1
|
Feng H, Feng J, Han X, Ying Y, Lou W, Liu L, Zhang L. The Potential of Siglecs and Sialic Acids as Biomarkers and Therapeutic Targets in Tumor Immunotherapy. Cancers (Basel) 2024; 16:289. [PMID: 38254780 PMCID: PMC10813689 DOI: 10.3390/cancers16020289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/24/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
The dysregulation of sialic acid is closely associated with oncogenesis and tumor progression. Most tumor cells exhibit sialic acid upregulation. Sialic acid-binding immunoglobulin-like lectins (Siglecs) are receptors that recognize sialic acid and are expressed in various immune cells. The activity of Siglecs in the tumor microenvironment promotes immune escape, mirroring the mechanisms of the well-characterized PD-1/PD-L1 pathway in cancer. Cancer cells utilize sialic acid-linked glycans to evade immune surveillance. As Siglecs exhibit similar mechanisms as the established immune checkpoint inhibitors (ICIs), they are potential therapeutic targets for different forms of cancer, especially ICI-resistant malignancies. Additionally, the upregulation of sialic acid serves as a potential tumor biomarker. This review examines the feasibility of using sialic acid and Siglecs for early malignant tumor detection and discusses the potential of targeting Siglec-sialic acid interaction as a novel cancer therapeutic strategy.
Collapse
Affiliation(s)
- Haokang Feng
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiale Feng
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xu Han
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ying Ying
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wenhui Lou
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- The Shanghai Geriatrics Medical Center, Zhongshan Hospital MinHang MeiLong Branch, Fudan University, Shanghai 200032, China
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lei Zhang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
2
|
Alomar S, Alkhuriji A, Alkhulaifi FM, Mansour L, Al-Jurayyan A, Aldossari GS, Albalawi AE, Alanazi AD. Relationship between KIR genotypes and HLA-ligands with SARS-CoV-2 infection in the Saudi population. JOURNAL OF KING SAUD UNIVERSITY. SCIENCE 2023; 35:102416. [PMID: 36338940 PMCID: PMC9622466 DOI: 10.1016/j.jksus.2022.102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 10/09/2022] [Accepted: 10/26/2022] [Indexed: 05/28/2023]
Abstract
Aim To ascertain whether killer cell immunoglobulin-like receptors (KIR) genes polymorphisms and HLA-I ligands are associated with COVID-19 in Saudi Arabia. Methods Eighty-seven COVID-19 patients who tested positive for SARS-CoV-2 and one hundred and fourteen healthy controls were enrolled in this study for genotyping of the 16 KIR genes, HLA-C1 and -C2 allotypes and HLA-G 14-bp indels polymorphisms using the sequence specific primer polymerase chain reaction (SSP-PCR) method. KIR genotype frequency differences and combination KIR-HLA-C ligand were tested for significance. Results Framework genes KIR2DL4, KIR3DL2, KIR3DL3, and KIR3DP2 were present in all individuals. The frequencies of KIR2DL2 and KIR2D4 were higher in COVID-19 positive patients than in healthy individuals. The frequencies of the combination KIR2DL2-HLA-C2 was also significantly higher in patients affected by COVID-19 compared with healthy controls. Conclusion It was found that the inhibitory KIR2DL2 gene in isolation or combined with its HLA-C2 ligand could be associated with susceptibility to COVID-19 in the Saudi population.
Collapse
Affiliation(s)
- Suliman Alomar
- Doping Research Chair, Department of Zoology, College of Science, King Saud University, PO. Box: 2455, Riyadh 11451, Saudi Arabia
- Zoology Department, College of Sciences, King Saud University, Post Office Box 2455, Riyadh 11451, Saudi Arabia
| | - Afrah Alkhuriji
- Zoology Department, College of Sciences, King Saud University, Post Office Box 2455, Riyadh 11451, Saudi Arabia
| | - Fadwa M Alkhulaifi
- Biology Department, College of Science, Imam Abdulrahman bin Faisal University, Saudi Arabia
| | - Lamjed Mansour
- Zoology Department, College of Sciences, King Saud University, Post Office Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah Al-Jurayyan
- Immunology and HLA Section, Pathology and Clinical Laboratory Medicine, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ghadeer S Aldossari
- Serology, Immunology and HLA, Pathology and Clinical Laboratory Medicine, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Aishah Eid Albalawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 47912, Saudi Arabia
| | - Abdullah D Alanazi
- Department of Biological Sciences, Faculty of Science and Humanities, Shaqra University, P.O. Box 1040, Ad-Dawadimi 11911, Saudi Arabia
| |
Collapse
|
3
|
Wu B, Zhong C, Lang Q, Liang Z, Zhang Y, Zhao X, Yu Y, Zhang H, Xu F, Tian Y. Poliovirus receptor (PVR)-like protein cosignaling network: new opportunities for cancer immunotherapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:267. [PMID: 34433460 PMCID: PMC8390200 DOI: 10.1186/s13046-021-02068-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022]
Abstract
Immune checkpoint molecules, also known as cosignaling molecules, are pivotal cell-surface molecules that control immune cell responses by either promoting (costimulatory molecules) or inhibiting (coinhibitory molecules) a signal. These molecules have been studied for many years. The application of immune checkpoint drugs in the clinic provides hope for cancer patients. Recently, the poliovirus receptor (PVR)-like protein cosignaling network, which involves several immune checkpoint receptors, i.e., DNAM-1 (DNAX accessory molecule-1, CD226), TIGIT (T-cell immunoglobulin (Ig) and immunoreceptor tyrosine-based inhibitory motif (ITIM)), CD96 (T cell activation, increased late expression (TACLILE)), and CD112R (PVRIG), which interact with their ligands CD155 (PVR/Necl-5), CD112 (PVRL2/nectin-2), CD111 (PVRL1/nectin-1), CD113 (PVRL3/nectin-3), and Nectin4, was discovered. As important components of the immune system, natural killer (NK) and T cells play a vital role in eliminating and killing foreign pathogens and abnormal cells in the body. Recently, increasing evidence has suggested that this novel cosignaling network axis costimulates and coinhibits NK and T cell activation to eliminate cancer cells after engaging with ligands, and this activity may be effectively targeted for cancer immunotherapy. In this article, we review recent advances in research on this novel cosignaling network. We also briefly outline the structure of this cosignaling network, the signaling cascades and mechanisms involved after receptors engage with ligands, and how this novel cosignaling network costimulates and coinhibits NK cell and T cell activation for cancer immunotherapy. Additionally, this review comprehensively summarizes the application of this new network in preclinical trials and clinical trials. This review provides a new immunotherapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Baokang Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Chongli Zhong
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Qi Lang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Zhiyun Liang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Yizhou Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Xin Zhao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Yang Yu
- Department of Surgery, Jinzhou Medical University, Jinzhou, 121001, Liaoning Province, China
| | - Heming Zhang
- Department of College of Medical and Biological Information Engineering, Northeastern University, Shenyang, 110819, Liaoning Province, China
| | - Feng Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| |
Collapse
|
4
|
Quamine AE, Olsen MR, Cho MM, Capitini CM. Approaches to Enhance Natural Killer Cell-Based Immunotherapy for Pediatric Solid Tumors. Cancers (Basel) 2021; 13:2796. [PMID: 34199783 PMCID: PMC8200074 DOI: 10.3390/cancers13112796] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/26/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022] Open
Abstract
Treatment of metastatic pediatric solid tumors remain a significant challenge, particularly in relapsed and refractory settings. Standard treatment has included surgical resection, radiation, chemotherapy, and, in the case of neuroblastoma, immunotherapy. Despite such intensive therapy, cancer recurrence is common, and most tumors become refractory to prior therapy, leaving patients with few conventional treatment options. Natural killer (NK) cells are non-major histocompatibility complex (MHC)-restricted lymphocytes that boast several complex killing mechanisms but at an added advantage of not causing graft-versus-host disease, making use of allogeneic NK cells a potential therapeutic option. On top of their killing capacity, NK cells also produce several cytokines and growth factors that act as key regulators of the adaptive immune system, positioning themselves as ideal effector cells for stimulating heavily pretreated immune systems. Despite this promise, clinical efficacy of adoptive NK cell therapy to date has been inconsistent, prompting a detailed understanding of the biological pathways within NK cells that can be leveraged to develop "next generation" NK cell therapies. Here, we review advances in current approaches to optimizing the NK cell antitumor response including combination with other immunotherapies, cytokines, checkpoint inhibition, and engineering NK cells with chimeric antigen receptors (CARs) for the treatment of pediatric solid tumors.
Collapse
Affiliation(s)
- Aicha E. Quamine
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (A.E.Q.); (M.R.O.); (M.M.C.)
| | - Mallery R. Olsen
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (A.E.Q.); (M.R.O.); (M.M.C.)
| | - Monica M. Cho
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (A.E.Q.); (M.R.O.); (M.M.C.)
| | - Christian M. Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (A.E.Q.); (M.R.O.); (M.M.C.)
