1
|
Wu J, Qian Y, Yang K, Zhang S, Zeng E, Luo D. Innate immune cells in vascular lesions: mechanism and significance of diversified immune regulation. Ann Med 2025; 57:2453826. [PMID: 39847394 PMCID: PMC11758805 DOI: 10.1080/07853890.2025.2453826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/18/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025] Open
Abstract
Angiogenesis is a complex physiological process. In recent years, the immune regulation of angiogenesis has received increasing attention, and innate immune cells, which are centred on macrophages, are thought to play important roles in vascular neogenesis and development. Various innate immune cells can act on the vasculature through a variety of mechanisms, with commonalities as well as differences and synergistic effects, which are crucial for the progression of vascular lesions. In recent years, monotherapy with antiangiogenic drugs has encountered therapeutic bottlenecks because of the short-term effect of 'vascular normalization'. The combination treatment of antiangiogenic therapy and immunotherapy breaks the traditional treatment pattern. While it has a remarkable curative effect and survival benefits, it also faces many challenges. This review focuses on innate immune cells and mainly introduces the regulatory mechanisms of monocytes, macrophages, natural killer (NK) cells, dendritic cells (DCs) and neutrophils in vascular lesions. The purpose of this paper was to elucidate the underlying mechanisms of angiogenesis and development and the current research status of innate immune cells in regulating vascular lesions in different states. This review provides a theoretical basis for addressing aberrant angiogenesis in disease processes or finding new antiangiogenic immune targets in inflammation and tumor.
Collapse
Affiliation(s)
- Jinjing Wu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yulu Qian
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Kuang Yang
- Queen Mary University of London, Nanchang University, Nanchang, China
| | - Shuhua Zhang
- Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Cardiovascular Research Institute, Nanchang, Jiangxi, China
| | - Erming Zeng
- Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Daya Luo
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Li R, Lv W, Wang DL, Chen N. A Systematic Review of Immune Cell Roles in Breast Cancer Immunotherapy. Cancer Rep (Hoboken) 2025; 8:e70217. [PMID: 40356222 PMCID: PMC12069222 DOI: 10.1002/cnr2.70217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 04/15/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Breast cancer (BC) is the most prevalent malignancy among women and is associated with high mortality and significant clinical challenges. Although conventional treatments such as surgery, chemotherapy, and radiotherapy have significantly improved patient survival, their efficacy remains limited by severe side effects and treatment resistance. In recent years, advances in immunotherapy have underscored the pivotal role of immune cells in treating BC. RECENT FINDINGS This systematic review summarizes the current knowledge on the roles of immune cells within the BC tumor microenvironment (TME), including their phenotypes, functions, and implications for immunotherapy. Following PRISMA guidelines, 71 studies published between 2010 and 2024 were analyzed. The results indicate that immune cell populations-such as tumor-associated macrophages (TAMs), tumor-infiltrating lymphocytes (TILs), natural killer (NK) cells, dendritic cells (DCs), and myeloid-derived suppressor cells (MDSCs)-are integral to tumor progression and therapeutic response. However, their functional heterogeneity and plasticity remain key obstacles to the development of effective and personalized immunotherapeutic strategies. CONCLUSION Further research is needed to clarify the mechanisms governing immune cell behavior within the BC TME and to advance precision immunotherapy. Such insights will lay the foundation for individualized treatment approaches, ultimately improving patient outcomes and quality of life (QoL).
Collapse
Affiliation(s)
- Rui Li
- Shandong Provincial Hospital, Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Wei Lv
- Department of General SurgeryShandong Provincial HospitalJinanShandongChina
| | | | - Na Chen
- Department of Internal MedicineShandong Provincial HospitalJinanShandongChina
| |
Collapse
|
3
|
Shefer A, Yanshole L, Proskura K, Tutanov O, Yunusova N, Grigor’eva A, Tsentalovich Y, Tamkovich S. From Cell Lines to Patients: Dissecting the Proteomic Landscape of Exosomes in Breast Cancer. Diagnostics (Basel) 2025; 15:1028. [PMID: 40310419 PMCID: PMC12026271 DOI: 10.3390/diagnostics15081028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 05/02/2025] Open
Abstract
Background: Breast cancer (BC) is the most common cancer among women worldwide; therefore, the efforts of many scientists are aimed at finding effective biomarkers for this disease. It is known that exosomes are nanosized extracellular vesicles (EVs) that are released from various cell types, including cancer cells. Exosomes are directly involved in governing the physiological and pathological processes of an organism through the horizontal transfer of functional molecules (proteins, microRNA, etc.) from producing to receiving cells. Since the diagnosis and treatment of BC have been improved substantially with exosomes, in this study, we isolated breast carcinoma cell-derived exosomes, primary endotheliocyte-derived exosomes, and blood exosomes from BC patients (BCPs) in the first stage of disease and investigated their proteomic profiles. Methods: Exosomes were isolated from the samples by ultrafiltration and ultracentrifugation, followed by mass spectrometric and bioinformatics analyses of the data. The exosomal nature of vesicles was verified using transmission electron microscopy and flow cytometry. Results: Exosome proteins secreted by MCF-7 and BT-474 cells were found to form two clusters, one of which enhanced the malignant potential of cancer cells, while the other coincided with a cluster of HUVEC-derived exosome proteins. Despite the different ensembles of proteins in exosomes from the MCF-7 and BT-474 lines, the relevant portions of these proteins are involved in similar biological pathways. Comparison analysis revealed that more BC-associated proteins were found in the exosomal fraction of blood from BCPs than in the exosomal fraction of conditioned medium from cells mimicking the corresponding cancer subtype (89% and 81% for luminal A BC and MCF-7 cells and 86% and 80% for triple-positive BC and BT-474 cells, respectively). Conclusions: Tumor-associated proteins should be sought not in exosomes secreted by cell lines but in the composition of blood exosomes from cancer patients, while the contribution of endotheliocyte exosomes to the total pool of blood exosomes can be neglected.
Collapse
Affiliation(s)
- Aleksei Shefer
- Laboratory of Molecular Medicine, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.S.)
- Institute of Medicine and Medical Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Lyudmila Yanshole
- Laboratory of Proteomics and Metabolomics, International Tomography Center, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (L.Y.); (Y.T.)
| | - Ksenia Proskura
- Department of Mammology, Novosibirsk Regional Clinical Oncological Dispensary, 630108 Novosibirsk, Russia
| | - Oleg Tutanov
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37203, USA;
| | - Natalia Yunusova
- Laboratory of Tumor Biochemistry, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, 634028 Tomsk, Russia;
| | - Alina Grigor’eva
- Laboratory of Molecular Medicine, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.S.)
| | - Yuri Tsentalovich
- Laboratory of Proteomics and Metabolomics, International Tomography Center, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (L.Y.); (Y.T.)
| | - Svetlana Tamkovich
- Institute of Medicine and Medical Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
- Institute of Oncology and Neurosurgery, E. Meshalkin National Medical Research Center of the Ministry of Health of the Russian Federation, 630090 Novosibirsk, Russia
| |
Collapse
|
4
|
Ababneh E, Velez S, Zhao J. Immune evasion and resistance in breast cancer. Am J Cancer Res 2025; 15:1517-1539. [PMID: 40371160 PMCID: PMC12070088 DOI: 10.62347/pngt6996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/18/2024] [Indexed: 05/16/2025] Open
Abstract
Breast cancer (BC) is the most common malignancy in females with an increasing incidence in the last decade. The previously observed decline in BC mortality rates has also slowed down recently with an increase in the incidence of invasive BC. BC has various molecular subtypes. Among these subtypes, triple-negative breast cancer (TNBC) represents the most aggressive BC, with a poor prognosis. Because lack of the hormonal or human epidermal growth factor receptor 2 (HER2) receptors, TNBC is resistant to hormonal and HER2 targeted therapy effective for other BC subtypes. The good news is that TNBC has recently been considered an immunologically 'hot' tumor. Therefore, immunotherapy, particularly immune checkpoint inhibitor therapy, represents a promising therapeutic approach TNBC. However, a considerable percentage of patients with TNBC do not respond well to immunotherapy, indicating that TNBC seems to adopt several mechanisms to evade immune surveillance. Thus, it is crucial to investigate the mechanisms underlying TNBC immune evasion and resistance to immunotherapy. In this review, we examine and discuss the most recently discovered mechanisms for BC, with a particular focus on TNBC, to evade the immune surveillance via kidnapping the immune checkpoints, suppressing the immune responses in tumor microenvironment and inhibiting the tumor antigen presentation. Evaluation of these mechanisms in BC will hopefully guide future immunotherapeutic research and clinical trials.
Collapse
Affiliation(s)
- Ebaa Ababneh
- Burnett School of Biomedical Science, Medical College, University of Central Florida Orlando, FL, USA
| | - Sarah Velez
- Burnett School of Biomedical Science, Medical College, University of Central Florida Orlando, FL, USA
| | - Jihe Zhao
- Burnett School of Biomedical Science, Medical College, University of Central Florida Orlando, FL, USA
| |
Collapse
|
5
|
Khaleel AQ, Altalbawy FMA, Jabir MS, F Hasan T, Jain V, Abbot V, Nakash P, Kumar MR, Mustafa YF, Jawad MA. CXCR4/CXCL12 blockade therapy; a new horizon in TNBC therapy. Med Oncol 2025; 42:161. [PMID: 40216617 DOI: 10.1007/s12032-025-02705-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 03/29/2025] [Indexed: 05/03/2025]
Abstract
The only subtype of breast cancer (BC) without specific therapy is triple-negative breast cancer (TNBC), which represents 15-20% of incidence cases of BC. TNBC encompasses transformed and nonmalignant cells, including cancer-associated fibroblasts (CAF), endothelial vasculature, and tumor-infiltrating cells. These nonmalignant cells, soluble factors (e.g., cytokines), and the extracellular matrix (ECM) form the tumor microenvironment (TME). The TME is made up of these nonmalignant cells, ECM, and soluble components, including cytokines. Direct cell-to-cell contact and soluble substances like cytokines (e.g., chemokines) may facilitate interaction between cancer cells and the surrounding TME. Through growth-promoting cytokines, TME not only enables the development of cancer but also confers therapy resistance. New treatment targets will probably be suggested by comprehending the processes behind tumor development and progression as well as the functions of chemokines in TNBC. In this light, several investigations have shown the pivotal function of the C-X-C motif chemokine ligand 12 (CXCL12 or SDF-1) axis and chemokine receptor type 4 (CXCR4) in the pathophysiology of TNBC. This review provides an overview of the CXCR4/CXCL12 axis' function in TNBC development, metastasis, angiogenesis, and treatment resistance. A synopsis of current literature on targeting the CXCR4/CXCL12 axis for treating and managing TNBC has also been provided.
