1
|
Aruna K, Pal S, Khanna A, Bhattacharyya S. Postsynaptic Density Proteins and Their Role in the Trafficking of Group I Metabotropic Glutamate Receptors. J Membr Biol 2024; 257:257-268. [PMID: 39369356 DOI: 10.1007/s00232-024-00326-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system that regulates multiple different forms of synaptic plasticity, including learning and memory. Glutamate transduces its signal by activating ionotropic glutamate receptors and metabotropic glutamate receptors (mGluRs). Group I mGluRs belong to the G protein-coupled receptor (GPCR) family. Regulation of cell surface expression and trafficking of the glutamate receptors represents an important mechanism that assures proper transmission of information at the synapses. There is growing evidence implicating dysregulated glutamate receptor trafficking in the pathophysiology of several neuropsychiatric disorders. The postsynaptic density (PSD) region consists of many specialized proteins which are assembled beneath the postsynaptic membrane of dendritic spines. Many of these proteins interact with group I mGluRs and have essential roles in group I mGluR-mediated synaptic function and plasticity. This review provides up-to-date information on the molecular determinants regulating cell surface expression and trafficking of group I mGluRs and discusses the role of few of these PSD proteins in these processes. As substantial evidences link mGluR dysfunction and maladaptive functioning of many PSD proteins to the pathophysiology of various neuropsychiatric disorders, understanding the role of the PSD proteins in group I mGluR trafficking may provide opportunities for the development of novel therapeutics in multiple neuropsychiatric disorders.
Collapse
Affiliation(s)
- K Aruna
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Knowledge city, Sector - 81, SAS Nagar, Punjab, 140306, India
| | - Subhajit Pal
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Knowledge city, Sector - 81, SAS Nagar, Punjab, 140306, India
| | - Ankita Khanna
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Knowledge city, Sector - 81, SAS Nagar, Punjab, 140306, India
| | - Samarjit Bhattacharyya
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Knowledge city, Sector - 81, SAS Nagar, Punjab, 140306, India.
| |
Collapse
|
2
|
Johnson D, Hagerman R. Medical use of cannabidiol in fragile X syndrome. MEDICINAL USAGE OF CANNABIS AND CANNABINOIDS 2023:415-426. [DOI: 10.1016/b978-0-323-90036-2.00029-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Raghuraman R, Manakkadan A, Richter-Levin G, Sajikumar S. Inhibitory Metaplasticity in Juvenile Stressed Rats Restores Associative Memory in Adulthood by Regulating Epigenetic Complex G9a/GLP. Int J Neuropsychopharmacol 2022; 25:576-589. [PMID: 35089327 PMCID: PMC9352179 DOI: 10.1093/ijnp/pyac008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/23/2021] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Exposure to juvenile stress was found to have long-term effects on the plasticity and quality of associative memory in adulthood, but the underlying mechanisms are still poorly understood. METHODS Three- to four week-old male Wistar rats were subjected to a 3-day juvenile stress paradigm. Their electrophysiological correlates of memory using the adult hippocampal slice were inspected to detect alterations in long-term potentiation and synaptic tagging and capture model of associativity. These cellular alterations were tied in with the behavioral outcome by subjecting the rats to a step-down inhibitory avoidance paradigm to measure strength in their memory. Given the role of epigenetic response in altering plasticity as a repercussion of juvenile stress, we aimed to chart out the possible epigenetic marker and its regulation in the long-term memory mechanisms using quantitative reverse transcription polymerase chain reaction. RESULTS We demonstrate that even long after the elimination of actual stressors, an inhibitory metaplastic state is evident, which promotes synaptic competition over synaptic cooperation and decline in latency of associative memory in the behavioral paradigm despite the exposure to novelty. Mechanistically, juvenile stress led to a heightened expression of the epigenetic marker G9a/GLP complex, which is thus far ascribed to transcriptional silencing and goal-directed behavior. CONCLUSIONS The blockade of the G9a/GLP complex was found to alleviate deficits in long-term plasticity and associative memory during the adulthood of animals exposed to juvenile stress. Our data provide insights on the long-term effects of juvenile stress that involve epigenetic mechanisms, which directly impact long-term plasticity, synaptic tagging and capture, and associative memory.
Collapse
Affiliation(s)
- Radha Raghuraman
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Anoop Manakkadan
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Gal Richter-Levin
- Sagol department of Neurobiology, Department of Psychology, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Sreedharan Sajikumar
- Department of Physiology, National University of Singapore, Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore
| |
Collapse
|
4
|
Hwang JY, Monday HR, Yan J, Gompers A, Buxbaum AR, Sawicka KJ, Singer RH, Castillo PE, Zukin RS. CPEB3-dependent increase in GluA2 subunits impairs excitatory transmission onto inhibitory interneurons in a mouse model of fragile X. Cell Rep 2022; 39:110853. [PMID: 35675768 PMCID: PMC9671216 DOI: 10.1016/j.celrep.2022.110853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/05/2021] [Accepted: 05/01/2022] [Indexed: 01/29/2023] Open
Abstract
Fragile X syndrome (FXS) is a leading cause of inherited intellectual disability and autism. Whereas dysregulated RNA translation in Fmr1 knockout (KO) mice, a model of FXS, is well studied, little is known about aberrant transcription. Using single-molecule mRNA detection, we show that mRNA encoding the AMPAR subunit GluA2 (but not GluA1) is elevated in dendrites and at transcription sites of hippocampal neurons of Fmr1 KO mice, indicating elevated GluA2 transcription. We identify CPEB3, a protein implicated in memory consolidation, as an upstream effector critical to GluA2 mRNA expression in FXS. Increased GluA2 mRNA is translated into an increase in GluA2 subunits, a switch in synaptic AMPAR phenotype from GluA2-lacking, Ca2+-permeable to GluA2-containing, Ca2+-impermeable, reduced inhibitory synaptic transmission, and loss of NMDAR-independent LTP at glutamatergic synapses onto CA1 inhibitory interneurons. These factors could contribute to an excitatory/inhibitory imbalance-a common theme in FXS and other autism spectrum disorders.
Collapse
Affiliation(s)
- Jee-Yeon Hwang
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA,Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA,These authors contributed equally,Lead contact,Correspondence: (J.-Y.H.), (R.S.Z.)
| | - Hannah R. Monday
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA,Present address: Department of Molecular and Cellular Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA,These authors contributed equally
| | - Jingqi Yan
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA,Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA,These authors contributed equally
| | - Andrea Gompers
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA,Center for Immunology and Infectious Diseases, University of California, Davis, Davis, CA 95616, USA,These authors contributed equally
| | - Adina R. Buxbaum
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA,Department of Structural & Cell Biology, Albert Einstein College of Medicine, New York, NY 10461, USA,Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA,Present address: Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kirsty J. Sawicka
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA,Present address: Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Robert H. Singer
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA,Department of Structural & Cell Biology, Albert Einstein College of Medicine, New York, NY 10461, USA,Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA,These authors contributed equally
| | - Pablo E. Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA,Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, NY 10461, USA,These authors contributed equally
| | - R. Suzanne Zukin
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA,These authors contributed equally,Correspondence: (J.-Y.H.), (R.S.Z.)
| |
Collapse
|
5
|
Yang T, Guo R, Ofengeim D, Hwang JY, Zukin RS, Chen J, Zhang F. Molecular and Cellular Mechanisms of Ischemia-Induced Neuronal Death. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Hale CR, Sawicka K, Mora K, Fak JJ, Kang JJ, Cutrim P, Cialowicz K, Carroll TS, Darnell RB. FMRP regulates mRNAs encoding distinct functions in the cell body and dendrites of CA1 pyramidal neurons. eLife 2021; 10:e71892. [PMID: 34939924 PMCID: PMC8820740 DOI: 10.7554/elife.71892] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/13/2021] [Indexed: 12/02/2022] Open
Abstract
Neurons rely on translation of synaptic mRNAs in order to generate activity-dependent changes in plasticity. Here, we develop a strategy combining compartment-specific crosslinking immunoprecipitation (CLIP) and translating ribosome affinity purification (TRAP) in conditionally tagged mice to precisely define the ribosome-bound dendritic transcriptome of CA1 pyramidal neurons. We identify CA1 dendritic transcripts with differentially localized mRNA isoforms generated by alternative polyadenylation and alternative splicing, including many that have altered protein-coding capacity. Among dendritic mRNAs, FMRP targets were found to be overrepresented. Cell-type-specific FMRP-CLIP and TRAP in microdissected CA1 neuropil revealed 383 dendritic FMRP targets and suggests that FMRP differentially regulates functionally distinct modules in CA1 dendrites and cell bodies. FMRP regulates ~15-20% of mRNAs encoding synaptic functions and 10% of chromatin modulators, in the dendrite and cell body, respectively. In the absence of FMRP, dendritic FMRP targets had increased ribosome association, consistent with a function for FMRP in synaptic translational repression. Conversely, downregulation of FMRP targets involved in chromatin regulation in cell bodies suggests a role for FMRP in stabilizing mRNAs containing stalled ribosomes in this compartment. Together, the data support a model in which FMRP regulates the translation and expression of synaptic and nuclear proteins within different compartments of a single neuronal cell type.