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
5
|
Abstract
Checkpoint inhibitors have become an efficient way to treat cancers. Indeed, anti-CTLA-4, anti-PD1, and anti-PDL-1 antibodies are now used as therapies for cancers. However, while these therapies are very efficient in certain tumors, they remain poorly efficient in others. This might be explained by the immune infiltrate, the expression of target molecules, and the influence of the tumor microenvironment. It is therefore critical to identify checkpoint antigens that represent alternative targets for immunotherapies. PVR-like molecules play regulatory roles in immune cell functions. These proteins are expressed by different cell types and have been shown to be upregulated in various malignancies. PVR and Nectin-2 are expressed by tumor cells as well as myeloid cells, while TIGIT, CD96, and DNAM-1 are expressed on effector lymphoid cells. PVR is able to bind DNAM-1, CD96, and TIGIT, which results in two distinct profiles of effector cell activation. Indeed, while binding to DNAM-1 induces the release of cytokines and cytotoxicity of cytotoxic effector cells, binding TIGIT induces an immunosuppressive and non-cytotoxic profile. PVR is also able to bind CD96, which induces an immunosuppressive response in murine models. Unfortunately, in humans, results remain contradictory, and this interaction might induce the activation or the suppression of the immune response. Similarly, Nectin-2 was shown to bind TIGIT and to induce regulatory profiles in effectors cells such as NK and T cells. Therefore, these data highlight the potential of each of the molecules of the “PVR–TIGIT axis” as a potential target for immune checkpoint therapy. However, many questions remain to be answered to fully understand the mechanisms of this synapse, in particular for human CD96 and Nectin-2, which are still understudied. Here, we review the recent advances in “PVR–TIGIT axis” research and discuss the potential of targeting this axis by checkpoint immunotherapies.
Collapse
Affiliation(s)
- Laurent Gorvel
- Cancer Research Center of Marseille, INSERM U1068, CNRS U7258, Aix Marseille Université, Institut Paoli - Calmettes, Marseille, France
| | - Daniel Olive
- Cancer Research Center of Marseille, INSERM U1068, CNRS U7258, Aix Marseille Université, Institut Paoli - Calmettes, Marseille, France
| |
Collapse
|
6
|
Wang Y, Wang P, Xu J. Phosphorylation: A Fast Switch For Checkpoint Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:347-398. [PMID: 32185718 DOI: 10.1007/978-981-15-3266-5_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Checkpoint signaling involves a variety of upstream and downstream factors that participate in the regulation of checkpoint expression, activation, and degradation. During the process, phosphorylation plays a critical role. Phosphorylation is one of the most well-documented post-translational modifications of proteins. Of note, the importance of phosphorylation has been emphasized in aspects of cell activities, including proliferation, metabolism, and differentiation. Here we summarize how phosphorylation of specific molecules affects the immune activities with preference in tumor immunity. Of course, immune checkpoints are given extra attention in this book. There are many common pathways that are involved in signaling of different checkpoints. Some of them are integrated and presented as common activities in the early part of this chapter, especially those associated with PD-1/PD-L1 and CTLA-4, because investigations concerning them are particularly abundant and variant. Their distinct regulation is supplementarily discussed in their respective section. As for checkpoints that are so far not well explored, their related phosphorylation modulations are listed separately in the later part. We hope to provide a clear and systematic view of the phosphorylation-modulated immune signaling.
Collapse
Affiliation(s)
- Yiting Wang
- School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Wang
- Shanghai Tenth People's Hospital of Tongji University, School of Medicine, School of Life Sciences and Technology, Tongji University Cancer Center, Tongji University, Shanghai, 200092, China
| | - Jie Xu
- Institutes of Biomedical Sciences, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
7
|
Kučan Brlić P, Lenac Roviš T, Cinamon G, Tsukerman P, Mandelboim O, Jonjić S. Targeting PVR (CD155) and its receptors in anti-tumor therapy. Cell Mol Immunol 2019; 16:40-52. [PMID: 30275538 PMCID: PMC6318332 DOI: 10.1038/s41423-018-0168-y] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/20/2018] [Indexed: 12/22/2022] Open
Abstract
Poliovirus receptor (PVR, CD155) has recently been gaining scientific interest as a therapeutic target in the field of tumor immunology due to its prominent endogenous and immune functions. In contrast to healthy tissues, PVR is expressed at high levels in several human malignancies and seems to have protumorigenic and therapeutically attractive properties that are currently being investigated in the field of recombinant oncolytic virotherapy. More intriguingly, PVR participates in a considerable number of immunoregulatory functions through its interactions with activating and inhibitory immune cell receptors. These functions are often modified in the tumor microenvironment, contributing to tumor immunosuppression. Indeed, increasing evidence supports the rationale for developing strategies targeting these interactions, either in terms of checkpoint therapy (i.e., targeting inhibitory receptors) or in adoptive cell therapy, which targets PVR as a tumor marker.
Collapse
Affiliation(s)
- Paola Kučan Brlić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51 000, Rijeka, Croatia.
| | - Tihana Lenac Roviš
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51 000, Rijeka, Croatia
| | - Guy Cinamon
- Nectin Therapeutics Ltd., Hi-Tech Campus Givat Ram, POB 39135, 91390, Jerusalem, Israel
| | - Pini Tsukerman
- Nectin Therapeutics Ltd., Hi-Tech Campus Givat Ram, POB 39135, 91390, Jerusalem, Israel
| | - Ofer Mandelboim
- The Lautenberg Center for General and Tumor Immunology, The Faculty of Medicine, IMRIC, The Hebrew University Medical School, Jerusalem, Israel
| | - Stipan Jonjić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51 000, Rijeka, Croatia.
| |
Collapse
|
8
|
Weak vaccinia virus-induced NK cell regulation of CD4 T cells is associated with reduced NK cell differentiation and cytolytic activity. Virology 2018; 519:131-144. [PMID: 29715623 DOI: 10.1016/j.virol.2018.04.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/31/2018] [Accepted: 04/16/2018] [Indexed: 11/20/2022]
Abstract
Natural killer (NK) cells control antiviral adaptive immune responses in mice during some virus infections, but the universality of this phenomenon remains unknown. Lymphocytic choriomeningitis virus (LCMV) infection of mice triggered potent cytotoxic activity of NK cells (NKLCMV) against activated CD4 T cells, tumor cells, and allogeneic lymphocytes. In contrast, NK cells activated by vaccinia virus (VACV) infection (NKVACV) exhibited weaker cytolytic activity against each of these target cells. Relative to NKLCMV cells, NKVACV cells exhibited a more immature (CD11b-CD27+) phenotype, and lower expression levels of the activation marker CD69, cytotoxic effector molecules (perforin, granzyme B), and the transcription factor IRF4. NKVACV cells expressed higher levels of the inhibitory molecule NKG2A than NKLCMV cells. Consistent with this apparent lethargy, NKVACV cells only weakly constrained VACV-specific CD4 T-cell responses. This suggests that NK cell regulation of adaptive immunity, while universal, may be limited with viruses that poorly activate NK cells.
Collapse
|
9
|
Abstract
Natural killer (NK) cells express an array of germ-line encoded receptors that are capable of triggering cytotoxicity. NK cells tend to express many members of a given family of signalling molecules. The presence of many activating receptors and many members of a given family of signalling molecules can enable NK cells to detect different kinds of target cells, and to mount different kinds of responses. This contributes also to the robustness of NK cells responses; cytotoxic functions of NK cells often remain unaffected in the absence of selected signalling molecules. NK cells express many MHC-I-specific inhibitory receptors. Signals from MHC-I-specific inhibitory receptors tightly control NK cell cytotoxicity and, paradoxically, maintain NK cells in a state of proper responsiveness. This review provides a brief overview of the events that underlie NK cell activation, and how signals from inhibitory receptors intercept NK cell activation to prevent inappropriate triggering of cytotoxicity.
Collapse
Affiliation(s)
- Santosh Kumar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
| |
Collapse
|
10
|
Wang XQ, Tao BB, Li B, Wang XH, Zhang WC, Wan L, Hua XM, Li ST. Overexpression of TREM2 enhances glioma cell proliferation and invasion: a therapeutic target in human glioma. Oncotarget 2016; 7:2354-66. [PMID: 26506595 PMCID: PMC4823040 DOI: 10.18632/oncotarget.6221] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 10/08/2015] [Indexed: 12/11/2022] Open
Abstract
Gliomas are the most common and aggressive type of primary adult brain tumors. Although TREM2 mutation is reported to be related to Nasu-Hakola disease and Alzheimer's disease, little is known about the association between TREM2 and gliomas. Here, we reported that TREM2 was significantly overexpressed in glioma tissues compared with non-tumorous brain tissues. Furthermore, TREM2 expression was closely related to pathological grade and overall survival of patients with gliomas. Down-regulation of TREM2 in two glioma cell lines, U87 and U373, resulted in a significant reduction in cell proliferation, migration and invasion and a dramatic increase in S phase arrest and apoptosis. In vivo tumorigenesis experiment also revealed that depletion of TREM2 expression inhibited U87 cell proliferation. Moreover, based on gene set enrichment analysis (GSEA) with The Cancer Genome Atlas (TCGA) dataset, we found that TREM2 was positive related to Kyoto Encyclopedia of Genes and Genomes (KEGG) apoptosis, Cromer metastasis and KEGG chemokine pathways, which was further validated by western blot in TREM2 knockdown glioma cells and indicated a possible mechanism underlying its effects on glioma. In summary, our study suggests that TREM2 may work as an oncogene and a new effective therapeutic target for glioma treatment.
