1
|
Zhang M, Yuan L, Yang X, Zhao X, Xie J, Liu X, Wang F. TRAF1 promotes the progression of Helicobacter pylori-associated gastric cancer through EGFR/STAT/OAS signalling. Life Sci 2025; 373:123656. [PMID: 40287055 DOI: 10.1016/j.lfs.2025.123656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/11/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
AIMS Helicobacter pylori (H. pylori) is associated with various gastric diseases and is one of the pathogenic factors of gastric cancer (GC). We found that H. pylori induce the expression of TRAF1, but its mechanism of action is still unclear. Therefore, we wanted to determine whether TRAF1 is involved in the mechanism of H. pylori-related GC progression. MATERIALS AND METHODS In this study, we analysed TRAF1 expression and its prognostic significance using clinical specimens, performed functional studies involving TRAF1 overexpression or knockdown in cellular models, identified downstream signalling pathways regulated via RNA-seq, validated these mechanisms through pathway blockade and rescue experiments, and further confirmed the findings in an H. pylori-infected gastritis mouse model. KEY FINDINGS TRAF1 expression was significantly elevated in GC tissues and served as a poor prognostic biomarker. TRAF1 promoted GC cell proliferation, migration and invasion. RNA-seq analysis revealed that TRAF1 activated the EGFR/STAT/OAS signalling axis, upregulated STAT3 expression and increased the transcription of the OAS gene family. Pharmacological inhibition with ruxolitinib and AG490 effectively blocked EGFR/STAT/OAS signalling. In H. pylori-treated cell models, H. pylori infection activated the EGFR/STAT/OAS signalling axis. In vivo, we established an H. pylori-induced gastritis mouse model to validate the activation of this signalling pathway during the gastritis-carcinoma transition. SIGNIFICANCE TRAF1 may promote the proliferation, migration and invasion of H. pylori-associated GC by activating the EGFR/STAT/OAS signalling axis, suggesting that TRAF1 is a promising novel prognostic biomarker and therapeutic target for this malignancy.
Collapse
Affiliation(s)
- Minglin Zhang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, China
| | - Lingzhi Yuan
- Department of Digestive Nutrition, Hunan Children's Hospital, Central South University Affiliated Children's Hospital, Changsha, China
| | - Xueer Yang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, China
| | - Xuelin Zhao
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, China
| | - Jie Xie
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, China
| | - Xiaoming Liu
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, China.
| | - Fen Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, China.
| |
Collapse
|
2
|
Jang H, Kim S, Kim DY, Han JH, Park HH. TRAF1 from a Structural Perspective. Biomolecules 2024; 14:510. [PMID: 38785916 PMCID: PMC11117997 DOI: 10.3390/biom14050510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Tumor necrosis factor receptor-associated factor (TRAF) proteins play pivotal roles in a multitude of cellular signaling pathways, encompassing immune response, cell fate determination, development, and thrombosis. Their involvement in these processes hinges largely on their ability to interact directly with diverse receptors via the TRAF domain. Given the limited binding interface, understanding how specific TRAF domains engage with various receptors and how structurally similar binding interfaces of TRAF family members adapt their distinct binding partners has been the subject of extensive structural investigations over several decades. This review presents an in-depth exploration of the current insights into the structural and molecular diversity exhibited by the TRAF domain and TRAF-binding motifs across a range of receptors, with a specific focus on TRAF1.
Collapse
Affiliation(s)
| | | | | | | | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea; (H.J.); (S.K.); (D.Y.K.); (J.H.H.)
| |
Collapse
|
3
|
Wang Q, Martínez-Bonet M, Kim T, Sparks JA, Ishigaki K, Chen X, Sudman M, Aguiar V, Sim S, Hernandez MC, Chiu DJ, Wactor A, Wauford B, Marion MC, Gutierrez-Arcelus M, Bowes J, Eyre S, Nordal E, Prahalad S, Rygg M, Videm V, Raychaudhuri S, Weirauch MT, Langefeld CD, Thompson SD, Nigrovic PA. Identification of a regulatory pathway governing TRAF1 via an arthritis-associated non-coding variant. CELL GENOMICS 2023; 3:100420. [PMID: 38020975 PMCID: PMC10667332 DOI: 10.1016/j.xgen.2023.100420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/16/2023] [Accepted: 09/11/2023] [Indexed: 12/01/2023]
Abstract
TRAF1/C5 was among the first loci shown to confer risk for inflammatory arthritis in the absence of an associated coding variant, but its genetic mechanism remains undefined. Using Immunochip data from 3,939 patients with juvenile idiopathic arthritis (JIA) and 14,412 control individuals, we identified 132 plausible common non-coding variants, reduced serially by single-nucleotide polymorphism sequencing (SNP-seq), electrophoretic mobility shift, and luciferase studies to the single variant rs7034653 in the third intron of TRAF1. Genetically manipulated experimental cells and primary monocytes from genotyped donors establish that the risk G allele reduces binding of Fos-related antigen 2 (FRA2), encoded by FOSL2, resulting in reduced TRAF1 expression and enhanced tumor necrosis factor (TNF) production. Conditioning on this JIA variant eliminated attributable risk for rheumatoid arthritis, implicating a mechanism shared across the arthritis spectrum. These findings reveal that rs7034653, FRA2, and TRAF1 mediate a pathway through which a non-coding functional variant drives risk of inflammatory arthritis in children and adults.
Collapse
Affiliation(s)
- Qiang Wang
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Marta Martínez-Bonet
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Laboratory of Immune-regulation, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Taehyeung Kim
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeffrey A. Sparks
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Kazuyoshi Ishigaki
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaoting Chen
- Center of Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Marc Sudman
- Center of Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Vitor Aguiar
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Sangwan Sim
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Darren J. Chiu
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexandra Wactor
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian Wauford
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Miranda C. Marion
- Department of Biostatistics and Data Science, and Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Maria Gutierrez-Arcelus
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Center of Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - John Bowes
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, UK
- NIHR Manchester Musculoskeletal Biomedical Research Unit, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Stephen Eyre
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, UK
- NIHR Manchester Musculoskeletal Biomedical Research Unit, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Ellen Nordal
- University Hospital of North Norway and UIT The Arctic University of Norway, Tromsø, Norway
| | - Sampath Prahalad
- Emory University Department of Pediatrics and Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Marite Rygg
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Pediatrics, St. Olav’s University Hospital, Trondheim, Norway
| | - Vibeke Videm
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Soumya Raychaudhuri
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, UK
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Data Science, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Matthew T. Weirauch
- Center of Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Divisions of Human Genetics, Biomedical Informatics, and Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Carl D. Langefeld
- Department of Biostatistics and Data Science, and Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Susan D. Thompson
- Center of Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Peter A. Nigrovic
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
RNA demethylase ALKBH5 promotes tumorigenesis in multiple myeloma via TRAF1-mediated activation of NF-κB and MAPK signaling pathways. Oncogene 2022; 41:400-413. [PMID: 34759347 PMCID: PMC8755544 DOI: 10.1038/s41388-021-02095-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 02/07/2023]
Abstract
N6-methyladenosine (m6A), an internal modification in mRNA, plays a critical role in regulating gene expression. Dysregulation of m6A modifiers promotes oncogenesis through enzymatic functions that disrupt the balance between the deposition and removal of m6A modification on critical transcripts. However, the roles of mRNA m6A in multiple myeloma (MM) are poorly understood. The present study showed that RNA demethylase ALKBH5 was overexpressed in MM and associated with a poor prognosis in MM patients. Knocking down ALKBH5 induced apoptosis and inhibited the growth of MM cells in vitro. Xenograft models and gene set enrichment analysis with patient transcriptome datasets also supported the oncogenic role of ALKBH5 in MM. Mechanistic studies showed that ALKBH5 exerted tumorigenic effects in myeloma in an m6A-dependent manner, and TNF receptor-associated factor 1 (TRAF1) was a critical target of ALKBH5. Specifically, ALKBH5 regulated TRAF1 expression via decreasing m6A abundance in the 3'-untranslated region (3'-UTR) of TRAF1 transcripts and enhancing TRAF1 mRNA stability. As a result, ALKBH5 promoted MM cell growth and survival through TRAF1-mediated activation of NF-κB and MAPK signaling pathways. Collectively, our data demonstrated that ALKBH5 played a critical role in MM tumorigenesis and suggested that ALKBH5 could be a novel therapeutic target in MM.
