months after allo-HSCT (P = 0.009), 99.31% and 95.27% at 6 months after allo-HSCT (P = 0.013), and 99.26% and 91.32% at 9 months after allo-HSCT (P = 0.024), respectively. There was a significant difference (P = 0.036) for T-cell chimerism between early relapse (relapse within 9 months after allo-HSCT) and late relapse (relapse after 9 months after allo-HSCT) at 2 months after allo-HSCT. Every 1% increase in T-cell chimerism, the hazard ratio for disease relapse was 0.967 (95% CI: 0.948-0.987, P<0.001). Discussion We recommend constant monitoring T-cell chimerism at 2, 3, 6, and 9 months after allo-HSCT to predict relapse.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fang Zhou
- Hematology Department, The 960th Hospital of The People’s Liberation Army (PLA) Joint Logistics Support Force, Jinan, China
| |
Collapse
|
29
|
Hatae R, Kyewalabye K, Yamamichi A, Chen T, Phyu S, Chuntova P, Nejo T, Levine LS, Spitzer MH, Okada H. Enhancing CAR-T cell metabolism to overcome hypoxic conditions in the brain tumor microenvironment. JCI Insight 2024; 9:e177141. [PMID: 38386420 PMCID: PMC11128202 DOI: 10.1172/jci.insight.177141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/21/2024] [Indexed: 02/24/2024] Open
Abstract
The efficacy of chimeric antigen receptor T cell (CAR-T) therapy has been limited against brain tumors to date. CAR-T cells infiltrating syngeneic intracerebral SB28 EGFRvIII gliomas revealed impaired mitochondrial ATP production and a markedly hypoxic status compared with ones migrating to subcutaneous tumors. Drug screenings to improve metabolic states of T cells under hypoxic conditions led us to evaluate the combination of the AMPK activator metformin and the mTOR inhibitor rapamycin (Met+Rap). Met+Rap-pretreated mouse CAR-T cells showed activated PPAR-γ coactivator 1α (PGC-1α) through mTOR inhibition and AMPK activation, and a higher level of mitochondrial spare respiratory capacity than those pretreated with individual drugs or without pretreatment. Moreover, Met+Rap-pretreated CAR-T cells demonstrated persistent and effective antiglioma cytotoxic activities in the hypoxic condition. Furthermore, a single intravenous infusion of Met+Rap-pretreated CAR-T cells significantly extended the survival of mice bearing intracerebral SB28 EGFRvIII gliomas. Mass cytometric analyses highlighted increased glioma-infiltrating CAR-T cells in the Met+Rap group, with fewer Ly6c+CD11b+ monocytic myeloid-derived suppressor cells in the tumors. Finally, human CAR-T cells pretreated with Met+Rap recapitulated the observations with murine CAR-T cells, demonstrating improved functions under in vitro hypoxic conditions. These findings advocate for translational and clinical exploration of Met+Rap-pretreated CAR-T cells in human trials.
Collapse
Affiliation(s)
| | | | | | | | - Su Phyu
- Department of Neurological Surgery
| | | | | | - Lauren S. Levine
- Department of Otolaryngology-Head and Neck Surgery, and
- Department of Microbiology and Immunology, UCSF, San Francisco, California, USA
| | - Matthew H. Spitzer
- Department of Otolaryngology-Head and Neck Surgery, and
- Department of Microbiology and Immunology, UCSF, San Francisco, California, USA
- The Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
| | - Hideho Okada
- Department of Neurological Surgery
- The Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
| |
Collapse
|
30
|
Burk AC, Apostolova P. Metabolic instruction of the graft-versus-leukemia immunity. Front Immunol 2024; 15:1347492. [PMID: 38500877 PMCID: PMC10944922 DOI: 10.3389/fimmu.2024.1347492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/05/2024] [Indexed: 03/20/2024] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is frequently performed to cure hematological malignancies, such as acute myeloid leukemia (AML), through the graft-versus-leukemia (GVL) effect. In this immunological process, donor immune cells eliminate residual cancer cells in the patient and exert tumor control through immunosurveillance. However, GVL failure and subsequent leukemia relapse are frequent and associated with a dismal prognosis. A better understanding of the mechanisms underlying AML immune evasion is essential for developing novel therapeutic strategies to boost the GVL effect. Cellular metabolism has emerged as an essential regulator of survival and cell fate for both cancer and immune cells. Leukemia and T cells utilize specific metabolic programs, including the orchestrated use of glucose, amino acids, and fatty acids, to support their growth and function. Besides regulating cell-intrinsic processes, metabolism shapes the extracellular environment and plays an important role in cell-cell communication. This review focuses on recent advances in the understanding of how metabolism might affect the anti-leukemia immune response. First, we provide a general overview of the mechanisms of immune escape after allo-HCT and an introduction to leukemia and T cell metabolism. Further, we discuss how leukemia and myeloid cell metabolism contribute to an altered microenvironment that impairs T cell function. Next, we review the literature linking metabolic processes in AML cells with their inhibitory checkpoint ligand expression. Finally, we focus on recent findings concerning the role of systemic metabolism in sustained GVL efficacy. While the majority of evidence in the field still stems from basic and preclinical studies, we discuss translational findings and propose further avenues for bridging the gap between bench and bedside.
Collapse
Affiliation(s)
- Ann-Cathrin Burk
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between DKFZ and Medical Center - University of Freiburg, Freiburg, Germany
- Department of Medicine I, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Petya Apostolova
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Division of Hematology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
31
|
Wertheimer T, Zwicky P, Rindlisbacher L, Sparano C, Vermeer M, de Melo BMS, Haftmann C, Rückert T, Sethi A, Schärli S, Huber A, Ingelfinger F, Xu C, Kim D, Häne P, Fonseca da Silva A, Muschaweckh A, Nunez N, Krishnarajah S, Köhler N, Zeiser R, Oukka M, Korn T, Tugues S, Becher B. IL-23 stabilizes an effector T reg cell program in the tumor microenvironment. Nat Immunol 2024; 25:512-524. [PMID: 38356059 PMCID: PMC10907296 DOI: 10.1038/s41590-024-01755-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
Interleukin-23 (IL-23) is a proinflammatory cytokine mainly produced by myeloid cells that promotes tumor growth in various preclinical cancer models and correlates with adverse outcomes. However, as to how IL-23 fuels tumor growth is unclear. Here, we found tumor-associated macrophages to be the main source of IL-23 in mouse and human tumor microenvironments. Among IL-23-sensing cells, we identified a subset of tumor-infiltrating regulatory T (Treg) cells that display a highly suppressive phenotype across mouse and human tumors. The use of three preclinical models of solid cancer in combination with genetic ablation of Il23r in Treg cells revealed that they are responsible for the tumor-promoting effect of IL-23. Mechanistically, we found that IL-23 sensing represents a crucial signal driving the maintenance and stabilization of effector Treg cells involving the transcription factor Foxp3. Our data support that targeting the IL-23/IL-23R axis in cancer may represent a means of eliciting antitumor immunity.