Collapse
Affiliation(s)
- Xiao-Qiang Wang
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bang-Bao Tao
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bin Li
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xu-Hui Wang
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wen-Chuan Zhang
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Liang Wan
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xu-Ming Hua
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shi-Ting Li
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Blake SJ, Dougall WC, Miles JJ, Teng MW, Smyth MJ. Molecular Pathways: Targeting CD96 and TIGIT for Cancer Immunotherapy. Clin Cancer Res 2016; 22:5183-5188. [DOI: 10.1158/1078-0432.ccr-16-0933] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 08/31/2016] [Indexed: 11/16/2022]
|
12
|
Moradi S, Berry R, Pymm P, Hitchen C, Beckham SA, Wilce MCJ, Walpole NG, Clements CS, Reid HH, Perugini MA, Brooks AG, Rossjohn J, Vivian JP. The structure of the atypical killer cell immunoglobulin-like receptor, KIR2DL4. J Biol Chem 2015; 290:10460-71. [PMID: 25759384 PMCID: PMC4400354 DOI: 10.1074/jbc.m114.612291] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 02/10/2015] [Indexed: 01/31/2023] Open
Abstract
The engagement of natural killer cell immunoglobulin-like receptors (KIRs) with their target ligands, human leukocyte antigen (HLA) molecules, is a critical component of innate immunity. Structurally, KIRs typically have either two (D1-D2) or three (D0-D1-D2) extracellular immunoglobulin domains, with the D1 and D2 domain recognizing the α1 and α2 helices of HLA, respectively, whereas the D0 domain of the KIR3DLs binds a loop region flanking the α1 helix of the HLA molecule. KIR2DL4 is distinct from other KIRs (except KIR2DL5) in that it does not contain a D1 domain and instead has a D0-D2 arrangement. Functionally, KIR2DL4 is also atypical in that, unlike all other KIRs, KIR2DL4 has both activating and inhibitory signaling domains. Here, we determined the 2.8 Å crystal structure of the extracellular domains of KIR2DL4. Structurally, KIR2DL4 is reminiscent of other KIR2DL receptors, with the D0 and D2 adopting the C2-type immunoglobulin fold arranged with an acute elbow angle. However, KIR2DL4 self-associated via the D0 domain in a concentration-dependent manner and was observed as a tetramer in the crystal lattice by size exclusion chromatography, dynamic light scattering, analytical ultracentrifugation, and small angle x-ray scattering experiments. The assignment of residues in the D0 domain to forming the KIR2DL4 tetramer precludes an interaction with HLA akin to that observed for KIR3DL1. Accordingly, no interaction was observed to HLA by direct binding studies. Our data suggest that the unique functional properties of KIR2DL4 may be mediated by self-association of the receptor.
Collapse
Affiliation(s)
- Shoeib Moradi
- From the Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, and
| | - Richard Berry
- From the Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, and the Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Phillip Pymm
- From the Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, and
| | - Corinne Hitchen
- From the Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, and
| | - Simone A Beckham
- From the Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, and
| | - Matthew C J Wilce
- From the Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, and
| | - Nicholas G Walpole
- From the Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, and
| | - Craig S Clements
- From the Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, and
| | - Hugh H Reid
- From the Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, and
| | - Matthew A Perugini
- the Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne Victoria 3086 Australia
| | - Andrew G Brooks
- the Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia, and
| | - Jamie Rossjohn
- From the Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, and the Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia, the Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Julian P Vivian
- From the Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, and the Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia,
| |
Collapse
|
13
|
Lutz-Nicoladoni C, Wolf D, Sopper S. Modulation of Immune Cell Functions by the E3 Ligase Cbl-b. Front Oncol 2015; 5:58. [PMID: 25815272 PMCID: PMC4356231 DOI: 10.3389/fonc.2015.00058] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/24/2015] [Indexed: 01/10/2023] Open
Abstract
Maintenance of immunological tolerance is a critical hallmark of the immune system. Several signaling checkpoints necessary to balance activating and inhibitory input to immune cells have been described so far, among which the E3 ligase Cbl-b appears to be a central player. Cbl-b is expressed in all leukocyte subsets and regulates several signaling pathways in T cells, NK cells, B cells, and different types of myeloid cells. In most cases, Cbl-b negatively regulates activation signals through antigen or pattern recognition receptors and co-stimulatory molecules. In line with this function, cblb-deficient immune cells display lower activation thresholds and cblb knockout mice spontaneously develop autoimmunity and are highly susceptible to experimental autoimmunity. Interestingly, genetic association studies link CBLB-polymorphisms with autoimmunity also in humans. Vice versa, the increased activation potential of cblb-deficient cells renders them more potent to fight against malignancies or infections. Accordingly, several reports have shown that cblb knockout mice reject tumors, which mainly depends on cytotoxic T and NK cells. Thus, targeting Cbl-b may be an interesting strategy to enhance anti-cancer immunity. In this review, we summarize the findings on the molecular function of Cbl-b in different cell types and illustrate the potential of Cbl-b as target for immunomodulatory therapies.
Collapse
Affiliation(s)
- Christina Lutz-Nicoladoni
- Department of Hematology and Oncology, Medical University Innsbruck , Innsbruck , Austria ; Tumor Immunology Laboratory, Tyrolean Cancer Research Institute , Innsbruck , Austria
| | - Dominik Wolf
- Medical Clinic III for Oncology, Haematology and Rheumatology, University Clinic Bonn (UKB) , Bonn , Germany
| | - Sieghart Sopper
- Department of Hematology and Oncology, Medical University Innsbruck , Innsbruck , Austria ; Tumor Immunology Laboratory, Tyrolean Cancer Research Institute , Innsbruck , Austria
| |
Collapse
|
14
|
|
15
|
Hou S, Ge K, Zheng X, Wei H, Sun R, Tian Z. CD226 protein is involved in immune synapse formation and triggers Natural Killer (NK) cell activation via its first extracellular domain. J Biol Chem 2014; 289:6969-6977. [PMID: 24451371 DOI: 10.1074/jbc.m113.498253] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
CD226, an activating receptor that interacts with the ligands CD155 and CD112, activates natural killer (NK) cells via its immunoreceptor tyrosine-based activatory motif (ITAM). There are two extracellular domains of CD226; however, the comparative functional relevance of these domains remains unknown. In this study, two different deletion mutants, rCD226-ECD1 (the first extracellular domain) and rCD226-ECD (full extracellular domains), were recombinantly expressed. We observed that rCD226-ECD1, similar to rCD226-ECD, specifically bound to ligand-positive cell lines and that this interaction could be competitively blocked by an anti-CD226 mAb. In addition, rCD226-ECD1 was able to block the binding of CD112 mAb to tumor cells in a competitive binding assay. Importantly, based on surface plasmon resonance (SPR), we determined that rCD226-ECD1, similar to rCD226-ECD, directly bound to its ligand CD155 on a protein chip. Functionally, NK cell cytotoxicity against K562 or HeLa cells was blocked by rCD226-ECD1 by reducing the expression of CD69 and granzyme B, indicating the critical role of ECD1 in NK cell activation. We also examined the role of rCD226-ECD1 in effector/target interactions by using rCD226-ECD to block these interactions. Using flow cytometry, we found that the number of conjugates between IL-2-dependent NKL cells and HeLa cells was reduced and observed that the formation of immune synapses was also decreased under confocal microscopy. In addition, we prepared two anti-rCD226-ECD1 agonistic antibodies, 2E6 and 3B9. Both 2E6 and 3B9 antibodies could induce the phosphorylation of ERK in NK-92 cells. Taken together, our results show that CD226 functions via its first extracellular domain.
Collapse
Affiliation(s)
- Shengke Hou
- Department of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027
| | - Kuikui Ge
- Department of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027
| | - Xiaodong Zheng
- Department of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027
| | - Haiming Wei
- Department of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027; Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui 230027, China
| | - Rui Sun
- Department of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027; Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui 230027, China.
| | - Zhigang Tian
- Department of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027; Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui 230027, China.
| |
Collapse
|
16
|
McFall E, Tu MM, Al-Khattabi N, Tai LH, St-Laurent AS, Tzankova V, Hall CW, Belanger S, Troke AD, Wight A, Mahmoud AB, Zein HS, Rahim MMA, Carlyle JR, Makrigiannis AP. Optimized tetramer analysis reveals Ly49 promiscuity for MHC ligands. THE JOURNAL OF IMMUNOLOGY 2013; 191:5722-9. [PMID: 24154624 DOI: 10.4049/jimmunol.1300726] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Murine Ly49 receptors, which are expressed mainly on NK and NKT cells, interact with MHC class I (MHC-I) molecules with varying specificity. Differing reports of Ly49/MHC binding affinities may be affected by multiple factors, including cis versus trans competition and species origin of the MHC-I L chain (β2-microglobulin). To determine the contribution of each of these factors, Ly49G, Ly49I, Ly49O, Ly49V, and Ly49Q receptors from the 129 mouse strain were expressed individually on human 293T cells or the mouse cell lines MHC-I-deficient C1498, H-2(b)-expressing MC57G, and H-2(k)-expressing L929. The capacity to bind to H-2D(b)- and H-2K(b)-soluble MHC-I tetramers containing either human or murine β2-microglobulin L chains was tested for all five Ly49 receptors in all four cell lines. We found that most of these five inhibitory Ly49 receptors show binding for one or both self-MHC-I molecules in soluble tetramer binding assays when three conditions are fulfilled: 1) lack of competing cis interactions, 2) tetramer L chain is of mouse origin, and 3) Ly49 is expressed in mouse and not human cell lines. Furthermore, Ly49Q, the single known MHC-I receptor on plasmacytoid dendritic cells, was shown to bind H-2D(b) in addition to H-2K(b) when the above conditions were met, suggesting that Ly49Q functions as a pan-MHC-Ia receptor on plasmacytoid dendritic cells. In this study, we have optimized the parameters for soluble tetramer binding analyses to enhance future Ly49 ligand identification and to better evaluate specific contributions by different Ly49/MHC-I pairs to NK cell education and function.