Collapse
|
5
|
Zhu B, Chen JJ, Feng Y, Yang JL, Huang H, Chung WY, Hu YL, Xue WJ. DNMT1-induced miR-378a-3p silencing promotes angiogenesis via the NF-κB signaling pathway by targeting TRAF1 in hepatocellular carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:352. [PMID: 34749775 PMCID: PMC8576931 DOI: 10.1186/s13046-021-02110-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Angiogenesis plays an important role in the occurrence, development and metastasis of hepatocellular carcinoma (HCC). According to previous studies, miR-378a participates in tumorigenesis and tumor metastasis, but its exact role in HCC angiogenesis remains poorly understood. METHODS qRT-PCR was used to investigate the expression of miR-378a-3p in HCC tissues and cell lines. The effects of miR-378a-3p on HCC in vitro and in vivo were examined by Cell Counting Kit-8 (CCK-8), Transwell, tube formation and Matrigel plug assays, RNA sequencing, bioinformatics, luciferase reporter, immunofluorescence and chromatin immunoprecipitation (ChIP) assays were used to detect the molecular mechanism by which miR-378a-3p inhibits angiogenesis. RESULTS We confirmed that miR-378a-3p expression was significantly downregulated and associated with higher microvascular density (MVD) in HCC; miR-378a-3p downregulation indicated a short survival time in HCC patients. miR-378a-3p knockdown led to a significant increase in angiogenesis in vitro and in vivo. We found that miR-378a-3p directly targeted TNF receptor associated factor 1 (TRAF1) to attenuate NF-κB signaling, and then downregulated secreted vascular endothelial growth factor. DNA methyltransferase 1 (DNMT1)-mediated hypermethylation of miR-378a-3p was responsible for downregulating miR-378a-3p. Moreover, a series of investigations indicated that p65 initiated a positive feedback loop that could upregulate DNMT1 to promote hypermethylation of the miR-378a-3p promoter. CONCLUSION Our study indicates a novel DNMT1/miR-378a-3p/TRAF1/NF-κB positive feedback loop in HCC cells, which may become a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Bin Zhu
- Department of General Surgery, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, Jiangsu, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, Jiangsu, China.,Medical school, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Jun-Jie Chen
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, Jiangsu, China
| | - Ying Feng
- Department of General Surgery, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, Jiangsu, China
| | - Jun-Ling Yang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, Jiangsu, China
| | - Hua Huang
- Department of Pathology, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, Jiangsu, China
| | - Wen Yuan Chung
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, University of Leicester, Gwendolen Road, Leicester, LE5 4PW, UK
| | - Yi-Lin Hu
- Department of General Surgery, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, Jiangsu, China.
| | - Wan-Jiang Xue
- Department of General Surgery, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
6
|
Kim CM, Park HH. Comparison of Target Recognition by TRAF1 and TRAF2. Int J Mol Sci 2020; 21:ijms21082895. [PMID: 32326186 PMCID: PMC7215387 DOI: 10.3390/ijms21082895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/10/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022] Open
Abstract
Although TRAF1 and TRAF2 share common receptors and have extremely conserved amino acid residues, recent studies have shown that key differences in receptor binding preferences with different affinities exist, which might be important for their different functions in TRAF-mediated signal transduction. To better understand TRAF1 and TRAF2 signaling, we analyzed and compared their receptor binding-affinities. Our study revealed that TRADD, TANK, and caspase-2 bind to both TRAF1 and TRAF2 with different affinities in vitro. Sequence and structural analyses revealed that S454 on TRAF2 (corresponding to A369 of TRAF1) is critical for the binding of TRADD, and F347 on TRAF1 (corresponding to L432 of TRAF2) is a critical determinant for high affinity binding of TANK and caspase-2.
Collapse
|
7
|
Arkteg CB, Goll R, Gundersen MD, Anderssen E, Fenton C, Florholmen J. Mucosal gene transcription of ulcerative colitis in endoscopic remission. Scand J Gastroenterol 2020; 55:139-147. [PMID: 31918598 DOI: 10.1080/00365521.2019.1710245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Aim/Objective: Ulcerative colitis (UC) is a chronic inflammatory bowel disease. In UC, a wide range of criteria are used for disease remission, with few studies investigating the differences between disease remission and normal control groups. This paper compares known inflammatory and healing mediators in the mucosa of UC in clinical remission and normal controls, in order to better describe the remission state.Method: Mucosal biopsies from 72 study participants (48 UC and 24 normal controls) were included from the Advanced Study of Inflammatory Bowel Disease (ASIB Study), Arctic University of Norway, Norway. Clinical remission was defined as Mayo clinical score ≤ 2, with endoscopic subscores of ≤ 1. Targeted gene transcription analyses were performed using hydrolysis probes and SYBR-green.Results: Among the mucosal transcripts examined, 10 genes were regulated in remission versus normal controls, 8 upregulated pro-inflammatory transcripts (IL1B, IL33, TNF, TRAF1, CLDN2, STAT1, STAT3 and IL13Ra2) and 2 downregulated (pro-inflammatory TBX21 and anti-inflammatory TGFB1). In total, 14 transcripts were regulated between the investigated groups. Several master transcription factors for T-cell development were upregulated in patients with Mayo endoscopic score of 1 in comparison to 0.Conclusions: The mucosa of UC in clinical and endoscopic remission differs from normal mucosa, suggesting a remaining dysregulation of inflammatory and wound healing mechanisms.
Collapse
Affiliation(s)
- Christian Børde Arkteg
- Research Group Gastroenterology Nutrition, Institute of Clinical Medicine, UiT the Arctic University of Norway, Tromsø, Norway
| | - Rasmus Goll
- Research Group Gastroenterology Nutrition, Institute of Clinical Medicine, UiT the Arctic University of Norway, Tromsø, Norway.,Department of Gastroenterology, Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Mona Dixon Gundersen
- Research Group Gastroenterology Nutrition, Institute of Clinical Medicine, UiT the Arctic University of Norway, Tromsø, Norway.,Department of Gastroenterology, Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Endre Anderssen
- Research Group Gastroenterology Nutrition, Institute of Clinical Medicine, UiT the Arctic University of Norway, Tromsø, Norway
| | - Christopher Fenton
- Research Group Gastroenterology Nutrition, Institute of Clinical Medicine, UiT the Arctic University of Norway, Tromsø, Norway
| | - Jon Florholmen
- Research Group Gastroenterology Nutrition, Institute of Clinical Medicine, UiT the Arctic University of Norway, Tromsø, Norway.,Department of Gastroenterology, Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
8
|
Inhibitory Effect of β-Carotene on Helicobacter pylori-Induced TRAF Expression and Hyper-Proliferation in Gastric Epithelial Cells. Antioxidants (Basel) 2019; 8:antiox8120637. [PMID: 31835889 PMCID: PMC6943724 DOI: 10.3390/antiox8120637] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/29/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori infection causes the hyper-proliferation of gastric epithelial cells that leads to the development of gastric cancer. Overexpression of tumor necrosis factor receptor associated factor (TRAF) is shown in gastric cancer cells. The dietary antioxidant β-carotene has been shown to counter hyper-proliferation in H. pylori-infected gastric epithelial cells. The present study was carried out to examine the β-carotene mechanism of action. We first showed that H. pylori infection decreases cellular IκBα levels while increasing cell viability, NADPH oxidase activity, reactive oxygen species production, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation, and TRAF1 and TRAF2 gene expression, as well as protein–protein interaction in gastric epithelial AGS cells. We then demonstrated that pretreatment of cells with β-carotene significantly attenuates these effects. Our findings support the proposal that β-carotene has anti-cancer activity by reducing NADPH oxidase-mediated production of ROS, NF-κB activation and NF-κB-regulated TRAF1 and TRAF2 gene expression, and hyper-proliferation in AGS cells. We suggest that the consumption of β-carotene-enriched foods could decrease the incidence of H. pylori-associated gastric disorders.