Collapse
Affiliation(s)
- Abdulrahman Qais Khaleel
- Department of Medical Instruments Engineering, Al-Maarif University College, Al Anbar, 31001, Iraq.
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Majid S Jabir
- Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Thikra F Hasan
- College of Health&Medical Technology, Uruk University, Baghdad, Iraq
| | - Vicky Jain
- Department of Chemistry, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Vikrant Abbot
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - Prashant Nakash
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - M Ravi Kumar
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | | |
Collapse
|
6
|
Li M, Zheng A, Song M, Jin F, Pang M, Zhang Y, Wu Y, Li X, Zhao M, Li Z. From text to insight: A natural language processing-based analysis of burst and research trends in HER2-low breast cancer patients. Ageing Res Rev 2025; 106:102692. [PMID: 39993452 DOI: 10.1016/j.arr.2025.102692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 01/01/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025]
Abstract
With the intensification of population aging, the proportion of elderly breast cancer patients is continuously increasing, among which those with low HER2 expression account for approximately 45 %-55 % of all cases within traditional HER2-negative breast cancer. Concurrently, the significant therapeutic effect of T-DXd on patients with HER2-low tumors has brought this group into the public spotlight. Since the clinical approval of T-DXd in 2019, there has been a significant vertical surge in the volume of publications within this domain. We analyzed 512 articles on HER2-low breast cancer from the Web of Science Core Collection using bibliometrics, topic modeling, and knowledge graph techniques to summarize the current state and trends of research in this domain. Research efforts are particularly concentrated in the United States and China. Our analysis revealed six main research directions: HER2 detection, omics and clinical biomarkers, basic and translational research, neoadjuvant therapy and prognosis, progress of ADC drugs and clinical trials. To enhance the therapeutic efficacy and safety of antibodydrug conjugates (ADCs), researchers are actively exploring potential drug candidates other than T-DXd, with numerous ADC drugs emerging in clinical practice and trials. By incorporating emerging treatment strategies such as immunotherapy and employing circulating tumor cell (CTC) detection techniques, progress has been made toward improving the prognosis of patients with low HER2 expression. We believe that these research efforts hold promise as compelling evidence that HER2-low breast cancer may constitute a distinct and independent subtype.
Collapse
Affiliation(s)
- Muyao Li
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Ang Zheng
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Mingjie Song
- Department of General Medicine, the First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Feng Jin
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Mengyang Pang
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Yuchong Zhang
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Ying Wu
- Department of General Medicine, the First Hospital of China Medical University, Shenyang, Liaoning 110001, China; Phase I Clinical Trails Center, The First Hospital of China Medical University, Shenyang, Liaoning 110101, China.
| | - Xin Li
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Mingfang Zhao
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Zhi Li
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning 110001, China; National Clinical Research Center for Laboratory Medicine, Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China; Research Unit of Medical Laboratory, Chinese Academy of Medical Sciences, China.
| |
Collapse
|
7
|
Gao X, Sun Z, Liu X, Luo J, Liang X, Wang H, Zhou J, Yang C, Wang T, Li J. 127aa encoded by circSpdyA promotes FA synthesis and NK cell repression in breast cancers. Cell Death Differ 2025; 32:416-433. [PMID: 39402211 PMCID: PMC11894148 DOI: 10.1038/s41418-024-01396-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 03/12/2025] Open
Abstract
Lipid metabolism reprogram plays key roles in breast cancer tumorigenesis and immune escape. The underlying mechanism and potential regulator were barely investigated. We thus established an in vivo tumorigenesis model, mice-bearing breast cancer cells were treated with an ordinary diet and high-fat diet, species were collected and subjected to circRNA sequence to scan the potential circRNAs regulating the lipid metabolism. CircSpdyA was one of the most upregulated circRNAs and had the potential to encode a 127-aa micro peptide (referred to as 127aa). 127 aa promotes tumorigenesis through promoting the fatty acid de novo synthesis by directly binding to FASN. Single-cell sequence indicated 127aa inhibited NK cell infiltration and function. This was achieved by inhibiting the transcription of NK cell activators epigenetically. Moreover, lipid-laden from 127aa positive cancer cells transferred to NK cells inhibited the cytotoxicity. Taken together, circSpdyA encoded 127aa promotes fatty acid de novo synthesis through directly binding with FASN and induced NK cell repression by inhibiting the transcription of NK cell activators.
Collapse
Affiliation(s)
- Xinya Gao
- Department of Breast and Thyroid Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, 510080, China
- Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, P.R. China
| | - Zicheng Sun
- Department of Breast and Thyroid Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, 510080, China
- Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, P.R. China
| | - Xin Liu
- Department of Breast and Thyroid Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, 510080, China
- Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, P.R. China
| | - Jiayue Luo
- Department of Breast and Thyroid Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, 510080, China
- Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, P.R. China
| | - Xiaoli Liang
- Breast Disease Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Huijin Wang
- Department of Breast and Thyroid Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, 510080, China
- Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, P.R. China
| | - Junyi Zhou
- Department of Breast and Thyroid Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, 510080, China
- Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, P.R. China
| | - Ciqiu Yang
- Department of Breast Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Tiantian Wang
- Department of Thyroid Surgery, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Jie Li
- Department of Breast and Thyroid Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, 510080, China.
- Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, P.R. China.
| |
Collapse
|
8
|
Bian K, Yang C, Zhang F, Huang L. A Novel Prognostic Signature of Mitophagy-Related E3 Ubiquitin Ligases in Breast Cancer. Int J Mol Sci 2025; 26:1551. [PMID: 40004017 PMCID: PMC11855622 DOI: 10.3390/ijms26041551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Mitophagy plays a critical role in maintaining mitochondrial quality and cellular homeostasis. But the specific contribution of mitophagy-related E3 ubiquitin ligases to prognoses remains largely unexplored. In this study, we identified a novel mitophagy-related E3 ubiquitin ligase prognostic signature using least absolute shrinkage and selector operator (LASSO) and multivariate Cox regression analyses in breast cancer. Based on median risk scores, patients were divided into high-risk and low-risk groups. Functional enrichment analyses were conducted to explore the biological differences between the two groups. Immune infiltration, drug sensitivity, and mitochondrial-related phenotypes were also analyzed to evaluate the clinical implications of the model. A four-gene signature (ARIH1, SIAH2, UBR5, and WWP2) was identified, and Kaplan-Meier analysis demonstrated that the high-risk group had significantly worse overall survival (OS). The high-risk patients exhibited disrupted mitochondrial metabolism and immune dysregulation with upregulated immune checkpoint molecules. Additionally, the high-risk group exhibited higher sensitivity to several drugs targeting the Akt/PI3K/mTORC1 signaling axis. Accompanying mitochondrial metabolic dysregulation, mtDNA stress was elevated, contributing to activation of the senescence-associated secretory phenotype (SASP) in the high-risk group. In conclusion, the identified signature provides a robust tool for risk stratification and offers insights into the interplay between mitophagy, immune modulation, and therapeutic responses for breast cancer.
Collapse
Affiliation(s)
| | | | - Feng Zhang
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lei Huang
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
9
|
Garg S, Rai G, Singh S, Gauba P, Ali J, Dang S. An insight into the role of innate immune cells in breast tumor microenvironment. Breast Cancer 2025; 32:79-100. [PMID: 39460874 DOI: 10.1007/s12282-024-01645-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
The immune background of breast cancer is highly heterogeneous and the immune system of the human body plays a dual role by both promoting and suppressing its progression. Innate immune cells are the first line of defense in the immune system and impart protection by identifying and interacting with foreign pathogens and cancer cells. Different innate immune cells like natural killer cells, macrophages, dendritic cells, and myeloid suppressor cells take part in hosting the cancer cells. Autophagy is another key component inside the tumor microenvironment and is linked to the disintegration and recycling of cellular components. Within the tumor microenvironment autophagy is involved with Pattern Recognition Receptors and inflammation. Various clinical studies have shown prominent results where innate immune cells and autophagy in combination are used for pathogen as well as cancer cell clearance. However, it is necessary to comprehend the complex tumor microenvironment so that different therapeutic approaches can be developed to enhance the suppressive actions of the cells toward breast cancer cells. In this review article, the complex interaction between immune cells and breast cancer cells and their role in developing effective immunotherapies to improve patient outcomes are discussed in detail.
Collapse
Affiliation(s)
- Sandini Garg
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Garima Rai
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Sakshi Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Pammi Gauba
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shweta Dang
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India.
| |
Collapse
|
10
|
Guo Z, Zhu Z, Lin X, Wang S, Wen Y, Wang L, Zhi L, Zhou J. Tumor microenvironment and immunotherapy for triple-negative breast cancer. Biomark Res 2024; 12:166. [PMID: 39741315 DOI: 10.1186/s40364-024-00714-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer known for its high aggressiveness and poor prognosis. Conventional treatment of TNBC is challenging due to its heterogeneity and lack of clear targets. Recent advancements in immunotherapy have shown promise in treating TNBC, with immune checkpoint therapy playing a significant role in comprehensive treatment plans. The tumor microenvironment (TME), comprising immune cells, stromal cells, and various cytokines, plays a crucial role in TNBC progression and response to immunotherapy. The high presence of tumor-infiltrating lymphocytes and immune checkpoint proteins in TNBC indicates the potential of immunotherapeutic strategies. However, the complexity of the TME, while offering therapeutic targets, requires further exploration of its multiple roles in immunotherapy. In this review, we discuss the interaction mechanism between TME and TNBC immunotherapy based on the characteristics and composition of TME, and elaborate on and analyze the effect of TME on immunotherapy, the potential of TME as an immune target, and the ability of TME as a biomarker. Understanding these dynamics will offer new insights for enhancing therapeutic approaches and investigating stratification and prognostic markers for TNBC patients.
Collapse
Affiliation(s)
- Zijie Guo
- Department of Surgical Oncology, Affiliated Sir Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
- Biomedical Research Center, Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China
| | - Ziyu Zhu
- Department of Surgical Oncology, Affiliated Sir Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
- Biomedical Research Center, Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China
| | - Xixi Lin
- Department of Surgical Oncology, Affiliated Sir Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
- Biomedical Research Center, Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China
| | - Shenkangle Wang
- Department of Surgical Oncology, Affiliated Sir Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
- Biomedical Research Center, Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China
| | - Yihong Wen
- Biomedical Research Center, Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China
| | - Linbo Wang
- Department of Surgical Oncology, Affiliated Sir Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China.