Collapse
Affiliation(s)
- Caryn R Hale
- Laboratory of Molecular Neuro-Oncology, Rockefeller UniversityNew YorkUnited States
| | - Kirsty Sawicka
- Laboratory of Molecular Neuro-Oncology, Rockefeller UniversityNew YorkUnited States
| | - Kevin Mora
- Laboratory of Molecular Neuro-Oncology, Rockefeller UniversityNew YorkUnited States
| | - John J Fak
- Laboratory of Molecular Neuro-Oncology, Rockefeller UniversityNew YorkUnited States
| | - Jin Joo Kang
- Laboratory of Molecular Neuro-Oncology, Rockefeller UniversityNew YorkUnited States
| | - Paula Cutrim
- Laboratory of Molecular Neuro-Oncology, Rockefeller UniversityNew YorkUnited States
| | - Katarzyna Cialowicz
- Bio-Imaging Resource Center, The Rockefeller UniversityNew YorkUnited States
| | - Thomas S Carroll
- Bioinformatics Resource Center, The Rockefeller UniversityNew YorkUnited States
| | - Robert B Darnell
- Laboratory of Molecular Neuro-Oncology, Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical Institute, Rockefeller UniversityNew YorkUnited States
| |
Collapse
|
7
|
Subrahmanyam R, Dwivedi D, Rashid Z, Bonnycastle K, Cousin MA, Chattarji S. Reciprocal regulation of spontaneous synaptic vesicle fusion by Fragile X mental retardation protein and group I metabotropic glutamate receptors. J Neurochem 2021; 158:1094-1109. [PMID: 34327719 DOI: 10.1111/jnc.15484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/21/2021] [Accepted: 07/22/2021] [Indexed: 11/29/2022]
Abstract
Fragile X mental retardation protein (FMRP) is a neuronal protein mediating multiple functions, with its absence resulting in one of the most common monogenic causes of autism, Fragile X syndrome (FXS). Analyses of FXS pathophysiology have identified a range of aberrations in synaptic signaling pathways and plasticity associated with group I metabotropic glutamate (mGlu) receptors. These studies, however, have mostly focused on the post-synaptic functions of FMRP and mGlu receptor activation, and relatively little is known about their presynaptic effects. Neurotransmitter release is mediated via multiple forms of synaptic vesicle (SV) fusion, each of which contributes to specific neuronal functions. The impacts of mGlu receptor activation and loss of FMRP on these SV fusion events remain unexplored. Here we combined electrophysiological and fluorescence imaging analyses on primary hippocampal cultures prepared from an Fmr1 knockout (KO) rat model. Compared to wild-type (WT) hippocampal neurons, KO neurons displayed an increase in the frequency of spontaneous excitatory post-synaptic currents (sEPSCs), as well as spontaneous SV fusion events. Pharmacological activation of mGlu receptors in WT neurons caused a similar increase in spontaneous SV fusion and sEPSC frequency. Notably, this increase in SV fusion was not observed when spontaneous activity was blocked using the sodium channel antagonist tetrodotoxin. Importantly, the effect of mGlu receptor activation on spontaneous SV fusion was occluded in Fmr1 KO neurons. Together, our results reveal that FMRP represses spontaneous presynaptic SV fusion, whereas mGlu receptor activation increases this event. This reciprocal control appears to be mediated via their regulation of intrinsic neuronal excitability.
Collapse
Affiliation(s)
- Rohini Subrahmanyam
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Deepanjali Dwivedi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Zubin Rashid
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Katherine Bonnycastle
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK.,The Patrick Wild Centre, University of Edinburgh, Edinburgh, UK.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Michael A Cousin
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK.,The Patrick Wild Centre, University of Edinburgh, Edinburgh, UK.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Sumantra Chattarji
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK.,The Patrick Wild Centre, University of Edinburgh, Edinburgh, UK.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bengaluru, India
| |
Collapse
|
8
|
Liu DC, Lee KY, Lizarazo S, Cook JK, Tsai NP. ER stress-induced modulation of neural activity and seizure susceptibility is impaired in a fragile X syndrome mouse model. Neurobiol Dis 2021; 158:105450. [PMID: 34303799 DOI: 10.1016/j.nbd.2021.105450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/18/2021] [Indexed: 01/29/2023] Open
Abstract
Imbalanced neuronal excitability homeostasis is commonly observed in patients with fragile X syndrome (FXS) and the animal model of FXS, the Fmr1 KO. While alterations of neuronal intrinsic excitability and synaptic activity at the steady state in FXS have been suggested to contribute to such a deficit and ultimately the increased susceptibility to seizures in FXS, it remains largely unclear whether and how the homeostatic response of neuronal excitability following extrinsic challenges is disrupted in FXS. Our previous work has shown that the acute response following induction of endoplasmic reticulum (ER) stress can reduce neural activity and seizure susceptibility. Because many signaling pathways associated with ER stress response are mediated by Fmr1, we asked whether acute ER stress-induced reduction of neural activity and seizure susceptibility are altered in FXS. Our results first revealed that acute ER stress can trigger a protein synthesis-dependent prevention of neural network synchronization in vitro and a reduction of susceptibility to kainic acid-induced seizures in vivo in wild-type but not in Fmr1 KO mice. Mechanistically, we found that acute ER stress-induced activation of murine double minute-2 (Mdm2), ubiquitination of p53, and the subsequent transient protein synthesis are all impaired in Fmr1 KO neurons. Employing a p53 inhibitor, Pifithrin-α, to mimic p53 inactivation, we were able to blunt the increase in neural network synchronization and reduce the seizure susceptibility in Fmr1 KO mice following ER stress induction. In summary, our data revealed a novel cellular defect in Fmr1 KO mice and suggest that an impaired response to common extrinsic challenges may contribute to imbalanced neuronal excitability homeostasis in FXS.
Collapse
Affiliation(s)
- Dai-Chi Liu
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kwan Young Lee
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Simon Lizarazo
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jessie K Cook
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Nien-Pei Tsai
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
9
|
Sharma M, Sajikumar S. G9a/GLP Complex Acts as a Bidirectional Switch to Regulate Metabotropic Glutamate Receptor-Dependent Plasticity in Hippocampal CA1 Pyramidal Neurons. Cereb Cortex 2020; 29:2932-2946. [PMID: 29982412 DOI: 10.1093/cercor/bhy161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/14/2018] [Accepted: 06/17/2018] [Indexed: 02/01/2023] Open
Abstract
Metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD) is conventionally considered to be solely dependent on local protein synthesis. Given the impact of epigenetics on memory, the intriguing question is whether epigenetic regulation influences mGluR-LTD as well. G9a/GLP histone lysine methyltransferase complex is crucial for brain development and goal-directed learning as well as for drug-addiction. In this study, we analyzed whether the epigenetic regulation by G9a/GLP complex affects mGluR-LTD in CA1 hippocampal pyramidal neurons of 5-7 weeks old male Wistar rats. In hippocampal slices with intact CA1 dendritic regions, inhibition of G9a/GLP activity abolished mGluR-LTD. The inhibition of this complex upregulated the expression of plasticity proteins like PKMζ, which mediated the prevention of mGluR-LTD expression by regulating the NSF-GluA2-mediated trafficking of AMPA receptors towards the postsynaptic site. G9a/GLP inhibition during the induction of mGluR-LTD also downregulated the protein levels of phosphorylated-GluA2 and Arc. Interestingly, G9a/GLP inhibition could not impede the mGluR-LTD when the cell-body was severed. Our study highlights the role of G9a/GLP complex in intact neuronal network as a bidirectional switch; when turned on, it facilitates the expression of mGluR-LTD, and when turned off, it promotes the expression of long-term potentiation.
Collapse
Affiliation(s)
- Mahima Sharma
- Department of Physiology, National University of Singapore, 2 Medical Drive, MD9, Singapore, Singapore.,Neurobiology/Aging Programme, Life Sciences Institute, Centre for Life Sciences, 28 Medical Drive, Singapore, Singapore
| | - Sreedharan Sajikumar
- Department of Physiology, National University of Singapore, 2 Medical Drive, MD9, Singapore, Singapore.,Neurobiology/Aging Programme, Life Sciences Institute, Centre for Life Sciences, 28 Medical Drive, Singapore, Singapore
| |
Collapse
|
10
|
Cellular localization of the FMRP in rat retina. Biosci Rep 2020; 40:225004. [PMID: 32452512 PMCID: PMC7295639 DOI: 10.1042/bsr20200570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/17/2020] [Accepted: 05/22/2020] [Indexed: 01/05/2023] Open
Abstract
The fragile X mental retardation protein (FMRP) is a regulator of local translation through its mRNA targets in the neurons. Previous studies have demonstrated that FMRP may function in distinct ways during the development of different visual subcircuits. However, the localization of the FMRP in different types of retinal cells is unclear. In this work, the FMRP expression in rat retina was detected by Western blot and immunofluorescence double labeling. Results showed that the FMRP expression could be detected in rat retina and that the FMRP had a strong immunoreaction (IR) in the ganglion cell (GC) layer, inner nucleus layer (INL), and outer plexiform layer (OPL) of rat retina. In the outer retina, the bipolar cells (BCs) labeled by homeobox protein ChX10 (ChX10) and the horizontal cells (HCs) labeled by calbindin (CB) were FMRP-positive. In the inner retina, GABAergic amacrine cells (ACs) labeled by glutamate decarbonylase colocalized with the FMRP. The dopaminergic ACs (tyrosine hydroxylase marker) and cholinergic ACs (choline acetyltransferase (ChAT) marker) were co-labeled with the FMRP. In most GCs (labeled by Brn3a) and melanopsin-positive intrinsically photosensitive retinal GCs (ipRGCs) were also FMRP-positive. The FMRP expression was observed in the cellular retinal binding protein-positive Müller cells. These results suggest that the FMRP could be involved in the visual pathway transmission.
Collapse
|
11
|
Fernández-Fernández D, Lamas JA. Metabotropic Modulation of Potassium Channels During Synaptic Plasticity. Neuroscience 2020; 456:4-16. [PMID: 32114098 DOI: 10.1016/j.neuroscience.2020.02.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 01/06/2023]
Abstract
Besides their primary function mediating the repolarization phase of action potentials, potassium channels exquisitely and ubiquitously regulate the resting membrane potential of neurons and therefore have a key role establishing their intrinsic excitability. This group of proteins is composed of a very diverse collection of voltage-dependent and -independent ion channels, whose specific distribution is finely tuned at the level of the synapse. Both at the presynaptic and postsynaptic membranes, different types of potassium channels are subjected to modulation by second messenger signaling cascades triggered by metabotropic receptors, which in this way serve as a link between neurotransmitter actions and changes in the neuron membrane excitability. On the one hand, by regulating the resting membrane potential of the postsynaptic membrane, potassium channels appear to be critical towards setting the threshold for the induction of long-term potentiation and depression. On the other hand, these channels maintain the presynaptic membrane potential under control, therefore influencing the probability of neurotransmitter release underlying different forms of short-term plasticity. In the present review, we examine in detail the role of metabotropic receptors translating their activation by different neurotransmitters into a final effect modulating several types of potassium channels. Furthermore, we evaluate the consequences that this interplay has on the induction and maintenance of different forms of synaptic plasticity.
Collapse
Affiliation(s)
- D Fernández-Fernández
- Laboratory of Neuroscience, Biomedical Research Center (CINBIO), University of Vigo, Vigo, Galicia, Spain.
| | - J A Lamas
- Laboratory of Neuroscience, Biomedical Research Center (CINBIO), University of Vigo, Vigo, Galicia, Spain
| |
Collapse
|
12
|
Lautz JD, Gniffke EP, Brown EA, Immendorf KB, Mendel RD, Smith SEP. Activity-dependent changes in synaptic protein complex composition are consistent in different detergents despite differential solubility. Sci Rep 2019; 9:10890. [PMID: 31350430 PMCID: PMC6659712 DOI: 10.1038/s41598-019-46690-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/03/2019] [Indexed: 12/02/2022] Open
Abstract
At the post-synaptic density (PSD), large protein complexes dynamically form and dissociate in response to synaptic activity, comprising the biophysical basis for learning and memory. The use of detergents to isolate the PSD and release its membrane-associated proteins complicates studies of these activity-dependent protein interaction networks, because detergents can simultaneously disrupt the very interactions under study. Despite widespread recognition that different detergents yield different experimental results, the effect of detergent on activity-dependent synaptic protein complexes has not been rigorously examined. Here, we characterize the effect of three detergents commonly used to study synaptic proteins on activity-dependent protein interactions. We first demonstrate that SynGAP-containing interactions are more abundant in 1% Deoxycholate (DOC), while Shank-, Homer- and mGluR5-containing interactions are more abundant in 1% NP-40 or Triton. All interactions were detected preferentially in high molecular weight complexes generated by size exclusion chromatography, although the detergent-specific abundance of proteins in high molecular weight fractions did not correlate with the abundance of detected interactions. Activity-dependent changes in protein complexes were consistent across detergent types, suggesting that detergents do not isolate distinct protein pools with unique behaviors. However, detection of activity-dependent changes is more or less feasible in different detergents due to baseline solubility. Collectively, our results demonstrate that detergents affect the solubility of individual proteins, but activity-dependent changes in protein interactions, when detectable, are consistent across detergent types.