Collapse
Affiliation(s)
- Tobias Wertheimer
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Pascale Zwicky
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Lukas Rindlisbacher
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Colin Sparano
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Marijne Vermeer
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Bruno Marcel Silva de Melo
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Department of Pharmacology, Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Claudia Haftmann
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Tamina Rückert
- Department of Internal Medicine I, Hematology, Oncology, and Stem Cell Transplantation, Faculty of Medicine, Medical Centre, University of Freiburg, Freiburg, Germany
| | - Aakriti Sethi
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Stefanie Schärli
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Anna Huber
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Florian Ingelfinger
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Caroline Xu
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Daehong Kim
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Philipp Häne
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - André Fonseca da Silva
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Andreas Muschaweckh
- Institute for Experimental Neuroimmunology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Nicolas Nunez
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sinduya Krishnarajah
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Natalie Köhler
- Department of Internal Medicine I, Hematology, Oncology, and Stem Cell Transplantation, Faculty of Medicine, Medical Centre, University of Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Internal Medicine I, Hematology, Oncology, and Stem Cell Transplantation, Faculty of Medicine, Medical Centre, University of Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Mohamed Oukka
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Thomas Korn
- Institute for Experimental Neuroimmunology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Sonia Tugues
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| | - Burkhard Becher
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
32
|
Ma J, Tang L, Tan Y, Xiao J, Wei K, Zhang X, Ma Y, Tong S, Chen J, Zhou N, Yang L, Lei Z, Li Y, Lv J, Liu J, Zhang H, Tang K, Zhang Y, Huang B. Lithium carbonate revitalizes tumor-reactive CD8 + T cells by shunting lactic acid into mitochondria. Nat Immunol 2024; 25:552-561. [PMID: 38263463 PMCID: PMC10907288 DOI: 10.1038/s41590-023-01738-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024]
Abstract
The steady flow of lactic acid (LA) from tumor cells to the extracellular space via the monocarboxylate transporter symport system suppresses antitumor T cell immunity. However, LA is a natural energy metabolite that can be oxidized in the mitochondria and could potentially stimulate T cells. Here we show that the lactate-lowering mood stabilizer lithium carbonate (LC) can inhibit LA-mediated CD8+ T cell immunosuppression. Cytoplasmic LA increased the pumping of protons into lysosomes. LC interfered with vacuolar ATPase to block lysosomal acidification and rescue lysosomal diacylglycerol-PKCθ signaling to facilitate monocarboxylate transporter 1 localization to mitochondrial membranes, thus transporting LA into the mitochondria as an energy source for CD8+ T cells. These findings indicate that targeting LA metabolism using LC could support cancer immunotherapy.
Collapse
Affiliation(s)
- Jingwei Ma
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Tang
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaoyao Tan
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingxuan Xiao
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Keke Wei
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zhang
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Ma
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Tong
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Chen
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nannan Zhou
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Yang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhang Lei
- Department of Oncology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yonggang Li
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Jiadi Lv
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junwei Liu
- Cardiovascular Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Huafeng Zhang
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Tang
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bo Huang
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
33
|
Wang Z, Shang J, Qiu Y, Cheng H, Tao M, Xie E, Pei X, Li W, Zhang L, Wu A, Li G. Suppression of the METTL3-m 6A-integrin β1 axis by extracellular acidification impairs T cell infiltration and antitumor activity. Cell Rep 2024; 43:113796. [PMID: 38367240 DOI: 10.1016/j.celrep.2024.113796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/28/2023] [Accepted: 01/31/2024] [Indexed: 02/19/2024] Open
Abstract
The acidic metabolic byproducts within the tumor microenvironment (TME) hinder T cell effector functions. However, their effects on T cell infiltration remain largely unexplored. Leveraging the comprehensive The Cancer Genome Atlas dataset, we pinpoint 16 genes that correlate with extracellular acidification and establish a metric known as the "tumor acidity (TuAci) score" for individual patients. We consistently observe a negative association between the TuAci score and T lymphocyte score (T score) across various human cancer types. Mechanistically, extracellular acidification significantly impedes T cell motility by suppressing podosome formation. This phenomenon can be attributed to the reduced expression of methyltransferase-like 3 (METTL3) and the modification of RNA N6-methyladenosine (m6A), resulting in a subsequent decrease in the expression of integrin β1 (ITGB1). Importantly, enforced ITGB1 expression leads to enhanced T cell infiltration and improved antitumor activity. Our study suggests that modulating METTL3 activity or boosting ITGB1 expression could augment T cell infiltration within the acidic TME, thereby improving the efficacy of cell therapy.
Collapse
Affiliation(s)
- Zhe Wang
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Jingzhe Shang
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Yajing Qiu
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Hongcheng Cheng
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Mengyuan Tao
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Ermei Xie
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Xin Pei
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Wenhui Li
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Lianjun Zhang
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China.
| | - Aiping Wu
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China.
| | - Guideng Li
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China.
| |
Collapse
|
34
|
Bogdanov A, Verlov N, Bogdanov A, Burdakov V, Semiletov V, Egorenkov V, Volkov N, Moiseyenko V. Tumor alkalization therapy: misconception or good therapeutics perspective? - the case of malignant ascites. Front Oncol 2024; 14:1342802. [PMID: 38390269 PMCID: PMC10881708 DOI: 10.3389/fonc.2024.1342802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Tumor acidity has been identified as a key factor in promoting cancer progression, metastasis, and resistance. Tumor alkalization therapy has emerged as a potential strategy for cancer treatment. This article provides preclinical and clinical evidence for tumor alkalization therapy as a promising cancer treatment strategy. The potential of tumor alkalization therapy using sodium bicarbonate in the treatment of malignant ascites was studied. The concept of intraperitoneal perfusion with an alkalizing solution to increase the extracellular pH and its antitumor effect were explored. The significant extension in the overall survival of the Ehrlich ascites carcinoma mice treated with sodium bicarbonate solution compared to those treated with a sodium chloride solution was observed. In the sodium bicarbonate group, mice had a median survival of 30 days after tumor cell injection, which was significantly (p<0.05) different from the median survival of 18 days in the sodium chloride group and 14 days in the intact group. We also performed a case study of a patient with ovarian cancer malignant ascites resistant to previous lines of chemotherapy who underwent intraperitoneal perfusions with a sodium bicarbonate solution, resulting in a significant drop of CA-125 levels from 5600 U/mL to 2200 U/mL in and disappearance of ascites, indicating the potential effectiveness of the treatment. The preclinical and clinical results obtained using sodium bicarbonate perfusion in the treatment of malignant ascites represent a small yet significant contribution to the evolving field of tumor alkalization as a cancer therapy. They unequivocally affirm the good prospects of this concept.