- Biomedical Research Center, Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China.
| | - Lili Zhi
- Biomedical Research Center, Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China.
| | - Jichun Zhou
- Department of Surgical Oncology, Affiliated Sir Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China.
- Biomedical Research Center, Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China.
| |
Collapse
|
11
|
Wang X, Lin L, Zhang X, Zhang M, Sun Z, Yang Y, Zhang X, Yuan Y, Zhang Y, Chen H, Wen T. Single-cell Atlas reveals core function of CPVL/MSR1 expressing macrophages in the prognosis of triple-negative breast cancer. Front Immunol 2024; 15:1501009. [PMID: 39776914 PMCID: PMC11703973 DOI: 10.3389/fimmu.2024.1501009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Background Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, with the worst prognosis among all subtypes. The impact of distinct cell subpopulations within the tumor microenvironment (TME) on TNBC patient prognosis has yet to be clarified. Methods Utilizing single-cell RNA sequencing (scRNA-seq) integrated with bulk RNA sequencing (bulk RNA-seq), we applied Cox regression models to compute hazard ratios, and cross-validated prognostic scoring using a GLMNET-based Cox model. Cell communication analysis was used to elucidate the potential mechanisms of CPVL and MSR1. Ultimately, RNA interference-mediated gene knockdown was utilized to validate the impact of specific genes on the polarization of tumor-associated macrophages (TAMs). Results Our findings revealed that the function of immune cells is more pivotal in prognosis, with TAMs showing the strongest correlation with TNBC patient outcomes, compared with other immune cells. Additionally, we identified CPVL and MSR1 as critical prognostic genes within TAMs, with CPVL expression positively correlated with favorable outcomes and MSR1 expression associated with poorer prognosis. Mechanistically, CPVL may contribute to favorable prognosis by inhibiting the SPP1-CD44 ligand-receptor and promoting CXCL9-CXCR3, C3-C3AR1 ligand-receptor, through which TAMs interact with other cells such as monocytes, neutrophils, and T cells. Moreover, cytokines including IL-18, IFNγR1, CCL20, and CCL2, along with complement-related gene like TREM2 and complement component CFD, may participate in the process of CPVL or MSR1 regulating macrophage polarization. Furthermore, RT-PCR experiments confirmed that CPVL is positively associated with M1-like TAM polarization, while MSR1 is linked to M2-like TAM polarization. Finally, the prognostic significance of these two genes is also validated in HER2-positive breast cancer subtypes. Conclusions CPVL and MSR1 are potential biomarkers for macrophage-mediated TNBC prognosis, suggesting the therapeutic potential of macrophage targeting in TNBC.
Collapse
Affiliation(s)
- Xinan Wang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Clinical Cancer Treatment and Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Li Lin
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xue Zhang
- Department of Gynecology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Minghui Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Clinical Cancer Treatment and Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhuo Sun
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Clinical Cancer Treatment and Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yichen Yang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Clinical Cancer Treatment and Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiuna Zhang
- Department of Medical Oncology, Second People’s Hospital of Huludao, Huludao, Liaoning, China
| | - Yonghui Yuan
- Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| | - Yong Zhang
- Department of Pathology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| | - Hao Chen
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ti Wen
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Clinical Cancer Treatment and Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
12
|
Mathews JA, Borovsky DT, Reid KT, Murphy JM, Colpitts SJ, Carreira AS, Moya TA, Chung DC, Novitzky-Basso I, Mattsson J, Ohashi PS, Crome SQ. Single cell profiling of hematopoietic stem cell transplant recipients reveals TGF-β1 and IL-2 confer immunoregulatory functions to NK cells. iScience 2024; 27:111416. [PMID: 39720529 PMCID: PMC11667056 DOI: 10.1016/j.isci.2024.111416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/07/2024] [Accepted: 11/14/2024] [Indexed: 12/26/2024] Open
Abstract
Natural killer (NK) cell activity is influenced by cytokines and microenvironment factors, resulting in remarkably diverse functions, by contributing to inflammatory responses or serving as rheostats of adaptive immunity. Using single cell RNA sequencing (scRNA-seq), we identified a TGFβ1 highCD56brightNK cell population associated with hematopoietic stem cell transplant recipients protected from acute graft-versus-host disease (GVHD). We further define a role for the combination of interleukin-2 (IL-2) and transforming growth factor β1 (TGF-β1) in promoting a regulatory phenotype in NK cells. "Induced" regulatory NK cells produce high amounts of TGF-β1, inhibited T cells, could promote naive T cells differentiation into regulatory T cells, and exhibited a unique transcriptional program that includes expression of IKZF2 (HELIOS) and ZNF683 (HOBIT). This phenotype was not stable, and "induced" regulatory NK cells lost the ability to secrete TGF-β1 upon exposure to different cytokines. These findings define protective CD56brightNK cells post-hematopoietic stem cell transplantation, and demonstrate the combination of IL-2 and TGF-β1 promotes regulatory activity in NK cells.
Collapse
Affiliation(s)
- Jessica A. Mathews
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Dorota T. Borovsky
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Kyle T. Reid
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Julia M. Murphy
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sarah J. Colpitts
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Abel Santos Carreira
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G2C4, Canada
| | - Tommy Alfaro Moya
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G2C4, Canada
| | - Douglas C. Chung
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G2C4, Canada
| | - Igor Novitzky-Basso
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G2C4, Canada
| | - Jonas Mattsson
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G2C4, Canada
| | - Pamela S. Ohashi
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G2C4, Canada
| | - Sarah Q. Crome
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
13
|
Serrano García L, Jávega B, Llombart Cussac A, Gión M, Pérez-García JM, Cortés J, Fernández-Murga ML. Patterns of immune evasion in triple-negative breast cancer and new potential therapeutic targets: a review. Front Immunol 2024; 15:1513421. [PMID: 39735530 PMCID: PMC11671371 DOI: 10.3389/fimmu.2024.1513421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/25/2024] [Indexed: 12/31/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer characterized by the absence of progesterone and estrogen receptors and low (or absent) HER2 expression. TNBC accounts for 15-20% of all breast cancers. It is associated with younger age, a higher mutational burden, and an increased risk of recurrence and mortality. Standard treatment for TNBC primarily relies on cytotoxic agents, such as taxanes, anthracyclines, and platinum compounds for both early and advanced stages of the disease. Several targeted therapies, including bevacizumab and sunitinib, have failed to demonstrate significant clinical benefit in TNBC. The emergence of immune checkpoint inhibitors (ICI) has revolutionized cancer treatment. By stimulating the immune system, ICIs induce a durable anti-tumor response across various solid tumors. TNBC is a particularly promising target for treatment with ICIs due to the higher levels of tumor-infiltrating lymphocytes (TIL), increased PD-L1 expression, and higher mutational burden, which generates tumor-specific neoantigens that activate immune cells. ICIs administered as monotherapy in advanced TNBC yields only a modest response; however, response rates significantly improve when ICIs are combined with cytotoxic agents, particularly in tumors expressing PD-L1. Pembrolizumab is approved for use in both early and advanced TNBC in combination with standard chemotherapy. However, more research is needed to identify more potent biomarkers, and to better elucidate the synergism of ICIs with other targeted agents. In this review, we explore the challenges of immunotherapy in TNBC, examining the mechanisms of tumor progression mediated by immune cells within the tumor microenvironment, and the signaling pathways involved in both primary and acquired resistance. Finally, we provide a comprehensive overview of ongoing clinical trials underway to investigate novel immune-targeted therapies for TNBC.
Collapse
Affiliation(s)
- Lucía Serrano García
- Medical Oncology Department, Hospital Arnau de Vilanova, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain
| | - Beatriz Jávega
- Medical Oncology Department, Hospital Arnau de Vilanova, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain
| | - Antonio Llombart Cussac
- Medical Oncology Department, Hospital Arnau de Vilanova, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain
- Grupo Oncología Traslacional, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-Centro de Estudios Universitarios (CEU), Alfara del Patriarca, Spain
- Medica Scientia Innovation Research (MEDSIR), Oncoclínicas & Co., Jersey City, NJ, United States
| | - María Gión
- Medical Oncology Department, Hospital Ramon y Cajal, Madrid, Spain
| | - José Manuel Pérez-García
- Medica Scientia Innovation Research (MEDSIR), Oncoclínicas & Co., Jersey City, NJ, United States
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Group, Barcelona, Spain
| | - Javier Cortés
- Medica Scientia Innovation Research (MEDSIR), Oncoclínicas & Co., Jersey City, NJ, United States
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Group, Barcelona, Spain
- Universidad Europea de Madrid, Faculty of Biomedical and Health Sciences, Department of Medicine, Madrid, Spain
| | - María Leonor Fernández-Murga
- Medical Oncology Department, Hospital Arnau de Vilanova, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain
| |
Collapse
|
14
|
Li J, Wang X, Cao G, Wu Y, Cheng M, Chen Y, Sun H, Sun R, Peng H, Tian Z. CD94 deficiency or blockade unleashes the anti-tumor immunity in mice and humanized murine models. Cancer Lett 2024; 605:217305. [PMID: 39424259 DOI: 10.1016/j.canlet.2024.217305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/21/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
NKG2 family members have emerged as promising targets in tumor immunotherapy. CD94 can dimerize with both inhibitory and activating NKG2 proteins, while the overall effect and value of targeting CD94 on anti-tumor immunity are unclear. Here, it is shown that the expression of CD94 is upregulated on tumor-infiltrating natural killer (NK) cells and CD8+ T cells, and is related to their exhausted characteristics. Tumor-bearing CD94 knockout (CD94-KO) mice exhibit delayed tumor growth, decreased lung metastases, and prolonged survival. Single cell RNA-seq reveals a remodeled tumor microenvironment in CD94-KO mice, with a reduction in immunosuppressive cells and an increase in anti-tumor immune cells. Moreover, NK cells and CD8+ T cells become proliferative and strongly tumoricidal in CD94-KO mice, thus contributing to the tumor inhibition effect of CD94 deficiency. Treatment with a humanized anti-CD94 blocking antibody (h15C10) alone, in tumor-bearing humanized mouse, delays tumor progression, and improves the therapeutic efficacy of PD-L1 blockade through combination therapy. Our study indicates that CD94 may work as a candidate target in checkpoint immunotherapy.