Collapse
Affiliation(s)
- Jonathan D Lautz
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Edward P Gniffke
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Emily A Brown
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.,Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA
| | - Karen B Immendorf
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Ryan D Mendel
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Stephen E P Smith
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA. .,Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA. .,Department of Pediatrics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
13
|
Bie B, Wu J, Foss JF, Naguib M. Activation of mGluR1 Mediates C1q-Dependent Microglial Phagocytosis of Glutamatergic Synapses in Alzheimer's Rodent Models. Mol Neurobiol 2019; 56:5568-5585. [PMID: 30652266 DOI: 10.1007/s12035-019-1467-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/04/2019] [Indexed: 12/29/2022]
Abstract
Microglia and complements appear to be involved in the synaptic and cognitive deficits in Alzheimer's disease (AD), though the mechanisms remain elusive. In this study, utilizing two types of rodent model of AD, we reported increased complement C1q-mediated microglial phagocytosis of hippocampal glutamatergic synapses, which led to synaptic and cognitive deficits. We also found increased activity of the metabotropic glutamate receptor 1 (mGluR1) in hippocampal CA1 in the modeled rodents. Artificial activation of mGluR1 signaling promoted dephosphorylation of fragile X mental retardation protein (FMRP) and facilitated the local translation machinery of synaptic C1q mRNA, thus mimicking the C1q-mediated microglial phagocytosis of hippocampal glutamatergic synapses and synaptic and cognitive deficiency in the modeled rodents. However, suppression of mGluR1 signaling inhibited the dephosphorylation of FMRP and repressed the local translation of synaptic C1q mRNA, which consequently alleviated microglial phagocytosis of synapses and restored the synaptic and cognitive function in the rodent models. These findings illustrate a novel molecular mechanism underlying C1q-mediated microglial phagocytosis of hippocampal glutamatergic synapses in AD.
Collapse
Affiliation(s)
- Bihua Bie
- Anesthesiology Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, 44195, USA
| | - Jiang Wu
- Anesthesiology Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, 44195, USA
| | - Joseph F Foss
- Anesthesiology Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, 44195, USA
| | - Mohamed Naguib
- Anesthesiology Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, 44195, USA. .,Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, 9500 Euclid Ave., Mail Code NB3-78, Cleveland, OH, 44195, USA.
| |
Collapse
|
14
|
Neuhofer D, Lassalle O, Manzoni OJ. Muscarinic M1 Receptor Modulation of Synaptic Plasticity in Nucleus Accumbens of Wild-Type and Fragile X Mice. ACS Chem Neurosci 2018; 9:2233-2240. [PMID: 29486555 DOI: 10.1021/acschemneuro.7b00398] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We investigated how metabotropic acetylcholine receptors control excitatory synaptic plasticity in the mouse nucleus accumbens core. Pharmacological and genetic approaches revealed that M1 mAChRs (muscarinic acetylcholine receptors) trigger multiple and interacting forms of synaptic plasticity. As previously described in the dorsal striatum, moderate pharmacological activation of M1 mAChR potentiated postsynaptic NMDARs. The M1-potentiation of NMDAR masked a previously unknown coincident TRPV1-mediated long-term depression (LTD). In addition, strong pharmacological activation of M1 mAChR induced canonical retrograde LTD, mediated by presynaptic CB1R. In the fmr1-/y mouse model of Fragile X, we found that CB1R but not TRPV1 M1-LTD was impaired. Finally, pharmacological blockade of the degradation of anandamide and 2-arachidonylglycerol, the two principal endocannabinoids restored fmr1-/y LTD to wild-type levels. These findings shed new light on the complex influence of acetylcholine on excitatory synapses in the nucleus accumbens core and identify new substrates of the synaptic deficits of Fragile X.
Collapse
Affiliation(s)
- Daniela Neuhofer
- INMED, INSERM
U901, 13273 Marseille, France
- Aix-Marseille University, 13007 Marseille, France
- Université
de Aix-Marseille, UMR S901, 13273 Marseille, France
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Olivier Lassalle
- INMED, INSERM
U901, 13273 Marseille, France
- Aix-Marseille University, 13007 Marseille, France
- Université
de Aix-Marseille, UMR S901, 13273 Marseille, France
| | - Olivier J. Manzoni
- INMED, INSERM
U901, 13273 Marseille, France
- Aix-Marseille University, 13007 Marseille, France
- Université
de Aix-Marseille, UMR S901, 13273 Marseille, France
| |
Collapse
|
15
|
Abstract
Ultrasonic vocalizations (USVs) in neonatal mice provide a means of modeling communication deficits in neurodevelopmental disorders. Mature mice deficient in SAP90/PSD95-associated protein 3 (SAPAP3) display compulsive grooming and anxiety-like behavior, conditions that are often associated with neurodevelopmental disorders. To date, however, aspects of neurodevelopment have not been investigated in SAPAP3-deficient mice. Here, we examined whether neonatal SAPAP3-deficient mice display altered USVs. We recorded USVs from 5-day-old sapap3 and sapap3 mice, and also monitored developmental reflexes in these mice during the early postnatal period. Sapap3 mice display an increase in the number and duration of USV calls relative to sapap3 littermates, despite otherwise similar developmental profiles. Thus, SAPAP3, previously well-characterized for its role in compulsive grooming, also plays a heretofore unidentified role in neonatal communication. Aberrant social communication and compulsive behavior are core symptoms of autism spectrum disorders, and these results show that SAPAP3-deficient mice may serve to model some aspects of these conditions.
Collapse
|
16
|
Liu DC, Seimetz J, Lee KY, Kalsotra A, Chung HJ, Lu H, Tsai NP. Mdm2 mediates FMRP- and Gp1 mGluR-dependent protein translation and neural network activity. Hum Mol Genet 2018; 26:3895-3908. [PMID: 29016848 DOI: 10.1093/hmg/ddx276] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 07/11/2017] [Indexed: 01/08/2023] Open
Abstract
Activating Group 1 (Gp1) metabotropic glutamate receptors (mGluRs), including mGluR1 and mGluR5, elicits translation-dependent neural plasticity mechanisms that are crucial to animal behavior and circuit development. Dysregulated Gp1 mGluR signaling has been observed in numerous neurological and psychiatric disorders. However, the molecular pathways underlying Gp1 mGluR-dependent plasticity mechanisms are complex and have been elusive. In this study, we identified a novel mechanism through which Gp1 mGluR mediates protein translation and neural plasticity. Using a multi-electrode array (MEA) recording system, we showed that activating Gp1 mGluR elevates neural network activity, as demonstrated by increased spontaneous spike frequency and burst activity. Importantly, we validated that elevating neural network activity requires protein translation and is dependent on fragile X mental retardation protein (FMRP), the protein that is deficient in the most common inherited form of mental retardation and autism, fragile X syndrome (FXS). In an effort to determine the mechanism by which FMRP mediates protein translation and neural network activity, we demonstrated that a ubiquitin E3 ligase, murine double minute-2 (Mdm2), is required for Gp1 mGluR-induced translation and neural network activity. Our data showed that Mdm2 acts as a translation suppressor, and FMRP is required for its ubiquitination and down-regulation upon Gp1 mGluR activation. These data revealed a novel mechanism by which Gp1 mGluR and FMRP mediate protein translation and neural network activity, potentially through de-repressing Mdm2. Our results also introduce an alternative way for understanding altered protein translation and brain circuit excitability associated with Gp1 mGluR in neurological diseases such as FXS.
Collapse
Affiliation(s)
- Dai-Chi Liu
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology.,Neuroscience Program
| | - Joseph Seimetz
- Department of Biochemistry, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kwan Young Lee
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology
| | - Auinash Kalsotra
- Department of Biochemistry, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Carl R.Woese Institute of Genomic Biology, University of Illinois, Champaign, IL 61801, USA
| | - Hee Jung Chung
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology.,Neuroscience Program.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hua Lu
- Department of Biochemistry and Molecular Biology.,Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Nien-Pei Tsai
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology.,Neuroscience Program.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
17
|
Group I Metabotropic Glutamate Receptors (mGluRs): Ins and Outs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1112:163-175. [DOI: 10.1007/978-981-13-3065-0_12] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
Transcriptomic Analysis of Ribosome-Bound mRNA in Cortical Neurites In Vivo. J Neurosci 2017; 37:8688-8705. [PMID: 28821669 DOI: 10.1523/jneurosci.3044-16.2017] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 06/29/2017] [Accepted: 07/21/2017] [Indexed: 01/19/2023] Open
Abstract
Localized translation in neurites helps regulate synaptic strength and development. Dysregulation of local translation is associated with many neurological disorders. However, due to technical limitations, study of this phenomenon has largely been limited to brain regions with laminar organization of dendrites such as the hippocampus or cerebellum. It has not been examined in the cortex, a region of importance for most neurological disorders, where dendrites of each neuronal population are densely intermingled with cell bodies of others. Therefore, we have developed a novel method, SynapTRAP, which combines synaptoneurosomal fractionation with translating ribosome affinity purification to identify ribosome-bound mRNA in processes of genetically defined cell types. We demonstrate SynapTRAP's efficacy and report local translation in the cortex of mice, where we identify a subset of mRNAs that are translated in dendrites by neuronal ribosomes. These mRNAs have disproportionately longer lengths, enrichment for FMRP binding and G-quartets, and their genes are under greater evolutionary constraint in humans. In addition, we show that alternative splicing likely regulates this phenomenon. Overall, SynapTRAP allows for rapid isolation of cell-type-specific localized translation and is applicable to classes of previously inaccessible neuronal and non-neuronal cells in vivoSIGNIFICANCE STATEMENT Instructions for making proteins are found in the genome, housed within the nucleus of each cell. These are then copied as RNA and exported to manufacture new proteins. However, in the brain, memory is thought to be encoded by strengthening individual connections (synapses) between neurons far from the nucleus. Thus, to efficiently make new proteins specifically where they are needed, neurons can transport RNAs to sites near synapses to locally produce proteins. Importantly, several mutations that cause autism disrupt this process. It has been assumed this process occurs in all brain regions, but has never been measured in the cortex. We applied a newly developed method measure to study, for the first time, local translation in cortical neurons.
