1
|
Ellert-Miklaszewska A, Pilanc P, Poleszak K, Roura AJ, Cyranowski S, Ghosh M, Baluszek S, Pasierbinska M, Gielniewski B, Swatler J, Hovorova Y, Wojnicki K, Kaminska B. 7aaRGD - a novel SPP1/integrin signaling-blocking peptide reverses immunosuppression and improves anti-PD-1 immunotherapy outcomes in experimental gliomas. J Exp Clin Cancer Res 2025; 44:132. [PMID: 40281508 PMCID: PMC12032770 DOI: 10.1186/s13046-025-03393-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) present clinical benefits in many cancer patients but invariably fail in glioblastoma (GBM), the most common and deadly primary brain tumor. The lack of ICIs efficacy in GBM is attributed to the accumulation of tumor-reprogrammed glioma-associated myeloid cells (GAMs) that create a "cold" immunosuppressive tumor microenvironment (TME), impeding the infiltration and activation of effector T cells. GBM-derived αvβ3/αvβ5-integrin ligands, including SPP1, were shown to mediate the emergence of GAMs. We hypothesized that a combination strategy aiming to block the reprogramming of GAMs using a synthetic 7aaRGD peptide that targets SPP1/integrin signaling might overcome resistance to ICIs and reinvigorate anti-tumor immunity. METHODS Matrigel invasion assay was used to test the efficacy of 7aaRGD in glioma-microglia co-cultures. We determined the impact of 7aaRGD, administered as a monotherapy or combined with PD-1 blockade, on tumor growth, GAMs accumulation and phenotypes, arginase-1 levels and neovasculature in experimental gliomas. The effects of treatments on the tumor immune landscape were dissected using multiparameter flow cytometry, immunocytochemistry, cytokine profiling and RNA-seq analysis of sorted GAMs followed by CITE-seq based data deconvolution. RESULTS 7aaRGD efficiently blocked microglia-dependent invasion of human and mouse glioma cells in vitro. Intratumorally delivered 7aaRGD alone did not reduce tumor growth in orthotopic gliomas but prevented the emergence of immunosuppressive GAMs and led to normalization of peritumoral blood vessels. Combining 7aaRGD with anti-PD-1 antibody resulted in reduced tumor growth, with an increase in the number of proliferating, interferon-ɣ producing CD8+T cells and depletion of regulatory T cells. Transcriptomic profiles of myeloid cells were altered by the combined treatment, reflecting the restored "hot" inflammatory TME and boosted immunotherapy responses. Intratumoral administration of 7aaRGD similarly modified the phenotypes of GAMs in human U87-MG gliomas in immunocompromised mice. Exploration of transcriptomic datasets revealed that high expression of integrin receptor coding genes in pre-treatment biopsies was associated with a poorer response to immune check-point blockade in patients with several types of cancers. CONCLUSIONS We demonstrate that combining the blockade of SPP1/integrin signaling with ICIs modifies innate immunity and reinvigorates adaptive antitumor responses, which paves the way to improve immunotherapy outcomes in GBM.
Collapse
Affiliation(s)
| | - Paulina Pilanc
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Katarzyna Poleszak
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Adria-Jaume Roura
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Salwador Cyranowski
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Mitrajit Ghosh
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Szymon Baluszek
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Maria Pasierbinska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Bartłomiej Gielniewski
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Julian Swatler
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Yuliana Hovorova
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Kamil Wojnicki
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland.
| |
Collapse
|
2
|
Yi F, Wu H, Zhao HK. Role of triggering receptor expressed on myeloid cells 1/2 in secondary injury after cerebral hemorrhage. World J Clin Cases 2025; 13:100312. [PMID: 40144485 PMCID: PMC11670023 DOI: 10.12998/wjcc.v13.i9.100312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/26/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024] Open
Abstract
Intracerebral hemorrhage (ICH) is a common severe emergency in neurosurgery, causing tremendous economic pressure on families and society and devastating effects on patients both physically and psychologically, especially among patients with poor functional outcomes. ICH is often accompanied by decreased consciousness and limb dysfunction. This seriously affects patients' ability to live independently. Although rapid advances in neurosurgery have greatly improved patient survival, there remains insufficient evidence that surgical treatment significantly improves long-term outcomes. With in-depth pathophysiological studies after ICH, increasing evidence has shown that secondary injury after ICH is related to long-term prognosis and that the key to secondary injury is various immune-mediated neuroinflammatory reactions after ICH. In basic and clinical studies of various systemic inflammatory diseases, triggering receptor expressed on myeloid cells 1/2 (TREM-1/2), and the TREM receptor family is closely related to the inflammatory response. Various inflammatory diseases can be upregulated and downregulated through receptor intervention. How the TREM receptor functions after ICH, the types of results from intervention, and whether the outcomes can improve secondary brain injury and the long-term prognosis of patients are unknown. An analysis of relevant research results from basic and clinical trials revealed that the inhibition of TREM-1 and the activation of TREM-2 can alleviate the neuroinflammatory immune response, significantly improve the long-term prognosis of neurological function in patients with cerebral hemorrhage, and thus improve the ability of patients to live independently.