Collapse
Affiliation(s)
- Jiarui Li
- Key Laboratory of Immune Response and Immunotherapy, The Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Xianwei Wang
- Key Laboratory of Immune Response and Immunotherapy, The Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Guoshuai Cao
- Hefei TG ImmunoPharma Corporation Limited, Hefei, China
| | - Yuwei Wu
- Hefei TG ImmunoPharma Corporation Limited, Hefei, China
| | - Ming Cheng
- Key Laboratory of Immune Response and Immunotherapy, The Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Yawen Chen
- Key Laboratory of Immune Response and Immunotherapy, The Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Haoyu Sun
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China; Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Rui Sun
- Key Laboratory of Immune Response and Immunotherapy, The Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Hui Peng
- Key Laboratory of Immune Response and Immunotherapy, The Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Zhigang Tian
- Key Laboratory of Immune Response and Immunotherapy, The Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; Hefei TG ImmunoPharma Corporation Limited, Hefei, China.
| |
Collapse
|
15
|
Wu B, Zhang B, Li B, Wu H, Jiang M. Cold and hot tumors: from molecular mechanisms to targeted therapy. Signal Transduct Target Ther 2024; 9:274. [PMID: 39420203 PMCID: PMC11491057 DOI: 10.1038/s41392-024-01979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Immunotherapy has made significant strides in cancer treatment, particularly through immune checkpoint blockade (ICB), which has shown notable clinical benefits across various tumor types. Despite the transformative impact of ICB treatment in cancer therapy, only a minority of patients exhibit a positive response to it. In patients with solid tumors, those who respond well to ICB treatment typically demonstrate an active immune profile referred to as the "hot" (immune-inflamed) phenotype. On the other hand, non-responsive patients may exhibit a distinct "cold" (immune-desert) phenotype, differing from the features of "hot" tumors. Additionally, there is a more nuanced "excluded" immune phenotype, positioned between the "cold" and "hot" categories, known as the immune "excluded" type. Effective differentiation between "cold" and "hot" tumors, and understanding tumor intrinsic factors, immune characteristics, TME, and external factors are critical for predicting tumor response and treatment results. It is widely accepted that ICB therapy exerts a more profound effect on "hot" tumors, with limited efficacy against "cold" or "altered" tumors, necessitating combinations with other therapeutic modalities to enhance immune cell infiltration into tumor tissue and convert "cold" or "altered" tumors into "hot" ones. Therefore, aligning with the traits of "cold" and "hot" tumors, this review systematically delineates the respective immune characteristics, influencing factors, and extensively discusses varied treatment approaches and drug targets based on "cold" and "hot" tumors to assess clinical efficacy.
Collapse
Affiliation(s)
- Bo Wu
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Youth League Committee, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bowen Li
- Department of Pancreatic and Gastrointestinal Surgery, Ningbo No. 2 Hospital, Ningbo, China
| | - Haoqi Wu
- Department of Gynaecology and Obstetrics, The Second Hospital of Dalian Medical University, Dalian, China
| | - Meixi Jiang
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
16
|
Mao C, Chen Y, Xing D, Zhang T, Lin Y, Long C, Yu J, Luo Y, Ming T, Xie W, Han Z, Mei D, Xiang D, Lu M, Shen X, Xue X. Resting natural killer cells promote the progress of colon cancer liver metastasis by elevating tumor-derived stem cell factor. eLife 2024; 13:RP97201. [PMID: 39387546 PMCID: PMC11466454 DOI: 10.7554/elife.97201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024] Open
Abstract
The abundance and biological contribution of natural killer (NK) cells in cancer are controversial. Here, we aim to uncover clinical relevance and cellular roles of NK cells in colon cancer liver metastasis (CCLM). Here, we integrated single-cell RNA-sequencing, spatial transcriptomics (ST), and bulk RNA-sequencing datasets to investigate NK cells' biological properties and functions in the microenvironment of primary and liver metastatic tumors. Results were validated through an in vitro co-culture experiment based on bioinformatics analysis. Useing single-cell RNA-sequencing and ST, we mapped the immune cellular landscape of colon cancer and well-matched liver metastatic cancer. We discovered that GZMK+ resting NK cells increased significantly in tumor tissues and were enriched in the tumor regions of both diseases. After combining bulk RNA and clinical data, we observed that these NK cell subsets contributed to a worse prognosis. Meanwhile, KIR2DL4+ activated NK cells exhibited the opposite position and relevance. Pseudotime cell trajectory analysis revealed the evolution of activated to resting NK cells. In vitro experiments further confirmed that tumor-cell-co-cultured NK cells exhibited a decidual-like status, as evidenced by remarkable increasing CD9 expression. Functional experiments finally revealed that NK cells exhibited tumor-activating characteristics by promoting the dissociation of SCF (stem cell factor) on the tumor cells membrane depending on cell-to-cell interaction, as the supernatant of the co-culture system enhanced tumor progression. In summary, our findings revealed resting NK cells exhibited a clinical relevance with CCLM, which may be exploited for novel strategies to improve therapeutic outcomes for patients with CCLM.
Collapse
Affiliation(s)
- Chenchen Mao
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical UniversityWenzhouChina
| | - Yanyu Chen
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical UniversityWenzhouChina
- Department of Pediatric Thoracic Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Dong Xing
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical UniversityWenzhouChina
| | - Teming Zhang
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical UniversityWenzhouChina
| | - Yangxuan Lin
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Cong Long
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical UniversityWenzhouChina
| | - Jiaye Yu
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical UniversityWenzhouChina
| | - Yunhui Luo
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical UniversityWenzhouChina
| | - Tao Ming
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical UniversityWenzhouChina
| | - Wangkai Xie
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical UniversityWenzhouChina
| | - Zheng Han
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical UniversityWenzhouChina
| | - Dianfeng Mei
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical UniversityWenzhouChina
| | - Dan Xiang
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical UniversityWenzhouChina
| | - Mingdong Lu
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xian Shen
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xiangyang Xue
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
17
|
Xu J, Gao H, Azhar MS, Xu H, Chen S, Li M, Ni X, Yan T, Zhou H, Long Q, Yi W. Interleukin signaling in the regulation of natural killer cells biology in breast cancer. Front Immunol 2024; 15:1449441. [PMID: 39380989 PMCID: PMC11459090 DOI: 10.3389/fimmu.2024.1449441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
In the field of breast cancer treatment, the immunotherapy involving natural killer (NK) cells is increasingly highlighting its distinct potential and significance. Members of the interleukin (IL) family play pivotal regulatory roles in the growth, differentiation, survival, and apoptosis of NK cells, and are central to their anti-tumor activity. These cytokines enhance the ability of NK cells to recognize and eliminate tumor cells by binding to specific receptors and activating downstream signaling pathways. Furthermore, interleukins do not function in isolation; the synergistic or antagonistic interactions between different interleukins can drive NK cells toward various functional pathways, ultimately leading to diverse outcomes for breast cancer patients. This paper reviews the intricate relationship between NK cells and interleukins, particularly within the breast cancer tumor microenvironment. Additionally, we summarize the latest clinical studies and advancements in NK cell therapy for breast cancer, along with the potential applications of interleukin signaling in these therapies. In conclusion, this article underscores the critical role of NK cells and interleukin signaling in breast cancer treatment, providing valuable insights and a significant reference for future research and clinical practice.
Collapse
Affiliation(s)
- Jiachi Xu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, Hunan, China
| | - Hongyu Gao
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, Hunan, China
| | - Muhammad Salman Azhar
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haifan Xu
- Breast and Thyroid Surgery, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Siyuan Chen
- Breast and Thyroid Surgery, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Mingcan Li
- Breast and Thyroid Surgery, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Xinxi Ni
- Breast and Thyroid Surgery, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Ting Yan
- Breast and Thyroid Surgery, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Hui Zhou
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Long
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, Hunan, China
| | - Wenjun Yi
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, Hunan, China
| |
Collapse
|
18
|
Liu Y, Yin S, Lu G, Du Y. The intersection of the nervous system and breast cancer. Cancer Lett 2024; 598:217132. [PMID: 39059572 DOI: 10.1016/j.canlet.2024.217132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Breast cancer (BC) represents a paradigm of heterogeneity, manifesting as a spectrum of molecular subtypes with divergent clinical trajectories. It is fundamentally characterized by the aberrant proliferation of malignant cells within breast tissue, a process modulated by a myriad of factors that govern its progression. Recent endeavors outline the interplay between BC and the nervous system, illuminate the complex symbiosis between neural structures and neoplastic cells, and elucidate nerve dependence as a cornerstone of BC progression. This includes the neural modulations on immune response, neurovascular formation, and multisystem interactions. Such insights have unveiled the critical impact of neural elements on tumor dynamics and patient prognosis. This revelation beckons a deeper exploration into the neuro-oncological interface, potentially unlocking novel therapeutic vistas. This review endeavors to delineate the intricate mechanisms between the nervous system and BC, aiming to accentuate the implications and therapeutic strategies of this intersection for tumor evolution and the formulation of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Yutong Liu
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, No.71Xinmin Street, Changchun, Jilin, China
| | - Shiqi Yin
- Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, China
| | - Guanyu Lu
- Cancer Center, The First Hospital of Jilin University, No.71Xinmin Street, Changchun, Jilin, China
| | - Ye Du
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, No.71Xinmin Street, Changchun, Jilin, China.