Collapse
|
19
|
Formation and Maintenance of Functional Spines in the Absence of Presynaptic Glutamate Release. Neuron 2017; 94:304-311.e4. [PMID: 28426965 PMCID: PMC5418202 DOI: 10.1016/j.neuron.2017.03.029] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 02/17/2017] [Accepted: 03/22/2017] [Indexed: 11/22/2022]
Abstract
Dendritic spines are the major transmitter reception compartments of glutamatergic synapses in most principal neurons of the mammalian brain and play a key role in the function of nerve cell circuits. The formation of functional spine synapses is thought to be critically dependent on presynaptic glutamatergic signaling. By analyzing CA1 pyramidal neurons in mutant hippocampal slice cultures that are essentially devoid of presynaptic transmitter release, we demonstrate that the formation and maintenance of dendrites and functional spines are independent of synaptic glutamate release.
Collapse
|
20
|
Dean DD, Muthuswamy S, Agarwal S. Fragile X syndrome: Current insight. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2016. [DOI: 10.1016/j.ejmhg.2016.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
21
|
Ferron L. Fragile X mental retardation protein controls ion channel expression and activity. J Physiol 2016; 594:5861-5867. [PMID: 26864773 DOI: 10.1113/jp270675] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/14/2015] [Indexed: 01/12/2023] Open
Abstract
Fragile X-associated disorders are a family of genetic conditions resulting from the partial or complete loss of fragile X mental retardation protein (FMRP). Among these disorders is fragile X syndrome, the most common cause of inherited intellectual disability and autism. FMRP is an RNA-binding protein involved in the control of local translation, which has pleiotropic effects, in particular on synaptic function. Analysis of the brain FMRP transcriptome has revealed hundreds of potential mRNA targets encoding postsynaptic and presynaptic proteins, including a number of ion channels. FMRP has been confirmed to bind voltage-gated potassium channels (Kv 3.1 and Kv 4.2) mRNAs and regulates their expression in somatodendritic compartments of neurons. Recent studies have uncovered a number of additional roles for FMRP besides RNA regulation. FMRP was shown to directly interact with, and modulate, a number of ion channel complexes. The sodium-activated potassium (Slack) channel was the first ion channel shown to directly interact with FMRP; this interaction alters the single-channel properties of the Slack channel. FMRP was also shown to interact with the auxiliary β4 subunit of the calcium-activated potassium (BK) channel; this interaction increases calcium-dependent activation of the BK channel. More recently, FMRP was shown to directly interact with the voltage-gated calcium channel, Cav 2.2, and reduce its trafficking to the plasma membrane. Studies performed on animal models of fragile X syndrome have revealed links between modifications of ion channel activity and changes in neuronal excitability, suggesting that these modifications could contribute to the phenotypes observed in patients with fragile X-associated disorders.
Collapse
Affiliation(s)
- Laurent Ferron
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
22
|
Bhattacharyya S. Inside story of Group I Metabotropic Glutamate Receptors (mGluRs). Int J Biochem Cell Biol 2016; 77:205-12. [PMID: 26987586 DOI: 10.1016/j.biocel.2016.03.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 12/31/2022]
Abstract
Metabotropic glutamate receptors (mGluRs) are G-protein coupled receptors (GPCRs) that are activated by the neurotransmitter glutamate in the central nervous system. Among the eight subtypes, mGluR1 and mGluR5 belong to the group I family. These receptors play important roles in the brain and are believed to be involved in multiple forms of experience dependent synaptic plasticity including learning and memory. In addition, group I mGluRs also have been implicated in various neuropsychiatric disorders like Fragile X syndrome, autism etc. The normal signaling depends on the precise location of these receptors in specific region of the neuron and the process of receptor trafficking plays a crucial role in controlling this localization. Intracellular trafficking could also regulate the desensitization, resensitization, down-regulation and intracellular signaling of these receptors. In this review I focus on the current understanding of group I mGluR regulation in the central nervous system and also their role in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Samarjit Bhattacharyya
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge city, Sector-81, SAS Nagar, PO: 140306, Punjab, India.
| |
Collapse
|
23
|
|
24
|
Guimarães-Souza EM, Perche O, Morgans CW, Duvoisin RM, Calaza KC. Fragile X Mental Retardation Protein expression in the retina is regulated by light. Exp Eye Res 2015; 146:72-82. [PMID: 26719241 DOI: 10.1016/j.exer.2015.11.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/27/2015] [Accepted: 11/30/2015] [Indexed: 01/29/2023]
Abstract
Fragile X Mental Retardation Protein (FMRP) is a RNA-binding protein that modulates protein synthesis at the synapse and its function is regulated by glutamate. The retina is the first structure that participates in vision, and uses glutamate to transduce electromagnetic signals from light to electrochemical signals to neurons. FMRP has been previously detected in the retina, but its localization has not been studied yet. In this work, our objectives were to describe the localization of FMRP in the retina, to determine whether different exposure to dark or light stimulus alters FMRP expression in the retina, and to compare the pattern in two different species, the mouse and chick. We found that both FMRP mRNA and protein are expressed in the retina. By immunohistochemistry analysis we found that both mouse and chick present similar FMRP expression localized mainly in both plexiform layers and the inner retina. It was also observed that FMRP is down-regulated by 24 h dark adaptation compared to its expression in the retina of animals that were exposed to light for 1 h after 24 h in the dark. We conclude that FMRP is likely to participate in retinal physiology, since its expression changes with light exposure. In addition, the expression pattern and regulation by light of FMRP seems well conserved since it was similar in both mouse and chick.
Collapse
Affiliation(s)
- E M Guimarães-Souza
- Neurosciences Program, Biology Institute, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
| | - O Perche
- Genetic Department, Regional Hospital, Orléans, France; UMR7355, CNRS, Orléans, France; Experimental and Molecular Immunology and Neurogenetics, CNRS, University of Orléans, Orléans, France
| | - C W Morgans
- Department of Physiology & Pharmacology, Oregon Health &Science University, Portland, OR, USA
| | - R M Duvoisin
- Department of Physiology & Pharmacology, Oregon Health &Science University, Portland, OR, USA
| | - K C Calaza
- Neurosciences Program, Biology Institute, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil.
| |
Collapse
|
25
|
Heyes S, Pratt WS, Rees E, Dahimene S, Ferron L, Owen MJ, Dolphin AC. Genetic disruption of voltage-gated calcium channels in psychiatric and neurological disorders. Prog Neurobiol 2015; 134:36-54. [PMID: 26386135 PMCID: PMC4658333 DOI: 10.1016/j.pneurobio.2015.09.002] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/08/2015] [Accepted: 09/08/2015] [Indexed: 12/15/2022]
Abstract
Voltage-gated calcium channel classification—genes and proteins. Genetic analysis of neuropsychiatric syndromes. Calcium channel genes identified from GWA studies of psychiatric disorders. Rare mutations in calcium channel genes in psychiatric disorders. Pathophysiological sequelae of CACNA1C mutations and polymorphisms. Monogenic disorders resulting from harmful mutations in other voltage-gated calcium channel genes. Changes in calcium channel gene expression in disease. Involvement of voltage-gated calcium channels in early brain development.
This review summarises genetic studies in which calcium channel genes have been connected to the spectrum of neuropsychiatric syndromes, from bipolar disorder and schizophrenia to autism spectrum disorders and intellectual impairment. Among many other genes, striking numbers of the calcium channel gene superfamily have been implicated in the aetiology of these diseases by various DNA analysis techniques. We will discuss how these relate to the known monogenic disorders associated with point mutations in calcium channels. We will then examine the functional evidence for a causative link between these mutations or single nucleotide polymorphisms and the disease processes. A major challenge for the future will be to translate the expanding psychiatric genetic findings into altered physiological function, involvement in the wider pathology of the diseases, and what potential that provides for personalised and stratified treatment options for patients.
Collapse
Affiliation(s)
- Samuel Heyes
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Wendy S Pratt
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Elliott Rees
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Shehrazade Dahimene
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Laurent Ferron
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Michael J Owen
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
26
|
A Special Extract of Bacopa monnieri (CDRI-08)-Restored Memory in CoCl2-Hypoxia Mimetic Mice Is Associated with Upregulation of Fmr-1 Gene Expression in Hippocampus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:347978. [PMID: 26413121 PMCID: PMC4564622 DOI: 10.1155/2015/347978] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 04/01/2015] [Indexed: 11/18/2022]
Abstract
Fragile X mental retardation protein (FMRP) is a neuronal translational repressor and has been implicated in learning, memory, and cognition. However, the role of Bacopa monnieri extract (CDRI-08) in enhancing cognitive abilities in hypoxia-induced memory impairment via Fmr-1 gene expression is not known. Here, we have studied effects of CDRI-08 on the expression of Fmr-1 gene in the hippocampus of well validated cobalt chloride (CoCl2)-induced hypoxia mimetic mice and analyzed the data with alterations in spatial memory. Results obtained from Morris water maze test suggest that CoCl2 treatment causes severe loss of spatial memory and CDRI-08 is capable of reversing it towards that in the normal control mice. Our semiquantitative RT-PCR, Western blot, and immunofluorescence microscopic data reveal that CoCl2-induced hypoxia significantly upregulates the expression of Hif-1α and downregulates the Fmr-1 expression in the hippocampus, respectively. Further, CDRI-08 administration reverses the memory loss and this is correlated with significant downregulation of Hif-1α and upregulation of Fmr-1 expression. Our data are novel and may provide mechanisms of hypoxia-induced impairments in the spatial memory and action of CDRI-08 in the recovery of hypoxia led memory impairment involving Fmr-1 gene encoded protein called FMRP.