Collapse
Affiliation(s)
- Emily McFall
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Franceschi DSA, de Souza CA, Aranha FJP, Cardozo DM, Sell AM, Visentainer JEL. Importance of killer immunoglobulin-like receptors in allogeneic hematopoietic stem cell transplantation. Rev Bras Hematol Hemoter 2013; 33:126-30. [PMID: 23284260 PMCID: PMC3520637 DOI: 10.5581/1516-8484.20110033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Accepted: 01/26/2011] [Indexed: 11/27/2022] Open
Abstract
Hematopoietic stem cell transplantation is the treatment of choice for many hematologic diseases, such as multiple myeloma, bone marrow aplasia and leukemia. Human leukocyte antigen (HLA) compatibility is an important tool to prevent post-transplant complications such as graft rejection and graft-versus-host disease, but the high rates of relapse limit the survival of transplant patients. Natural Killer cells, a type of lymphocyte that is a key element in the defense against tumor cells, cells infected with viruses and intracellular microbes, have different receptors on their surfaces that regulate their cytotoxicity. Killer immunoglobulin-like receptors are the most important, interacting consistently with human leukocyte antigen class I molecules present in other cells and thus controlling the activation of natural killer cells. Several studies have shown that certain combinations of killer immunoglobulin-like receptors and human leukocyte antigens (in both donors and recipients) can affect the chances of survival of transplant patients, particularly in relation to the graft-versusleukemia effect, which may be associated to decreased relapse rates in certain groups. This review aims to shed light on the mechanisms and effects of killer immunoglobulin-like receptors - human leukocyte antigen associations and their implications following hematopoietic stem cell transplantation, and to critically analyze the results obtained by the studies presented herein.
Collapse
|
18
|
The endothelial tyrosine phosphatase SHP-1 plays an important role for vascular haemostasis in TNFα -induced inflammation in vivo. Mediators Inflamm 2013; 2013:279781. [PMID: 23766558 PMCID: PMC3665258 DOI: 10.1155/2013/279781] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/06/2013] [Accepted: 03/25/2013] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Inflammation and endothelium-derived superoxides are important pathomechanisms in atherothrombotic diseases. We could previously show that the tyrosine phosphatase SHP-1 acts as a negative regulator in endothelial superoxide production. In this study we investigated the influence of SHP-1 on platelet-endothelium interaction and arterial thrombosis in TNFα -induced endothelial inflammation in vivo. METHODS Arteriolar thrombosis and platelet rolling in vivo were investigated in C57BL/6 mice using intravital microscopy in the dorsal skinfold chamber microcirculation model. RESULTS Inhibition of SHP-1 by the specific pharmacological inhibitor sodium stibogluconate did not significantly enhance platelet-endothelium interaction in vivo under physiological conditions but led to an augmented fraction of rolling platelets in TNFα -induced systemic inflammation. Accordingly, ferric-chloride-induced arteriolar thrombus formation, which was already increased by SHP-1 inhibition, was further enhanced in the setting of TNFα -induced inflammation. Platelet aggregation in vitro as well as ex vivo was not influenced by SHP-1-inhibition. In cultured endothelial cells, sodium stibogluconate increased TNFα -induced surface expression of p-selectin and von Willebrand factor. Additionally, TNFα increased SHP-1 activity and protein expression. CONCLUSIONS The endothelial tyrosine phosphatase SHP-1 plays an important role for vascular hemostasis in vivo, which is crucial in TNF α -induced endothelial inflammation where it may serve as an autoinhibitory molecule to prevent excess inflammatory response and thrombus formation.
Collapse
|
19
|
Triggering receptor expressed on myeloid cells type 1 as a potential therapeutic target in sepsis. Dimens Crit Care Nurs 2012; 31:1-6. [PMID: 22156803 DOI: 10.1097/dcc.0b013e31823a5298] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Excessive and unregulated inflammation contributes to multiorgan failure and death in sepsis. Triggering receptor expressed on myeloid cells type 1(TREM-1) is expressed on neutrophils and monocytes and is upregulated in the presence of bacterial pathogens. Engagement of TREM-1 results in increased expression of proinflammatory chemokines and cytokines and amplifies the inflammatory response. In this article, we will review the structure and signaling pathway of TREM-1 and review the role of TREM-1 and soluble TREM-1 in the inflammatory response during sepsis. Based on these studies, modulation of the TREM-1 signaling pathway has been suggested as a potential therapeutic strategy for the treatment of sepsis, to dampen the inflammatory response without interrupting the ability of the host to clear pathogens. This basic science research may someday lead to other treatments for sepsis and other diseases.
Collapse
|
20
|
Lau KHW, Stiffel V, Amoui M. An osteoclastic protein-tyrosine phosphatase regulates the β3-integrin, syk, and shp1 signaling through respective src-dependent phosphorylation in osteoclasts. Am J Physiol Cell Physiol 2012; 302:C1676-86. [PMID: 22460711 DOI: 10.1152/ajpcell.00042.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study utilized the glutathione transferase (GST) pull-down assay to identify novel substrates of an osteoclastic protein-tyrosine phosphatase, PTP-oc. Consistent with the previous findings that the phosphorylated tyr-527 (pY527) of Src is a substrate of PTP-oc, the major protein pulled down with the phosphatase-deficient (PD)-PTP-oc-GST trapping mutant in RAW264.7 cells was Src. The GST-PD-PTP-oc also pulled down pY-Syk and pY-β(3)-integrin, but not after PP2 pretreatment. However, PTP-oc transgenic osteoclasts or PTP-oc-overexpressing RAW264.7 cells had elevated, and not reduced, levels of pY525/526-Syk and pY759-β(3) integrin, and the PTP-oc siRNA treatment drastically reduced levels of pY525/526 Syk and pY759-β(3)-integrin in RAW264.7 cells. These findings are incompatible with the premise that they are substrates of PTP-oc. The PTP-oc-dependent increases in pY525/526-Syk and pY759-β(3)-integrin levels were completely blocked by PP2, indicating that these effects are secondary to PTP-oc-mediated activation of the Src protein-tyrosine kinase (PTK). Overexpression of PTP-oc increased, and siRNA-mediated suppression of PTP-oc reduced, pY160-Vav1, pY173-Vav3, and pY783-PLCγ levels, and Rac1 activation, which are downstream mediators of the ITAM/Syk signaling. Overexpression of PTP-oc also increased, and PTP-oc siRNA treatment decreased, the pY-Shp1 levels, which were blocked by PP2. Since Shp1 is a negative regulator of osteoclast activity and is a key mediator of the ITIM signaling, these findings suggest that PTP-oc is an upstream suppressor of the ITIM/Shp1 signaling through PTP-oc-induced Src-dependent Shp1 phosphorylation. In summary, PTP-oc plays a central regulatory role in the concerted regulation of the β(3)-integrin, the ITAM/Syk, and the ITIM/Shp1 signaling indirectly through activation of Src PTK.
Collapse
|
21
|
Otero K, Shinohara M, Zhao H, Cella M, Gilfillan S, Colucci A, Faccio R, Ross FP, Teitelbaum SL, Takayanagi H, Colonna M. TREM2 and β-catenin regulate bone homeostasis by controlling the rate of osteoclastogenesis. THE JOURNAL OF IMMUNOLOGY 2012; 188:2612-21. [PMID: 22312126 DOI: 10.4049/jimmunol.1102836] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
TREM2 is an immunoreceptor expressed on osteoclasts (OC) and microglia that transmits intracellular signals through the adaptor DAP12. Individuals with genetic mutations inactivating TREM2 or DAP12 develop the Nasu-Hakola disease (NHD) with cystic-like lesions of the bone and brain demyelination that lead to fractures and presenile dementia. The mechanisms of this disease are poorly understood. In this study, we report that TREM2-deficient mice have an osteopenic phenotype reminiscent of NHD. In vitro, lack of TREM2 impairs proliferation and β-catenin activation in osteoclast precursors (OcP) in response to M-CSF. This defect results in accelerated differentiation of OcP into mature OC. Corroborating the importance of a balanced proliferation and differentiation of OcP for bone homeostasis, we show that conditional deletion of β-catenin in OcP also results in reduced OcP proliferation and accelerated osteoclastogenesis in vitro as well as osteopenia in vivo. These results reveal that TREM2 regulates the rate of osteoclastogenesis and provide a mechanism for the bone pathology in NHD.