Collapse
Affiliation(s)
- Fan Yi
- Xi’an Medical University, Xi’an 710021, Shaanxi Province, China
| | - Hao Wu
- Xi’an Medical University, Xi’an 710021, Shaanxi Province, China
- Department of Neurosurgery, The Second Affiliated Hospital of Xi’an Medical University, Xi’an 710038, Shaanxi Province, China
| | - Hai-Kang Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Xi’an Medical University, Xi’an 710038, Shaanxi Province, China
| |
Collapse
|
3
|
Terada Y, Li W, Amrute JM, Bery AI, Liu CR, Nunna V, Frye CC, Dun H, Koenig AL, Luehmann HP, Heo GS, Owen MC, Wein AN, Liu Y, Ritter JH, Prabhu SD, Nava RG, Gelman AE, Cella M, Colonna M, Lavine KJ, Kreisel D. Tissue-resident CCR2 + macrophage TREM-1/3 signaling is necessary for monocyte and neutrophil recruitment to injured hearts. Cell Rep 2025; 44:115380. [PMID: 40042972 DOI: 10.1016/j.celrep.2025.115380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/16/2024] [Accepted: 02/11/2025] [Indexed: 03/29/2025] Open
Abstract
Triggering receptor expressed on myeloid cells 1 (TREM-1) has been shown to amplify inflammatory signals, such as Toll-like receptor signaling, after infection and sterile injury. While previous studies have demonstrated that TREM-1 activation in circulating immune cells promotes injury, the role of TREM-1 signaling in tissue-resident cells in the context of sterile inflammation remains poorly understood. Here, we used a cardiac transplantation model to dissect how Trem1/3 expression on heart-resident cells regulates sterile inflammation. TREM-1 is expressed in heart-resident C-C chemokine receptor 2 (CCR2)+ macrophages in mice and humans. TREM-1/3 signaling in tissue-resident CCR2+ macrophages promotes C-C motif chemokine ligand 3 (CCL3) production and is critical for recruiting neutrophils and CCR2+ monocytes after heart transplantation. We demonstrate prolonged allograft survival after transplantation of Trem1/3-deficient compared with wild-type hearts. We identify TREM-1/3 signaling in donor grafts as a potential future therapeutic target to blunt inflammation after myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Yuriko Terada
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wenjun Li
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Junedh M Amrute
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amit I Bery
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Charles R Liu
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Venkatrao Nunna
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christian Corbin Frye
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hao Dun
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew L Koenig
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hannah P Luehmann
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gyu Seong Heo
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Macee C Owen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alexander N Wein
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yongjian Liu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jon H Ritter
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sumanth D Prabhu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ruben G Nava
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew E Gelman
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marina Cella
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marco Colonna
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kory J Lavine
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
4
|
Zhu S, Hu J, Lin J, Wang C, Wang E. Co-Expression of Dominant-Negative TGF-β Receptor 2 Enhances the Therapeutic Efficacy of Novel TREM1/DAP12-BB-Based CAR-T Cells in Solid Tumours. Immunology 2025; 174:310-321. [PMID: 39746895 DOI: 10.1111/imm.13888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has exhibited remarkable efficacy in the treatment of haematological malignancies, yet its application in solid tumours is hindered by the immunosuppressive tumour microenvironment (TME). In this study, a novel SS1-TREM1/DAP12-BB CAR-T cell was devised to target ovarian cancer and further engineered to co-express the dominant-negative TGF-β receptor 2 (DNR) to combat CAR-T cell exhaustion in TME. The incorporation of DNR effectively blocked TGF-β signalling, thereby enhancing CAR-T cell survival and antitumor activity in a TGF-β1-rich environment. In vivo evaluations demonstrated that DNR co-expression potentiated the antitumor efficacy of TREM1/DAP12-BB CAR-T cells and conferred resilience against tumour rechallenge. These findings underscore the broad potential of DNR co-expression in CAR design, presenting a novel therapeutic strategy for patients with recurrent ovarian cancer.