Collapse
Affiliation(s)
- Alexey Bogdanov
- Napalkov Saint Petersburg Clinical Research and Practical Center of Specialized Types of Medical Care (Oncological), Saint Petersburg, Russia
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Maas-Bauer K, Stell AV, Yan KL, de Vega E, Vinnakota JM, Unger S, Núñez N, Norona J, Talvard-Balland N, Koßmann S, Schwan C, Miething C, Martens US, Shoumariyeh K, Nestor RP, Duquesne S, Hanke K, Rackiewicz M, Hu Z, El Khawanky N, Taromi S, Andrlova H, Faraidun H, Walter S, Pfeifer D, Follo M, Waldschmidt J, Melchinger W, Rassner M, Wehr C, Schmitt-Graeff A, Halbach S, Liao J, Häcker G, Brummer T, Dengjel J, Andrieux G, Grosse R, Tugues S, Blazar BR, Becher B, Boerries M, Zeiser R. ROCK1/2 signaling contributes to corticosteroid-refractory acute graft-versus-host disease. Nat Commun 2024; 15:446. [PMID: 38199985 PMCID: PMC10781952 DOI: 10.1038/s41467-024-44703-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Patients with corticosteroid-refractory acute graft-versus-host disease (aGVHD) have a low one-year survival rate. Identification and validation of novel targetable kinases in patients who experience corticosteroid-refractory-aGVHD may help improve outcomes. Kinase-specific proteomics of leukocytes from patients with corticosteroid-refractory-GVHD identified rho kinase type 1 (ROCK1) as the most significantly upregulated kinase. ROCK1/2 inhibition improved survival and histological GVHD severity in mice and was synergistic with JAK1/2 inhibition, without compromising graft-versus-leukemia-effects. ROCK1/2-inhibition in macrophages or dendritic cells prior to transfer reduced GVHD severity. Mechanistically, ROCK1/2 inhibition or ROCK1 knockdown interfered with CD80, CD86, MHC-II expression and IL-6, IL-1β, iNOS and TNF production in myeloid cells. This was accompanied by impaired T cell activation by dendritic cells and inhibition of cytoskeletal rearrangements, thereby reducing macrophage and DC migration. NF-κB signaling was reduced in myeloid cells following ROCK1/2 inhibition. In conclusion, ROCK1/2 inhibition interferes with immune activation at multiple levels and reduces acute GVHD while maintaining GVL-effects, including in corticosteroid-refractory settings.
Collapse
Affiliation(s)
- Kristina Maas-Bauer
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anna-Verena Stell
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kai-Li Yan
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Enrique de Vega
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Janaki Manoja Vinnakota
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Susanne Unger
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Nicolas Núñez
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Johana Norona
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nana Talvard-Balland
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stefanie Koßmann
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Carsten Schwan
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Cornelius Miething
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Uta S Martens
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Khalid Shoumariyeh
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, a partnership between German Cancer Research Center (DKFZ) and Medical Center - University of Freiburg, Freiburg, Germany
| | - Rosa P Nestor
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sandra Duquesne
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kathrin Hanke
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michal Rackiewicz
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Department of Dermatology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Zehan Hu
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Department of Dermatology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Nadia El Khawanky
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sanaz Taromi
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hana Andrlova
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hemin Faraidun
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Stefanie Walter
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dietmar Pfeifer
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marie Follo
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Johannes Waldschmidt
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wolfgang Melchinger
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Rassner
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claudia Wehr
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Sebastian Halbach
- German Cancer Consortium (DKTK), Partner Site Freiburg, a partnership between German Cancer Research Center (DKFZ) and Medical Center - University of Freiburg, Freiburg, Germany
- IMMZ, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - James Liao
- Department of Medicine, University of Arizona, Tucson, USA
| | - Georg Häcker
- IMMH, University Hospital Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Tilman Brummer
- German Cancer Consortium (DKTK), Partner Site Freiburg, a partnership between German Cancer Research Center (DKFZ) and Medical Center - University of Freiburg, Freiburg, Germany
- IMMZ, University of Freiburg, Faculty of Medicine, Freiburg, Germany
- Signaling Research Centres BIOSS and CIBSS - Centre for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Joern Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Department of Dermatology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Grosse
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Sonia Tugues
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota, Minneapolis, MN, USA
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Melanie Boerries
- German Cancer Consortium (DKTK), Partner Site Freiburg, a partnership between German Cancer Research Center (DKFZ) and Medical Center - University of Freiburg, Freiburg, Germany
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- German Cancer Consortium (DKTK), Partner Site Freiburg, a partnership between German Cancer Research Center (DKFZ) and Medical Center - University of Freiburg, Freiburg, Germany.
- Signaling Research Centres BIOSS and CIBSS - Centre for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
36
|
Fetsch V, Zeiser R. Chimeric antigen receptor T cells for acute myeloid leukemia. Eur J Haematol 2024; 112:28-35. [PMID: 37455578 DOI: 10.1111/ejh.14047] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
The use of T cells expressing chimeric antigen receptors (CARs) that can target and eliminate cancer cells has revolutionized the treatment of B-cell malignancies. In contrast, CAR T cells have not yet become a routine treatment for myeloid malignancies such as acute myeloid leukemia (AML) or myeloproliferative neoplasms (MPNs). For these disease entities, allogeneic hematopoietic cell transplantation (allo-HCT) relying on polyclonal allo-reactive T cells is still the major cellular immunotherapy used in clinical routine. Here, we discuss major hurdles of CAR T-cell therapy for myeloid malignancies and novel approaches to enhance their efficacy and reduce toxicity. Heterogeneity of the malignant myeloid clone, CAR T-cell induced toxicity against normal hematopoietic cells, lack of long-term CAR T-cell persistence, and loss or downregulation of targetable antigens on myeloid cells are obstacles for successful CAR T cells therapy against AML and MPNs. Strategies to overcome these hurdles include pharmacological interventions, for example, demethylating therapy to increase target antigen expression, multi-targeted CAR T cells, and gene-therapy based approaches that delete the CAR target antigen in the hematopoietic cells of the recipient to protect them from CAR-induced myelotoxicity. Most of these approaches are still in preclinical testing but may reach the clinic in the coming years. In summary, we report on barriers to CAR T-cell use against AML and novel therapeutic strategies to overcome these challenges, with the goal of clinical treatment of myeloid malignancies with CAR T cells.