Collapse
|
9
|
Zapata JM, Perez-Chacon G, Carr-Baena P, Martinez-Forero I, Azpilikueta A, Otano I, Melero I. CD137 (4-1BB) Signalosome: Complexity Is a Matter of TRAFs. Front Immunol 2018; 9:2618. [PMID: 30524423 PMCID: PMC6262405 DOI: 10.3389/fimmu.2018.02618] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/24/2018] [Indexed: 12/11/2022] Open
Abstract
CD137 (4-1BB, Tnsfr9) is a member of the TNF-receptor (TNFR) superfamily without known intrinsic enzymatic activity in its cytoplasmic domain. Hence, akin to other members of the TNFR family, it relies on the TNFR-Associated-Factor (TRAF) family of adaptor proteins to build the CD137 signalosome for transducing signals into the cell. Thus, upon CD137 activation by binding of CD137L trimers or by crosslinking with agonist monoclonal antibodies, TRAF1, TRAF2, and TRAF3 are readily recruited to the cytoplasmic domain of CD137, likely as homo- and/or heterotrimers with different configurations, initiating the construction of the CD137 signalosome. The formation of TRAF2-RING dimers between TRAF2 molecules from contiguous trimers would help to establish a multimeric structure of TRAF-trimers that is probably essential for CD137 signaling. In addition, available studies have identified a large number of proteins that are recruited to CD137:TRAF complexes including ubiquitin ligases and proteases, kinases, and modulatory proteins. Working in a coordinated fashion, these CD137-signalosomes will ultimately promote CD137-mediated T cell proliferation and survival and will endow T cells with stronger effector functions. Current evidence allows to envision the molecular events that might take place in the early stages of CD137-signalosome formation, underscoring the key roles of TRAFs and of K63 and K48-ubiquitination of target proteins in the signaling process. Understanding the composition and fine regulation of CD137-signalosomes assembly and disassembly will be key to improve the therapeutic activities of chimeric antigen receptors (CARs) encompassing the CD137 cytoplasmic domain and a new generation of CD137 agonists for the treatment of cancer.
Collapse
Affiliation(s)
- Juan M Zapata
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain.,Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain
| | - Gema Perez-Chacon
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain.,Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain
| | - Pablo Carr-Baena
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - Ivan Martinez-Forero
- Departamento de Inmunologia and Inmunoterapia, Centro de Investigación Medica Aplicada, Universidad de Navarra, Pamplona, Spain
| | - Arantza Azpilikueta
- Departamento de Inmunologia and Inmunoterapia, Centro de Investigación Medica Aplicada, Universidad de Navarra, Pamplona, Spain
| | - Itziar Otano
- Departamento de Inmunologia and Inmunoterapia, Centro de Investigación Medica Aplicada, Universidad de Navarra, Pamplona, Spain
| | - Ignacio Melero
- Departamento de Inmunologia and Inmunoterapia, Centro de Investigación Medica Aplicada, Universidad de Navarra, Pamplona, Spain.,MSD, London, United Kingdom.,Departamento de Inmunologia e Inmunoterapia, Clinica Universitaria, Universidad de Navarra, Pamplona, Spain.,Instituto de Investigacion Sanitaria de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
10
|
Zhu S, Jin J, Gokhale S, Lu AM, Shan H, Feng J, Xie P. Genetic Alterations of TRAF Proteins in Human Cancers. Front Immunol 2018; 9:2111. [PMID: 30294322 PMCID: PMC6158389 DOI: 10.3389/fimmu.2018.02111] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 08/28/2018] [Indexed: 12/25/2022] Open
Abstract
The tumor necrosis factor receptor (TNF-R)-associated factor (TRAF) family of cytoplasmic adaptor proteins regulate the signal transduction pathways of a variety of receptors, including the TNF-R superfamily, Toll-like receptors (TLRs), NOD-like receptors (NLRs), RIG-I-like receptors (RLRs), and cytokine receptors. TRAF-dependent signaling pathways participate in a diverse array of important cellular processes, including the survival, proliferation, differentiation, and activation of different cell types. Many of these TRAF-dependent signaling pathways have been implicated in cancer pathogenesis. Here we analyze the current evidence of genetic alterations of TRAF molecules available from The Cancer Genome Atlas (TCGA) and the Catalog of Somatic Mutations in Cancer (COSMIC) as well as the published literature, including copy number variations and mutation landscape of TRAFs in various human cancers. Such analyses reveal that both gain- and loss-of-function genetic alterations of different TRAF proteins are commonly present in a number of human cancers. These include pancreatic cancer, meningioma, breast cancer, prostate cancer, lung cancer, liver cancer, head and neck cancer, stomach cancer, colon cancer, bladder cancer, uterine cancer, melanoma, sarcoma, and B cell malignancies, among others. Furthermore, we summarize the key in vivo and in vitro evidence that demonstrates the causal roles of genetic alterations of TRAF proteins in tumorigenesis within different cell types and organs. Taken together, the information presented in this review provides a rationale for the development of therapeutic strategies to manipulate TRAF proteins or TRAF-dependent signaling pathways in different human cancers by precision medicine.
Collapse
Affiliation(s)
- Sining Zhu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Juan Jin
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Department of Pharmacology, Anhui Medical University, Hefei, China
| | - Samantha Gokhale
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Angeli M. Lu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Haiyan Shan
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jianjun Feng
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education of the People's Republic of China, Fisheries College of Jimei University, Xiamen, China
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Member, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
11
|
Wang Q, Gao G, Zhang T, Yao K, Chen H, Park MH, Yamamoto H, Wang K, Ma W, Malakhova M, Bode AM, Dong Z. TRAF1 Is Critical for Regulating the BRAF/MEK/ERK Pathway in Non-Small Cell Lung Carcinogenesis. Cancer Res 2018; 78:3982-3994. [PMID: 29748372 DOI: 10.1158/0008-5472.can-18-0429] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/06/2018] [Accepted: 05/07/2018] [Indexed: 11/16/2022]
Abstract
Tumor necrosis factor receptor (TNFR)-associated factor 1 (TRAF1) is a unique TRAF protein that can interact directly or indirectly with multiple TNFR family members, regulatory proteins, kinases, and adaptors that contribute to its diverse functions in specific tissues. However, the role of TRAF1 in non-small cell lung cancer (NSCLC) remains unknown. In this study, we report that TRAF1 is overexpressed in human lung cancer cells and tissues. TRAF1 expression level inversely correlated with patient survival probability. Loss of TRAF1 decelerated tumor invasion in a urethane-induced lung carcinogenesis mouse model. Furthermore, TRAF1 expression affected TRAF2-mediated BRAF Lys48-linked ubiquitination, which was followed by the inhibition of growth and differentiation, and the induction of death in lung cancer cells. Overall, our work suggests that TRAF1 plays a novel role in the regulation of the BRAF/MEK/ERK signaling pathway in NSCLC and offers a candidate molecular target for lung cancer prevention and therapy.Significance: These findings identify TRAF1 as a new therapeutic target for NSCLC. Cancer Res; 78(14); 3982-94. ©2018 AACR.