Collapse
MESH Headings
- Humans
- Female
- Animals
- Immunotherapy, Adoptive/methods
- Ovarian Neoplasms/therapy
- Ovarian Neoplasms/immunology
- Ovarian Neoplasms/pathology
- Tumor Microenvironment/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Mice
- Receptor, Transforming Growth Factor-beta Type II/genetics
- Receptor, Transforming Growth Factor-beta Type II/metabolism
- Cell Line, Tumor
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/immunology
- Adaptor Proteins, Signal Transducing/metabolism
- Triggering Receptor Expressed on Myeloid Cells-1/genetics
- Triggering Receptor Expressed on Myeloid Cells-1/immunology
- Triggering Receptor Expressed on Myeloid Cells-1/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- T-Lymphocytes/metabolism
- Xenograft Model Antitumor Assays
- Signal Transduction
Collapse
Affiliation(s)
- Sichao Zhu
- Nanjing CART Medical Technology Co. Ltd., Nanjing, P.R. China
| | - Jianping Hu
- Nanjing CART Medical Technology Co. Ltd., Nanjing, P.R. China
| | - Jie Lin
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, P.R. China
| | - Chen Wang
- Nanjing CART Medical Technology Co. Ltd., Nanjing, P.R. China
| | - Enxiu Wang
- Nanjing CART Medical Technology Co. Ltd., Nanjing, P.R. China
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, P.R. China
- Clinical Pathological Diagnosis & Research Center, Youjiang Medical University for Nationalities, Baise, P.R. China
- The Key Laboratory of Molecular Pathology (Hepatobiliary Diseases) of Guangxi, Baise, P.R. China
| |
Collapse
|
5
|
Mestrallet G, Brown M, Vaninov N, Cho NW, Velazquez L, Ananthanarayanan A, Spitzer M, Vabret N, Cimen Bozkus C, Samstein RM, Bhardwaj N. Coordinated macrophage and T cell interactions mediate response to checkpoint blockade in colorectal cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637954. [PMID: 40027748 PMCID: PMC11870396 DOI: 10.1101/2025.02.12.637954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Mismatch repair deficiency (MMRd), either due to inherited or somatic mutation, is prevalent in colorectal cancer (CRC) and other cancers. While anti-PD-1 therapy is utilized in both local and advanced disease, up to 50% of MMRd CRC fail to respond. Using animal and human models of MMRd, we determined that interactions between MHC+ C1Q+ CXCL9+ macrophages and TCF+ BHLHE40+ PRF1+ T cell subsets are associated with control of MMRd tumor growth, during anti-PD-1 treatment. In contrast, resistance is associated with upregulation of TIM3, LAG3, TIGIT, and PD-1 expression on T cells, and infiltration of the tumor with immunosuppressive TREM2+ macrophages and monocytes. By combining anti-PD-1 with anti-LAG3/CTLA4/TREM2, up to 100% tumor eradication was achieved in MMRd CRC and remarkably, in >70% in MMRp CRC. This study identifies key T cell and macrophage subsets mediating the efficacy of immunotherapy in overcoming immune escape in both MMRd and MMRp CRC settings. Abstract Figure Highlights Anti-PD-1 therapy leads to the accumulation and colocalization of MHCI/II+ C1Q+ CXCL9+ macrophages and DCs with TCF+ CCL5+ T cells that have high TCR diversity.Resistance to anti-PD-1 therapy involves multiple T cell checkpoints, TREM2+ macrophages, IL1B+ TREM1+ monocytes and neutrophils, and IFITM+ tumor cells.Simultaneous blockade of PD-1, LAG3, CTLA-4 and TREM2 dramatically prevents progression of both MMRd and MMRp tumors.Combination therapy completely eliminates tumors by leveraging MHC+ macrophage, CD4+ and CD8+ T cell interactions, facilitating durable anti-tumor effects.
Collapse
|
6
|
Wang H, Zhai M, Li M, Han C, Liu L, Huang C, Zhao L, Yu D, Tao K, Ren J, Lin Z, Zhang T. Phenotypic plasticity and increased infiltration of peripheral blood-derived TREM1 + mono-macrophages following radiotherapy in rectal cancer. Cell Rep Med 2025; 6:101887. [PMID: 39793571 PMCID: PMC11866444 DOI: 10.1016/j.xcrm.2024.101887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/29/2024] [Accepted: 12/05/2024] [Indexed: 01/13/2025]
Abstract
In our previously reported phase 2 and phase 3 studies, the combination of short-course radiotherapy and neoadjuvant immunochemotherapy (SIC) is established as effective cancer therapies for locally advanced rectal cancer (LARC). Here, we apply multi-omic analyses to paired pre- and post-treatment LARC specimens undergoing SIC. The peripheral blood-derived TREM1+ mono-macrophage subsets that display a pro-inflammatory phenotype are identified and correlate with complete response to SIC. Mechanically, ionizing radiation (IR) induces peripheral TREM1+ mono-macrophage expansion in tumors. Following IR, the loss of TREM1 in mono-macrophages undermines antitumor immunity by altering mono-macrophage differentiation and inhibiting CD8+ T cell infiltration and activation. The TREM1+ mono-macrophage response may rely on activation of key inflammatory pathways, including nuclear factor κB (NF-κB) signaling and Toll-like receptor pathway. Pharmacological inhibition of TREM1 signaling abolishes IR-induced immunoactivation and reduces combined IR and/or anti-PD-1 treatment. Thus, we establish a crucial role of a mono-macrophage state in mediating effective cancer therapy.