Collapse
Affiliation(s)
- Viktor Fetsch
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS) and Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Comprehensive Cancer Centre Freiburg (CCCF), University of Freiburg, Freiburg, Germany
| |
Collapse
|
37
|
Hatae R, Kyewalabye K, Yamamichi A, Chen T, Phyu S, Chuntova P, Nejo T, Levine LS, Spitzer MH, Okada H. Enhancing CAR-T Cell Metabolism to Overcome Hypoxic Conditions in the Brain Tumor Microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566775. [PMID: 38014236 PMCID: PMC10680638 DOI: 10.1101/2023.11.13.566775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The efficacy of chimeric antigen receptor (CAR)-T therapy has been limited against brain tumors to date. CAR-T cells infiltrating syngeneic intracerebral SB28-EGFRvIII glioma revealed impaired mitochondrial ATP production and a markedly hypoxic status compared to ones migrating to subcutaneous tumors. Drug screenings to improve metabolic states of T cells under hypoxic conditions led us to evaluate the combination of AMPK activator Metformin and the mTOR inhibitor Rapamycin (Met+Rap). Met+Rap-pretreated mouse CAR-T cells showed activated PPAR-gamma coactivator 1α (PGC-1α) through mTOR inhibition and AMPK activation, and a higher level of mitochondrial spare respiratory capacity than those pretreated with individual drugs or without pretreatment. Moreover, Met+Rap-pretreated CAR-T cells demonstrated persistent and effective anti-glioma cytotoxic activities in the hypoxic condition. Furthermore, a single intravenous infusion of Met+Rap-pretreated CAR-T cells significantly extended the survival of mice bearing intracerebral SB28-EGFRvIII gliomas. Mass cytometric analyses highlighted increased glioma-infiltrating CAR-T cells in the Met+Rap group with fewer Ly6c+ CD11b+ monocytic myeloid-derived suppressor cells in the tumors. Finally, human CAR-T cells pretreated with Met+Rap recapitulated the observations with murine CAR-T cells, demonstrating improved functions in vitro hypoxic conditions. These findings advocate for translational and clinical exploration of Met+Rap-pretreated CAR-T cells in human trials.
Collapse
|
38
|
Sauerer T, Velázquez GF, Schmid C. Relapse of acute myeloid leukemia after allogeneic stem cell transplantation: immune escape mechanisms and current implications for therapy. Mol Cancer 2023; 22:180. [PMID: 37951964 PMCID: PMC10640763 DOI: 10.1186/s12943-023-01889-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease characterized by the expansion of immature myeloid cells in the bone marrow (BM) and peripheral blood (PB) resulting in failure of normal hematopoiesis and life-threating cytopenia. Allogeneic hematopoietic stem cell transplantation (allo-HCT) is an established therapy with curative potential. Nevertheless, post-transplant relapse is common and associated with poor prognosis, representing the major cause of death after allo-HCT. The occurrence of relapse after initially successful allo-HCT indicates that the donor immune system is first able to control the leukemia, which at a later stage develops evasion strategies to escape from immune surveillance. In this review we first provide a comprehensive overview of current knowledge regarding immune escape in AML after allo-HCT, including dysregulated HLA, alterations in immune checkpoints and changes leading to an immunosuppressive tumor microenvironment. In the second part, we draw the line from bench to bedside and elucidate to what extend immune escape mechanisms of relapsed AML are yet exploited in treatment strategies. Finally, we give an outlook how new emerging technologies could help to improve the therapy for these patients, and elucidate potential new treatment options.
Collapse
Affiliation(s)
- Tatjana Sauerer
- Department of Hematology and Oncology, Augsburg University Hospital and Medical Faculty, Bavarian Cancer Research Center (BZKF) and Comprehensive Cancer Center Augsburg, Augsburg, Germany
| | - Giuliano Filippini Velázquez
- Department of Hematology and Oncology, Augsburg University Hospital and Medical Faculty, Bavarian Cancer Research Center (BZKF) and Comprehensive Cancer Center Augsburg, Augsburg, Germany
| | - Christoph Schmid
- Department of Hematology and Oncology, Augsburg University Hospital and Medical Faculty, Bavarian Cancer Research Center (BZKF) and Comprehensive Cancer Center Augsburg, Augsburg, Germany.
| |
Collapse
|
39
|
Apostolova P, Kreutmair S, Toffalori C, Punta M, Unger S, Burk AC, Wehr C, Maas-Bauer K, Melchinger W, Haring E, Hoefflin R, Shoumariyeh K, Hupfer V, Lauer EM, Duquesne S, Lowinus T, Gonzalo Núñez N, Alberti C, da Costa Pereira S, Merten CH, Power L, Weiss M, Böke C, Pfeifer D, Marks R, Bertz H, Wäsch R, Ihorst G, Gentner B, Duyster J, Boerries M, Andrieux G, Finke J, Becher B, Vago L, Zeiser R. Phase II trial of hypomethylating agent combined with nivolumab for acute myeloid leukaemia relapse after allogeneic haematopoietic cell transplantation-Immune signature correlates with response. Br J Haematol 2023; 203:264-281. [PMID: 37539479 DOI: 10.1111/bjh.19007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
Acute myeloid leukaemia (AML) relapse after allogeneic haematopoietic cell transplantation (allo-HCT) is often driven by immune-related mechanisms and associated with poor prognosis. Immune checkpoint inhibitors combined with hypomethylating agents (HMA) may restore or enhance the graft-versus-leukaemia effect. Still, data about using this combination regimen after allo-HCT are limited. We conducted a prospective, phase II, open-label, single-arm study in which we treated patients with haematological AML relapse after allo-HCT with HMA plus the anti-PD-1 antibody nivolumab. The response was correlated with DNA-, RNA- and protein-based single-cell technology assessments to identify biomarkers associated with therapeutic efficacy. Sixteen patients received a median number of 2 (range 1-7) nivolumab applications. The overall response rate (CR/PR) at day 42 was 25%, and another 25% of the patients achieved stable disease. The median overall survival was 15.6 months. High-parametric cytometry documented a higher frequency of activated (ICOS+ , HLA-DR+ ), low senescence (KLRG1- , CD57- ) CD8+ effector T cells in responders. We confirmed these findings in a preclinical model. Single-cell transcriptomics revealed a pro-inflammatory rewiring of the expression profile of T and myeloid cells in responders. In summary, the study indicates that the post-allo-HCT HMA/nivolumab combination induces anti-AML immune responses in selected patients and could be considered as a bridging approach to a second allo-HCT. Trial-registration: EudraCT-No. 2017-002194-18.