Collapse
|
27
|
Single-Molecule Imaging of PSD-95 mRNA Translation in Dendrites and Its Dysregulation in a Mouse Model of Fragile X Syndrome. J Neurosci 2015; 35:7116-30. [PMID: 25948262 DOI: 10.1523/jneurosci.2802-14.2015] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fragile X syndrome (FXS) is caused by the loss of the fragile X mental retardation protein (FMRP), an RNA binding protein that regulates translation of numerous target mRNAs, some of which are dendritically localized. Our previous biochemical studies using synaptoneurosomes demonstrate a role for FMRP and miR-125a in regulating the translation of PSD-95 mRNA. However, the local translation of PSD-95 mRNA within dendrites and spines, as well as the roles of FMRP or miR-125a, have not been directly studied. Herein, local synthesis of a Venus-PSD-95 fusion protein was directly visualized in dendrites and spines using single-molecule imaging of a diffusion-restricted Venus-PSD-95 reporter under control of the PSD-95 3'UTR. The basal translation rates of Venus-PSD-95 mRNA was increased in cultured hippocampal neurons from Fmr1 KO mice compared with WT neurons, which correlated with a transient elevation of endogenous PSD-95 within dendrites. Following mGluR stimulation with (S)-3,5-dihydroxyphenylglycine, the rate of Venus-PSD-95 mRNA translation increased rapidly in dendrites of WT hippocampal neurons, but not in those of Fmr1 KO neurons or when the binding site of miR125a, previously shown to bind PSD-95 3'UTR, was mutated. This study provides direct support for the hypothesis that local translation within dendrites and spines is dysregulated in FXS. Impairments in the regulated local synthesis of PSD-95, a critical regulator of synaptic structure and function, may affect the spatiotemporal control of PSD-95 levels and affect dendritic spine development and synaptic plasticity in FXS.
Collapse
|
28
|
Neuhofer D, Henstridge CM, Dudok B, Sepers M, Lassalle O, Katona I, Manzoni OJ. Functional and structural deficits at accumbens synapses in a mouse model of Fragile X. Front Cell Neurosci 2015; 9:100. [PMID: 25859182 PMCID: PMC4374460 DOI: 10.3389/fncel.2015.00100] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/07/2015] [Indexed: 12/26/2022] Open
Abstract
Fragile X is the most common cause of inherited intellectual disability and a leading cause of autism. The disease is caused by mutation of a single X-linked gene called fmr1 that codes for the Fragile X mental retardation protein (FMRP), a 71 kDa protein, which acts mainly as a translation inhibitor. Fragile X patients suffer from cognitive and emotional deficits that coincide with abnormalities in dendritic spines. Changes in spine morphology are often associated with altered excitatory transmission and long-term plasticity, the most prominent deficit in fmr1-/y mice. The nucleus accumbens, a central part of the mesocortico-limbic reward pathway, is now considered as a core structure in the control of social behaviors. Although the socio-affective impairments observed in Fragile X suggest dysfunctions in the accumbens, the impact of the lack of FMRP on accumbal synapses has scarcely been studied. Here we report for the first time a new spike timing-dependent plasticity paradigm that reliably triggers NMDAR-dependent long-term potentiation (LTP) of excitatory afferent inputs of medium spiny neurons (MSN) in the nucleus accumbens core region. Notably, we discovered that this LTP was completely absent in fmr1-/y mice. In the fmr1-/y accumbens intrinsic membrane properties of MSNs and basal excitatory neurotransmission remained intact in the fmr1-/y accumbens but the deficit in LTP was accompanied by an increase in evoked AMPA/NMDA ratio and a concomitant reduction of spontaneous NMDAR-mediated currents. In agreement with these physiological findings, we found significantly more filopodial spines in fmr1-/y mice by using an ultrastructural electron microscopic analysis of accumbens core medium spiny neuron spines. Surprisingly, spine elongation was specifically due to the longer longitudinal axis and larger area of spine necks, whereas spine head morphology and postsynaptic density size on spine heads remained unaffected in the fmr1-/y accumbens. These findings together reveal new structural and functional synaptic deficits in Fragile X.
Collapse
Affiliation(s)
- Daniela Neuhofer
- INSERM U901 Marseille, France ; INMED Marseille, France ; Université de Aix-Marseille, UMR S901 Marseille, France
| | - Christopher M Henstridge
- Momentum Laboratory of Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| | - Barna Dudok
- Momentum Laboratory of Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary ; School of Ph.D. Studies, Semmelweis University Budapest, Hungary
| | - Marja Sepers
- Department of Psychiatry, University of British Columbia Vancouver, Canada
| | - Olivier Lassalle
- INSERM U901 Marseille, France ; INMED Marseille, France ; Université de Aix-Marseille, UMR S901 Marseille, France
| | - István Katona
- Momentum Laboratory of Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| | - Olivier J Manzoni
- INSERM U901 Marseille, France ; INMED Marseille, France ; Université de Aix-Marseille, UMR S901 Marseille, France
| |
Collapse
|
29
|
Martin HGS, Lassalle O, Brown JT, Manzoni OJ. Age-Dependent Long-Term Potentiation Deficits in the Prefrontal Cortex of the Fmr1 Knockout Mouse Model of Fragile X Syndrome. Cereb Cortex 2015; 26:2084-2092. [PMID: 25750254 DOI: 10.1093/cercor/bhv031] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The most common inherited monogenetic cause of intellectual disability is Fragile X syndrome (FXS). The clinical symptoms of FXS evolve with age during adulthood; however, neurophysiological data exploring this phenomenon are limited. The Fmr1 knockout (Fmr1KO) mouse models FXS, but studies in these mice of prefrontal cortex (PFC) function are underrepresented, and aging linked data are absent. We studied synaptic physiology and activity-dependent synaptic plasticity in the medial PFC of Fmr1KO mice from 2 to 12 months. In young adult Fmr1KO mice, NMDA receptor (NMDAR)-mediated long-term potentiation (LTP) is intact; however, in 12-month-old mice this LTP is impaired. In parallel, there was an increase in the AMPAR/NMDAR ratio and a concomitant decrease of synaptic NMDAR currents in 12-month-old Fmr1KO mice. We found that acute pharmacological blockade of mGlu5 receptor in 12-month-old Fmr1KO mice restored a normal AMPAR/NMDAR ratio and LTP. Taken together, the data reveal an age-dependent deficit in LTP in Fmr1KO mice, which may correlate to some of the complex age-related deficits in FXS.
Collapse
Affiliation(s)
- Henry G S Martin
- INSERM U901, Marseille 13009, France.,INMED, Marseille 13009, France.,Université de Aix-Marseille, UMR S901, Marseille, France
| | - Olivier Lassalle
- INSERM U901, Marseille 13009, France.,INMED, Marseille 13009, France.,Université de Aix-Marseille, UMR S901, Marseille, France
| | - Jonathan T Brown
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Olivier J Manzoni
- INSERM U901, Marseille 13009, France.,INMED, Marseille 13009, France.,Université de Aix-Marseille, UMR S901, Marseille, France
| |
Collapse
|
30
|
de Esch C, van den Berg W, Buijsen R, Jaafar I, Nieuwenhuizen-Bakker I, Gasparini F, Kushner S, Willemsen R. Fragile X mice have robust mGluR5-dependent alterations of social behaviour in the Automated Tube Test. Neurobiol Dis 2015; 75:31-9. [DOI: 10.1016/j.nbd.2014.12.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 12/08/2014] [Accepted: 12/23/2014] [Indexed: 11/16/2022] Open
|
31
|
Wang H, Pati S, Pozzo-Miller L, Doering LC. Targeted pharmacological treatment of autism spectrum disorders: fragile X and Rett syndromes. Front Cell Neurosci 2015; 9:55. [PMID: 25767435 PMCID: PMC4341567 DOI: 10.3389/fncel.2015.00055] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 02/05/2015] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorders (ASDs) are genetically and clinically heterogeneous and lack effective medications to treat their core symptoms. Studies of syndromic ASDs caused by single gene mutations have provided insights into the pathophysiology of autism. Fragile X and Rett syndromes belong to the syndromic ASDs in which preclinical studies have identified rational targets for drug therapies focused on correcting underlying neural dysfunction. These preclinical discoveries are increasingly translating into exciting human clinical trials. Since there are significant molecular and neurobiological overlaps among ASDs, targeted treatments developed for fragile X and Rett syndromes may be helpful for autism of different etiologies. Here, we review the targeted pharmacological treatment of fragile X and Rett syndromes and discuss related issues in both preclinical studies and clinical trials of potential therapies for the diseases.
Collapse
Affiliation(s)
- Hansen Wang
- Faculty of Medicine, University of Toronto, 1 King's College Circle Toronto, ON, Canada
| | - Sandipan Pati
- Department of Neurology, Epilepsy Division, The University of Alabama at Birmingham Birmingham, AL, USA
| | - Lucas Pozzo-Miller
- Department of Neurobiology, Civitan International Research Center, The University of Alabama at Birmingham Birmingham, AL, USA
| | - Laurie C Doering
- Faculty of Health Sciences, Department of Pathology and Molecular Medicine, McMaster University Hamilton, ON, Canada
| |
Collapse
|
32
|
Wang H. Fragile X mental retardation protein: from autism to neurodegenerative disease. Front Cell Neurosci 2015; 9:43. [PMID: 25729352 PMCID: PMC4325920 DOI: 10.3389/fncel.2015.00043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 01/28/2015] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hansen Wang
- Faculty of Medicine, University of Toronto Toronto, ON, Canada
| |
Collapse
|
33
|
Colvin SM, Kwan KY. Dysregulated nitric oxide signaling as a candidate mechanism of fragile X syndrome and other neuropsychiatric disorders. Front Genet 2014; 5:239. [PMID: 25101118 PMCID: PMC4105824 DOI: 10.3389/fgene.2014.00239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/03/2014] [Indexed: 12/31/2022] Open
Abstract
A mechanistic understanding of the pathophysiology underpinning psychiatric disorders is essential for the development of targeted molecular therapies. For fragile X syndrome (FXS), recent mechanistic studies have been focused on the metabotropic glutamate receptor (mGluR) signaling pathway. This line of research has led to the discovery of promising candidate drugs currently undergoing various phases of clinical trial, and represents a model of how biological insights can inform therapeutic strategies in neurodevelopmental disorders. Although mGluR signaling is a key mechanism at which targeted treatments can be directed, it is likely to be one of many mechanisms contributing to FXS. A more complete understanding of the molecular and neural underpinnings of the disorder is expected to inform additional therapeutic strategies. Alterations in the assembly of neural circuits in the neocortex have been recently implicated in genetic studies of autism and schizophrenia, and may also contribute to FXS. In this review, we explore dysregulated nitric oxide signaling in the developing neocortex as a novel candidate mechanism of FXS. This possibility stems from our previous work demonstrating that neuronal nitric oxide synthase 1 (NOS1 or nNOS) is regulated by the FXS protein FMRP in the mid-fetal human neocortex. Remarkably, in the mid-late fetal and early postnatal neocortex of human FXS patients, NOS1 expression is severely diminished. Given the role of nitric oxide in diverse neural processes, including synaptic development and plasticity, the loss of NOS1 in FXS may contribute to the etiology of the disorder. Here, we outline the genetic and neurobiological data that implicate neocortical dysfunction in FXS, review the evidence supporting dysregulated nitric oxide signaling in the developing FXS neocortex and its contribution to the disorder, and discuss the implications for targeting nitric oxide signaling in the treatment of FXS and other psychiatric illnesses.