| |
Collapse
|
19
|
He J, Qiu Z, Fan J, Xie X, Sheng Q, Sui X. Drug tolerant persister cell plasticity in cancer: A revolutionary strategy for more effective anticancer therapies. Signal Transduct Target Ther 2024; 9:209. [PMID: 39138145 PMCID: PMC11322379 DOI: 10.1038/s41392-024-01891-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 08/15/2024] Open
Abstract
Non-genetic mechanisms have recently emerged as important drivers of anticancer drug resistance. Among these, the drug tolerant persister (DTP) cell phenotype is attracting more and more attention and giving a predominant non-genetic role in cancer therapy resistance. The DTP phenotype is characterized by a quiescent or slow-cell-cycle reversible state of the cancer cell subpopulation and inert specialization to stimuli, which tolerates anticancer drug exposure to some extent through the interaction of multiple underlying mechanisms and recovering growth and proliferation after drug withdrawal, ultimately leading to treatment resistance and cancer recurrence. Therefore, targeting DTP cells is anticipated to provide new treatment opportunities for cancer patients, although our current knowledge of these DTP cells in treatment resistance remains limited. In this review, we provide a comprehensive overview of the formation characteristics and underlying drug tolerant mechanisms of DTP cells, investigate the potential drugs for DTP (including preclinical drugs, novel use for old drugs, and natural products) based on different medicine models, and discuss the necessity and feasibility of anti-DTP therapy, related application forms, and future issues that will need to be addressed to advance this emerging field towards clinical applications. Nonetheless, understanding the novel functions of DTP cells may enable us to develop new more effective anticancer therapy and improve clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Jun He
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zejing Qiu
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Jingjing Fan
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Xiaohong Xie
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Qinsong Sheng
- Department of Colorectal Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Xinbing Sui
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
20
|
Harris MA, Savas P, Virassamy B, O'Malley MMR, Kay J, Mueller SN, Mackay LK, Salgado R, Loi S. Towards targeting the breast cancer immune microenvironment. Nat Rev Cancer 2024; 24:554-577. [PMID: 38969810 DOI: 10.1038/s41568-024-00714-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/31/2024] [Indexed: 07/07/2024]
Abstract
The tumour immune microenvironment is shaped by the crosstalk between cancer cells, immune cells, fibroblasts, endothelial cells and other stromal components. Although the immune tumour microenvironment (TME) serves as a source of therapeutic targets, it is also considered a friend or foe to tumour-directed therapies. This is readily illustrated by the importance of T cells in triple-negative breast cancer (TNBC), culminating in the advent of immune checkpoint therapy in combination with cytotoxic chemotherapy as standard of care for both early and advanced-stage TNBC, as well as recent promising signs of efficacy in a subset of hormone receptor-positive disease. In this Review, we discuss the various components of the immune TME in breast cancer and therapies that target or impact the immune TME, as well as the complexity of host physiology.
Collapse
Affiliation(s)
- Michael A Harris
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Peter Savas
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Balaji Virassamy
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Megan M R O'Malley
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Jasmine Kay
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Laura K Mackay
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Roberto Salgado
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Pathology, ZAS Ziekenhuizen, Antwerp, Belgium
| | - Sherene Loi
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia.
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
| |
Collapse
|
21
|
Zhang W, Zhai Y, Cai Y, Gong X, Jiang Y, Rong R, Zheng C, Zhu B, Zhu HH, Wang H, Li Y, Zhang P. Enhancing immunotherapy efficacy against MHC-I deficient triple-negative breast cancer using LCL161-loaded macrophage membrane-decorated nanoparticles. Acta Pharm Sin B 2024; 14:3218-3231. [PMID: 39027241 PMCID: PMC11252456 DOI: 10.1016/j.apsb.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/21/2024] [Accepted: 04/10/2024] [Indexed: 07/20/2024] Open
Abstract
Current cytotoxic T lymphocyte (CTL) activating immunotherapy requires a major histocompatibility complex I (MHC-I)-mediated presentation of tumor-associated antigens, which malfunctions in around half of patients with triple-negative breast cancer (TNBC). Here, we create a LCL161-loaded macrophage membrane decorated nanoparticle (LMN) for immunotherapy of MHC-I-deficient TNBC. SIRPα on the macrophage membrane helps LMNs recognize CD47-expressing cancer cells for targeted delivery of LCL161, which induces the release of high mobility group protein 1 and proinflammatory cytokines from cancer cells. The released cytokines and high mobility group protein 1 activate antitumor immunity by increasing the intratumoral density of the phagocytic macrophage subtype by 15 times and elevating the intratumoral concentration of CTL lymphotoxin by 4.6 folds. LMNs also block CD47-mediated phagocytosis suppression. LMNs inhibit the growth of MHC-I-deficient TNBC tumors, as well as those resistant to combined therapy of anti-PDL1 antibody and albumin-bound paclitaxel, and prolong the survival of animals, during which process CTLs also play important roles. This macrophage membrane-decorated nanoparticle presents a generalizable platform for increasing macrophage-mediated antitumor immunity for effective immunotherapy of MHC-I-deficient cancers.
Collapse
Affiliation(s)
- Wen Zhang
- China State Institute of Pharmaceutical Industry, Shanghai 201203, China
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yihui Zhai
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Cai
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Gong
- China State Institute of Pharmaceutical Industry, Shanghai 201203, China
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yunxuan Jiang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Rong Rong
- Yantai Institute of Materia Medica, Shandong 264000, China
| | - Chao Zheng
- China State Institute of Pharmaceutical Industry, Shanghai 201203, China
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Binyu Zhu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Helen He Zhu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hao Wang
- China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Yantai Institute of Materia Medica, Shandong 264000, China
| | - Pengcheng Zhang
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
22
|
Chouhan NK, Eedara A, Talati MN, Ambadipudi SSSSS, Andugulapati SB, Pabbaraja S. Glucosyltriazole amphiphile treatment attenuates breast cancer by modulating the AMPK signaling. Drug Dev Res 2024; 85:e22215. [PMID: 38837718 DOI: 10.1002/ddr.22215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024]
Abstract
Breast cancer is the second most frequent cancer among women. Out of various subtypes, triple-negative breast cancers (TNBCs) account for 15% of breast cancers and exhibit more aggressive characteristics as well as a worse prognosis due to their proclivity for metastatic progression and limited therapeutic strategies. It has been demonstrated that AMP-activated protein kinase (AMPK) has context-specific protumorigenic implications in breast cancer cells. A set of glucosyltriazole amphiphiles, consisting of acetylated (9a-h) and unmodified sugar hydroxyl groups (10a-h), were synthesized and subjected to in vitro biological evaluation. Among them, 9h exhibited significant anticancer activity against MDA-MB-231, MCF-7, and 4T1 cell lines with IC50 values of 12.5, 15, and 12.55 μM, respectively. Further, compound 9h was evaluated for apoptosis and cell cycle analysis in in vitro models (using breast cancer cells) and antitumour activity in an in vivo model (orthotopic mouse model using 4T1 cells). Annexin-V assay results revealed that treatment with 9h caused 34% and 28% cell death at a concentration of 15 or 7.5 μM, respectively, while cell cycle analysis demonstrated that 9h arrested the cells at the G2/M or G1 phase in MCF-7, MDA-MB-231 and 4T1 cells, respectively. Further, in vivo, investigation showed that compound 9h exhibited equipotent as doxorubicin at 7.5 mg/kg, and superior efficacy than doxorubicin at 15 mg/kg. The mechanistic approach revealed that 9h showed potent anticancer activity in an in vivo orthotopic model (4T1 cells) partly by suppressing the AMPK activation. Therefore, modulating the AMPK activation could be a probable approach for targeting breast cancer and mitigating cancer progression.
Collapse
Affiliation(s)
- Neeraj Kumar Chouhan
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Abhisheik Eedara
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, India
| | - Mamta N Talati
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sudha S S S S Ambadipudi
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, India
| | - Sai Balaji Andugulapati
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, India
| | - Srihari Pabbaraja
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
23
|
Zu S, Lu Y, Xing R, Chen X, Zhang L. Changes in subset distribution and impaired function of circulating natural killer cells in patients with colorectal cancer. Sci Rep 2024; 14:12188. [PMID: 38806640 PMCID: PMC11133342 DOI: 10.1038/s41598-024-63103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024] Open
Abstract
Natural killer (NK) cells are closely associated with malignant tumor progression and metastasis. However, studies on their relevance in colorectal cancer (CRC) are limited. We aimed to comprehensively analyze the absolute counts, phenotypes, and function of circulating NK cells in patients with CRC using multiparametric flow cytometry. The distribution of NK cell subsets in the peripheral circulation of patients with CRC was significantly altered relative to the control group. This is shown by the decreased frequency and absolute count of CD56dimCD16+ NK cells with antitumor effects, contrary to the increased frequency of CD56bright NK and CD56dimCD16- NK cells with poor or ineffective antitumor effects. NK cells in patients with CRC were functionally impaired, with decreased intracellular interferon (IFN)-γ secretion and a significantly lower percentage of cell surface granzyme B and perforin expression. In addition, IFN-γ expression decreased significantly with the tumor stage progression. Based on a comprehensive analysis of the absolute counts, phenotypes, and functional markers of NK cells, we found an altered subset distribution and impaired function of circulating NK cells in patients with CRC.
Collapse
Affiliation(s)
- Shujin Zu
- Department of Reproductive Center, Affiliated Dongyang Hospital of Wenzhou Medical University, 60 West Wuning Road, Dongyang, 322100, Zhejiang, China
| | - Yan Lu
- Clinical Laboratory, DongYang People's Hospital, Affiliated Dongyang Hospital of Wenzhou Medical University, 60 West Wuning Road, Dongyang, 322100, Zhejiang, China
| | - Rui Xing
- The Department of Hematology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Xiang Chen
- Department of Biomedical Sciences Laboratory, Affiliated DongYang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Longyi Zhang
- Clinical Laboratory, DongYang People's Hospital, Affiliated Dongyang Hospital of Wenzhou Medical University, 60 West Wuning Road, Dongyang, 322100, Zhejiang, China.
| |
Collapse
|
24
|
Liu Y, Li M, Fang Z, Gao S, Cheng W, Duan Y, Wang X, Feng J, Yu T, Zhang J, Wang T, Hu A, Zhang H, Rong Z, Shakila SS, Shang Y, Kong F, Liu J, Li Y, Ma F. Overexpressing S100A9 ameliorates NK cell dysfunction in estrogen receptor-positive breast cancer. Cancer Immunol Immunother 2024; 73:117. [PMID: 38713229 PMCID: PMC11076447 DOI: 10.1007/s00262-024-03699-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/01/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Estrogen receptor (ER) positive human epidermal growth factor receptor 2 (HER2) negative breast cancer (ER+/HER2-BC) and triple-negative breast cancer (TNBC) are two distinct breast cancer molecular subtypes, especially in tumor immune microenvironment (TIME). The TIME of TNBC is considered to be more inflammatory than that of ER+/HER2-BC. Natural killer (NK) cells are innate lymphocytes that play an important role of tumor eradication in TME. However, studies focusing on the different cell states of NK cells in breast cancer subtypes are still inadequate. METHODS In this study, single-cell mRNA sequencing (scRNA-seq) and bulk mRNA sequencing data from ER+/HER2-BC and TNBC were analyzed. Key regulator of NK cell suppression in ER+/HER2-BC, S100A9, was quantified by qPCR and ELISA in MCF-7, T47D, MDA-MB-468 and MDA-MB-231 cell lines. The prognosis predictability of S100A9 and NK activation markers was evaluated by Kaplan-Meier analyses using TCGA-BRAC data. The phenotype changes of NK cells in ER+/HER2-BC after overexpressing S100A9 in cancer cells were evaluated by the production levels of IFN-gamma, perforin and granzyme B and cytotoxicity assay. RESULTS By analyzing scRNA-seq data, we found that multiple genes involved in cellular stress response were upregulated in ER+/HER2-BC compared with TNBC. Moreover, TLR regulation pathway was significantly enriched using differentially expressed genes (DEGs) from comparing the transcriptome data of ER+/HER2-BC and TNBC cancer cells, and NK cell infiltration high/low groups. Among the DEGs, S100A9 was identified as a key regulator. Patients with higher expression levels of S100A9 and NK cell activation markers had better overall survival. Furthermore, we proved that overexpression of S100A9 in ER+/HER2-cells could improve cocultured NK cell function. CONCLUSION In conclusion, the study we presented demonstrated that NK cells in ER+/HER2-BC were hypofunctional, and S100A9 was an important regulator of NK cell function in ER+BC. Our work contributes to elucidate the regulatory networks between cancer cells and NK cells and may provide theoretical basis for novel drug development.