Collapse
Affiliation(s)
- Qiushi Wang
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Ge Gao
- The Hormel Institute, University of Minnesota, Austin, Minnesota.,Basic Medical College, Zhengzhou University, Zhengzhou, Henan, China
| | - Tianshun Zhang
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Ke Yao
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Hanyong Chen
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Mi Hee Park
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | | | - Keke Wang
- The Hormel Institute, University of Minnesota, Austin, Minnesota.,The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Weiya Ma
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | | | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, Minnesota. .,The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| |
Collapse
|
12
|
Zhu S, Jin J, Gokhale S, Lu AM, Shan H, Feng J, Xie P. Genetic Alterations of TRAF Proteins in Human Cancers. Front Immunol 2018. [PMID: 30294322 DOI: 10.3389/fimmu.2018.02111/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
The tumor necrosis factor receptor (TNF-R)-associated factor (TRAF) family of cytoplasmic adaptor proteins regulate the signal transduction pathways of a variety of receptors, including the TNF-R superfamily, Toll-like receptors (TLRs), NOD-like receptors (NLRs), RIG-I-like receptors (RLRs), and cytokine receptors. TRAF-dependent signaling pathways participate in a diverse array of important cellular processes, including the survival, proliferation, differentiation, and activation of different cell types. Many of these TRAF-dependent signaling pathways have been implicated in cancer pathogenesis. Here we analyze the current evidence of genetic alterations of TRAF molecules available from The Cancer Genome Atlas (TCGA) and the Catalog of Somatic Mutations in Cancer (COSMIC) as well as the published literature, including copy number variations and mutation landscape of TRAFs in various human cancers. Such analyses reveal that both gain- and loss-of-function genetic alterations of different TRAF proteins are commonly present in a number of human cancers. These include pancreatic cancer, meningioma, breast cancer, prostate cancer, lung cancer, liver cancer, head and neck cancer, stomach cancer, colon cancer, bladder cancer, uterine cancer, melanoma, sarcoma, and B cell malignancies, among others. Furthermore, we summarize the key in vivo and in vitro evidence that demonstrates the causal roles of genetic alterations of TRAF proteins in tumorigenesis within different cell types and organs. Taken together, the information presented in this review provides a rationale for the development of therapeutic strategies to manipulate TRAF proteins or TRAF-dependent signaling pathways in different human cancers by precision medicine.
Collapse
Affiliation(s)
- Sining Zhu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Juan Jin
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Department of Pharmacology, Anhui Medical University, Hefei, China
| | - Samantha Gokhale
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Angeli M Lu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Haiyan Shan
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jianjun Feng
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education of the People's Republic of China, Fisheries College of Jimei University, Xiamen, China
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Member, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
13
|
Ivagnès A, Messaoudene M, Stoll G, Routy B, Fluckiger A, Yamazaki T, Iribarren K, Duong CPM, Fend L, Caignard A, Cremer I, LeCesne A, Adam J, Honoré C, Mir O, Chaigneau L, Berger A, Validire P, Christidis C, Brun-Ly VL, Smyth MJ, Mariette X, Salomon BL, Kroemer G, Rusakiewicz S, Zitvogel L. TNFR2/BIRC3-TRAF1 signaling pathway as a novel NK cell immune checkpoint in cancer. Oncoimmunology 2017; 7:e1386826. [PMID: 30524877 DOI: 10.1080/2162402x.2017.1386826] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 01/07/2023] Open
Abstract
Natural Killer (NK) cells control metastatic dissemination of murine tumors and are an important prognostic factor in several human malignancies. However, tumor cells hijack many of the NK cell functional features compromising their tumoricidal activity. Here, we show a deleterious role of the TNFα/TNFR2/BIRC3/TRAF1 signaling cascade in NK cells from the tumor microenvironment (TME). TNFα induces BIRC3/cIAP2 transcripts and reduces NKp46/NCR1 transcription and surface expression on NK cells, promoting metastases dissemination in mice and poor prognosis in GIST patients. NKp30 engagement, by promoting the release of TNFα, also contributes to BIRC3 upregulation, and more so in patients expressing predominantly NKp30C isoforms. These findings reveal that in the absence of IL-12 or a Th1-geared TME, TNFα can be considered as a negative regulatory cytokine for innate effectors.
Collapse
Affiliation(s)
- Alexandre Ivagnès
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), Villejuif, France.,INSERM U1015, GRCC, Villejuif, France.,Université Paris Sud, Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France
| | - Meriem Messaoudene
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), Villejuif, France.,INSERM U1015, GRCC, Villejuif, France
| | - Gautier Stoll
- INSERM, U1138, Centre de Recherche des Cordeliers, Paris, France.,Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Université Paris Descartes/Paris V, Sorbonne Paris Cité, 15 rue de l'Ecole de Médecine, Paris, France.,Université Pierre et Marie Curie, 15 rue de l'Ecole de Médecine, Paris, France
| | - Bertrand Routy
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), Villejuif, France.,INSERM U1015, GRCC, Villejuif, France.,Université Paris Sud, Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France
| | - Aurélie Fluckiger
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), Villejuif, France.,INSERM U1015, GRCC, Villejuif, France
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Kristina Iribarren
- INSERM, U1138, Centre de Recherche des Cordeliers, Paris, France.,Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Université Paris Descartes/Paris V, Sorbonne Paris Cité, 15 rue de l'Ecole de Médecine, Paris, France
| | - Connie P M Duong
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), Villejuif, France.,INSERM U1015, GRCC, Villejuif, France
| | | | - Anne Caignard
- INSERM, U1160, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Institut Universitaire d'Hématologie, Hôpital Saint Louis, Paris, France
| | - Isabelle Cremer
- INSERM, U1138, Centre de Recherche des Cordeliers, Paris, France.,Université Paris Descartes/Paris V, Sorbonne Paris Cité, 15 rue de l'Ecole de Médecine, Paris, France.,Université Pierre et Marie Curie, 15 rue de l'Ecole de Médecine, Paris, France
| | - Axel LeCesne
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), Villejuif, France.,Département d'oncologie médicale, GRCC, Villejuif, France
| | - Julien Adam
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), Villejuif, France.,Département d'anatomo-pathologie, GRCC, Villejuif, France.,INSERM U981, GRCC, Villejuif, France
| | - Charles Honoré
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), Villejuif, France.,Département de chirurgie, GRCC, Villejuif, France
| | - Olivier Mir
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), Villejuif, France.,Département d'oncologie médicale, GRCC, Villejuif, France
| | - Loïc Chaigneau
- Département d'oncologie médicale, Centre Hospitalier Universitaire Jean Minjoz, Besançon, France
| | - Anne Berger
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, 15 rue de l'Ecole de Médecine, Paris, France.,Département de chirurgie, Hôpital Européen Georges Pompidou, Paris, France
| | - Pierre Validire
- Département d'anatomo-pathologie, Institut Mutualiste Montsouris, Paris, France.,Département d'oncologie médicale, Sarcome, Institut Mutualiste Montsouris, Paris, France
| | - Christos Christidis
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, 15 rue de l'Ecole de Médecine, Paris, France.,Département d'oncologie médicale, Sarcome, Institut Mutualiste Montsouris, Paris, France.,Département de chirurgie, Institut Mutualiste Montsouris, Paris, France
| | - Valérie Le Brun-Ly
- Département d'oncologie médicale, Centre hospitalier régional universitaire de Limoges Dupuytren, Limoges, France
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Xavier Mariette
- Université Paris Sud, Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France.,INSERM UMR 1184, Assistance Publique-Hôpitaux de Paris, Service de Rhumatologie, Hôpitaux Universitaires Paris-Sud, Le Kremlin Bicêtre, France
| | - Benoît L Salomon
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Guido Kroemer