Collapse
Affiliation(s)
- Steven M Colvin
- Department of Human Genetics - The Molecular and Behavioral Neuroscience Institute, University of Michigan Medical School Ann Arbor, MI, USA
| | - Kenneth Y Kwan
- Department of Human Genetics - The Molecular and Behavioral Neuroscience Institute, University of Michigan Medical School Ann Arbor, MI, USA
| |
Collapse
|
34
|
Lugo JN, Smith GD, Arbuckle EP, White J, Holley AJ, Floruta CM, Ahmed N, Gomez MC, Okonkwo O. Deletion of PTEN produces autism-like behavioral deficits and alterations in synaptic proteins. Front Mol Neurosci 2014; 7:27. [PMID: 24795561 PMCID: PMC3997048 DOI: 10.3389/fnmol.2014.00027] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/24/2014] [Indexed: 11/13/2022] Open
Abstract
Many genes have been implicated in the underlying cause of autism but each gene accounts for only a small fraction of those diagnosed with autism. There is increasing evidence that activity-dependent changes in neuronal signaling could act as a convergent mechanism for many of the changes in synaptic proteins. One candidate signaling pathway that may have a critical role in autism is the PI3K/AKT/mTOR pathway. A major regulator of this pathway is the negative repressor phosphatase and tensin homolog (PTEN). In the current study we examined the behavioral and molecular consequences in mice with neuron subset-specific deletion of PTEN. The knockout (KO) mice showed deficits in social chamber and social partition test. KO mice demonstrated alterations in repetitive behavior, as measured in the marble burying test and hole-board test. They showed no changes in ultrasonic vocalizations emitted on postnatal day 10 or 12 compared to wildtype (WT) mice. They exhibited less anxiety in the elevated-plus maze test and were more active in the open field test compared to WT mice. In addition to the behavioral alterations, KO mice had elevation of phosphorylated AKT, phosphorylated S6, and an increase in S6K. KO mice had a decrease in mGluR but an increase in total and phosphorylated fragile X mental retardation protein. The disruptions in intracellular signaling may be why the KO mice had a decrease in the dendritic potassium channel Kv4.2 and a decrease in the synaptic scaffolding proteins PSD-95 and SAP102. These findings demonstrate that deletion of PTEN results in long-term alterations in social behavior, repetitive behavior, activity, and anxiety. In addition, deletion of PTEN significantly alters mGluR signaling and many synaptic proteins in the hippocampus. Our data demonstrates that deletion of PTEN can result in many of the behavioral features of autism and may provide insights into the regulation of intracellular signaling on synaptic proteins.
Collapse
Affiliation(s)
- Joaquin N Lugo
- Department of Psychology and Neuroscience, Baylor University Waco, TX, USA ; Institute of Biomedical Studies, Baylor University Waco, TX, USA
| | - Gregory D Smith
- Institute of Biomedical Studies, Baylor University Waco, TX, USA
| | - Erin P Arbuckle
- Institute of Biomedical Studies, Baylor University Waco, TX, USA
| | - Jessika White
- Department of Psychology and Neuroscience, Baylor University Waco, TX, USA
| | - Andrew J Holley
- Department of Psychology and Neuroscience, Baylor University Waco, TX, USA
| | - Crina M Floruta
- Department of Psychology and Neuroscience, Baylor University Waco, TX, USA
| | - Nowrin Ahmed
- Department of Psychology and Neuroscience, Baylor University Waco, TX, USA
| | - Maribel C Gomez
- Department of Psychology and Neuroscience, Baylor University Waco, TX, USA
| | - Obi Okonkwo
- Department of Psychology and Neuroscience, Baylor University Waco, TX, USA
| |
Collapse
|
35
|
Fragile X syndrome: a preclinical review on metabotropic glutamate receptor 5 (mGluR5) antagonists and drug development. Psychopharmacology (Berl) 2014; 231:1217-26. [PMID: 24232444 DOI: 10.1007/s00213-013-3330-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 10/14/2013] [Indexed: 10/26/2022]
Abstract
RATIONALE Fragile X syndrome (FXS) is considered the leading inherited cause of intellectual disability and autism. In FXS, the fragile X mental retardation 1 (FMR1) gene is silenced and the fragile X mental retardation protein (FMRP) is not expressed, resulting in the characteristic features of the syndrome. Despite recent advances in understanding the pathophysiology of FXS, there is still no cure for this condition; current treatment is symptomatic. Preclinical research is essential in the development of potential therapeutic agents. OBJECTIVES This review provides an overview of the preclinical evidence supporting metabotropic glutamate receptor 5 (mGluR5) antagonists as therapeutic agents for FXS. RESULTS According to the mGluR theory of FXS, the absence of FMRP leads to enhanced glutamatergic signaling via mGluR5, which leads to increased protein synthesis and defects in synaptic plasticity including enhanced long-term depression. As such, efforts to develop agents that target the underlying pathophysiology of FXS have focused on mGluR5 modulation. Animal models, particularly the Fmr1 knockout mouse model, have become invaluable in exploring therapeutic approaches on an electrophysiological, behavioral, biochemical, and neuroanatomical level. Two direct approaches are currently being investigated for FXS treatment: reactivating the FMR1 gene and compensating for the lack of FMRP. The latter approach has yielded promising results, with mGluR5 antagonists showing efficacy in clinical trials. CONCLUSIONS Targeting mGluR5 is a valid approach for the development of therapeutic agents that target the underlying pathophysiology of FXS. Several compounds are currently in development, with encouraging results.
Collapse
|
36
|
D'Antoni S, Spatuzza M, Bonaccorso CM, Musumeci SA, Ciranna L, Nicoletti F, Huber KM, Catania MV. Dysregulation of group-I metabotropic glutamate (mGlu) receptor mediated signalling in disorders associated with Intellectual Disability and Autism. Neurosci Biobehav Rev 2014; 46 Pt 2:228-41. [PMID: 24548786 DOI: 10.1016/j.neubiorev.2014.02.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 01/13/2014] [Accepted: 02/06/2014] [Indexed: 12/11/2022]
Abstract
Activation of group-I metabotropic glutamate receptors, mGlu1 and mGlu5, triggers a variety of signalling pathways in neurons and glial cells, which are differently implicated in synaptic plasticity. The earliest and much of key studies discovered abnormal mGlu5 receptor function in Fragile X syndrome (FXS) mouse models which then motivated more recent work that finds mGlu5 receptor dysfunction in related disorders such as intellectual disability (ID), obsessive-compulsive disorder (OCD) and autism. Therefore, mGlu1/5 receptor dysfunction may represent a common aetiology of these complex diseases. Furthermore, many studies have focused on dysregulation of mGlu5 signalling to synaptic protein synthesis. However, emerging evidence finds abnormal mGlu5 receptor interactions with its scaffolding proteins in FXS which results in mGlu5 receptor dysfunction and phenotypes independent of signalling to protein synthesis. Finally, both an increased and reduced mGlu5 functioning seem to be associated with ID and autism spectrum disorders, with important consequences for potential treatment of these developmental disorders.
Collapse
Affiliation(s)
- Simona D'Antoni
- Institute of Neurological Sciences, the National Research Council of Italy (CNR), Catania, Italy
| | - Michela Spatuzza
- Institute of Neurological Sciences, the National Research Council of Italy (CNR), Catania, Italy
| | | | | | - Lucia Ciranna
- Department of Biomedical Sciences, section of Physiology, University of Catania, Italy
| | - Ferdinando Nicoletti
- IRCCS Neuromed, Pozzilli (IS), Italy; University of Rome La Sapienza, Rome, Italy
| | - Kimberly M Huber
- University of Texas Southwestern Medical Center, Department of Neuroscience, Dallas, TX 75390-9111, USA
| | - Maria Vincenza Catania
- Institute of Neurological Sciences, the National Research Council of Italy (CNR), Catania, Italy; IRCCS Oasi Maria SS, Troina (EN), Italy.
| |
Collapse
|
37
|
Amiri A, Sanchez-Ortiz E, Cho W, Birnbaum SG, Xu J, McKay RM, Parada LF. Analysis ofFmr1Deletion in a Subpopulation of Post-Mitotic Neurons in Mouse Cortex and Hippocampus. Autism Res 2014; 7:60-71. [DOI: 10.1002/aur.1342] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 09/08/2013] [Indexed: 01/28/2023]
Affiliation(s)
- Anahita Amiri
- Department of Developmental Biology; University of Texas Southwestern Medical Center; Dallas Texas USA
| | - Efrain Sanchez-Ortiz
- Department of Developmental Biology; University of Texas Southwestern Medical Center; Dallas Texas USA
| | - Woosung Cho
- Department of Developmental Biology; University of Texas Southwestern Medical Center; Dallas Texas USA
| | - Shari G. Birnbaum
- Department of Psychiatry; University of Texas Southwestern Medical Center; Dallas Texas USA
| | - Jing Xu
- Department of Developmental Biology; University of Texas Southwestern Medical Center; Dallas Texas USA
| | - Renée M. McKay
- Department of Developmental Biology; University of Texas Southwestern Medical Center; Dallas Texas USA
| | - Luis F. Parada
- Department of Developmental Biology; University of Texas Southwestern Medical Center; Dallas Texas USA
| |
Collapse
|
38
|
Schmit TL, Dowell JA, Maes ME, Wilhelm M. c-Jun N-terminal kinase regulates mGluR-dependent expression of post-synaptic FMRP target proteins. J Neurochem 2013; 127:772-81. [PMID: 24047560 PMCID: PMC3992883 DOI: 10.1111/jnc.12453] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 12/01/2022]
Abstract
Fragile X syndrome (FXS) is caused by the loss of functional fragile X mental retardation protein (FMRP). Loss of FMRP results in an elevated basal protein expression profile of FMRP targeted mRNAs, a loss of local metabotropic glutamate receptor (mGluR)-regulated protein synthesis, exaggerated long-term depression and corresponding learning and behavioral deficits. Evidence shows that blocking mGluR signaling in FXS models ameliorates these deficits. Therefore, understanding the signaling mechanisms downstream of mGluR stimulation may provide additional therapeutic targets for FXS. Kinase cascades are an integral mechanism regulating mGluR-dependent protein translation. The c-Jun N-terminal kinase (JNK) pathway has been shown to regulate mGluR-dependent nuclear transcription; however, the involvement of JNK in local, synaptic signaling has not been explored. Here, we show that JNK is both necessary and sufficient for mGluR-dependent expression of a subset of FMRP target proteins. In addition, JNK activity is basally elevated in fmr1 knockout mouse synapses, and blocking JNK activity reduces the over-expression of post-synaptic proteins in these mice. Together, these data suggest that JNK may be an important signaling mechanism downstream of mGluR stimulation, regulating FMRP-dependent protein synthesis. Furthermore, local, post-synaptic dysregulation of JNK activity may provide a viable target to ameliorate the deficits involved in FXS. Expression of many FMRP target proteins is enhanced in FXS. Here, we evaluated the role of JNKs in FXS. We found that JNK signaling is activated upon mGluR stimulation in wild-type neurons. Conversely, JNK activity is basally elevated in fmr1 knockout. Inhibiting JNK reduced the expression of FMRP target proteins and driving JNK activity increased the expression of these proteins.