Collapse
Affiliation(s)
- Yansong Liu
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Mingcui Li
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Zhengbo Fang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Shan Gao
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Weilun Cheng
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Yunqiang Duan
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Xuelian Wang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Jianyuan Feng
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Tianshui Yu
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Jiarui Zhang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Ting Wang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Anbang Hu
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Hanyu Zhang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Zhiyuan Rong
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Suborna S Shakila
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Yuhang Shang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Fanjing Kong
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Jiangwei Liu
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Yanling Li
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China.
| | - Fei Ma
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China.
| |
Collapse
|
25
|
Yi JI, Schneider J, Lim ST, Park B, Suh YJ. Interferon-Gamma Secretion Is Significantly Decreased in Stage III Breast Cancer Patients. Int J Mol Sci 2024; 25:4561. [PMID: 38674146 PMCID: PMC11050491 DOI: 10.3390/ijms25084561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Even though some studies have shown possible clinical relationship between molecular subtypes and tumor infiltrating natural killer (NK) cells around tumors, there are few studies showing the clinical relevance of peripheral NK cell activity at diagnosis in female patients with invasive breast cancer. A total of 396 female invasive breast cancer patients who received curative surgical treatment from March 2017 to July 2021 were retrospectively analyzed. NK cell activation-induced interferon-gamma (IFN-γ) secretion measured by enzyme-linked immunosorbent assay was used to measure the activity of peripheral NK cells. Statistical analyses were performed to determine clinical relationships with major clinicopathologic parameters. Quadripartite NK cell activity measured by induced interferon-gamma showed significant relevance with staging and body mass index, and some of the inflammatory serological markers, namely N/L (neutrophil/lymphocyte), P/N (platelet/neutrophil), and P/L (platelet/lymphocyte), showed significantly different NK activity in each interval by univariate analysis. A binary subgroup analysis, setting the IFN-γ secretion cut-off at 100 pg/mL, showed that stage III was significantly increased and axillary lymph node metastasis positivity was increased in the group of IFN-γ < 100 pg/mL, and IFN-γ secretion decreased with an increasing N stage, increased BMI (body mass index), and decreased production of IFN-γ. Following this, the same binary analysis, but with the IFN-γ secretion cut-off at 250 pg/mL, also showed that secretion in stage III was increased in those concentrations with <250 pg/mL, axillary lymph node positivity appeared to be correlated, and BMI ≥ 30 increased in prevalence. Additional ANOVA post hoc tests (Bonferroni) were performed on some serological markers that tended to be somewhat inconsistent. By subgroup analysis with Bonferroni adjustment between the IFN-γ secretion and TNM stage, no significant difference in IFN-γ secretion could be identified at stages I, II, and IV, but at stage III, the IFN-γ secretion < 100 pg/mL was significantly higher than 250 ≤ IFN-γ secretion < 500 pg/mL or IFN-γ secretion ≥ 500 pg/mL. According to this study, stage III was significantly associated with the lowest IFN-γ secretion. Compared to a higher level of IFN-γ secretion, a lower level of IFN-γ secretion seemed to be associated with increased body mass index. Unlike when IFN-γ secretion was analyzed in quartiles, as the IFN-γ secretion fell below 100 pg/mL, the correlation between axillary lymph node positivity and increased N stage, increased BMI, and increased N/L and P/L, which are suggested poor prognostic factors, became more pronounced. We think a peripheral IFN-γ secretion test might be convenient and useful tool for pretreatment risk assessment and selecting probable candidates for further treatment such as immunotherapy in some curable but high-risk invasive breast cancer patients, compared to other costly assaying of tissue NK cell activity at diagnosis.
Collapse
Affiliation(s)
- Jung Im Yi
- Department of Surgery, The Catholic University of Korea St. Vincent’s Hospital, Suwon 16247, Republic of Korea; (J.I.Y.); (S.T.L.); (B.P.)
| | - Jean Schneider
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Seung Taek Lim
- Department of Surgery, The Catholic University of Korea St. Vincent’s Hospital, Suwon 16247, Republic of Korea; (J.I.Y.); (S.T.L.); (B.P.)
| | - Byeongkwan Park
- Department of Surgery, The Catholic University of Korea St. Vincent’s Hospital, Suwon 16247, Republic of Korea; (J.I.Y.); (S.T.L.); (B.P.)
| | - Young Jin Suh
- Department of Surgery, The Catholic University of Korea St. Vincent’s Hospital, Suwon 16247, Republic of Korea; (J.I.Y.); (S.T.L.); (B.P.)
| |
Collapse
|
26
|
Kim U, Debnath R, Maiz JE, Rico J, Sinha S, Blanco MA, Chakrabarti R. ΔNp63 regulates MDSC survival and metabolism in triple-negative breast cancer. iScience 2024; 27:109366. [PMID: 38510127 PMCID: PMC10951988 DOI: 10.1016/j.isci.2024.109366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/20/2023] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Triple-negative breast cancer (TNBC) contributes greatly to mortality of breast cancer, demanding new targetable options. We have shown that TNBC patients have high ΔNp63 expression in tumors. However, the function of ΔNp63 in established TNBC is yet to be explored. In current studies, targeting ΔNp63 with inducible CRISPR knockout and Histone deacetylase inhibitor Quisinostat showed that ΔNp63 is important for tumor progression and metastasis in established tumors by promoting myeloid-derived suppressor cell (MDSC) survival through tumor necrosis factor alpha. Decreasing ΔNp63 levels are associated with decreased CD4+ and FOXP3+ T-cells but increased CD8+ T-cells. RNA sequencing analysis indicates that loss of ΔNp63 alters multiple MDSC properties such as lipid metabolism, chemotaxis, migration, and neutrophil degranulation besides survival. We further demonstrated that targeting ΔNp63 sensitizes chemotherapy. Overall, we showed that ΔNp63 reprograms the MDSC-mediated immunosuppressive functions in TNBC, highlighting the benefit of targeting ΔNp63 in chemotherapy-resistant TNBC.
Collapse
Affiliation(s)
- Ukjin Kim
- Department of Surgery, Sylvester Comprehensive Cancer, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Rahul Debnath
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Javier E. Maiz
- Department of Surgery, Sylvester Comprehensive Cancer, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joshua Rico
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Satrajit Sinha
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Mario Andrés Blanco
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rumela Chakrabarti
- Department of Surgery, Sylvester Comprehensive Cancer, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
27
|
Fan X, Liu F, Wang X, Wang Y, Chen Y, Shi C, Su X, Tan M, Yan Q, Peng J, Shao J, Xiong Y, Lin A. LncFASA promotes cancer ferroptosis via modulating PRDX1 phase separation. SCIENCE CHINA. LIFE SCIENCES 2024; 67:488-503. [PMID: 37955780 DOI: 10.1007/s11427-023-2425-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 11/14/2023]
Abstract
Ferroptosis, a unique type of non-apoptotic cell death resulting from iron-dependent lipid peroxidation, has a potential physiological function in tumor suppression, but its underlying mechanisms have not been fully elucidated. Here, we report that the long non-coding RNA (lncRNA) LncFASA increases the susceptibility of triple-negative breast cancer (TNBC) to ferroptosis. As a tumor suppressor, LncFASA drives the formation of droplets containing peroxiredoxin1 (PRDX1), a member of the peroxidase family, resulting in the accumulation of lipid peroxidation via the SLC7A11-GPX4 axis. Mechanistically, LncFASA directly binds to the Ahpc-TSA domain of PRDX1, inhibiting its peroxidase activity by driving liquid-liquid phase separation, which disrupts intracellular ROS homeostasis. Notably, high LncFASA expression indicates favorable overall survival in individuals with breast cancer, and LncFASA impairs the growth of breast xenograft tumors by modulating ferroptosis. Together, our findings illustrate the crucial role of this lncRNA in ferroptosis-mediated cancer development and provide new insights into therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Xiao Fan
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, 310058, China
| | - Fangzhou Liu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, 310009, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, 310058, China.
| | - Xiang Wang
- Department of Central Laboratory, the First People's Hospital of Huzhou, Huzhou, 313000, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Ying Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yu Chen
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chengyu Shi
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinwan Su
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Manman Tan
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qingfeng Yan
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jinrong Peng
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jianzhong Shao
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yan Xiong
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
| | - Aifu Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, 310009, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, 310058, China.
- Breast Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
- International School of Medicine, International Institutes of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, China.
| |
Collapse
|
28
|
Wang J, Peng J, Chen Y, Nasser MI, Qin H. The role of stromal cells in epithelial-mesenchymal plasticity and its therapeutic potential. Discov Oncol 2024; 15:13. [PMID: 38244071 PMCID: PMC10799841 DOI: 10.1007/s12672-024-00867-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 01/15/2024] [Indexed: 01/22/2024] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a critical tumor invasion and metastasis process. EMT enables tumor cells to migrate, detach from their original location, enter the circulation, circulate within it, and eventually exit from blood arteries to colonize in foreign sites, leading to the development of overt metastases, ultimately resulting in death. EMT is intimately tied to stromal cells around the tumor and is controlled by a range of cytokines secreted by stromal cells. This review summarizes recent research on stromal cell-mediated EMT in tumor invasion and metastasis. We also discuss the effects of various stromal cells on EMT induction and focus on the molecular mechanisms by which several significant stromal cells convert from foes to friends of cancer cells to fuel EMT processes via their secretions in the tumor microenvironment (TME). As a result, a better knowledge of the role of stromal cells in cancer cells' EMT may pave the path to cancer eradication.