- INSERM, U1138, Centre de Recherche des Cordeliers, Paris, France.,Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Université Paris Descartes/Paris V, Sorbonne Paris Cité, 15 rue de l'Ecole de Médecine, Paris, France.,Université Pierre et Marie Curie, 15 rue de l'Ecole de Médecine, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, Paris, France.,Plateforme de métabolomique et de biologie cellulaire, GRCC,Villejuif, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Sylvie Rusakiewicz
- Center of Experimental Therapeutics, Ludwig Center for Cancer Res, Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Laurence Zitvogel
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), Villejuif, France.,INSERM U1015, GRCC, Villejuif, France.,Université Paris Sud, Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France.,Centre d'investigation clinique en biothérapie des cancers (CICBT), Villejuif, France
| |
Collapse
|
14
|
Kim CM, Jeong J, Son Y, Choi J, Kim S, Park HH. Molecular basis for TANK recognition by TRAF1 revealed by the crystal structure of TRAF1/TANK complex. FEBS Lett 2017; 591:810-821. [DOI: 10.1002/1873-3468.12584] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/07/2016] [Accepted: 01/30/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Chang Min Kim
- Department of Chemistry and Biochemistry Graduate School of Biochemistry Yeungnam University Gyeongsan South Korea
| | - Jae‐Hee Jeong
- Pohang Accelerator Laboratory Pohang University of Science and Technology South Korea
| | - Young‐Jin Son
- New Drug Development Center Daegu‐Gyungpook Medical Innovation Foundation South Korea
| | - Jun‐Hyuk Choi
- Department of Metrology for Quality of Life Center for Bioanalysis Korea Research Institute of Standards and Science Daejeon South Korea
| | - Sunghwan Kim
- New Drug Development Center Daegu‐Gyungpook Medical Innovation Foundation South Korea
| | - Hyun Ho Park
- Department of Chemistry and Biochemistry Graduate School of Biochemistry Yeungnam University Gyeongsan South Korea
| |
Collapse
|
15
|
Jansen MF, Hollander MR, van Royen N, Horrevoets AJ, Lutgens E. CD40 in coronary artery disease: a matter of macrophages? Basic Res Cardiol 2016; 111:38. [PMID: 27146510 PMCID: PMC4856717 DOI: 10.1007/s00395-016-0554-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/05/2016] [Indexed: 12/20/2022]
Abstract
Coronary artery disease (CAD), also known as ischemic heart disease (IHD), is the leading cause of mortality in the western world, with developing countries showing a similar trend. With the increased understanding of the role of the immune system and inflammation in coronary artery disease, it was shown that macrophages play a major role in this disease. Costimulatory molecules are important regulators of inflammation, and especially, the CD40L-CD40 axis is of importance in the pathogenesis of cardiovascular disease. Although it was shown that CD40 can mediate macrophage function, its exact role in macrophage biology has not gained much attention in cardiovascular disease. Therefore, the goal of this review is to give an overview on the role of macrophage-specific CD40 in cardiovascular disease, with a focus on coronary artery disease. We will discuss the function of CD40 on the macrophage and its (proposed) role in the reduction of atherosclerosis, the reduction of neointima formation, and the stimulation of arteriogenesis.
Collapse
Affiliation(s)
- Matthijs F Jansen
- Department of Molecular Cell Biology and Immunology, VU University Medical Centre, Amsterdam, The Netherlands
- Department of Medical Biochemistry, Academic Medical Centre, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands
| | - Maurits R Hollander
- Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Niels van Royen
- Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Anton J Horrevoets
- Department of Molecular Cell Biology and Immunology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Esther Lutgens
- Department of Medical Biochemistry, Academic Medical Centre, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands.
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University, Munich, Germany.
| |
Collapse
|
16
|
Sanchez-Paulete AR, Labiano S, Rodriguez-Ruiz ME, Azpilikueta A, Etxeberria I, Bolaños E, Lang V, Rodriguez M, Aznar MA, Jure-Kunkel M, Melero I. Deciphering CD137 (4-1BB) signaling in T-cell costimulation for translation into successful cancer immunotherapy. Eur J Immunol 2016; 46:513-22. [PMID: 26773716 DOI: 10.1002/eji.201445388] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/29/2015] [Accepted: 01/11/2016] [Indexed: 01/22/2023]
Abstract
CD137 (4-1BB, TNF-receptor superfamily 9) is a surface glycoprotein of the TNFR family which can be induced on a variety of leukocyte subsets. On T and NK cells, CD137 is expressed following activation and, if ligated by its natural ligand (CD137L), conveys polyubiquitination-mediated signals via TNF receptor associated factor 2 that inhibit apoptosis, while enhancing proliferation and effector functions. CD137 thus behaves as a bona fide inducible costimulatory molecule. These functional properties of CD137 can be exploited in cancer immunotherapy by systemic administration of agonist monoclonal antibodies, which increase anticancer CTLs and enhance NK-cell-mediated antibody-dependent cell-mediated cytotoxicity. Reportedly, anti-CD137 mAb and adoptive T-cell therapy strongly synergize, since (i) CD137 expression can be used to select the T cells endowed with the best activities against the tumor, (ii) costimulation of the lymphocyte cultures to be used in adoptive T-cell therapy can be done with CD137 agonist antibodies or CD137L, and (iii) synergistic effects upon coadministration of T cells and antibodies are readily observed in mouse models. Furthermore, the signaling cytoplasmic tail of CD137 is a key component of anti-CD19 chimeric antigen receptors that are used to redirect T cells against leukemia and lymphoma in the clinic. Ongoing phase II clinical trials with agonist antibodies and the presence of CD137 sequence in these successful chimeric antigen receptors highlight the importance of CD137 in oncoimmunology.
Collapse
Affiliation(s)
- Alfonso R Sanchez-Paulete
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Sara Labiano
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Maria E Rodriguez-Ruiz
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain.,University Clinic, University of Navarra, Pamplona, Spain
| | - Arantza Azpilikueta
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Iñaki Etxeberria
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Elixabet Bolaños
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Valérie Lang
- Ubiquitylation and Cancer Molecular Biology Laboratory, Foundation for Stem Cell Research, Fundación Inbiomed, San Sebastián, Spain
| | - Manuel Rodriguez
- Advanced Technology Institute in Life Sciences (ITAV), CNRS-USR3505, Toulouse, France.,University of Toulouse III-Paul Sabatier, Toulouse, France.,Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS-UMR5089, Toulouse, France
| | - M Angela Aznar
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | | | - Ignacio Melero
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain.,University Clinic, University of Navarra, Pamplona, Spain
| |
Collapse
|
17
|
Liang Y, Meng S, Zhang JA, Zhu YF, Li C, Yang XJ, Jiang WJ, He ST, Xu J. Tumor necrosis factor receptor-associated factor 1 (TRAF1) polymorphisms and susceptibility to autoimmune thyroid disease. Autoimmunity 2015; 49:84-9. [PMID: 26699338 DOI: 10.3109/08916934.2015.1124423] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Former studies have revealed the link between the tumor necrosis factor (TNF) receptor-associated factor 1 (TRAF1) polymorphisms and autoimmunity. In the present study, we took an opportunity to investigate the association between TRAF1 and autoimmune thyroid disease (AITD) in order to find a new susceptibility gene. A total of 1029 AITD patients [677 Graves' disease (GD) patients and 352 Hashimoto thyroiditis (HT) patients] and 899 controls were enrolled. We used matrix-assisted laser desorption ionization-time of flight mass spectrometer (MALDI-TOF-MS) to detect the polymorphisms of rs4836834, rs10760130, rs10818488, rs2239658, rs2900180. We also explored the association between polymorphisms and clinical subphenotypes. Genotype frequencies of the five loci in all AITD patients were significantly different from those of controls. Genotype frequencies of rs10760130, rs2239658 and rs2900180 in GD patients were significantly different from controls. Allele analysis found that T allele of rs4836834, G allele of rs10760130, A allele of rs10818488, T allele of rs2239658 and T allele of rs2900180 were significantly higher in GD and AITD patients. No significant differences were found between HT patients and controls. Haplotype analysis found three haplotypes including ACAGC, TTGAT and TCGAC. ACAGC frequencies were significantly lower in GD and HT patients. However, TTGAT frequency was only significantly higher in GD patients. No significant results were found between polymorphisms and clinical subphenotypes. Our study reveals TRAF1 as a susceptibility gene of AITD in Chinese Han population.