Collapse
Affiliation(s)
- Petya Apostolova
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefanie Kreutmair
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Cristina Toffalori
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Punta
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Center for OMICS Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Susanne Unger
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Ann-Cathrin Burk
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Claudia Wehr
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kristina Maas-Bauer
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wolfgang Melchinger
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eileen Haring
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rouven Hoefflin
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Khalid Shoumariyeh
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Valerie Hupfer
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eliza Maria Lauer
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sandra Duquesne
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Theresa Lowinus
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Chiara Alberti
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | | | - Carla Helena Merten
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Laura Power
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Matthias Weiss
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Caroline Böke
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dietmar Pfeifer
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Reinhard Marks
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hartmut Bertz
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ralph Wäsch
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gabriele Ihorst
- Clinical Trials Unit, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernhard Gentner
- Translational Stem Cell and Leukemia Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Ludwig Institute for Cancer Research and Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Justus Duyster
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Melanie Boerries
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Juergen Finke
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Robert Zeiser
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Signalling Research Centres BIOSS and CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
40
|
Babl N, Decking SM, Voll F, Althammer M, Sala-Hojman A, Ferretti R, Korf C, Schmidl C, Schmidleithner L, Nerb B, Matos C, Koehl GE, Siska P, Bruss C, Kellermeier F, Dettmer K, Oefner PJ, Wichland M, Ugele I, Bohr C, Herr W, Ramaswamy S, Heinrich T, Herhaus C, Kreutz M, Renner K. MCT4 blockade increases the efficacy of immune checkpoint blockade. J Immunother Cancer 2023; 11:e007349. [PMID: 37880183 PMCID: PMC10603342 DOI: 10.1136/jitc-2023-007349] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND & AIMS Intratumoral lactate accumulation and acidosis impair T-cell function and antitumor immunity. Interestingly, expression of the lactate transporter monocarboxylate transporter (MCT) 4, but not MCT1, turned out to be prognostic for the survival of patients with rectal cancer, indicating that single MCT4 blockade might be a promising strategy to overcome glycolysis-related therapy resistance. METHODS To determine whether blockade of MCT4 alone is sufficient to improve the efficacy of immune checkpoint blockade (ICB) therapy, we examined the effects of the selective MCT1 inhibitor AZD3965 and a novel MCT4 inhibitor in a colorectal carcinoma (CRC) tumor spheroid model co-cultured with blood leukocytes in vitro and the MC38 murine CRC model in vivo in combination with an antibody against programmed cell death ligand-1(PD-L1). RESULTS Inhibition of MCT4 was sufficient to reduce lactate efflux in three-dimensional (3D) CRC spheroids but not in two-dimensional cell-cultures. Co-administration of the MCT4 inhibitor and ICB augmented immune cell infiltration, T-cell function and decreased CRC spheroid viability in a 3D co-culture model of human CRC spheroids with blood leukocytes. Accordingly, combination of MCT4 and ICB increased intratumoral pH, improved leukocyte infiltration and T-cell activation, delayed tumor growth, and prolonged survival in vivo. MCT1 inhibition exerted no further beneficial impact. CONCLUSIONS These findings demonstrate that single MCT4 inhibition represents a novel therapeutic approach to reverse lactic-acid driven immunosuppression and might be suitable to improve ICB efficacy.
Collapse
Affiliation(s)
- Nathalie Babl
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Sonja-Maria Decking
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
- Department of Otorhinolaryngology, University Hospital Regensburg, Regensburg, Germany
- Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Florian Voll
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
- Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Michael Althammer
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | | | - Roberta Ferretti
- EMD Serono Research and Development Institute, Inc, Billerica, Massachusetts, USA, an affiliate of Merck KGaA
| | - Clarissa Korf
- Department of Otorhinolaryngology, University Hospital Regensburg, Regensburg, Germany
| | | | | | - Benedikt Nerb
- Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Carina Matos
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Gudrun E Koehl
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Peter Siska
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Christina Bruss
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
- Department of Gynecology and Obstetrics, University Hospital Regensburg, Regensburg, Germany
| | - Fabian Kellermeier
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Katja Dettmer
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Peter J Oefner
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Marvin Wichland
- Department of Otorhinolaryngology, University Hospital Regensburg, Regensburg, Germany
| | - Ines Ugele
- Department of Otorhinolaryngology, University Hospital Regensburg, Regensburg, Germany
| | - Christopher Bohr
- Department of Otorhinolaryngology, University Hospital Regensburg, Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Shivapriya Ramaswamy
- EMD Serono Research and Development Institute, Inc, Billerica, Massachusetts, USA, an affiliate of Merck KGaA
| | | | | | - Marina Kreutz
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
- Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Kathrin Renner
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
- Department of Otorhinolaryngology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
41
|
Koster EAS, Bonneville EF, Borne PAVD, van Balen P, Marijt EWA, Tjon JML, Snijders TJF, van Lammeren D, Veelken H, Putter H, Falkenburg JHF, Halkes CJM, de Wreede LC. Joint models quantify associations between immune cell kinetics and allo-immunological events after allogeneic stem cell transplantation and subsequent donor lymphocyte infusion. Front Immunol 2023; 14:1208814. [PMID: 37593737 PMCID: PMC10427852 DOI: 10.3389/fimmu.2023.1208814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/04/2023] [Indexed: 08/19/2023] Open
Abstract
Alloreactive donor-derived T-cells play a pivotal role in alloimmune responses after allogeneic hematopoietic stem cell transplantation (alloSCT); both in the relapse-preventing Graft-versus-Leukemia (GvL) effect and the potentially lethal complication Graft-versus-Host-Disease (GvHD). The balance between GvL and GvHD can be shifted by removing T-cells via T-cell depletion (TCD) to reduce the risk of GvHD, and by introducing additional donor T-cells (donor lymphocyte infusions [DLI]) to boost the GvL effect. However, the association between T-cell kinetics and the occurrence of allo-immunological events has not been clearly demonstrated yet. Therefore, we investigated the complex associations between the T-cell kinetics and alloimmune responses in a cohort of 166 acute leukemia patients receiving alemtuzumab-based TCD alloSCT. Of these patients, 62 with an anticipated high risk of relapse were scheduled to receive a prophylactic DLI at 3 months after transplant. In this setting, we applied joint modelling which allowed us to better capture the complex interplay between DLI, T-cell kinetics, GvHD and relapse than traditional statistical methods. We demonstrate that DLI can induce detectable T-cell expansion, leading to an increase in total, CD4+ and CD8+ T-cell counts starting at 3 months after alloSCT. CD4+ T-cells showed the strongest association with the development of alloimmune responses: higher CD4 counts increased the risk of GvHD (hazard ratio 2.44, 95% confidence interval 1.45-4.12) and decreased the risk of relapse (hazard ratio 0.65, 95% confidence interval 0.45-0.92). Similar models showed that natural killer cells recovered rapidly after alloSCT and were associated with a lower risk of relapse (HR 0.62, 95%-CI 0.41-0.93). The results of this study advocate the use of joint models to further study immune cell kinetics in different settings.