Collapse
Affiliation(s)
- Haihong Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Menglan Zhai
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Mingjie Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Chaoqun Han
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lichao Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Chuying Huang
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China; Hubei Provincial Key Lab of Selenium Resources and Bioapplications, Enshi, China
| | - Lei Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Dandan Yu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinghua Ren
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Zhenyu Lin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China.
| | - Tao Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China.
| |
Collapse
|
7
|
Ray A, Hu KH, Kersten K, Courau T, Kuhn NF, Zaleta-Linares I, Samad B, Combes AJ, Krummel MF. Targeting CD206+ macrophages disrupts the establishment of a key antitumor immune axis. J Exp Med 2025; 222:e20240957. [PMID: 39601781 PMCID: PMC11602655 DOI: 10.1084/jem.20240957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/01/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
CD206 is a common marker of a putative immunosuppressive "M2" state in tumor-associated macrophages (TAMs). We made a novel conditional CD206 (Mrc1) knock-in mouse to specifically visualize and/or deplete CD206+ TAMs. Early depletion of CD206+ macrophages and monocytes (Mono/Macs) led to the indirect loss of conventional type I dendritic cells (cDC1), CD8 T cells, and NK cells in tumors. CD206+ TAMs robustly expressed CXCL9, contrasting with stress-responsive Spp1-expressing TAMs and immature monocytes, which became prominent with early depletion. CD206+ TAMs differentially attracted activated CD8 T cells, and the NK and CD8 T cells in CD206-depleted tumors were deficient in Cxcr3 and cDC1-supportive Xcl1 and Flt3l expressions. Disrupting this key antitumor axis decreased tumor control by antigen-specific T cells in mice. In human cancers, a CD206Replete, but not a CD206Depleted Mono/Mac gene signature correlated robustly with CD8 T cell, cDC1, and NK signatures and was associated with better survival. These findings negate the unqualified classification of CD206+ "M2-like" macrophages as immunosuppressive.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/immunology
- Mice
- Killer Cells, Natural/immunology
- Lectins, C-Type/metabolism
- Lectins, C-Type/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/genetics
- Macrophages/immunology
- Macrophages/metabolism
- Humans
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Mannose Receptor
- Mice, Inbred C57BL
- Mannose-Binding Lectins/metabolism
- Receptors, CXCR3/metabolism
- Receptors, CXCR3/genetics
- Chemokine CXCL9/metabolism
- Chemokine CXCL9/genetics
- Tumor-Associated Macrophages/immunology
- Tumor-Associated Macrophages/metabolism
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/genetics
- Neoplasms/immunology
- Neoplasms/genetics
- Gene Knock-In Techniques
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/genetics
- Monocytes/immunology
- Monocytes/metabolism
- Receptors, Chemokine
Collapse
Affiliation(s)
- Arja Ray
- Department of Pathology, University of California, San Francisco, CA, USA
- ImmunoX Initiative, University of California, San Francisco, CA, USA
| | - Kenneth H. Hu
- Department of Pathology, University of California, San Francisco, CA, USA
- ImmunoX Initiative, University of California, San Francisco, CA, USA
| | - Kelly Kersten
- Department of Pathology, University of California, San Francisco, CA, USA
- ImmunoX Initiative, University of California, San Francisco, CA, USA
| | - Tristan Courau
- Department of Pathology, University of California, San Francisco, CA, USA
- ImmunoX Initiative, University of California, San Francisco, CA, USA
| | - Nicholas F. Kuhn
- Department of Pathology, University of California, San Francisco, CA, USA
- ImmunoX Initiative, University of California, San Francisco, CA, USA
| | - Itzia Zaleta-Linares
- Department of Pathology, University of California, San Francisco, CA, USA
- ImmunoX Initiative, University of California, San Francisco, CA, USA
| | - Bushra Samad
- ImmunoX Initiative, University of California, San Francisco, CA, USA
- UCSF CoLabs, University of California, San Francisco, CA, USA
| | - Alexis J. Combes
- Department of Pathology, University of California, San Francisco, CA, USA
- ImmunoX Initiative, University of California, San Francisco, CA, USA
- UCSF CoLabs, University of California, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Matthew F. Krummel
- Department of Pathology, University of California, San Francisco, CA, USA
- ImmunoX Initiative, University of California, San Francisco, CA, USA
- UCSF CoLabs, University of California, San Francisco, CA, USA
| |
Collapse
|
8
|
Rannikko JH, Hollmén M. Clinical landscape of macrophage-reprogramming cancer immunotherapies. Br J Cancer 2024; 131:627-640. [PMID: 38831013 PMCID: PMC11333586 DOI: 10.1038/s41416-024-02715-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 06/05/2024] Open
Abstract
Tumour-associated macrophages (TAMs) sustain a tumour-supporting and immunosuppressive milieu and therefore aggravate cancer prognosis. To modify TAM behaviour and unlock their anti-tumoural potential, novel TAM-reprogramming immunotherapies are being developed at an accelerating rate. At the same time, scientific discoveries have highlighted more sophisticated TAM phenotypes with complex biological functions and contradictory prognostic associations. To understand the evolving clinical landscape, we reviewed current and past clinically evaluated TAM-reprogramming cancer therapeutics and summarised almost 200 TAM-reprogramming agents investigated in more than 700 clinical trials. Observable overall trends include a high frequency of overlapping strategies against the same therapeutic targets, development of more complex strategies to improve previously ineffective approaches and reliance on combinatory strategies for efficacy. However, strong anti-tumour efficacy is uncommon, which encourages re-directing efforts on identifying biomarkers for eligible patient populations and comparing similar treatments earlier. Future endeavours will benefit from considering the shortcomings of past treatment strategies and accommodating the emerging complexity of TAM biology.