Collapse
Affiliation(s)
- Yan Liang
- a Clinical Research Center, the First Affiliated Hospital of Xi'an Jiaotong University Health Science Center , Xi'an , China and
| | - Shuai Meng
- b Department of Endocrinology , Jinshan Hospital of Fudan University , Shanghai , China
| | - Jin-an Zhang
- b Department of Endocrinology , Jinshan Hospital of Fudan University , Shanghai , China
| | - Yuan-feng Zhu
- a Clinical Research Center, the First Affiliated Hospital of Xi'an Jiaotong University Health Science Center , Xi'an , China and
| | - Cui Li
- a Clinical Research Center, the First Affiliated Hospital of Xi'an Jiaotong University Health Science Center , Xi'an , China and
| | - Xiang-ju Yang
- a Clinical Research Center, the First Affiliated Hospital of Xi'an Jiaotong University Health Science Center , Xi'an , China and
| | - Wen-juan Jiang
- b Department of Endocrinology , Jinshan Hospital of Fudan University , Shanghai , China
| | - Shuang-tao He
- b Department of Endocrinology , Jinshan Hospital of Fudan University , Shanghai , China
| | - Jian Xu
- b Department of Endocrinology , Jinshan Hospital of Fudan University , Shanghai , China
| |
Collapse
|
18
|
Temporal protein expression pattern in intracellular signalling cascade during T-cell activation: a computational study. J Biosci 2015; 40:769-89. [PMID: 26564978 DOI: 10.1007/s12038-015-9561-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Various T-cell co-receptor molecules and calcium channel CRAC play a pivotal role in the maintenance of cell's functional responses by regulating the production of effector molecules (mostly cytokines) that aids in immune clearance and also maintaining the cell in a functionally active state. Any defect in these co-receptor signalling pathways may lead to an altered expression pattern of the effector molecules. To study the propagation of such defects with time and their effect on the intracellular protein expression patterns, a comprehensive and largest pathway map of T-cell activation network is reconstructed manually. The entire pathway reactions are then translated using logical equations and simulated using the published time series microarray expression data as inputs. After validating the model, the effect of in silico knock down of co-receptor molecules on the expression patterns of their downstream proteins is studied and simultaneously the changes in the phenotypic behaviours of the T-cell population are predicted, which shows significant variations among the proteins expression and the signalling routes through which the response is propagated in the cytoplasm. This integrative computational approach serves as a valuable technique to study the changes in protein expression patterns and helps to predict variations in the cellular behaviour.
Collapse
|
19
|
Thakur N, Gudey SK, Marcusson A, Fu JY, Bergh A, Heldin CH, Landström M. TGFβ-induced invasion of prostate cancer cells is promoted by c-Jun-dependent transcriptional activation of Snail1. Cell Cycle 2015; 13:2400-14. [PMID: 25483191 PMCID: PMC4128885 DOI: 10.4161/cc.29339] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
High levels of transforming growth factor-β (TGFβ) correlate with poor prognosis for patients with prostate cancer and other cancers. TGFβ is a multifunctional cytokine and crucial regulator of cell fate, such as epithelial to mesenchymal transition (EMT), which is implicated in cancer invasion and progression. TGFβ conveys its signals upon binding to type I and type II serine/threonine kinase receptors (TβRI/II); phosphorylation of Smad2 and Smad3 promotes their association with Smad4, which regulates expression of targets genes, such as Smad7, p21, and c-Jun. TGFβ also activates the ubiquitin ligase tumor necrosis factor receptor-associated factor 6 (TRAF6), which associates with TβRI and activates the p38 mitogen-activated protein kinase (MAPK) pathway. Snail1 is a key transcription factor, induced by TGFβ that promotes migration and invasion of cancer cells. In this study, we have identified a novel binding site for c-Jun in the promoter of the Snail1 gene and report that the activation of the TGFβ–TRAF6–p38 MAPK pathway promotes both c-Jun expression and its activation via p38α-dependent phosphorylation of c-Jun at Ser63. The TRAF6-dependent activation of p38 also leads to increased stability of c-Jun, due to p38-dependent inactivation of glycogen synthase kinase (GSK) 3β by phosphorylation at Ser9. Thus, our findings elucidate a novel role for the p38 MAPK pathway in stimulated cells, leading to activation of c-Jun and its binding to the promoter of Snail1, thereby triggering motility and invasiveness of aggressive human prostate cancer cells.
Collapse
Affiliation(s)
- Noopur Thakur
- a Ludwig Institute for Cancer Research; Science for Life Laboratory; Uppsala University; Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
20
|
Lee MS, Kim B, Lee SM, Cho WC, Lee WB, Kang JS, Choi UY, Lyu J, Kim YJ. Genome-wide profiling of in vivo LPS-responsive genes in splenic myeloid cells. Mol Cells 2013; 35:498-513. [PMID: 23666259 PMCID: PMC3887871 DOI: 10.1007/s10059-013-2349-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 04/09/2013] [Accepted: 04/12/2013] [Indexed: 11/24/2022] Open
Abstract
Lipopolysaccharide (LPS), the major causative agent of bacterial sepsis, has been used by many laboratories in genome-wide expression profiling of the LPS response. However, these studies have predominantly used in vitro cultured macrophages (Macs), which may not accurately reflect the LPS response of these innate immune cells in vivo. To overcome this limitation and to identify inflammatory genes in vivo, we have profiled genome-wide expression patterns in non-lymphoid, splenic myeloid cells extracted directly from LPS-treated mice. Genes encoding factors known to be involved in mediating or regulating inflammatory processes, such as cytokines and chemokines, as well as many genes whose immunological functions are not well known, were strongly induced by LPS after 3 h or 8 h of treatment. Most of the highly LPS-responsive genes that we randomly selected from the microarray data were independently confirmed by quantitative RT-PCR, implying that our microarray data are quite reliable. When our in vivo data were compared to previously reported microarray data for in vitro LPS-treated Macs, a significant proportion (∼20%) of the in vivo LPS-responsive genes defined in this study were specific to cells exposed to LPS in vivo, but a larger proportion of them (∼60%) were influenced by LPS in both in vitro and in vivo settings. This result indicates that our in vivo LPS-responsive gene set includes not only previously identified in vitro LPS-responsive genes but also novel LPS-responsive genes. Both types of genes would be a valuable resource in the future for understanding inflammatory responses in vivo.