Collapse
Affiliation(s)
- Eva A. S. Koster
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Edouard F. Bonneville
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands
| | | | - Peter van Balen
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Erik W. A. Marijt
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Jennifer M. L. Tjon
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | | | | | - Hendrik Veelken
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Hein Putter
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands
| | | | | | - Liesbeth C. de Wreede
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
42
|
Wu H, Huang H, Zhao Y. Interplay between metabolic reprogramming and post-translational modifications: from glycolysis to lactylation. Front Immunol 2023; 14:1211221. [PMID: 37457701 PMCID: PMC10338923 DOI: 10.3389/fimmu.2023.1211221] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Cellular metabolism plays a critical role in determining the fate and function of cells. Metabolic reprogramming and its byproducts have a complex impact on cellular activities. In quiescent T cells, oxidative phosphorylation (OXPHOS) is the primary pathway for survival. However, upon antigen activation, T cells undergo rapid metabolic reprogramming, characterized by an elevation in both glycolysis and OXPHOS. While both pathways are induced, the balance predominantly shifts towards glycolysis, enabling T cells to rapidly proliferate and enhance their functionality, representing the most distinctive signature during activation. Metabolic processes generate various small molecules resulting from enzyme-catalyzed reactions, which also modulate protein function and exert regulatory control. Notably, recent studies have revealed the direct modification of histones, known as lactylation, by lactate derived from glycolysis. This lactylation process influences gene transcription and adds a novel variable to the regulation of gene expression. Protein lactylation has been identified as an essential mechanism by which lactate exerts its diverse functions, contributing to crucial biological processes such as uterine remodeling, tumor proliferation, neural system regulation, and metabolic regulation. This review focuses on the metabolic reprogramming of T cells, explores the interplay between lactate and the immune system, highlights the impact of lactylation on cellular function, and elucidates the intersection of metabolic reprogramming and epigenetics.
Collapse
Affiliation(s)
- Hengwei Wu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, People's Government of Zhejiang Province, Hangzhou, Zhejiang, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, People's Government of Zhejiang Province, Hangzhou, Zhejiang, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Yanmin Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, People's Government of Zhejiang Province, Hangzhou, Zhejiang, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| |
Collapse
|
43
|
Baur R, Karl F, Böttcher-Loschinski R, Stoll A, Völkl S, Gießl A, Flamann C, Bruns H, Schlötzer-Schrehardt U, Böttcher M, Schewe DM, Fischer T, Jitschin R, Mackensen A, Mougiakakos D. Accumulation of T-cell-suppressive PD-L1 high extracellular vesicles is associated with GvHD and might impact GvL efficacy. J Immunother Cancer 2023; 11:jitc-2022-006362. [PMID: 36898735 PMCID: PMC10008446 DOI: 10.1136/jitc-2022-006362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/12/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) represents the only curative treatment option for a number of hemato-oncological disorders. In fact, allo-HSCT is considered as one of the most successful immunotherapies as its clinical efficacy is based on the donor T-cells' capacity to control residual disease. This process is known as the graft-versus-leukemia (GvL) reaction. However, alloreactive T-cells can also recognize the host as foreign and trigger a systemic potentially life-threatening inflammatory disorder termed graft-versus-host disease (GvHD). A better understanding of the underlying mechanisms that lead to GvHD or disease relapse could help us to improve efficacy and safety of allo-HSCT. In recent years, extracellular vesicles (EVs) have emerged as critical components of intercellular crosstalk. Cancer-associated EVs that express the immune checkpoint molecule programmed death-ligand 1 (PD-L1) can suppress T-cell responses and thus contribute to immune escape. At the same time, it has been observed that inflammation triggers PD-L1 expression as part of a negative feedback network.Here, we investigated whether circulating EVs following allo-HSCT express PD-L1 and tested their efficacy to suppress the ability of (autologous) T-cells to effectively target AML blasts. Finally, we assessed the link between PD-L1 levels on EVs to (T-)cell reconstitution, GvHD, and disease relapse.We were able to detect PD-L1+ EVs that reached a peak PD-L1 expression at 6 weeks post allo-HSCT. Development of acute GvHD was linked to the emergence of PD-L1high EVs following allo-HSCT. Moreover, PD-L1 levels correlated positively with GvHD grade and declined (only) on successful therapeutic intervention. T-cell-inhibitory capacity was higher in PD-L1high EVs as compared with their PD-L1low counterparts and could be antagonized using PD-L1/PD-1 blocking antibodies. Abundance of T-cell-suppressive PD-L1high EVs appears to also impact GvL efficacy as patients were at higher risk for relapse. Finally, patients of PD-L1high cohort displayed a reduced overall survival.Taken together, we show that PD-L1-expressing EVs are present following allo-HSCT. PD-L1 levels on EVs correlate with their ability to suppress T-cells and the occurrence of GvHD. The latter observation may indicate a negative feedback mechanism to control inflammatory (GvHD) activity. This intrinsic immunosuppression could subsequently promote disease relapse.
Collapse
Affiliation(s)
- Rebecca Baur
- Department of Hematology and Clinical Oncology, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Germany
| | - Franziska Karl
- Department of Hematology and Clinical Oncology, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Germany
| | | | - Andrej Stoll
- Department of Hematology and Clinical Oncology, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Germany
| | - Simon Völkl
- Department of Hematology and Clinical Oncology, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Germany
| | - Andreas Gießl
- Department of Ophthalmology, Friedrich-Alexander-Universitat, Erlangen, Germany
| | - Cindy Flamann
- Department of Hematology and Clinical Oncology, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Germany
| | - Heiko Bruns
- Department of Hematology and Clinical Oncology, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Germany
| | | | - Martin Böttcher
- Department of Hematology and Oncology, Otto von Guericke Universitat, Magdeburg, Germany
| | - Denis M Schewe
- Pediatrics, Otto von Guericke Universitat, Magdeburg, Germany
| | - Thomas Fischer
- Institute for Molecular and Clinical Immunology, Otto von Guericke Universitat, Magdeburg, Germany
| | - Regina Jitschin
- Department of Hematology and Clinical Oncology, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Germany
| | - Andreas Mackensen
- Department of Hematology and Clinical Oncology, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Germany
| | - Dimitrios Mougiakakos
- Department of Hematology and Oncology, Otto von Guericke Universitat, Magdeburg, Germany
| |
Collapse
|
44
|
Rao D, Stunnenberg JA, Lacroix R, Dimitriadis P, Kaplon J, Verburg F, van van Royen PT, Hoefsmit EP, Renner K, Blank CU, Peeper DS. Acidity-mediated induction of FoxP3 + regulatory T cells. Eur J Immunol 2023:e2250258. [PMID: 36788428 DOI: 10.1002/eji.202250258] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/12/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Glucose limitation and increased lactic acid levels are consequences of the elevated glycolytic activity of tumor cells, and constitute a metabolic barrier for the function of tumor infiltrating effector immune cells. The immune-suppressive functions of regulatory T cells (Tregs) are unobstructed in lactic-acid rich environments. However, the impact of lactic acid on the induction of Tregs remains unknown. We observed increased TGFβ-mediated induction of Forkhead box P3+ (FoxP3+ ) cells in the presence of extracellular lactic acid, in a glycolysis-independent, acidity-dependent manner. These CD4+ FoxP3+ cells expressed Treg-associated markers, including increased expression of CD39, and were capable of exerting suppressive functions. Corroborating these results in vivo, we observed that neutralizing the tumor pH by systemic administration of sodium bicarbonate (NaBi) decreased Treg abundance. We conclude that acidity augments Treg induction and propose that therapeutic targeting of acidity in the tumor microenvironment (TME) might reduce Treg-mediated immune suppression within tumors.