Collapse
Affiliation(s)
- Jenna H Rannikko
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland
- Turku Doctoral Program of Molecular Medicine, University of Turku, Turku, Finland
| | - Maija Hollmén
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland.
- Faron Pharmaceuticals Ltd, Turku, Finland.
| |
Collapse
|
9
|
Fan Y, Xu Y, Huo Z, Zhang H, Peng L, Jiang X, Thomson AW, Dai H. Role of triggering receptor expressed on myeloid cells-1 in kidney diseases: A biomarker and potential therapeutic target. Chin Med J (Engl) 2024; 137:1663-1673. [PMID: 38809056 PMCID: PMC11268828 DOI: 10.1097/cm9.0000000000003197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Indexed: 05/30/2024] Open
Abstract
ABSTRACT Triggering receptor expressed on myeloid cells-1 (TREM-1) is a member of the immunoglobulin superfamily. As an amplifier of the inflammatory response, TREM-1 is mainly involved in the production of inflammatory mediators and the regulation of cell survival. TREM-1 has been studied in infectious diseases and more recently in non-infectious disorders. More and more studies have shown that TREM-1 plays an important pathogenic role in kidney diseases. There is evidence that TREM-1 can not only be used as a biomarker for diagnosis of disease but also as a potential therapeutic target to guide the development of novel therapeutic agents for kidney disease. This review summarized molecular biology of TREM-1 and its signaling pathways as well as immune response in the progress of acute kidney injury, renal fibrosis, diabetic nephropathy, immune nephropathy, and renal cell carcinoma.
Collapse
Affiliation(s)
- Yuxi Fan
- Department of Immunology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Ye Xu
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
- Medical College of Guangxi University, Nanning, Guangxi 530004, China
| | - Zhi Huo
- Department of Immunology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Hedong Zhang
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Longkai Peng
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xin Jiang
- Department of Organ Transplantation, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People’s Hospital), Zhengzhou, Henan 450000, China
| | - Angus W. Thomson
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Helong Dai
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
10
|
Schlenker R, Schwalie PC, Dettling S, Huesser T, Irmisch A, Mariani M, Martínez Gómez JM, Ribeiro A, Limani F, Herter S, Yángüez E, Hoves S, Somandin J, Siebourg-Polster J, Kam-Thong T, de Matos IG, Umana P, Dummer R, Levesque MP, Bacac M. Myeloid-T cell interplay and cell state transitions associated with checkpoint inhibitor response in melanoma. MED 2024; 5:759-779.e7. [PMID: 38593812 DOI: 10.1016/j.medj.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/23/2023] [Accepted: 03/17/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND The treatment of melanoma, the deadliest form of skin cancer, has greatly benefited from immunotherapy. However, many patients do not show a durable response, which is only partially explained by known resistance mechanisms. METHODS We performed single-cell RNA sequencing of tumor immune infiltrates and matched peripheral blood mononuclear cells of 22 checkpoint inhibitor (CPI)-naive stage III-IV metastatic melanoma patients. After sample collection, the same patients received CPI treatment, and their response was assessed. FINDINGS CPI responders showed high levels of classical monocytes in peripheral blood, which preferentially transitioned toward CXCL9-expressing macrophages in tumors. Trajectories of tumor-infiltrating CD8+ T cells diverged at the level of effector memory/stem-like T cells, with non-responder cells progressing into a state characterized by cellular stress and apoptosis-related gene expression. Consistently, predicted non-responder-enriched myeloid-T/natural killer cell interactions were primarily immunosuppressive, while responder-enriched interactions were supportive of T cell priming and effector function. CONCLUSIONS Our study illustrates that the tumor immune microenvironment prior to CPI treatment can be indicative of response. In perspective, modulating the myeloid and/or effector cell compartment by altering the described cell interactions and transitions could improve immunotherapy response. FUNDING This research was funded by Roche Pharma Research and Early Development.