Collapse
Affiliation(s)
- Travis L Schmit
- Department of Pediatrics and the Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | | | |
Collapse
|
39
|
Chang KT, Ro H, Wang W, Min KT. Meeting at the crossroads: common mechanisms in Fragile X and Down syndrome. Trends Neurosci 2013; 36:685-94. [PMID: 24075449 DOI: 10.1016/j.tins.2013.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/27/2013] [Accepted: 08/29/2013] [Indexed: 10/26/2022]
Abstract
Intellectual disability is characterized by significantly impaired cognitive abilities and is due to various etiological factors, including both genetic and non-genetic causes. Two of the most common genetic forms of intellectual disability are Fragile X syndrome (FXS) and Down syndrome (DS). Recent studies have shown that proteins altered in FXS and DS can physically interact and participate in common signaling pathways regulating dendritic spine development and local protein synthesis, thus supporting the notion that spine dysmorphogenesis and abnormal local protein synthesis may be molecular underpinnings of intellectual disability. Here we review the molecular constituents regulating local protein synthesis and spine morphology and their alterations in FXS and DS. We argue that these changes might ultimately affect synaptic homeostasis and alter cognitive performance.
Collapse
Affiliation(s)
- Karen T Chang
- Zilkha Neurogenetic Institute and Department of Cell and Neurobiology, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | |
Collapse
|
40
|
Bagni C, Oostra BA. Fragile X syndrome: From protein function to therapy. Am J Med Genet A 2013; 161A:2809-21. [PMID: 24115651 DOI: 10.1002/ajmg.a.36241] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 08/28/2013] [Indexed: 12/23/2022]
Abstract
Fragile X syndrome (FXS) is the leading monogenic cause of intellectual disability and autism. The FMR1 gene contains a CGG repeat present in the 5'-untranslated region which can be unstable upon transmission to the next generation. The repeat is up to 55 CGGs long in the normal population. In patients with fragile X syndrome (FXS), a repeat length exceeding 200 CGGs generally leads to methylation of the repeat and the promoter region, which is accompanied by silencing of the FMR1 gene. The disease is a result of lack of expression of the fragile X mental retardation protein leading to severe symptoms, including intellectual disability, hyperactivity, and autistic-like behavior. The FMR1 protein (FMRP) has a number of functions. The translational dysregulation of a subset of mRNAs targeted by FMRP is probably the major contribution to FXS. FMRP is also involved in mRNA transport to synapses where protein synthesis occurs. For some FMRP-bound mRNAs, FMRP is a direct modulator of mRNA stability either by sustaining or preventing mRNA decay. Increased knowledge about the role of FMRP has led to the identification of potential treatments for fragile X syndrome that were often tested first in the different animal models. This review gives an overview about the present knowledge of the function of FMRP and the therapeutic strategies in mouse and man.
Collapse
Affiliation(s)
- Claudia Bagni
- VIB Center for the Biology of Disease, Catholic University of Leuven, Leuven, Belgium; Department of Biomedicine and Prevention, University of Rome, Tor Vergata, Italy
| | | |
Collapse
|
41
|
Cook D, Nuro E, Murai KK. Increasing our understanding of human cognition through the study of Fragile X Syndrome. Dev Neurobiol 2013; 74:147-77. [PMID: 23723176 PMCID: PMC4216185 DOI: 10.1002/dneu.22096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/17/2013] [Indexed: 12/16/2022]
Abstract
Fragile X Syndrome (FXS) is considered the most common form of inherited intellectual disability. It is caused by reductions in the expression level or function of a single protein, the Fragile X Mental Retardation Protein (FMRP), a translational regulator which binds to approximately 4% of brain messenger RNAs. Accumulating evidence suggests that FXS is a complex disorder of cognition, involving interactions between genetic and environmental influences, leading to difficulties in acquiring key life skills including motor skills, language, and proper social behaviors. Since many FXS patients also present with one or more features of autism spectrum disorders (ASDs), insights gained from studying the monogenic basis of FXS could pave the way to a greater understanding of underlying features of multigenic ASDs. Here we present an overview of the FXS and FMRP field with the goal of demonstrating how loss of a single protein involved in translational control affects multiple stages of brain development and leads to debilitating consequences on human cognition. We also focus on studies which have rescued or improved FXS symptoms in mice using genetic or therapeutic approaches to reduce protein expression. We end with a brief description of how deficits in translational control are implicated in FXS and certain cases of ASDs, with many recent studies demonstrating that ASDs are likely caused by increases or decreases in the levels of certain key synaptic proteins. The study of FXS and its underlying single genetic cause offers an invaluable opportunity to study how a single gene influences brain development and behavior.
Collapse
Affiliation(s)
- Denise Cook
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | | | | |
Collapse
|
42
|
Higashimori H, Morel L, Huth J, Lindemann L, Dulla C, Taylor A, Freeman M, Yang Y. Astroglial FMRP-dependent translational down-regulation of mGluR5 underlies glutamate transporter GLT1 dysregulation in the fragile X mouse. Hum Mol Genet 2013; 22:2041-54. [PMID: 23396537 PMCID: PMC3633372 DOI: 10.1093/hmg/ddt055] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 01/29/2013] [Accepted: 02/04/2013] [Indexed: 11/12/2022] Open
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by the loss-of-function of fragile X mental retardation protein (FMRP). The loss of FMRP function in neurons abolishes its suppression on mGluR1/5-dependent dendritic protein translation, enhancing mGluR1/5-dependent synaptic plasticity and other disease phenotypes in FXS. In this study, we describe a new activation function of FMRP in regulating protein expression in astroglial cells. We found that astroglial glutamate transporter subtype glutamate transporter 1 (GLT1) and glutamate uptake is significantly reduced in the cortex of fmr1(-/-) mice. Correspondingly, neuronal excitability is also enhanced in acute fmr1(-/-) (but not in fmr1(+/+) control) cortical slices treated with low doses (10 μm) of the GLT1-specific inhibitor dihydrokainate (DHK). Using mismatched astrocyte and neuron co-cultures, we demonstrate that the loss of astroglial (but not neuronal) FMRP particularly reduces neuron-dependent GLT1 expression and glutamate uptake in co-cultures. Interestingly, protein (but not mRNA) expression and the (S)-3,5-dihydroxyphenylglycine-dependent Ca(2+) responses of astroglial mGluR5 receptor are also selectively reduced in fmr1(-/-) astrocytes and brain slices, attenuating neuron-dependent GLT1 expression. Subsequent FMRP immunoprecipitation and QRT-PCR analysis showed that astroglial mGluR5 (but not GLT1) mRNA is associated with FMRP. In summary, our results provide evidence that FMRP positively regulates translational expression of mGluR5 in astroglial cells, and FMRP-dependent down-regulation of mGluR5 underlies GLT1 dysregulation in fmr1(-/-) astrocytes. The dysregulation of GLT1 and reduced glutamate uptake may potentially contribute to enhanced neuronal excitability observed in the mouse model of FXS.
Collapse
Affiliation(s)
- Haruki Higashimori
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA02111, USA,
| | - Lydie Morel
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA02111, USA,
| | - James Huth
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA02111, USA,
| | - Lothar Lindemann
- Pharmaceuticals Division, Department of PCDF, Preclinical CNS Research, Roche Ltd, Bldg. 69/452, CH-4070Basel, Switzerland
| | - Chris Dulla
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA02111, USA,
- Neuroscience Program, Tufts Sackler School of Graduate Biomedical Sciences, 136 Harrison Ave, Boston, MA02111, USA and
| | - Amaro Taylor
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA02111, USA,
| | - Mike Freeman
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA02111, USA,
| | - Yongjie Yang
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA02111, USA,
- Neuroscience Program, Tufts Sackler School of Graduate Biomedical Sciences, 136 Harrison Ave, Boston, MA02111, USA and
| |
Collapse
|
43
|
Clifton NE, Morisot N, Girardon S, Millan MJ, Loiseau F. Enhancement of social novelty discrimination by positive allosteric modulators at metabotropic glutamate 5 receptors: adolescent administration prevents adult-onset deficits induced by neonatal treatment with phencyclidine. Psychopharmacology (Berl) 2013; 225:579-94. [PMID: 22983144 DOI: 10.1007/s00213-012-2845-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 08/08/2012] [Indexed: 12/20/2022]
Abstract
Metabotropic glutamate-5 receptors (mGluR5), which physically and functionally interact with N-methyl-D-Aspartate (NMDA) receptors, likewise control cognitive processes and have been proposed as targets for novel classes of antipsychotic agent. Since social cognition is impaired in schizophrenia and disrupted by NMDA receptor antagonists like dizocilpine, we evaluated its potential modulation by mGluR5. Acute administration (0.63-40 mg/kg) of the mGluR5 positive allosteric modulators (PAMs), 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) and ADX47273, reversed a delay-induced impairment in social novelty discrimination (SND) in adult rats. The action of CDPPB was blocked by the mGluR5 antagonist, 2-methyl-6-(phenylethynyl)-pyridine (2.5-10 mg/kg), and was also expressed upon microinjection into frontal cortex (0.63-10 μg/side), but not striatum. Supporting an interrelationship between mGluR5 and NMDA receptors, enhancement of SND by CDPPB was blocked by dizocilpine (0.08 mg/kg) while, reciprocally, dizocilpine-induced impairment in SND was attenuated by CDPPB (10 mg/kg). The SND deficit elicited by post-natal administration of phencyclidine (10 mg/kg, days 7-11) was reversed by CDPPB or ADX47273 in adults at week 8. This phencyclidine-induced impairment in cognition emerged in adult rats from week 7 on, and chronic, pre-symptomatic treatment of adolescent rats with CDPPB over weeks 5-6 (10 mg/kg per day) prevented the appearance of SND deficits in adults until at least week 13. In conclusion, as evaluated by a SND procedure, mGluR5 PAMs promote social cognition via actions expressed in interaction with NMDA receptors and exerted in frontal cortex. MGluR5 PAMs not only reverse but also (when given during adolescence) prevent the emergence of cognitive impairment associated with a developmental model of schizophrenia.