Collapse
Affiliation(s)
- Disha Rao
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Johanna A Stunnenberg
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ruben Lacroix
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Petros Dimitriadis
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Joanna Kaplon
- Department of Clinical Chemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Fabienne Verburg
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Paula T van van Royen
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Esmée P Hoefsmit
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Kathrin Renner
- Department of Internal Medicine III, Hematology and Medical Oncology, University Hospital Regensburg, Regensburg, Germany.,Department of Otorhinolaryngology, University Hospital Regensburg, Regensburg, Germany
| | - Christian U Blank
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Daniel S Peeper
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, The Netherlands
| |
Collapse
|
45
|
Biederstädt A, Rezvani K. How I treat high-risk acute myeloid leukemia using preemptive adoptive cellular immunotherapy. Blood 2023; 141:22-38. [PMID: 35512203 PMCID: PMC10023741 DOI: 10.1182/blood.2021012411] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 01/21/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (alloHSCT) is a potentially curative treatment for patients with high-risk acute leukemias, but unfortunately disease recurrence remains the major cause of death in these patients. Infusion of donor lymphocytes (DLI) has the potential to restore graft-versus-leukemia immunologic surveillance; however, efficacy varies across different hematologic entities. Although relapsed chronic myeloid leukemia, transplanted in chronic phase, has proven remarkably susceptible to DLI, response rates are more modest for relapsed acute myeloid leukemia and acute lymphoblastic leukemia. To prevent impending relapse, a number of groups have explored administering DLI preemptively on detection of measurable residual disease (MRD) or mixed chimerism. Evidence for the effectiveness of this strategy, although encouraging, comes from only a few, mostly single-center retrospective, nonrandomized studies. This article seeks to (1) discuss the available evidence supporting this approach while highlighting some of the inherent challenges of MRD-triggered treatment decisions post-transplant, (2) portray other forms of postremission cellular therapies, including the role of next-generation target-specific immunotherapies, and (3) provide a practical framework to support clinicians in their decision-making process when considering preemptive cellular therapy for this difficult-to-treat patient population.
Collapse
Affiliation(s)
- Alexander Biederstädt
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Medicine III: Hematology and Oncology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
46
|
Serroukh Y, Hébert J, Busque L, Mercier F, Rudd CE, Assouline S, Lachance S, Delisle JS. Blasts in context: the impact of the immune environment on acute myeloid leukemia prognosis and treatment. Blood Rev 2023; 57:100991. [PMID: 35941029 DOI: 10.1016/j.blre.2022.100991] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/22/2022] [Accepted: 07/13/2022] [Indexed: 01/28/2023]
Abstract
Acute myeloid leukemia (AML) is a cancer that originates from the bone marrow (BM). Under physiological conditions, the bone marrow supports the homeostasis of immune cells and hosts memory lymphoid cells. In this review, we summarize our present understanding of the role of the immune microenvironment on healthy bone marrow and on the development of AML, with a focus on T cells and other lymphoid cells. The types and function of different immune cells involved in the AML microenvironment as well as their putative role in the onset of disease and response to treatment are presented. We also describe how the immune context predicts the response to immunotherapy in AML and how these therapies modulate the immune status of the bone marrow. Finally, we focus on allogeneic stem cell transplantation and summarize the current understanding of the immune environment in the post-transplant bone marrow, the factors associated with immune escape and relevant strategies to prevent and treat relapse.
Collapse
Affiliation(s)
- Yasmina Serroukh
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, Canada; Erasmus Medical center Cancer Institute, University Medical Center Rotterdam, Department of Hematology, Rotterdam, the Netherlands; Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada.
| | - Josée Hébert
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, Canada; Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada; The Quebec Leukemia Cell Bank, Canada
| | - Lambert Busque
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, Canada; Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada
| | - François Mercier
- Division of Hematology and Experimental Medicine, Department of Medicine, McGill University, 3755 Côte-Sainte-Catherine Road, Montreal, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte-Sainte-Catherine Road, Montreal, Canada
| | - Christopher E Rudd
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, Canada; Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada
| | - Sarit Assouline
- Division of Hematology and Experimental Medicine, Department of Medicine, McGill University, 3755 Côte-Sainte-Catherine Road, Montreal, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte-Sainte-Catherine Road, Montreal, Canada
| | - Silvy Lachance
- Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada
| | - Jean-Sébastien Delisle
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, Canada; Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada
| |
Collapse
|
47
|
Heuser C, Renner K, Kreutz M, Gattinoni L. Targeting lactate metabolism for cancer immunotherapy - a matter of precision. Semin Cancer Biol 2023; 88:32-45. [PMID: 36496155 DOI: 10.1016/j.semcancer.2022.12.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Immune checkpoint inhibitors and adoptive T cell therapies have been valuable additions to the toolbox in the fight against cancer. These treatments have profoundly increased the number of patients with a realistic perspective toward a return to a cancer-free life. Yet, in a number of patients and tumor entities, cancer immunotherapies have been ineffective so far. In solid tumors, immune exclusion and the immunosuppressive tumor microenvironment represent substantial roadblocks to successful therapeutic outcomes. A major contributing factor to the depressed anti-tumor activity of immune cells in tumors is the harsh metabolic environment. Hypoxia, nutrient competition with tumor and stromal cells, and accumulating noxious waste products, including lactic acid, pose massive constraints to anti-tumor immune cells. Numerous strategies are being developed to exploit the metabolic vulnerabilities of tumor cells in the hope that these would also alleviate metabolism-inflicted immune suppression. While promising in principle, especially in combination with immunotherapies, these strategies need to be scrutinized for their effect on tumor-fighting immune cells, which share some of their key metabolic properties with tumor cells. Here, we provide an overview of strategies that seek to tackle lactate metabolism in tumor or immune cells to unleash anti-tumor immune responses, thereby opening therapeutic options for patients whose tumors are currently not treatable.