Collapse
Affiliation(s)
- Ramona Schlenker
- Roche Innovation Center Munich, Roche Pharma Research and Early Development (pRED), Penzberg, Germany.
| | | | - Steffen Dettling
- Roche Innovation Center Munich, Roche Pharma Research and Early Development (pRED), Penzberg, Germany
| | - Tamara Huesser
- Roche Innovation Center Zurich, pRED, Schlieren, Switzerland
| | - Anja Irmisch
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marisa Mariani
- Roche Innovation Center Zurich, pRED, Schlieren, Switzerland
| | - Julia M Martínez Gómez
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alison Ribeiro
- Roche Innovation Center Zurich, pRED, Schlieren, Switzerland
| | - Florian Limani
- Roche Innovation Center Zurich, pRED, Schlieren, Switzerland
| | - Sylvia Herter
- Roche Innovation Center Zurich, pRED, Schlieren, Switzerland
| | - Emilio Yángüez
- Roche Innovation Center Zurich, pRED, Schlieren, Switzerland
| | - Sabine Hoves
- Roche Innovation Center Munich, Roche Pharma Research and Early Development (pRED), Penzberg, Germany
| | - Jitka Somandin
- Roche Innovation Center Zurich, pRED, Schlieren, Switzerland
| | | | | | | | - Pablo Umana
- Roche Innovation Center Zurich, pRED, Schlieren, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marina Bacac
- Roche Innovation Center Zurich, pRED, Schlieren, Switzerland
| |
Collapse
|
11
|
Huang S, He L, Zhao Y, Wei Y, Wang Q, Gao Y, Jiang X. TREM1 + tumor-associated macrophages secrete CCL7 to promote hepatocellular carcinoma metastasis. J Cancer Res Clin Oncol 2024; 150:320. [PMID: 38914803 PMCID: PMC11196310 DOI: 10.1007/s00432-024-05831-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/03/2024] [Indexed: 06/26/2024]
Abstract
PURPOSE Tumor-associated macrophages (TAMs) play a critical role in hepatocellular carcinoma (HCC) progression and metastasis. Systematic investigation of the cross-talk between TAMs and HCC may help in searching for the critical target to guard against HCC metastasis. METHODS AND RESULTS Herein, we found that TREM1 highly expressed in HCC tissue by analyzing the data obtain from GEO database. Interestingly, the results indicated that TREM1 was primarily expressed by monocytes. Immune infiltration studies further validated that TREM1 expression was positively related with increased infiltration of macrophages in HCC tissues. In vitro, we observed that TREM1 knockdown significantly abrogated the effect of TAMs in promoting the metastasis and epithelial-mesenchymal transition (EMT) of HCC cells. Additionally, cytokine array detection identified CCL7 as the main responsive cytokine following with TREM1 knockdown in TAMs. CONCLUSION Taken together, our findings strongly suggested that high expression of TREM1 was positively associated with metastasis and poor prognosis of HCC. Furthermore, TAMs expressing TREM1 contribute to EMT-based metastasis through secreting CCL7. These results provide a novel insight into the potential development of targeting the TREM1/CCL7 pathway for preventing metastatic HCC.
Collapse
Affiliation(s)
- Simin Huang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
- Liver Cancer Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Longguang He
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangdong Guangzhou, 510282, China
- Department of Hepatobiliary Surgery, Gaozhou People's Hospital, Guangdong Gaozhou, 525000, China
| | - Yufei Zhao
- Department of Gastrointestinal Surgery, Lab of Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yuxuan Wei
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
- Liver Cancer Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Qiwen Wang
- Department of Gastrointestinal Surgery, Lab of Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangdong Guangzhou, 510282, China.