Collapse
Affiliation(s)
- Juanjing Wang
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- School of Pharmaceutical Science, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Junmei Peng
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- School of Pharmaceutical Science, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Yonglin Chen
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, School of Basic Medical Sciences, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, University of South China, Hengyang, 421001, Hunan, China
| | - M I Nasser
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, China.
| | - Hui Qin
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, School of Basic Medical Sciences, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
29
|
Lee CM, Fang S. Fat Biology in Triple-Negative Breast Cancer: Immune Regulation, Fibrosis, and Senescence. J Obes Metab Syndr 2023; 32:312-321. [PMID: 38014425 PMCID: PMC10786212 DOI: 10.7570/jomes23044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/18/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023] Open
Abstract
Obesity, now officially recognized as a disease requiring intervention, has emerged as a significant health concern due to its strong association with elevated susceptibility to diverse diseases and various types of cancer, including breast cancer. The link between obesity and cancer is intricate, with obesity exerting a significant impact on cancer recurrence and elevated mortality rates. Among the various subtypes of breast cancer, triple-negative breast cancer (TNBC) is the most aggressive, accounting for 15% to 20% of all cases. TNBC is characterized by low expression of estrogen receptors and progesterone receptors as well as the human epidermal growth factor 2 receptor protein. This subtype poses distinct challenges in terms of treatment response and exhibits strong invasiveness. Furthermore, TNBC has garnered attention because of its association with obesity, in which excess body fat and reduced physical activity have been identified as contributing factors to the increased incidence of this aggressive form of breast cancer. In this comprehensive review, the impact of obesity on TNBC was explored. Specifically, we focused on the three key mechanisms by which obesity affects TNBC development and progression: modification of the immune profile, facilitation of fibrosis, and initiation of senescence. By comprehensively examining these mechanisms, we illuminated the complex interplay between TNBC and obesity, facilitating the development of novel approaches for prevention, early detection, and effective management of this challenging disease.
Collapse
Affiliation(s)
- Chae Min Lee
- Graduate School of Medical Science, Brain Korea 2 Project, Yonsei University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sungsoon Fang
- Graduate School of Medical Science, Brain Korea 2 Project, Yonsei University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Chronic Intractable Disease for Systems Medicine Research Center, Yonsei University College of Medicine, Seoul, Korea
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
30
|
Guo Z, Han S. Targeting cancer stem cell plasticity in triple-negative breast cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:1165-1181. [PMID: 38213533 PMCID: PMC10776602 DOI: 10.37349/etat.2023.00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/15/2023] [Indexed: 01/13/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer subtype with limited treatment options. Cancer stem cells (CSCs) are thought to play a crucial role in TNBC progression and resistance to therapy. CSCs are a small subpopulation of cells within tumors that possess self-renewal and differentiation capabilities and are responsible for tumor initiation, maintenance, and metastasis. CSCs exhibit plasticity, allowing them to switch between states and adapt to changing microenvironments. Targeting CSC plasticity has emerged as a promising strategy for TNBC treatment. This review summarizes recent advances in understanding the molecular mechanisms underlying CSC plasticity in TNBC and discusses potential therapeutic approaches targeting CSC plasticity.
Collapse
Affiliation(s)
- Zhengwang Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Shuyan Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
31
|
Dagher OK, Posey AD. Forks in the road for CAR T and CAR NK cell cancer therapies. Nat Immunol 2023; 24:1994-2007. [PMID: 38012406 DOI: 10.1038/s41590-023-01659-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/20/2023] [Indexed: 11/29/2023]
Abstract
The advent of chimeric antigen receptor (CAR) T cell therapy has resulted in unprecedented long-term clearance of relapse/refractory hematological malignancies in both pediatric and adult patients. However, severe toxicities, such as cytokine release syndrome and neurotoxicity, associated with CAR T cells affect therapeutic utility; and treatment efficacies for solid tumors are still not impressive. As a result, engineering strategies that modify other immune cell types, especially natural killer (NK) cells have arisen. Owing to both CAR-dependent and CAR-independent (innate immune-mediated) antitumor killing capacity, major histocompatibility complex-independent cytotoxicity, reduced risk of alloreactivity and lack of major CAR T cell toxicities, CAR NK cells constitute one of the promising next-generation CAR immune cells that are also amenable as 'off-the-shelf' therapeutics. In this Review, we compare CAR T and CAR NK cell therapies, with particular focus on immunological synapses, engineering strategies and challenges.
Collapse
Affiliation(s)
- Oula K Dagher
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
| | - Avery D Posey
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA.
| |
Collapse
|
32
|
Manni A, Sun YW, Schell TD, Lutsiv T, Thompson H, Chen KM, Aliaga C, Zhu J, El-Bayoumy K. Complementarity between Microbiome and Immunity May Account for the Potentiating Effect of Quercetin on the Antitumor Action of Cyclophosphamide in a Triple-Negative Breast Cancer Model. Pharmaceuticals (Basel) 2023; 16:1422. [PMID: 37895893 PMCID: PMC10610118 DOI: 10.3390/ph16101422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Immunotherapy targeting program cell death protein 1 (PD-1) in addition to chemotherapy has improved the survival of triple-negative breast cancer (TNBC) patients. However, the development of resistance and toxicity remain significant problems. Using the translationally relevant 4T1 mouse model of TNBC, we report here that dietary administration of the phytochemical quercetin enhanced the antitumor action of Cyclophosphamide, a cytotoxic drug with significant immunogenic effects that is part of the combination chemotherapy used in TNBC. We observed that quercetin favorably modified the host fecal microbiome by enriching species such as Akkermansia muciniphilia, which has been shown to improve response to anti-PD-1 therapy. We also show that quercetin and, to a greater extent, Cyclophosphamide increased the systemic frequency of T cells and NK cells. In addition, Cyclophosphamide alone and in combination with quercetin reduced the frequency of Treg, which is consistent with an antitumor immune response. On the other hand, Cyclophosphamide did not significantly alter the host microbiome, suggesting complementarity between microbiome- and immune-mediated mechanisms in potentiating the antitumor action of Cyclophosphamide by quercetin. Overall, these results support the potential for microbiota-centered dietary intervention to overcome resistance to chemoimmunotherapy in TNBC.
Collapse
Affiliation(s)
- Andrea Manni
- Penn State Health Milton S. Hershey Medical Center, Department of Medicine, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Yuan-Wan Sun
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA (K.-M.C.); (C.A.)
| | - Todd D. Schell
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA;
| | - Tymofiy Lutsiv
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523, USA; (T.L.); (H.T.)
| | - Henry Thompson
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523, USA; (T.L.); (H.T.)
| | - Kun-Ming Chen
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA (K.-M.C.); (C.A.)
| | - Cesar Aliaga
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA (K.-M.C.); (C.A.)
| | - Junjia Zhu
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA 17033, USA;
| | - Karam El-Bayoumy
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA (K.-M.C.); (C.A.)
| |
Collapse
|
33
|
Liu Y, Hu Y, Xue J, Li J, Yi J, Bu J, Zhang Z, Qiu P, Gu X. Advances in immunotherapy for triple-negative breast cancer. Mol Cancer 2023; 22:145. [PMID: 37660039 PMCID: PMC10474743 DOI: 10.1186/s12943-023-01850-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND Immunotherapy has recently emerged as a treatment strategy which stimulates the human immune system to kill tumor cells. Tumor immunotherapy is based on immune editing, which enhances the antigenicity of tumor cells and increases the tumoricidal effect of immune cells. It also suppresses immunosuppressive molecules, activates or restores immune system function, enhances anti-tumor immune responses, and inhibits the growth f tumor cell. This offers the possibility of reducing mortality in triple-negative breast cancer (TNBC). MAIN BODY Immunotherapy approaches for TNBC have been diversified in recent years, with breakthroughs in the treatment of this entity. Research on immune checkpoint inhibitors (ICIs) has made it possible to identify different molecular subtypes and formulate individualized immunotherapy schedules. This review highlights the unique tumor microenvironment of TNBC and integrates and analyzes the advances in ICI therapy. It also discusses strategies for the combination of ICIs with chemotherapy, radiation therapy, targeted therapy, and emerging treatment methods such as nanotechnology, ribonucleic acid vaccines, and gene therapy. Currently, numerous ongoing or completed clinical trials are exploring the utilization of immunotherapy in conjunction with existing treatment modalities for TNBC. The objective of these investigations is to assess the effectiveness of various combined immunotherapy approaches and determine the most effective treatment regimens for patients with TNBC. CONCLUSION This review provides insights into the approaches used to overcome drug resistance in immunotherapy, and explores the directions of immunotherapy development in the treatment of TNBC.
Collapse
Affiliation(s)
- Yang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Yueting Hu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Jinqi Xue
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Jingying Li
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Jiang Yi
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Jiawen Bu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Zhenyong Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| | - Peng Qiu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| | - Xi Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| |
Collapse
|
34
|
Wang B, Wang T, Yang C, Nan Z, Ai D, Wang X, Wang H, Qu X, Wei F. Co-inhibition of adenosine 2b receptor and programmed death-ligand 1 promotes the recruitment and cytotoxicity of natural killer cells in oral squamous cell carcinoma. PeerJ 2023; 11:e15922. [PMID: 37663280 PMCID: PMC10474825 DOI: 10.7717/peerj.15922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/28/2023] [Indexed: 09/05/2023] Open
Abstract
Adenosine promotes anti-tumor immune responses by modulating the functions of T-cells and natural killer (NK) cells in the tumor microenvironment; however, the role of adenosine receptors in the progression of oral squamous cell carcinoma (OSCC) and its effects on immune checkpoint therapy remain unclear. In this study, we obtained the tumor tissues from 80 OSCC patients admitted at the Shandong University Qilu Hospital between February 2014 and December 2016. Thereafter, we detected the expression of adenosine 2b receptor (A2BR) and programmed death-ligand 1 (PD-L1) using immunohistochemical staining and analyzed the association between their expression in different regions of the tumor tissues, such as tumor nest, border, and paracancer stroma. To determine the role of A2BR in PD-L1 expression, CAL-27 (an OSCC cell line) was treated with BAY60-6583 (an A2BR agonist), and PD-L1 expression was determined using western blot and flow cytometry. Furthermore, CAL-27 was treated with a nuclear transcription factor-kappa B (NF-κ B) inhibitor, PDTC, to determine whether A2BR regulates PD-L1 expression via the NF-κ B signaling pathway. Additionally, a transwell assay was performed to verify the effect of A2BR and PD-L1 on NK cell recruitment. The results of our study demonstrated that A2BR and PD-L1 are co-expressed in OSCC. Moreover, treatment with BAY60-6583 induced PD-L1 expression in the CAL-27 cells, which was partially reduced in cells pretreated with PDTC, suggesting that A2BR agonists induce PD-L1 expression via the induction of the NF-κ B signaling pathway. Furthermore, high A2BR expression in OSCC was associated with lower infiltration of NK cells. Additionally, our results demonstrated that treatment with MRS-1706 (an A2BR inverse agonist) and/or CD274 (a PD-L1-neutralizing antibody) promoted NK cell recruitment and cytotoxicity against OSCC cells. Altogether, our findings highlight the synergistic effect of co-inhibition of A2BR and PD-L1 in the treatment of OSCC via the modulation of NK cell recruitment and cytotoxicity.