Collapse
Affiliation(s)
- Karel Otero
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Purdy AK, Campbell KS. [Natural killer cells and cancer. Regulation by the killer cell Ig-like receptors (KIR)]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2011; 13:731-6. [PMID: 21644387 PMCID: PMC6135950 DOI: 10.3779/j.issn.1009-3419.2010.07.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
自然杀伤(natural killer, NK)细胞是先天性免疫效应细胞,约占人外周血淋巴细胞总数的10%-15%,主要参与免疫监视,以消除转化细胞和病毒感染细胞。NK细胞最初被界定是由于它们具有自发消除少数主要组织相容性复合物Ⅰ类(major histocompatibility class Ⅰ, MHC-Ⅰ)自身分子表达缺乏细胞的能力,即常说的“丢失自我”识别能力。NK细胞表面表达的MHC-Ⅰ特异性抑制性受体,可使NK细胞对表达MHC-Ⅰ的正常细胞耐受,此为丢失自我识别能力的分子基础。由于缺乏抑制性受体的配体,表面MHC-Ⅰ表达下调的肿瘤细胞和病毒感染细胞易受NK细胞攻击。杀伤细胞免疫球蛋白样受体(KIR; CD158)组成MHC-Ⅰ结合受体家族,对调节人NK细胞和部分T细胞的活化阈值起重要作用。KIR多样性使NK细胞具有多种功能,在此我们将综述多个水平上的KIR多样性,并诠释KIR多样性是如何影响各种疾病(包括癌症)的易感性的。我们将进一步阐述通过针对KIR进行癌症治疗的策略:利用KIR/MHC-Ⅰ配体的错配以强化造血干细胞移植的效果,以及通过阻滞KIR以增强对肿瘤细胞的杀伤力。
Collapse
Affiliation(s)
- Amanda K Purdy
- Fox Chase Cancer Center, Institute for Cancer Research, Philadelphia, PA, USA
| | | |
Collapse
|
23
|
Bolanos FD, Tripathy SK. Activation receptor-induced tolerance of mature NK cells in vivo requires signaling through the receptor and is reversible. THE JOURNAL OF IMMUNOLOGY 2011; 186:2765-71. [PMID: 21263069 DOI: 10.4049/jimmunol.1003046] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NK cell responses are determined by signals received through activating and inhibitory cell surface receptors. Ly49H is an NK cell-specific activating receptor that accounts for the genetic resistance to murine CMV (MCMV). The Ly49H receptor has been shown to interact with two adaptor proteins (DAP12 and DAP10). In the context of MCMV infection, interaction of m157 (the MCMV-encoded ligand for Ly49H) with Ly49H results in activation of Ly49H-expressing NK cells. Chronic exposure of Ly49H with m157, however, induces tolerance in these same cells. The mechanism of this tolerance remains poorly understood. Using a transgenic mouse model, we demonstrate that induction of tolerance in Ly49H(+) NK cells by chronic exposure to m157, in vivo, requires signaling through the Ly49H adaptor protein DAP12, but not the DAP10 adaptor protein. Furthermore, mature Ly49H-expressing NK cells from wild-type mice can acquire a tolerant phenotype by 24 h posttransfer into a transgenic C57BL/6 mouse that expresses m157. The tolerant phenotype can be reversed, in vivo, if tolerant NK cells are transferred to mice that do not express the m157 protein. Thus, continuous activating receptor engagement can induce a transient tolerance in mature NK cells in vivo. These observations provide new insight into how activating receptor engagement shapes NK cell function and has important implications in how NK cells respond to tumors and during chronic viral infection.
Collapse
Affiliation(s)
- Fred D Bolanos
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | | |
Collapse
|
24
|
Orr SJ, McVicar DW. LAB/NTAL/Lat2: a force to be reckoned with in all leukocytes? J Leukoc Biol 2010; 89:11-9. [PMID: 20643813 DOI: 10.1189/jlb.0410221] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
LAB/NTAL/Lat2 is a transmembrane adaptor protein closely related to LAT. It is expressed in various myeloid and lymphoid cells, many of which also express LAT. Phosphorylation of LAB occurs following engagement of various ITAM- and non-ITAM-linked receptors and can play positive and negative roles following receptor engagement. LAT binds PLCγ directly, resulting in efficient Ca²+ flux and degranulation. However, LAB does not contain a PLCγ-binding motif and only binds PLCγ indirectly, possibly via Grb2, thereby resulting in suboptimal signaling. As LAT can signal more efficiently than LAB, competition between the 2 for space/substrates in the lipid rafts can attenuate signaling. This competition model requires coexpression of LAT; however, LAB is repressive, even in cells lacking substantial LAT expression such as macrophages and mature B cells. The reported interaction between LAB and the ubiquitin E3-ligase c-Cbl suggests 1 possible mechanism for LAT-independent inhibition by LAB, but such a model requires further investigation. Given the wide-reaching expression pattern of LAB, LAB has the ability to modulate signaling in virtually every type of leukocyte. Regardless of its ultimate mode of action, the potent regulatory capability of LAB proves this protein to be a complex adaptor that warrants continued, substantial scrutiny by biochemists and immunologists alike.
Collapse
Affiliation(s)
- Selinda J Orr
- Cancer and Inflammation Program, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | | |
Collapse
|
25
|
Purdy AK, Campbell KS. Natural killer cells and cancer: regulation by the killer cell Ig-like receptors (KIR). Cancer Biol Ther 2009; 8:2211-20. [PMID: 19923897 DOI: 10.4161/cbt.8.23.10455] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Natural killer (NK) cells are innate immune effector cells that make up approximately 10-15% of the peripheral blood lymphocytes in humans and are primarily involved in immunosurveillance to eliminate transformed and virally-infected cells. They were originally defined by their ability to spontaneously eliminate rare cells lacking expression of class I major histocompatibility complex (MHC-I) self molecules, which is commonly referred to as "missing self" recognition. The molecular basis for missing self recognition emerges from the expression of MHC-I-specific inhibitory receptors on the NK cell surface that tolerize NK cells toward normal MHC-I-expressing cells. By lacking inhibitory receptor ligands, tumor cells or virus-infected cells that have down-modulated surface MHC-I expression become susceptible to attack by NK cells. Killer cell Ig-like receptors (KIR; CD158) constitute a family of MHC-I binding receptors that plays a major role in regulating the activation thresholds of NK cells and some T cells in humans. Here, we review the multiple levels of KIR diversity that contribute to the generation of a highly varied NK cell repertoire and explain how this diversity can influence susceptibility to a variety of diseases, including cancer. We further describe strategies by which KIR can be manipulated therapeutically to treat cancer, through the exploitation of KIR/MHC-I ligand mismatch to potentiate hematopoietic stem cell transplantation and the use of KIR blockade to enhance tumor cell killing.
Collapse
Affiliation(s)
- Amanda K Purdy
- Fox Chase Cancer Center, Institute for Cancer Research, Philadelphia, PA, USA
| | | |
Collapse
|
26
|
Purdy AK, Campbell KS. SHP-2 expression negatively regulates NK cell function. THE JOURNAL OF IMMUNOLOGY 2009; 183:7234-43. [PMID: 19915046 DOI: 10.4049/jimmunol.0900088] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Src homology region 2-containing protein tyrosine phosphatase-2 (SHP-2) is required for full activation of Ras/ERK in many cytokine and growth factor receptor signaling pathways. In contrast, SHP-2 inhibits activation of human NK cells upon recruitment to killer cell Ig-like receptors (KIR). To determine how SHP-2 impacts NK cell activation in KIR-dependent or KIR-independent signaling pathways, we employed knockdown and overexpression strategies in NK-like cell lines and analyzed the consequences on functional responses. In response to stimulation with susceptible target cells, SHP-2-silenced NK cells had elevated cytolytic activity and IFN-gamma production, whereas cells overexpressing wild-type or gain-of-function mutants of SHP-2 exhibited dampened activities. Increased levels of SHP-2 expression over this range significantly suppressed microtubule organizing center polarization and granzyme B release in response to target cells. Interestingly, NK-target cell conjugation was only reduced by overexpressing SHP-2, but not potentiated in SHP-2-silenced cells, indicating that conjugation is not influenced by physiological levels of SHP-2 expression. KIR-dependent inhibition of cytotoxicity was unaffected by significant reductions in SHP-2 levels, presumably because KIR were still capable of recruiting the phosphatase under these limiting conditions. In contrast, the general suppressive effect of SHP-2 on cytotoxicity and cytokine release was much more sensitive to changes in cellular SHP-2 levels. In summary, our studies have identified a new, KIR-independent role for SHP-2 in dampening NK cell activation in response to tumor target cells in a concentration-dependent manner. This suppression of activation impacts microtubule organizing center-based cytoskeletal rearrangement and granule release.