| | - Xiaofeng Jiang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
- Liver Cancer Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
12
|
Ray A, Hu KH, Kersten K, Courau T, Kuhn NF, Zaleta-Linares I, Samad B, Combes AJ, Krummel MF. Critical role of CD206+ macrophages in promoting a cDC1-NK-CD8 T cell anti-tumor immune axis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.31.560822. [PMID: 37961697 PMCID: PMC10635006 DOI: 10.1101/2023.10.31.560822] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Tumor-associated macrophages (TAMs) are frequently categorized as being 'M1' or 'M2' polarized, even as substantial data challenges this binary modeling of macrophage cell state. One molecule consistently referenced as a delineator of a putative immunosuppressive 'M2' state is the surface protein CD206. We thus made a novel conditional CD206 (Mrc1) knock-in mouse to specifically visualize and/or deplete CD206+ 'M2-like' TAMs and assess their correspondence with pro-tumoral immunity. Early, but not late depletion of CD206+ macrophages and monocytes (here, 'Mono/Macs') led to an indirect loss of a key anti-tumor network of NK cells, conventional type I dendritic cells (cDC1) and CD8 T cells. Among myeloid cells, we found that the CD206+ TAMs are the primary producers of CXCL9, and able to differentially attract activated CD8 T cells. In contrast, a population of stress-responsive TAMs ("Hypoxic" or Spp1+) and immature monocytes, which lack CD206 expression and become prominent following early depletion, expressed markedly diminished levels of CXCL9. Those NK and CD8 T cells which enter CD206-depleted tumors express vastly reduced levels of the corresponding receptor Cxcr3, the cDC1-attracting chemokine Xcl1 and cDC1 growth factor Flt3l transcripts. Consistent with the loss of this critical network, early CD206+ TAM depletion decreased tumor control by antigen specific CD8 T cells in mice. Likewise, in humans, the CD206Replete, but not the CD206Depleted Mono/Mac gene signature correlated robustly with CD8 T cell, NK cell and stimulatory cDC1 gene signatures and transcriptomic signatures skewed towards CD206Replete Mono/Macs associated with better survival. Together, these findings negate the unqualified classification of CD206+ 'M2-like' macrophages as immunosuppressive by illuminating contexts for their role in organizing a critical tumor-reactive archetype of immunity.
Collapse
Affiliation(s)
- Arja Ray
- Department of Pathology, University of California, San Francisco, CA 94143, USA
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
| | - Kenneth H. Hu
- Department of Pathology, University of California, San Francisco, CA 94143, USA
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
| | - Kelly Kersten
- Department of Pathology, University of California, San Francisco, CA 94143, USA
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
| | - Tristan Courau
- Department of Pathology, University of California, San Francisco, CA 94143, USA
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
| | - Nicholas F. Kuhn
- Department of Pathology, University of California, San Francisco, CA 94143, USA
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
| | - Itzia Zaleta-Linares
- Department of Pathology, University of California, San Francisco, CA 94143, USA
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
| | - Bushra Samad
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
- UCSF CoLabs, University of California, San Francisco, CA 94143, USA
| | - Alexis J. Combes
- Department of Pathology, University of California, San Francisco, CA 94143, USA
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
- UCSF CoLabs, University of California, San Francisco, CA 94143, USA
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Matthew F. Krummel
- Department of Pathology, University of California, San Francisco, CA 94143, USA
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
- UCSF CoLabs, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
13
|
Li C, Cai C, Xu D, Chen X, Song J. TREM1: Activation, signaling, cancer and therapy. Pharmacol Res 2024; 204:107212. [PMID: 38749377 DOI: 10.1016/j.phrs.2024.107212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/12/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024]
Abstract
Triggering receptor expressed on myeloid cells 1 (TREM1) is a cell surface receptor expressed on neutrophils, monocytes and some tissue macrophages, where it functions as an immunoregulator that controls myeloid cell responses. The activation of TREM1 is suggested to be an upregulation-based, ligands-induced and structural multimerization-mediated process, in which damage- and pathogen-associated molecular patterns play important roles. Activated TREM1 initiates an array of downstream signaling pathways that ultimately result in the production of pro-inflammatory cytokines and chemokines, whereby it functions as an amplifier of inflammation and is implicated in the pathogenesis of many inflammation-associated diseases. Over the past decade, there has been growing evidence for the involvement of TREM1 overactivation in tumor stroma inflammation and cancer progression. Indeed, it was shown that TREM1 promotes tumor progression, immunosuppression, and resistance to therapy by activating tumor-infiltrating myeloid cells. TREM1-deficiency or blockade provide protection against tumors and reverse the resistance to anti-PD-1/PD-L1 therapy and arginine-deprivation therapy in preclinical models. Here, we first review the structure, activation modes and signaling pathways of TREM1 and emphasize the role of soluble TREM1 as a biomarker of infection and cancer. We then focus on the role of TREM1 in cancer and systematically summarize its expression patterns, upregulation mechanisms and functions in tumor development and progression. Lastly, we discuss the therapeutic prospects of TREM1 inhibition, via effective pharmacological inhibitors, in treating cancer and other diseases.