Collapse
Affiliation(s)
- Bing Wang
- Department of Oral and Maxillofacial Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University & Institute of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Wang
- Department of Oral and Maxillofacial Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University & Institute of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chengzhe Yang
- Department of Oral and Maxillofacial Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University & Institute of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhaodi Nan
- Institute of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dan Ai
- Institute of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xin Wang
- Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huayang Wang
- Department of Clinical Laboratory, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xun Qu
- Institute of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fengcai Wei
- Department of Oral and Maxillofacial Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University & Institute of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
35
|
Kaidun P, Holzmayer SJ, Greiner SM, Seller A, Tegeler CM, Hagelstein I, Mauermann J, Engler T, Koch A, Hartkopf AD, Salih HR, Märklin M. Targeting NKG2DL with Bispecific NKG2D-CD16 and NKG2D-CD3 Fusion Proteins on Triple-Negative Breast Cancer. Int J Mol Sci 2023; 24:13156. [PMID: 37685962 PMCID: PMC10487695 DOI: 10.3390/ijms241713156] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a particularly aggressive subtype of breast cancer with a poor response rate to conventional systemic treatment and high relapse rates. Members of the natural killer group 2D ligand (NKG2DL) family are expressed on cancer cells but are typically absent from healthy tissues; thus, they are promising tumor antigens for novel immunotherapeutic approaches. We developed bispecific fusion proteins (BFPs) consisting of the NKG2D receptor domain targeting multiple NKG2DLs, fused to either anti-CD3 (NKG2D-CD3) or anti-CD16 (NKG2D-CD16) Fab fragments. First, we characterized the expression of the NKG2DLs (MICA, MICB, ULBP1-4) on TNBC cell lines and observed the highest surface expression for MICA and ULBP2. Targeting TNBC cells with NKG2D-CD3/CD16 efficiently activated both NK and T cells, leading to their degranulation and cytokine release and lysis of TNBC cells. Furthermore, PBMCs from TNBC patients currently undergoing chemotherapy showed significantly higher NK and T cell activation and tumor cell lysis when stimulated with NKG2D-CD3/CD16. In conclusions, BFPs activate and direct the NK and T cells of healthy and TNBC patients against TNBC cells, leading to efficient eradication of tumor cells. Therefore, NKG2D-based NK and T cell engagers could be a valuable addition to the treatment options for TNBC patients.
Collapse
Affiliation(s)
- Polina Kaidun
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, 72076 Tuebingen, Germany; (P.K.); (S.J.H.); (S.M.G.); (A.S.); (I.H.); (J.M.); (H.R.S.)
- Cluster of Excellence iFIT (EXC 2180) ‘Image–Guided and Functionally Instructed Tumor Therapies’, Eberhard Karls University Tuebingen, 72074 Tuebingen, Germany
| | - Samuel J. Holzmayer
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, 72076 Tuebingen, Germany; (P.K.); (S.J.H.); (S.M.G.); (A.S.); (I.H.); (J.M.); (H.R.S.)
- Cluster of Excellence iFIT (EXC 2180) ‘Image–Guided and Functionally Instructed Tumor Therapies’, Eberhard Karls University Tuebingen, 72074 Tuebingen, Germany
| | - Sarah M. Greiner
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, 72076 Tuebingen, Germany; (P.K.); (S.J.H.); (S.M.G.); (A.S.); (I.H.); (J.M.); (H.R.S.)
- Cluster of Excellence iFIT (EXC 2180) ‘Image–Guided and Functionally Instructed Tumor Therapies’, Eberhard Karls University Tuebingen, 72074 Tuebingen, Germany
- Department of Obstetrics and Gynecology, University Hospital Tuebingen, 72076 Tuebingen, Germany; (C.M.T.); (T.E.); (A.K.); (A.D.H.)
| | - Anna Seller
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, 72076 Tuebingen, Germany; (P.K.); (S.J.H.); (S.M.G.); (A.S.); (I.H.); (J.M.); (H.R.S.)
- Cluster of Excellence iFIT (EXC 2180) ‘Image–Guided and Functionally Instructed Tumor Therapies’, Eberhard Karls University Tuebingen, 72074 Tuebingen, Germany
- Department of Obstetrics and Gynecology, University Hospital Tuebingen, 72076 Tuebingen, Germany; (C.M.T.); (T.E.); (A.K.); (A.D.H.)
| | - Christian M. Tegeler
- Department of Obstetrics and Gynecology, University Hospital Tuebingen, 72076 Tuebingen, Germany; (C.M.T.); (T.E.); (A.K.); (A.D.H.)
| | - Ilona Hagelstein
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, 72076 Tuebingen, Germany; (P.K.); (S.J.H.); (S.M.G.); (A.S.); (I.H.); (J.M.); (H.R.S.)
- Cluster of Excellence iFIT (EXC 2180) ‘Image–Guided and Functionally Instructed Tumor Therapies’, Eberhard Karls University Tuebingen, 72074 Tuebingen, Germany
| | - Jonas Mauermann
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, 72076 Tuebingen, Germany; (P.K.); (S.J.H.); (S.M.G.); (A.S.); (I.H.); (J.M.); (H.R.S.)
- Cluster of Excellence iFIT (EXC 2180) ‘Image–Guided and Functionally Instructed Tumor Therapies’, Eberhard Karls University Tuebingen, 72074 Tuebingen, Germany
| | - Tobias Engler
- Department of Obstetrics and Gynecology, University Hospital Tuebingen, 72076 Tuebingen, Germany; (C.M.T.); (T.E.); (A.K.); (A.D.H.)
| | - André Koch
- Department of Obstetrics and Gynecology, University Hospital Tuebingen, 72076 Tuebingen, Germany; (C.M.T.); (T.E.); (A.K.); (A.D.H.)
| | - Andreas D. Hartkopf
- Department of Obstetrics and Gynecology, University Hospital Tuebingen, 72076 Tuebingen, Germany; (C.M.T.); (T.E.); (A.K.); (A.D.H.)
| | - Helmut R. Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, 72076 Tuebingen, Germany; (P.K.); (S.J.H.); (S.M.G.); (A.S.); (I.H.); (J.M.); (H.R.S.)
- Cluster of Excellence iFIT (EXC 2180) ‘Image–Guided and Functionally Instructed Tumor Therapies’, Eberhard Karls University Tuebingen, 72074 Tuebingen, Germany
| | - Melanie Märklin
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, 72076 Tuebingen, Germany; (P.K.); (S.J.H.); (S.M.G.); (A.S.); (I.H.); (J.M.); (H.R.S.)
- Cluster of Excellence iFIT (EXC 2180) ‘Image–Guided and Functionally Instructed Tumor Therapies’, Eberhard Karls University Tuebingen, 72074 Tuebingen, Germany
| |
Collapse
|
36
|
Li R, Cao L. The role of tumor-infiltrating lymphocytes in triple-negative breast cancer and the research progress of adoptive cell therapy. Front Immunol 2023; 14:1194020. [PMID: 37275874 PMCID: PMC10233026 DOI: 10.3389/fimmu.2023.1194020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
The treatment outcome of breast cancer is closely related to estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. Triple-negative breast cancer (TNBC) lacking ER, PR, and HER2 expression has limited treatment options and a poor prognosis. Tumor-infiltrating lymphocytes (TILs) play a role in promoting or resisting tumors by affecting the tumor microenvironment and are known as key regulators in breast cancer progression. However, treatments for TNBC (e.g., surgery, chemotherapy and radiotherapy) have non-satisfaction's curative effect so far. This article reviews the role of different types of TILs in TNBC and the research progress of adoptive cell therapy, aiming to provide new therapeutic approaches for TNBC.
Collapse
Affiliation(s)
- Ruonan Li
- Oncology Department, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Lili Cao
- Oncology Department, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine and Shandong Lung Cancer Institute, Jinan, China
| |
Collapse
|
37
|
Munkácsy G, Santarpia L, Győrffy B. Therapeutic Potential of Tumor Metabolic Reprogramming in Triple-Negative Breast Cancer. Int J Mol Sci 2023; 24:ijms24086945. [PMID: 37108109 PMCID: PMC10138520 DOI: 10.3390/ijms24086945] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/28/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, with clinical features of high metastatic potential, susceptibility to relapse, and poor prognosis. TNBC lacks the expression of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). It is characterized by genomic and transcriptional heterogeneity and a tumor microenvironment (TME) with the presence of high levels of stromal tumor-infiltrating lymphocytes (TILs), immunogenicity, and an important immunosuppressive landscape. Recent evidence suggests that metabolic changes in the TME play a key role in molding tumor development by impacting the stromal and immune cell fractions, TME composition, and activation. Hence, a complex inter-talk between metabolic and TME signaling in TNBC exists, highlighting the possibility of uncovering and investigating novel therapeutic targets. A better understanding of the interaction between the TME and tumor cells, and the underlying molecular mechanisms of cell-cell communication signaling, may uncover additional targets for better therapeutic strategies in TNBC treatment. In this review, we aim to discuss the mechanisms in tumor metabolic reprogramming, linking these changes to potential targetable molecular mechanisms to generate new, physical science-inspired clinical translational insights for the cure of TNBC.
Collapse
Affiliation(s)
- Gyöngyi Munkácsy
- National Laboratory for Drug Research and Development, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary
- Oncology Biomarker Research Group, Research Centre for Natural Sciences, Institute of Enzymology, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary
| | | | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Tűzoltó u. 5-7, 1094 Budapest, Hungary
- Department of Pediatrics, Semmelweis University, Tűzoltó u. 5-7, 1094 Budapest, Hungary
| |
Collapse
|