Collapse
Affiliation(s)
- Amanda K Purdy
- Fox Chase Cancer Center, Institute for Cancer Research, Philadelphia, PA 19111, USA
| | | |
Collapse
|
27
|
Eagle RA, Jafferji I, Barrow AD. Beyond Stressed Self: Evidence for NKG2D Ligand Expression on Healthy Cells. CURRENT IMMUNOLOGY REVIEWS 2009; 5:22-34. [PMID: 19626129 PMCID: PMC2713595 DOI: 10.2174/157339509787314369] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The activity of cytotoxic lymphocytes is regulated by the opposing function of stimulatory and inhibitory cell surface receptors. According to the now classical model of Natural Killer (NK) cell activity, the ligands for inhibitory receptors are constitutively expressed on healthy cells but can be lost on infection and on malignant cells. Loss of inhibitory checks will then allow activating signals to predominate, forming the basis of 'missing self recognition'. Natural Killer Group 2D (NKG2D) is an important member of the cohort of activating receptors expressed on Natural Killer (NK) cells and subsets of T cells. Ligands for the NKG2D receptor comprise a diverse array of self-proteins structurally related to MHC class I molecules. Expression of NKG2D ligands can be induced in cells during infection with pathogens, tumourigenesis, and by stimuli such as DNA damage, oxidative stress, and heat shock. Consequently NKG2D has been widely described as participating in 'stressed self' or 'damaged self' recognition. However, a body of evidence has recently emerged to suggest that this intuitive model of NKG2D function may be an oversimplification. NKG2D ligand expression has now widely been reported on cells that could not be described as stressed or damaged. For example activated T cells can express NKG2D ligands, and constitutive expression of NKG2D ligands has been reported on normal myelomonocytic cells, dendritic cells, and epithelial cells of the gut mucosa. In this article we will review the literature suggesting that NKG2D may function to recognise non-stressed cells and discuss the role NKG2D ligands could be playing in apparently healthy cells.
Collapse
Affiliation(s)
- Robert A. Eagle
- University of Cambridge, Department of Pathology, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Cambridge, CB2 0XY, UK
| | - Insiya Jafferji
- University of Cambridge, Department of Pathology, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Cambridge, CB2 0XY, UK
| | - Alexander D. Barrow
- University of Cambridge, Department of Pathology, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Cambridge, CB2 0XY, UK
| |
Collapse
|
28
|
NK cell-activating receptors require PKC-theta for sustained signaling, transcriptional activation, and IFN-gamma secretion. Blood 2008; 112:4109-16. [PMID: 18784374 DOI: 10.1182/blood-2008-02-139527] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Natural killer (NK) cell sense virally infected cells and tumor cells through multiple cell surface receptors. Many NK cell-activating receptors signal through immunoreceptor tyrosine-based activation motif (ITAM)-containing adapters, which trigger both cytotoxicy and secretion of interferon-gamma (IFN-gamma). Within the ITAM pathway, distinct signaling intermediates are variably involved in cytotoxicity and/or IFN-gamma secretion. In this study, we have evaluated the role of protein kinase C- (PKC-) in NK-cell secretion of lytic mediators and IFN-gamma. We found that engagement of NK-cell receptors that signal through ITAMs results in prompt activation of PKC-. Analyses of NK cells from PKC--deficient mice indicated that PKC- is absolutely required for ITAM-mediated IFN-gamma secretion, whereas it has no marked influence on the release of cytolytic mediators. Moreover, we found that PKC- deficiency preferentially impairs sustained extracellular-regulated kinase signaling as well as activation of c-Jun N-terminal kinase and the transcription factors AP-1 and NFAT but does not affect activation of NF-kappaB. These results indicate that NK cell-activating receptors require PKC- to generate sustained intracellular signals that reach the nucleus and promote transcriptional activation, ultimately inducing IFN-gamma production.
Collapse
|
29
|
DAP12 couples c-Fms activation to the osteoclast cytoskeleton by recruitment of Syk. Mol Cell 2008; 31:422-31. [PMID: 18691974 DOI: 10.1016/j.molcel.2008.06.023] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 02/06/2008] [Accepted: 06/06/2008] [Indexed: 01/04/2023]
Abstract
We examined the mechanism by which M-CSF regulates the cytoskeleton and function of the osteoclast, the exclusive bone resorptive cell. We show that binding of M-CSF to its receptor c-Fms generates a signaling complex comprising phosphorylated DAP12, an adaptor containing an immunoreceptor tyrosine-based activation motif (ITAM) and the nonreceptor tyrosine kinase Syk. c-Fms tyrosine 559, the exclusive binding site of c-Src, is necessary for regulation of DAP12/Syk signaling. Deletion of either of these molecules yields osteoclasts that fail to reorganize their cytoskeleton. Retroviral transduction of null precursors with wild-type or mutant DAP12 or Syk reveals that the SH2 domain of Syk and the ITAM tyrosine residues and transmembrane domain of DAP12 mediate M-CSF signaling. Our data provide genetic and biochemical evidence that uncovers an epistatic signaling pathway linking the receptor tyrosine kinase c-Fms to the immune adaptor DAP12 and the cytoskeleton.
Collapse
|
30
|
The innate immune response to Salmonella enterica serovar Typhimurium by macrophages is dependent on TREM2-DAP12. Infect Immun 2008; 76:2439-47. [PMID: 18391000 DOI: 10.1128/iai.00115-08] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Macrophage recognition of Salmonella enterica serovar Typhimurium leads to a cascade of signaling events, including the activation of Src family and Syk kinases and the production of reactive oxygen species (ROS), which are critical for host innate defense during early stages of bacterial infection. ROS production depends on the NADPH oxidase, but little is known about the innate immune receptors and proximal adapters that regulate Salmonella-induced ROS. Herein, we demonstrate that serovar Typhimurium induces ROS through a pathway that requires both triggering receptor expressed on myeloid cells 2 (TREM2) and DAP12. This pathway is highly analogous to the pathways utilized by Fc receptors and integrins to regulate ROS production. Oral infection of mice with serovar Typhimurium demonstrates that the DAP12-dependent pathway regulates cecal colonization during early stages of Salmonella infection. Thus, DAP12 is an important regulator of Salmonella-induced ROS production in macrophages, and TREM2 is essential for linking DAP12 to the innate response to serovar Typhimurium.
Collapse
|
31
|
Lee DJ, Sieling PA, Ochoa MT, Krutzik SR, Guo B, Hernandez M, Rea TH, Cheng G, Colonna M, Modlin RL. LILRA2 activation inhibits dendritic cell differentiation and antigen presentation to T cells. THE JOURNAL OF IMMUNOLOGY 2008; 179:8128-36. [PMID: 18056355 DOI: 10.4049/jimmunol.179.12.8128] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The differentiation of monocytes into dendritic cells (DC) is a key mechanism by which the innate immune system instructs the adaptive T cell response. In this study, we investigated whether leukocyte Ig-like receptor A2 (LILRA2) regulates DC differentiation by using leprosy as a model. LILRA2 protein expression was increased in the lesions of the progressive, lepromatous form vs the self-limited, tuberculoid form of leprosy. Double immunolabeling revealed LILRA2 expression on CD14+, CD68+ monocytes/macrophages. Activation of LILRA2 on peripheral blood monocytes impaired GM-CSF induced differentiation into immature DC, as evidenced by reduced expression of DC markers (MHC class II, CD1b, CD40, and CD206), but not macrophage markers (CD209 and CD14). Furthermore, LILRA2 activation abrogated Ag presentation to both CD1b- and MHC class II-restricted, Mycobacterium leprae-reactive T cells derived from leprosy patients, while cytokine profiles of LILRA2-activated monocytes demonstrated an increase in TNF-alpha, IL-6, IL-8, IL-12, and IL-10, but little effect on TGF-beta. Therefore, LILRA2 activation, by altering GM-CSF-induced monocyte differentiation into immature DC, provides a mechanism for down-regulating the ability of the innate immune system to activate the adaptive T cell response while promoting an inflammatory response.
Collapse
Affiliation(s)
- Delphine J Lee
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Pascal V, Yamada E, Martin MP, Alter G, Altfeld M, Metcalf JA, Baseler MW, Adelsberger JW, Carrington M, Anderson SK, McVicar DW. Detection of KIR3DS1 on the Cell Surface of Peripheral Blood NK Cells Facilitates Identification of a Novel Null Allele and Assessment of KIR3DS1 Expression during HIV-1 Infection. THE JOURNAL OF IMMUNOLOGY 2007; 179:1625-33. [PMID: 17641029 DOI: 10.4049/jimmunol.179.3.1625] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
KIR3DL1 is a highly polymorphic killer cell Ig-like receptor gene with at least 23 alleles described, including its activating counterpart, KIR3DS1. Recently, the KIR3DS1 allele has been shown to slow progression to AIDS in individuals expressing HLA-Bw4 with isoleucine at position 80. However, due to the lack of a specific Ab, KIR3DS1 expression and function is not well characterized. In this study, we demonstrate KIR3DS1 expression on a substantial subset of peripheral natural killer cells through its recognition by the mAb Z27. The fidelity of this detection method was confirmed by analysis of KIR3DS1 transfectants and the identification of a novel KIR3DS1 null allele. Interestingly, KIR3DS1 is also expressed by a small proportion of CD56(+) T cells. We show that ligation of KIR3DS1 by Z27 leads to NK cell IFN-gamma production and degranulation as assessed by expression of CD107a. Furthermore, we document the persistence of KIR3DS1(+) NK cells in HIV-1 viremic patients. The high frequency of KIR3DS1 expression, along with its ability to activate NK cells, and its maintenance during HIV-1 viremia are consistent with the epidemiological data suggesting a critical role for this receptor in controlling HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Véronique Pascal
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Orabona C, Puccetti P, Vacca C, Bicciato S, Luchini A, Fallarino F, Bianchi R, Velardi E, Perruccio K, Velardi A, Bronte V, Fioretti MC, Grohmann U. Toward the identification of a tolerogenic signature in IDO-competent dendritic cells. Blood 2006; 107:2846-54. [PMID: 16339401 DOI: 10.1182/blood-2005-10-4077] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AbstractAlthough much is known about the transcriptional profiles of dendritic cells (DCs) during maturation, the molecular switches critical for the induction of a tolerogenic program in DC subsets are still obscure. We examined the gene-expression profiles of murine splenic CD8+ DCs rendered highly tolerogenic by interferon-γ (IFN-γ), which activates the enzyme indoleamine 2,3-dioxygenase (IDO, encoded by Indo) and thus initiates the immunosuppressive pathway of tryptophan catabolism. By examining the expression of a series of relevant genes in IDO+ compared with IDO- DCs, we found consistent and selective association of the IDO-competent phenotype with down-modulation of the Tyrobp gene, encoding the signaling adapter DAP12, which typically associates with activating receptors. Down-modulation of Tyrobp involved IFN consensus sequence binding protein (ICSBP), a transcription factor also known as IRF-8. In murine and human monocyte-derived DCs, silencing DAP12 expression imparted IDO functional competence to IDO- cells, whereas silencing IRF-8 in IDO+ counterparts abolished IDO expression and function. Thus, IRF-8 is required in tolerogenic DCs for the positive regulation of Indo and the negative regulation of Tyrobp. Overall, these studies reveal the occurrence of a simple and evolutionarily conserved code in the control of tolerance by an ancestral metabolic enzyme.