Collapse
Affiliation(s)
- Christoph Heuser
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy (LIT), 93053 Regensburg, Germany.
| | - Kathrin Renner
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany; Department of Otorhinolaryngology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Marina Kreutz
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany; Clinical Cooperation Group Immunometabolomics, Leibniz Institute for Immunotherapy (LIT), 93053 Regensburg, Germany; Center for Immunomedicine in Transplantation and Oncology (CITO), University Hospital Regensburg, 93053 Regensburg, Germany
| | - Luca Gattinoni
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy (LIT), 93053 Regensburg, Germany; Center for Immunomedicine in Transplantation and Oncology (CITO), University Hospital Regensburg, 93053 Regensburg, Germany; University of Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
48
|
Azithromycin promotes relapse by disrupting immune and metabolic networks after allogeneic stem cell transplantation. Blood 2022; 140:2500-2513. [PMID: 35984904 DOI: 10.1182/blood.2022016926] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/28/2022] [Accepted: 08/16/2022] [Indexed: 12/13/2022] Open
Abstract
Administration of azithromycin after allogeneic hematopoietic stem cell transplantation for hematologic malignancies has been associated with relapse in a randomized phase 3 controlled clinical trial. Studying 240 samples from patients randomized in this trial is a unique opportunity to better understand the mechanisms underlying relapse, the first cause of mortality after transplantation. We used multi-omics on patients' samples to decipher immune alterations associated with azithromycin intake and post-transplantation relapsed malignancies. Azithromycin was associated with a network of altered energy metabolism pathways and immune subsets, including T cells biased toward immunomodulatory and exhausted profiles. In vitro, azithromycin exposure inhibited T-cell cytotoxicity against tumor cells and impaired T-cell metabolism through glycolysis inhibition, down-regulation of mitochondrial genes, and up-regulation of immunomodulatory genes, notably SOCS1. These results highlight that azithromycin directly affects immune cells that favor relapse, which raises caution about long-term use of azithromycin treatment in patients at high risk of malignancies. The ALLOZITHRO trial was registered at www.clinicaltrials.gov as #NCT01959100.
Collapse
|
49
|
Imahashi N, Basar R, Huang Y, Wang F, Baran N, Banerjee PP, Lu J, Nunez Cortes AK, Uprety N, Ensley E, Muniz-Feliciano L, Laskowski TJ, Moyes JS, Daher M, Mendt M, Kerbauy LN, Shanley M, Li L, Lim FLWI, Shaim H, Li Y, Konopleva M, Green M, Wargo J, Shpall EJ, Chen K, Rezvani K. Activated B cells suppress T-cell function through metabolic competition. J Immunother Cancer 2022; 10:e005644. [PMID: 36543374 PMCID: PMC9772692 DOI: 10.1136/jitc-2022-005644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND B cells play a pivotal role in regulating the immune response. The induction of B cell-mediated immunosuppressive function requires B cell activating signals. However, the mechanisms by which activated B cells mediate T-cell suppression are not fully understood. METHODS We investigated the potential contribution of metabolic activity of activated B cells to T-cell suppression by performing in vitro experiments and by analyzing clinical samples using mass cytometry and single-cell RNA sequencing. RESULTS Here we show that following activation, B cells acquire an immunoregulatory phenotype and promote T-cell suppression by metabolic competition. Activated B cells induced hypoxia in T cells in a cell-cell contact dependent manner by consuming more oxygen via an increase in their oxidative phosphorylation (OXPHOS). Moreover, activated B cells deprived T cells of glucose and produced lactic acid through their high glycolytic activity. Activated B cells thus inhibited the mammalian target of rapamycin pathway in T cells, resulting in suppression of T-cell cytokine production and proliferation. Finally, we confirmed the presence of tumor-associated B cells with high glycolytic and OXPHOS activities in patients with melanoma, associated with poor response to immune checkpoint blockade therapy. CONCLUSIONS We have revealed for the first time the immunomodulatory effects of the metabolic activity of activated B cells and their possible role in suppressing antitumor T-cell responses. These findings add novel insights into immunometabolism and have important implications for cancer immunotherapy.
Collapse
Affiliation(s)
- Nobuhiko Imahashi
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Hematology, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Rafet Basar
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yuefan Huang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Fang Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Natalia Baran
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Pinaki Prosad Banerjee
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Junjun Lu
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ana Karen Nunez Cortes
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nadima Uprety
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Emily Ensley
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Luis Muniz-Feliciano
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tamara J Laskowski
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Judy S Moyes
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - May Daher
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mayela Mendt
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lucila N Kerbauy
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Departments of Stem Cell Transplantation and Hemotherapy/Cellular Therapy, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo (USP), Sao Paulo, Brazil
| | - Mayra Shanley
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Li Li
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Francesca Lorraine Wei Inng Lim
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hila Shaim
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ye Li
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael Green
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer Wargo
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
50
|
Apostolova P, Pearce EL. Lactic acid and lactate: revisiting the physiological roles in the tumor microenvironment. Trends Immunol 2022; 43:969-977. [PMID: 36319537 PMCID: PMC10905416 DOI: 10.1016/j.it.2022.10.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/09/2022] [Accepted: 10/09/2022] [Indexed: 01/12/2023]
Abstract
Lactic acid production has been regarded as a mechanism by which malignant cells escape immunosurveillance. Recent technological advances in mass spectrometry and the use of cell culture media with a physiological nutrient composition have shed new light on the role of lactic acid and its conjugate lactate in the tumor microenvironment. Here, we review novel work identifying lactate as a physiological carbon source for mammalian tumors and immune cells. We highlight evidence that its use as a substrate is distinct from the immunosuppressive acidification of the extracellular milieu by lactic acid protons. Together, data suggest that neutralizing the effects of intratumoral acidity while maintaining physiological lactate metabolism in cytotoxic CD8+ T cells should be pursued to boost anti-tumor immunity.
Collapse
Affiliation(s)
- Petya Apostolova
- Bloomberg~Kimmel Institute for Cancer Immunotherapy and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Erika L Pearce
- Bloomberg~Kimmel Institute for Cancer Immunotherapy and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA.
| |
Collapse
|