Collapse
Affiliation(s)
- Myeong Sup Lee
- Department of Biochemistry, College of Life Science and Biotechnology, World Class University, Yonsei University, Seoul 120–749,
Korea
| | - Byungil Kim
- Department of Biochemistry, College of Life Science and Biotechnology, World Class University, Yonsei University, Seoul 120–749,
Korea
| | - Sun-Min Lee
- Department of Biochemistry, College of Life Science and Biotechnology, World Class University, Yonsei University, Seoul 120–749,
Korea
| | - Woo-Cheul Cho
- Department of Biochemistry, College of Life Science and Biotechnology, World Class University, Yonsei University, Seoul 120–749,
Korea
| | - Wook-Bin Lee
- Department of Biochemistry, College of Life Science and Biotechnology, World Class University, Yonsei University, Seoul 120–749,
Korea
| | - Ji-Seon Kang
- Department of Biochemistry, College of Life Science and Biotechnology, World Class University, Yonsei University, Seoul 120–749,
Korea
| | - Un Yung Choi
- Department of Biochemistry, College of Life Science and Biotechnology, World Class University, Yonsei University, Seoul 120–749,
Korea
| | - Jaemyun Lyu
- Department of Biochemistry, College of Life Science and Biotechnology, World Class University, Yonsei University, Seoul 120–749,
Korea
| | - Young-Joon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, World Class University, Yonsei University, Seoul 120–749,
Korea
- Department of Integrated OMICS for Biomedical Sciences, World Class University, Yonsei University, Seoul 120–749,
Korea
| |
Collapse
|
21
|
Sabbagh L, Andreeva D, Laramée GD, Oussa NAE, Lew D, Bisson N, Soumounou Y, Pawson T, Watts TH. Leukocyte-specific protein 1 links TNF receptor-associated factor 1 to survival signaling downstream of 4-1BB in T cells. J Leukoc Biol 2013; 93:713-21. [PMID: 23446150 DOI: 10.1189/jlb.1112579] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
4-1BB is a member of the TNFR superfamily, which contributes to the activation of signaling pathways required for the survival of activated and memory T cells. We have shown previously that TRAF1, an adaptor protein recruited to 4-1BB, is required for 4-1BB-mediated CD8 T cell survival in vivo. With the use of a proteomics approach in primary T cells, we have identified LSP1 as a novel protein recruited to the 4-1BB signaling complex in a TRAF1-dependent manner. Further characterization of the interaction between TRAF1 and LSP1 revealed that LSP1 requires the TRAF-N domain of TRAF1 for direct association. Similarly to TRAF1(-/-) T cells, LSP1(-/-) T cells exhibit impaired ERK activation following stimulation through 4-1BB and consequently, are unable to down-modulate expression of the proapoptotic Bcl-2 family member Bim. Moreover, we demonstrate that the absence of LSP1 expression leads to defective expansion and survival of T cells in response to 4-1BB stimulation. Thus, we have identified LSP1 as a new mediator involved in 4-1BB signaling and T cell survival. Collectively, our work shows that TRAF1 and LSP1 cooperate downstream of 4-1BB to activate ERK signaling and down-modulate the levels of Bim leading to enhanced T cell survival.
Collapse
Affiliation(s)
- Laurent Sabbagh
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Oussa NAE, Soumounou Y, Sabbagh L. TRAF1 phosphorylation on Serine 139 modulates NF-κB activity downstream of 4-1BB in T cells. Biochem Biophys Res Commun 2013; 432:129-34. [PMID: 23376065 DOI: 10.1016/j.bbrc.2013.01.073] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 01/21/2013] [Indexed: 10/27/2022]
Abstract
The Tumour Necrosis Factor (TNF) Receptor-associated factor-1 (TRAF1) adaptor protein is a key component in initiating intracellular signalling pathways downstream of TNF receptors (TNFR). More importantly, TRAF1 has a pattern of expression restricted primarily to lymphoid cells and plays an important role in lymphocyte survival. TRAF1 has been shown to be phosphorylated on Serine 139, consequently inhibiting NF-κB activation downstream of TNFR2 when expressed in HeLa cells. We have previously demonstrated that TRAF1 cooperates with the TNFR family member 4-1BB to mediate signalling in T cells. However, the impact of TRAF1 phosphorylation on events downstream of 4-1BB in T cells remained to be defined. Using a proteomics approach we demonstrate that TANK-binding kinase 1 (TBK1) preferentially associates with the TRAF1 Serine 139 to Alanine (S139A) mutant. TBK1 is a kinase that functions upstream of NIK and IKK in the activation of the NF-κB pathway. When TRAF1-deficient CD8 T cells were reconstituted with the TRAF1 S139A mutant, we observed more sustained levels of IκBα degradation in response to 4-1BB stimulation in contrast to cells expressing either TRAF1 wild-type or TRAF1 S139D phospho-mimetic mutant. Together, these findings define the importance of the basal phosphorylation state of the TRAF1 Serine 139 residue in coordinating signalling events downstream of 4-1BB in primary T cells.
Collapse
Affiliation(s)
- N A Eustache Oussa
- Maisonneuve-Rosemont Hospital Research Centre, 5415 l'Assomption Boulevard, Montreal, QC, Canada H1T 2M4
| | | | | |
Collapse
|
23
|
Madiraju C, Welsh K, Cuddy MP, Godoi PH, Pass I, Ngo T, Vasile S, Sergienko EA, Diaz P, Matsuzawa SI, Reed JC. TR-FRET-based high-throughput screening assay for identification of UBC13 inhibitors. JOURNAL OF BIOMOLECULAR SCREENING 2012; 17:163-76. [PMID: 22034497 PMCID: PMC4172584 DOI: 10.1177/1087057111423417] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
UBC13 is a noncanonical ubiquitin conjugating enzyme (E2) that has been implicated in a variety of cellular signaling processes due to its ability to catalyze formation of lysine 63-linked polyubiquitin chains on various substrates. In particular, UBC13 is required for signaling by a variety of receptors important in immune regulation, making it a candidate target for inflammatory diseases. UBC13 is also critical for double-strand DNA repair and thus a potential radiosensitizer and chemosensitizer target for oncology. The authors developed a high-throughput screening (HTS) assay for UBC13 based on the method of time-resolved fluorescence resonance energy transfer (TR-FRET). The TR-FRET assay combines fluorochrome (Fl)-conjugated ubiquitin (fluorescence acceptor) with terbium (Tb)-conjugated ubiquitin (fluorescence donor), such that the assembly of mixed chains of Fl- and Tb-ubiquitin creates a robust TR-FRET signal. The authors defined conditions for optimized performance of the TR-FRET assay in both 384- and 1536-well formats. Chemical library screens (total 456 865 compounds) were conducted in high-throughput mode using various compound collections, affording superb Z' scores (typically >0.7) and thus validating the performance of the assays. Altogether, the HTS assays described here are suitable for large-scale, automated screening of chemical libraries in search of compounds with inhibitory activity against UBC13.
Collapse
Affiliation(s)
- Charitha Madiraju
- Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ruchaud-Sparagano MH, Mühlen S, Dean P, Kenny B. The enteropathogenic E. coli (EPEC) Tir effector inhibits NF-κB activity by targeting TNFα receptor-associated factors. PLoS Pathog 2011; 7:e1002414. [PMID: 22144899 PMCID: PMC3228809 DOI: 10.1371/journal.ppat.1002414] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 10/20/2011] [Indexed: 01/08/2023] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) disease depends on the transfer of effector proteins into epithelia lining the human small intestine. EPEC E2348/69 has at least 20 effector genes of which six are located with the effector-delivery system genes on the Locus of Enterocyte Effacement (LEE) Pathogenicity Island. Our previous work implied that non-LEE-encoded (Nle) effectors possess functions that inhibit epithelial anti-microbial and inflammation-inducing responses by blocking NF-κB transcription factor activity. Indeed, screens by us and others have identified novel inhibitory mechanisms for NleC and NleH, with key co-operative functions for NleB1 and NleE1. Here, we demonstrate that the LEE-encoded Translocated-intimin receptor (Tir) effector has a potent and specific ability to inhibit NF-κB activation. Indeed, biochemical, imaging and immunoprecipitation studies reveal a novel inhibitory mechanism whereby Tir interaction with cytoplasm-located TNFα receptor-associated factor (TRAF) adaptor proteins induces their proteasomal-independent degradation. Infection studies support this Tir-TRAF relationship but reveal that Tir, like NleC and NleH, has a non-essential contribution in EPEC's NF-κB inhibitory capacity linked to Tir's activity being suppressed by undefined EPEC factors. Infections in a disease-relevant intestinal model confirm key NF-κB inhibitory roles for the NleB1/NleE1 effectors, with other studies providing insights on host targets. The work not only reveals a second Intimin-independent property for Tir and a novel EPEC effector-mediated NF-κB inhibitory mechanism but also lends itself to speculations on the evolution of EPEC's capacity to inhibit NF-κB function.