Collapse
Affiliation(s)
- Nicholas E Clifton
- Neuroscience Research and Development Unit, Institut de Recherches Servier, 125 Chemin de ronde, Croissy-sur-Seine, Paris, France
| | | | | | | | | |
Collapse
|
44
|
Uncoupling of the endocannabinoid signalling complex in a mouse model of fragile X syndrome. Nat Commun 2013; 3:1080. [PMID: 23011134 PMCID: PMC3657999 DOI: 10.1038/ncomms2045] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 08/01/2012] [Indexed: 11/25/2022] Open
Abstract
Fragile X syndrome, the most commonly known genetic cause of autism, is due to loss of the fragile X mental retardation protein, which regulates signal transduction at metabotropic glutamate receptor-5 in the brain. Fragile X mental retardation protein deletion in mice enhances metabotropic glutamate receptor-5-dependent long-term depression in the hippocampus and cerebellum. Here we show that a distinct type of metabotropic glutamate receptor-5-dependent long-term depression at excitatory synapses of the ventral striatum and prefrontal cortex, which is mediated by the endocannabinoid 2-arachidonoyl-sn-glycerol, is absent in fragile X mental retardation protein-null mice. In these mutants, the macromolecular complex that links metabotropic glutamate receptor-5 to the 2-arachidonoyl-sn-glycerol-producing enzyme, diacylglycerol lipase-α (endocannabinoid signalosome), is disrupted and metabotropic glutamate receptor-5-dependent 2-arachidonoyl-sn-glycerol formation is compromised. These changes are accompanied by impaired endocannabinoid-dependent long-term depression. Pharmacological enhancement of 2-arachidonoyl-sn-glycerol signalling normalizes this synaptic defect and corrects behavioural abnormalities in fragile X mental retardation protein-deficient mice. The results identify the endocannabinoid signalosome as a molecular substrate for fragile X syndrome, which might be targeted by therapy. Fragile X syndrome is a major genetic cause of autism and is caused by loss of the fragile X mental retardation protein. In a mouse model of fragile X syndrome, Jung et al. show that an absence of neuronal endocannabinoid signalling is responsible for the neurophysiological and behavioural defects.
Collapse
|
45
|
Learning and memory deficits consequent to reduction of the fragile X mental retardation protein result from metabotropic glutamate receptor-mediated inhibition of cAMP signaling in Drosophila. J Neurosci 2012; 32:13111-24. [PMID: 22993428 DOI: 10.1523/jneurosci.1347-12.2012] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Loss of the RNA-binding fragile X protein [fragile X mental retardation protein (FMRP)] results in a spectrum of cognitive deficits, the fragile X syndrome (FXS), while aging individuals with decreased protein levels present with a subset of these symptoms and tremor. The broad range of behavioral deficits likely reflects the ubiquitous distribution and multiple functions of the protein. FMRP loss is expected to affect multiple neuronal proteins and intracellular signaling pathways, whose identity and interactions are essential in understanding and ameliorating FXS symptoms. We used heterozygous mutants and targeted RNA interference-mediated abrogation in Drosophila to uncover molecular pathways affected by FMRP reduction. We present evidence that FMRP loss results in excess metabotropic glutamate receptor (mGluR) activity, attributable at least in part to elevation of the protein in affected neurons. Using high-resolution behavioral, genetic, and biochemical analyses, we present evidence that excess mGluR upon FMRP attenuation is linked to the cAMP decrement reported in patients and models, and underlies olfactory associative learning and memory deficits. Furthermore, our data indicate positive transcriptional regulation of the fly fmr1 gene by cAMP, via protein kinase A, likely through the transcription factor CREB. Because the human Fmr1 gene also contains CREB binding sites, the interaction of mGluR excess and cAMP signaling defects we present suggests novel combinatorial pharmaceutical approaches to symptom amelioration upon FMRP attenuation.
Collapse
|
46
|
Trinidad JC, Thalhammer A, Burlingame AL, Schoepfer R. Activity-dependent protein dynamics define interconnected cores of co-regulated postsynaptic proteins. Mol Cell Proteomics 2012; 12:29-41. [PMID: 23035237 DOI: 10.1074/mcp.m112.019976] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Synapses are highly dynamic structures that mediate cell-cell communication in the central nervous system. Their molecular composition is altered in an activity-dependent fashion, which modulates the efficacy of subsequent synaptic transmission events. Whereas activity-dependent trafficking of individual key synaptic proteins into and out of the synapse has been characterized previously, global activity-dependent changes in the synaptic proteome have not been studied. To test the feasibility of carrying out an unbiased large-scale approach, we investigated alterations in the molecular composition of synaptic spines following mass stimulation of the central nervous system induced by pilocarpine. We observed widespread changes in relative synaptic abundances encompassing essentially all proteins, supporting the view that the molecular composition of the postsynaptic density is tightly regulated. In most cases, we observed that members of gene families displayed coordinate regulation even when they were not known to physically interact. Analysis of correlated synaptic localization revealed a tightly co-regulated cluster of proteins, consisting of mainly glutamate receptors and their adaptors. This cluster constitutes a functional core of the postsynaptic machinery, and changes in its size affect synaptic strength and synaptic size. Our data show that the unbiased investigation of activity-dependent signaling of the postsynaptic density proteome can offer valuable new information on synaptic plasticity.
Collapse
Affiliation(s)
- Jonathan C Trinidad
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158-2517, USA
| | | | | | | |
Collapse
|
47
|
Jafari M, Seese RR, Babayan AH, Gall CM, Lauterborn JC. Glucocorticoid receptors are localized to dendritic spines and influence local actin signaling. Mol Neurobiol 2012; 46:304-15. [PMID: 22717988 PMCID: PMC3973133 DOI: 10.1007/s12035-012-8288-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 06/05/2012] [Indexed: 11/29/2022]
Abstract
Glucocorticoids affect learning and memory but the cellular mechanisms involved are poorly understood. The present studies tested if the stress-responsive glucocorticoid receptor (GR) is present and regulated within dendritic spines, and influences local signaling to the actin cytoskeleton. In hippocampal field CA1, 13 % of synapses contained GR-immunoreactivity. Three-dimensional reconstructions of CA1 dendrites showed that GR aggregates are present in both spine heads and necks. Consonant with evidence that GRα mRNA associates with the translation regulator Fragile X Mental Retardation Protein (FMRP), spine GR levels were rapidly increased by group 1 mGluR activation and reduced in mice lacking FMRP. Treatment of cultured hippocampal slices with the GR agonist dexamethasone rapidly (15-30 min) increased total levels of phosphorylated (p) Cofilin and extracellular signal-regulated kinase (ERK) 1/2, proteins that regulate actin polymerization and stability. Dexamethasone treatment of adult hippocampal slices also increased numbers of PSD95+ spines containing pERK1/2, but reduced numbers of pCofilin-immunoreactive spines. Dexamethasone-induced increases in synaptic pERK1/2 were blocked by the GR antagonist RU-486. These results demonstrate that GRs are present in hippocampal spines where they mediate acute glucocorticoid effects on local spine signaling. Through effects on these actin regulatory pathways, GRs are positioned to exert acute effects on synaptic plasticity.
Collapse
Affiliation(s)
- Matiar Jafari
- Department of Anatomy and Neurobiology, 3226 Gillespie Neuroscience Research Facility, University of California at Irvine, Irvine, CA 92697-1275, USA
| | | | | | | | | |
Collapse
|
48
|
Astrocytes and developmental plasticity in fragile X. Neural Plast 2012; 2012:197491. [PMID: 22848847 PMCID: PMC3403619 DOI: 10.1155/2012/197491] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 05/25/2012] [Accepted: 05/27/2012] [Indexed: 01/13/2023] Open
Abstract
A growing body of research indicates a pivotal role for astrocytes at the developing synapse. In particular, astrocytes are dynamically involved in governing synapse structure, function, and plasticity. In the postnatal brain, their appearance at synapses coincides with periods of developmental plasticity when neural circuits are refined and established. Alterations in the partnership between astrocytes and neurons have now emerged as important mechanisms that underlie neuropathology. With overall synaptic function standing as a prominent link to the expression of the disease phenotype in a number of neurodevelopmental disorders and knowing that astrocytes influence synapse development and function, this paper highlights the current knowledge of astrocyte biology with a focus on their involvement in fragile X syndrome.
Collapse
|
49
|
He CX, Portera-Cailliau C. The trouble with spines in fragile X syndrome: density, maturity and plasticity. Neuroscience 2012; 251:120-8. [PMID: 22522472 DOI: 10.1016/j.neuroscience.2012.03.049] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 02/14/2012] [Accepted: 03/04/2012] [Indexed: 01/15/2023]
Abstract
Dendritic spines are the principal recipients of excitatory synaptic inputs and the basic units of neural computation in the mammalian brain. Alterations in the density, size, shape, and turnover of mature spines, or defects in how spines are generated and establish synapses during brain development, could all result in neuronal dysfunction and lead to cognitive and/or behavioral impairments. That spines are abnormal in fragile X syndrome (FXS) and in the best-studied animal model of this disorder, the Fmr1 knockout mouse, is an undeniable fact. But the trouble with spines in FXS is that the exact nature of their defect is still controversial. Here, we argue that the most consistent abnormality of spines in FXS may be a subtle defect in activity-dependent spine plasticity and maturation. We also propose some future directions for research into spine plasticity in FXS at the cellular and ultrastructural levels that could help solve a two-decade-long riddle about the integrity of synapses in this prototypical neurodevelopmental disorder.
Collapse
Affiliation(s)
- C X He
- Department of Neurology, David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095, USA
| | | |
Collapse
|
50
|
Jung H, Yoon BC, Holt CE. Axonal mRNA localization and local protein synthesis in nervous system assembly, maintenance and repair. Nat Rev Neurosci 2012; 13:308-24. [PMID: 22498899 PMCID: PMC3682205 DOI: 10.1038/nrn3210] [Citation(s) in RCA: 347] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
mRNAs can be targeted to specific neuronal subcellular domains, which enables rapid changes in the local proteome through local translation. This mRNA-based mechanism links extrinsic signals to spatially restricted cellular responses and can mediate stimulus-driven adaptive responses such as dendritic plasticity. Local mRNA translation also occurs in growing axons where it can mediate directional responses to guidance signals. Recent profiling studies have revealed that both growing and mature axons possess surprisingly complex and dynamic transcriptomes, thereby suggesting that axonal mRNA localization is highly regulated and has a role in a broad range of processes, a view that is increasingly being supported by new experimental evidence. Here, we review current knowledge on the roles and regulatory mechanisms of axonal mRNA translation and discuss emerging links to axon guidance, survival, regeneration and neurological disorders.
Collapse
Affiliation(s)
- Hosung Jung
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | | | | |
Collapse
|