Collapse
Affiliation(s)
- Ciriana Orabona
- Section of Pharmacology, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, 06126 Perugia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Yawata M, Yawata N, Draghi M, Little AM, Partheniou F, Parham P. Roles for HLA and KIR polymorphisms in natural killer cell repertoire selection and modulation of effector function. ACTA ACUST UNITED AC 2006; 203:633-45. [PMID: 16533882 PMCID: PMC2118260 DOI: 10.1084/jem.20051884] [Citation(s) in RCA: 430] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Interactions between killer cell immunoglobulin-like receptors (KIRs) and human leukocyte antigen (HLA) class I ligands regulate the development and response of human natural killer (NK) cells. Natural selection drove an allele-level group A KIR haplotype and the HLA-C1 ligand to unusually high frequency in the Japanese, who provide a particularly informative population for investigating the mechanisms by which KIR and HLA polymorphism influence NK cell repertoire and function. HLA class I ligands increase the frequencies of NK cells expressing cognate KIR, an effect modified by gene dose, KIR polymorphism, and the presence of other cognate ligand-receptor pairs. The five common Japanese KIR3DLI allotypes have distinguishable inhibitory capacity, frequency of cellular expression, and level of cell surface expression as measured by antibody binding. Although KIR haplotypes encoding 3DL1*001 or 3DL1*005, the strongest inhibitors, have no activating KIR, the dominant haplotype encodes a moderate inhibitor, 3DL1*01502, plus functional forms of the activating receptors 2DL4 and 2DS4. In the population, certain combinations of KIR and HLA class I ligand are overrepresented or underrepresented in women, but not men, and thus influence female fitness and survival. These findings show how KIR-HLA interactions shape the genetic and phenotypic KIR repertoires for both individual humans and the population.
Collapse
Affiliation(s)
- Makoto Yawata
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA, and Department of Haematology, The Royal Free Hospital, London, UK.
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Tolerance of natural killer (NK) cells toward normal cells is mediated through their expression of inhibitory receptors that detect the normal expression of self in the form of class I major histocompatibility complex (MHC-I) molecules on target cells. These MHC-I-binding inhibitory receptors recruit tyrosine phosphatases, which are believed to counteract activating receptor-stimulated tyrosine kinases. The perpetual balance between signals derived from inhibitory and activating receptors controls NK cell responsiveness and provides an interesting paradigm of signaling cross talk. This review summarizes our knowledge of the intracellular mechanisms by which cell surface receptors influence biological responses by NK cells. Special emphasis focuses on the dynamic signaling events at the NK immune synapse and the unique signaling characteristics of specific receptors, such as NKG2D, 2B4, and KIR2DL4.
Collapse
Affiliation(s)
- A W MacFarlane
- Fox Chase Cancer Center, Division of Basic Science, Institute for Cancer Research, 333 Cottman Ave., Philadelphia, PA 19111, USA
| | | |
Collapse
|
36
|
Turnbull IR, McDunn JE, Takai T, Townsend RR, Cobb JP, Colonna M. DAP12 (KARAP) amplifies inflammation and increases mortality from endotoxemia and septic peritonitis. ACTA ACUST UNITED AC 2005; 202:363-9. [PMID: 16061725 PMCID: PMC2213081 DOI: 10.1084/jem.20050986] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DAP12 (KARAP) is a transmembrane signaling adaptor for a family of innate immunoreceptors that have been shown to activate granulocytes and monocytes/macrophages, amplifying production of inflammatory cytokines. Contrasting with these data, recent studies suggest that DAP12 signaling has an inhibitory role in the macrophage response to microbial products (Hamerman, J.A., N.K. Tchao, C.A. Lowell, and L.L. Lanier. 2005. Nat. Immunol. 6:579–586). To determine the in vivo role for DAP12 signaling in inflammation, we measured the response of wild-type (WT) and DAP12−/− mice to septic shock. We show that DAP12−/− mice have improved survival from both endotoxemia and cecal ligation and puncture–induced septic shock. As compared with WT mice, DAP12−/− mice have decreased plasma cytokine levels and a decreased acute phase response during sepsis, but no defect in the recruitment of cells or bacterial control. In cells isolated after sepsis and stimulated ex vivo, DAP12 signaling augments lipopolysaccharide-mediated cytokine production. These data demonstrate that, during sepsis, DAP12 signaling augments the response to microbial products, amplifying inflammation and contributing to mortality.
Collapse
Affiliation(s)
- Isaiah R Turnbull
- Department of Pathology and Immunology, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110
| | | | | | | | | | | |
Collapse
|
37
|
Fuchs A, Cella M, Kondo T, Colonna M. Paradoxic inhibition of human natural interferon-producing cells by the activating receptor NKp44. Blood 2005; 106:2076-82. [PMID: 15941912 DOI: 10.1182/blood-2004-12-4802] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Natural killer (NK) cell-mediated cytotoxicity is triggered by multiple activating receptors associated with the signaling adaptor protein DNAX activation protein 12/killer cell-activating receptor-associated protein (DAP12/KARAP). Here, we show that one of these receptors, NKp44, is present on a subset of natural interferon-producing cells (IPCs) in tonsils. NKp44 expression can also be induced on blood IPCs after in vitro culture with interleukin 3 (IL-3). Crosslinking of NKp44 does not trigger IPC-mediated cytotoxicity but, paradoxically, inhibits interferon alpha (IFN-alpha) production by IPCs in response to cytosine-phosphate-guanosine (CpG) oligonucleotides. We find that IPCs in tonsils are in close contact with CD8+ T cells and demonstrate that a subset of memory CD8+ T cells produces IL-3. Therefore, IL-3-mediated induction of NKp44 on IPCs may be an important component of the ongoing crosstalk between the innate and adaptive immune response that allows memory CD8+ T cells to control the IPC response to virus.
Collapse
Affiliation(s)
- Anja Fuchs
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S Euclid, St Louis, MO 63110, USA
| | | | | | | |
Collapse
|
38
|
Epling-Burnette PK, Bai F, Wei S, Chaurasia P, Painter JS, Olashaw N, Hamilton A, Sebti S, Djeu JY, Loughran TP. ERK couples chronic survival of NK cells to constitutively activated Ras in lymphoproliferative disease of granular lymphocytes (LDGL). Oncogene 2005; 23:9220-9. [PMID: 15516985 DOI: 10.1038/sj.onc.1208122] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chronic NK lymphoproliferative disease of large granular lymphocytes (LDGL) is characterized by the expansion of activated CD3-, CD16+ or CD56+ lymphocytes. The mechanism of survival of NK cells from LDGL patients is unknown but may be related to antigenic stimulation. There is currently no standard effective therapy for LDGL, and the disease is characteristically resistant to standard forms of chemotherapy. We found evidence of constitutive activation of extracellular-regulated kinase (ERK) in NK cells from 13/13 patients with NK-LDGL (one patient with aggressive and 12 patients with chronic disease). Ablation of ERK activity by inhibitors or a dominant-negative form of MEK, the upstream activator of ERK, reduced the survival of patient NK cells. Ras was also constitutively active in patient NK cells, and exposure of cells to the Ras inhibitor FTI2153 or to dominant-negative-Ras resulted not only in ERK inhibition but also in enhanced apoptosis in both the presence and absence of anti-Fas. Therefore, we conclude that a constitutively active Ras/MEK/ERK pathway contributes to the accumulation of NK cells in patients with NK-LDGL. These findings suggest that strategies to inhibit this signaling pathway may be useful for the treatment of the NK type of LDGL.