Collapse
Affiliation(s)
- Chenyang Li
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, Wuhan, Hubei 430030, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei 430030, China
| | - Chujun Cai
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis(Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Dafeng Xu
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, Wuhan, Hubei 430030, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei 430030, China
| | - Xiaoping Chen
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, Wuhan, Hubei 430030, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, Hubei 430030, China; Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, Hubei 430030, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei 430030, China.
| | - Jia Song
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, Wuhan, Hubei 430030, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei 430030, China.
| |
Collapse
|
14
|
Kannan B, Pandi C, Pandi A, Jayaseelan VP, Arumugam P. Triggering receptor expressed in myeloid cells 1 (TREM1) as a potential prognostic biomarker and association with immune infiltration in oral squamous cell carcinoma. Arch Oral Biol 2024; 161:105926. [PMID: 38442472 DOI: 10.1016/j.archoralbio.2024.105926] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
OBJECTIVE The objective of this study is to investigate the significance and impact of Triggering Receptor Expression on Myeloid Cells-1 (TREM-1) in the context of oral squamous cell carcinoma (OSCC). METHODS This study involved 51 OSCC patients, 21 oral epithelial dysplasia patients (OED), and the TCGA-HNSCC dataset. TREM1 expression was analyzed using quantitative reverse transcription PCR (RT-qPCR), and Western blot. Furthermore, we assessed TREM1 expression for clinicopathological, prognosis, and immune infiltration correlations utilizing publicly available TCGA-HNSCC datasets through UALCAN, Protein Atlas, Kaplan-Meier plot, TIMER2.0, and TISIDB. We also conducted bioinformatic analyses for functional enrichment employing publicly accessible datasets. RESULTS TREM1 was significantly upregulated in OSCC and OED when compared to normal tissues, confirmed through multiple methods. Analysis of clinicopathological features showed associations with disease stage, grade, nodal metastasis, HPV status, and TP53 mutation. High TREM1 expression correlated with poorer patient survival. TREM1 was linked to immune cell infiltration and immune-related pathways. CONCLUSION TREM1 is significantly upregulated in OSCC and is associated with poor clinicopathological features and survival. It may hold promise as a therapeutic target and prognostic marker in OSCC. Further research is needed to understand its functional role in OSCC.
Collapse
Affiliation(s)
- Balachander Kannan
- Molecular Biology Lab, Centre for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, TN, India
| | - Chandra Pandi
- Molecular Biology Lab, Centre for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, TN, India
| | - Anitha Pandi
- Clinical Genetics Lab, Centre for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, TN, India
| | - Vijayashree Priyadharsini Jayaseelan
- Clinical Genetics Lab, Centre for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, TN, India
| | - Paramasivam Arumugam
- Molecular Biology Lab, Centre for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, TN, India.
| |
Collapse
|
15
|
Huang T, Wen X, Liang Y, Liu X, Zhao J, Long X. Irreversible Electroporation-Induced Inflammation Facilitates Neutrophil-Mediated Drug Delivery to Enhance Pancreatic Cancer Therapy. Mol Pharm 2024; 21:1998-2011. [PMID: 38412284 DOI: 10.1021/acs.molpharmaceut.4c00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Pancreatic cancer is a deadly disease with a five-year overall survival rate of around 11%. Chemotherapy is a cornerstone in the treatment of this malignancy, but the intratumoral delivery of chemotherapy drugs is impaired by the highly fibrotic tumor-associated stroma. Irreversible electroporation (IRE) is an ablative technique for treating locally advanced pancreatic cancer. During a typical IRE procedure, high-intensity electric pulses are released to kill tumor cells through the irreversible disruption of the cytoplasm membranes. IRE also induces rapid tumor infiltration by neutrophils and offers an opportunity for neutrophil-mediated drug delivery. We herein showed that the IRE-induced neutrophil trafficking was facilitated by the upregulation of neutrophil chemotaxis and migration as well as the release of several chemoattractants. Doxorubicin-loaded bovine serum albumin nanoparticles were prepared and loaded into neutrophils at a ratio of 9.9 ± 1.2 to 11.7 ± 2.0 pg of doxorubicin per cell. The resultant formulation (NP@NEs) efficiently accumulated in the IRE-treated KPC-A377 murine pancreatic tumors with an uptake value of 10.7 ± 1.5 (percent of injected dose per gram of tissue, abbreviated as %ID/g) at 48 h after intravenous injection. In both Panc02 and KPC-A377 murine pancreatic tumor models, the combination of IRE + NP@NEs inhibited tumor growth more effectively than either monotherapy. The tumors treated with the combination also exhibited the lowest frequency of Ki67+ proliferating cells and the highest abundance of terminal deoxynucleotidyl transferase dUTP nick end labeling+ (TUNEL+) apoptotic cells among the experiment groups. Minimal treatment-associated toxicity was observed. Our findings suggest that neutrophil-mediated delivery of chemotherapy drugs is a useful tool to enhance the response of pancreatic cancer to IRE.
Collapse
Affiliation(s)
- Teng Huang
- Department of Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaofei Wen
- Department of Interventional Radiology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 36100, China
- Department of Interventional Radiology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Yuxuan Liang
- Department of Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiao Liu
- Department of Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jun Zhao
- Department of Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xin Long
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|