Collapse
Affiliation(s)
- Pearlie K Epling-Burnette
- Hematologic Malignancies, Programs from the Department of Interdisciplinary Oncology, H Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, FL 33612, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Jacobs R, Heiken H, Schmidt RE. Mutual interference of HIV and natural killer cell-mediated immune response. Mol Immunol 2005; 42:239-49. [PMID: 15488611 DOI: 10.1016/j.molimm.2004.06.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Natural killer (NK) cells represent important early effector cells in innate immune defense as they exert their functions without prior sensitization. They participate in regulation of innate and adaptive immune responses and hematopoiesis by producing various cytokines and chemokines. In addition, NK cells lyse virally infected and malignant cells raising them to multifunctional members of the first line of defense. Unlike other lymphocytes they lack specific antigen receptors. They rather bind cells using ubiquitous molecules and communicate via a pattern of receptors specific for MHC-I molecules with their counterparts. In general, successful binding of the receptors delivers an inhibitory signal to NK cells thus sparing the target cell from lysis. In contrast, down-regulated or altered MHC-I expression as frequently observed during virus infection or on malignant cells prevents ligation of inhibitory receptors and MHC-I paralyzing inhibition and thus inducing lysis of the target cell. In human immunodeficiency virus (HIV) infection NK cells are of central importance since they can combat viral infection itself and opportunistic pathogens like fungi and protozoa that usually spread during the course of HIV infection. However, various studies have reported alterations in HIV patients affecting NK cell numbers and functions that might negatively influence course and severity of the disease. This review will focus on the mutual interference of NK cells and the HI virus.
Collapse
Affiliation(s)
- Roland Jacobs
- Department of Clinical Immunology, Hannover Medical School, 30625 Hannover, Germany.
| | | | | |
Collapse
|
40
|
Makrigiannis AP, Patel D, Goulet ML, Dewar K, Anderson SK. Direct sequence comparison of two divergent class I MHC natural killer cell receptor haplotypes. Genes Immun 2005; 6:71-83. [PMID: 15674375 DOI: 10.1038/sj.gene.6364154] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The murine Ly49 gene family encoding natural killer cell receptors for class I MHC is an example of a rapidly evolving cluster of immune response genes. Determining the genomic sequence of the 129S6/SvEvTac (129S6) Ly49 cluster and comparing it to the known sequence of the C57BL/6 (B6) region provided insight into the mechanisms of Ly49 gene evolution. 129S6 contains 20 Ly49, many of which are pseudogenes and 40% of the genes have no counterpart in the B6 genome. The difference in gene content between these two strains is primarily the result of distinct patterns of gene duplication. Phylogenetic analyses of individual exons showed that Ly49 genes form distinct sub-families and an ancestral haplotype can be surmised. Dotplot analysis supports limited allelism in the two haplotypes; however, large regions of variation punctuate these islands of co-linearity. These variable regions contain a high concentration of repetitive elements that are predicted to contribute to the dynamic evolution of this cluster. The extreme variation in Ly49 haplotype content between mouse strains provides a genetic explanation for the documented differences in natural killer cell phenotype, and also indicates that differences in natural killer cell function observed between B6 and 129-derived gene-targeted mice should be interpreted with caution.
Collapse
|
41
|
Cella M, Fujikawa K, Tassi I, Kim S, Latinis K, Nishi S, Yokoyama W, Colonna M, Swat W. Differential requirements for Vav proteins in DAP10- and ITAM-mediated NK cell cytotoxicity. ACTA ACUST UNITED AC 2004; 200:817-23. [PMID: 15365099 PMCID: PMC2211968 DOI: 10.1084/jem.20031847] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Natural killer (NK) cells express multiple activating receptors that initiate signaling cascades through DAP10- or immunoreceptor tyrosine-based activation motif–containing adapters, including DAP12 and FcRγ. Among downstream signaling mediators, the guanine nucleotide exchange factor Vav1 carries out a key role in activation. However, whether Vav1 regulates only some or all NK cell–activating pathways is matter of debate. It is also possible that two other Vav family molecules, Vav2 and Vav3, are involved in NK cell activation. Here, we examine the relative contribution of each of these exchange factors to NK cell–mediated cytotoxicity using mice lacking one, two, or all three Vav proteins. We found that Vav1 deficiency is sufficient to disrupt DAP10-mediated cytotoxicity, whereas lack of Vav2 and Vav3 profoundly impairs FcRγ- and DAP12-mediated cytotoxicity. Our results provide evidence that these three Vav proteins function specifically in distinct pathways that trigger NK cell cytotoxicity.
Collapse
Affiliation(s)
- Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Fuchs A, Cella M, Giurisato E, Shaw AS, Colonna M. Cutting Edge: CD96 (Tactile) Promotes NK Cell-Target Cell Adhesion by Interacting with the Poliovirus Receptor (CD155). THE JOURNAL OF IMMUNOLOGY 2004; 172:3994-8. [PMID: 15034010 DOI: 10.4049/jimmunol.172.7.3994] [Citation(s) in RCA: 273] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The poliovirus receptor (PVR) belongs to a large family of Ig molecules called nectins and nectin-like proteins, which mediate cell-cell adhesion, cell migration, and serve as entry receptors for viruses. It has been recently shown that human NK cells recognize PVR through the receptor DNAM-1, which triggers NK cell stimulation in association with beta(2) integrin. In this study, we show that NK cells recognize PVR through an additional receptor, CD96, or T cell-activated increased late expression (Tactile). CD96 promotes NK cell adhesion to target cells expressing PVR, stimulates cytotoxicity of activated NK cells, and mediates acquisition of PVR from target cells. Thus, NK cells have evolved a dual receptor system that recognizes nectins and nectin-like molecules on target cells and mediates NK cell adhesion and triggering of effector functions. As PVR is highly expressed in certain tumors, this receptor system may be critical for NK cell recognition of tumors.
Collapse
Affiliation(s)
- Anja Fuchs
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
43
|
Makrigiannis AP, Rousselle E, Anderson SK. Independent Control ofLy49gAlleles: Implications for NK Cell Repertoire Selection and Tumor Cell Killing. THE JOURNAL OF IMMUNOLOGY 2004; 172:1414-25. [PMID: 14734717 DOI: 10.4049/jimmunol.172.3.1414] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A novel murine NK cell-reactive mAb, AT8, was generated. AT8 recognizes Ly49G from 129/J, BALB/c, and related mouse strains, but does not bind to Ly49G(B6). Costaining with AT8 and a Ly49G(B6)-restricted Ab (Cwy-3) provides the first direct evidence that Ly49G protein is expressed from both alleles on a significant proportion of NK cells from four different types of F(1) hybrid mice. The observed level of biallelic Ly49G expression reproducibly followed the product rule in both freshly isolated and cultured NK cells. Surprisingly, the percentage of NK cells expressing both Ly49G alleles could be dramatically increased in vitro and in vivo through IL-2R- and IFN receptor-dependent signaling pathways, respectively. Unexpectedly, Ly49G(B6+) NK cells in an H-2(d), but not H-2(b), background were more likely to lyse D(d+) and Chinese hamster ovary tumor cells than Ly49G(BALB/129+) NK cells. Furthermore, Ly49G(B6+) NK cells also proliferated to a higher degree in response to poly(I:C) than NK cells expressing a non-Ly49G(B6) allele in an H-2(d), but not H-2(b), background. These results suggest that Ly49G(B6) has a lower affinity for H-2D(d) than Ly49G(BALB/129), and the genetic background calibrates the responsiveness of NK cells bearing self-specific Ly49. Other H-2D(d) receptors on the different Ly49G(+) NK cell subsets were unequally coexpressed, possibly explaining the disparate responses of Ly49G(B6+) NK cells in different hybrid mice. These data indicate that the stochastic mono- and biallelic expression of divergent Ly49G alleles increases the range of MHC affinities and the functional potential in the total NK cell population of heterozygous mice.
Collapse
MESH Headings
- Aging/genetics
- Aging/immunology
- Alleles
- Animals
- Antibodies, Monoclonal/pharmacology
- Antigens, Ly/biosynthesis
- Antigens, Ly/genetics
- Antigens, Ly/immunology
- Antigens, Ly/physiology
- Cell Division/genetics
- Cell Division/immunology
- Cell Line, Tumor
- Cytotoxicity, Immunologic/genetics
- Gene Expression Regulation/immunology
- Humans
- Killer Cells, Natural/cytology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lectins, C-Type
- Lymphocyte Activation/genetics
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Multigene Family/immunology
- NK Cell Lectin-Like Receptor Subfamily A
- Rats
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/physiology
- Receptors, KIR
- Receptors, NK Cell Lectin-Like
- Species Specificity
- Spleen/cytology
- Spleen/immunology
- Spleen/metabolism
Collapse
Affiliation(s)
- Andrew P Makrigiannis
- Laboratory of Molecular Immunology, Institut de Recherches Cliniques de Montreal, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
44
|
Abstract
NKG2D is a surface receptor that activates natural killer (NK) cells and delivers a co-stimulatory signal to CD8-positive T cells. The ligands of NKG2D are induced by cellular stress and are specifically expressed by some tumor cells. This sparked the idea of an alternative regulation of NK cells by expression of "induced self" ligands on target cells which can overcome the inhibition imparted by MHC class I-specific inhibitory receptors.
Collapse
Affiliation(s)
- Carsten Watzl
- Institute for Immunology, University of Heidelberg, INF 305, 69120, Heidelberg, Germany.
| |
Collapse
|