Collapse
Affiliation(s)
| | - Sabrina Mühlen
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Paul Dean
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Brendan Kenny
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle-upon-Tyne, United Kingdom
- * E-mail:
| |
Collapse
|
25
|
Missiou A, Köstlin N, Varo N, Rudolf P, Aichele P, Ernst S, Münkel C, Walter C, Stachon P, Sommer B, Pfeifer D, Zirlik K, MacFarlane L, Wolf D, Tsitsikov E, Bode C, Libby P, Zirlik A. Tumor necrosis factor receptor-associated factor 1 (TRAF1) deficiency attenuates atherosclerosis in mice by impairing monocyte recruitment to the vessel wall. Circulation 2010; 121:2033-44. [PMID: 20421522 DOI: 10.1161/circulationaha.109.895037] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Members of the tumor necrosis factor superfamily, such as tumor necrosis factor-alpha, potently promote atherogenesis in mice and humans. Tumor necrosis factor receptor-associated factors (TRAFs) are cytoplasmic adaptor proteins for this group of cytokines. METHODS AND RESULTS This study tested the hypothesis that TRAF1 modulates atherogenesis in vivo. TRAF1(-/-)/LDLR(-/-) mice that consumed a high-cholesterol diet for 18 weeks developed significantly smaller atherosclerotic lesions than LDLR(-/-) (LDL receptor-deficient) control animals. As the most prominent change in histological composition, plaques of TRAF1-deficient animals contained significantly fewer macrophages. Bone marrow transplantations revealed that TRAF1 deficiency in both hematopoietic and vascular resident cells contributed to the reduction in atherogenesis observed. Mechanistic studies showed that deficiency of TRAF1 in endothelial cells and monocytes reduced adhesion of inflammatory cells to the endothelium in static and dynamic assays. Impaired adhesion coincided with reduced cell spreading, actin polymerization, and CD29 expression in macrophages, as well as decreased expression of the adhesion molecules intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in endothelial cells. Small interfering RNA studies in human cells verified these findings. Furthermore, TRAF1 messenger RNA levels were significantly elevated in the blood of patients with acute coronary syndrome. CONCLUSIONS TRAF1 deficiency attenuates atherogenesis in mice, most likely owing to impaired monocyte recruitment to the vessel wall. These data identify TRAF1 as a potential treatment target for atherosclerosis.
Collapse
Affiliation(s)
- Anna Missiou
- Department of Cardiology, University of Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kress CL, Konopleva M, Martínez-García V, Krajewska M, Lefebvre S, Hyer ML, McQueen T, Andreeff M, Reed JC, Zapata JM. Triterpenoids display single agent anti-tumor activity in a transgenic mouse model of chronic lymphocytic leukemia and small B cell lymphoma. PLoS One 2007; 2:e559. [PMID: 17593960 PMCID: PMC1891436 DOI: 10.1371/journal.pone.0000559] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 05/29/2007] [Indexed: 11/28/2022] Open
Abstract
Background The synthetic triterpenoid 2-Cyano-3,12-Dioxooleana-1,9-Dien-28-Oic Acid (CDDO) and derivatives display anti-tumor activity against a variety of cultured tumor cell lines and in mouse xenografts. In this report, we have studied the effects of CDDO and its imidazolide derivative (CDDO-Im) on chronic lymphocytic leukemia (CLL), using patients' CLL cells and a mouse model of CLL and small B cell lymphoma (SBL). Principal Findings CDDO and CDDO-Im efficiently induced apoptosis of malignant human and mouse B-cells ex vivo, although CDDO-Im was over 10-fold more potent than CDDO. Treating mice with CLL/SBL with liposome-formulated CDDO or CDDO-Im resulted in significant reductions of B cells in blood, spleen and lung. CDDO-Im was shown to be more potent than CDDO, while treatment with empty liposomes had no impact on disease. CDDO-Im treatment initially resulted in an increase of circulating B cells, which correlates with a reduction in resident lymphocytes in spleen, and lungs, suggesting that CDDO-Im induces mobilization of tumor cells from lymphoid organs and infiltrated tissues into the circulation. Analysis of blood cells recovered from treated mice also showed that CDDO-Im is a potent inducer of tumor cells death in vivo. Furthermore, CDDO-Im efficiently eradicated mouse CLL/SBL cells but had little effect on the viability of normal B and T cells in vivo. Significance The presented data demonstrate that triterpenoids CDDO and CDDO-Im reduce leukemia and lymphoma burden in vivo in a transgenic mouse model of CLL/SBL, and support the clinical testing of CDDO-based synthetic triterpenoids in patients with CLL.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/drug effects
- Cell Survival/drug effects
- Disease Models, Animal
- Female
- Flow Cytometry
- Gene Deletion
- Humans
- Immunoenzyme Techniques
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphoma, B-Cell/drug therapy
- Lymphoma, B-Cell/pathology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Oleanolic Acid/analogs & derivatives
- Oleanolic Acid/therapeutic use
- Proto-Oncogene Proteins c-bcl-2/physiology
- T-Lymphocytes/drug effects
- TNF Receptor-Associated Factor 2/physiology
Collapse
Affiliation(s)
- Christina L. Kress
- Burnham Institute for Medical Research, La Jolla, California, United States of America
| | - Marina Konopleva
- Department of Blood and Marrow Transplantation, University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Vanesa Martínez-García
- Burnham Institute for Medical Research, La Jolla, California, United States of America
- Centro de Biología Molecular Severo Ochoa, Universidad Autonóma de Madrid, Madrid, Spain
| | - Maryla Krajewska
- Burnham Institute for Medical Research, La Jolla, California, United States of America
| | - Sophie Lefebvre
- Burnham Institute for Medical Research, La Jolla, California, United States of America
| | - Marc L. Hyer
- Burnham Institute for Medical Research, La Jolla, California, United States of America
| | - Teresa McQueen
- Department of Blood and Marrow Transplantation, University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Michael Andreeff
- Department of Blood and Marrow Transplantation, University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - John C. Reed
- Burnham Institute for Medical Research, La Jolla, California, United States of America
| | - Juan M. Zapata
- Burnham Institute for Medical Research, La Jolla, California, United States of America
- Centro de Biología Molecular Severo Ochoa, Universidad Autonóma de Madrid, Madrid, Spain
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
27
|
Degen WGJ, Smith J, Simmelink B, Glass EJ, Burt DW, Schijns VEJC. Molecular immunophenotyping of lungs and spleens in naive and vaccinated chickens early after pulmonary avian influenza A (H9N2) virus infection. Vaccine 2006; 24:6096-109. [PMID: 16781024 DOI: 10.1016/j.vaccine.2006.05.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 05/10/2006] [Accepted: 05/16/2006] [Indexed: 12/09/2022]
Abstract
In a respiratory-infection-model with the avian influenza A H9N2 virus we studied lung and splenic immune reactions in chickens using a recently developed 5K chicken immuno-microarray. Groups of chickens were either mock-immunized (referred to as non-immune), vaccinated with inactivated viral antigen only (immune) or with viral antigen in a water-in-oil (W/O) immunopotentiator (immune potentiated). Three weeks after vaccination all animals were given a respiratory infection. Immune potentiated birds developed inhibitory antiviral antibodies, showed minimal lung histopathology and no detectable viral sequences, while non-immune animals showed microscopic immunopathology and detectable virus. Immune birds, receiving antigen in saline only, showed minimal microscopic histopathology, and intermediate levels of virus detection. These classical features in the different groups were mirrored by overlapping or specific mRNA gene expression profiles in lungs and spleen using microarray analysis. To our knowledge this is the first study demonstrating pneumonia-associated lung pathology of the low pathogenic avian influenza H9N2 virus. Our data provide insights into the molecular interaction of this virus with its natural host when naive or primed by vaccination.
Collapse
Affiliation(s)
- Winfried G J Degen
- Department of Vaccine Technology & Immunology R&D, Intervet International B.V., P.O. Box 31, 5830 AA Boxmeer, The Netherlands.
| | | | | | | | | | | |
Collapse
|
28
|
Merendino AM, Bucchieri F, Gagliardo R, Daryadel A, Pompeo F, Chiappara G, Santagata R, Bellia V, David S, Farina F, Davies DE, Simon HU, Vignola AM. CD40 ligation protects bronchial epithelium against oxidant-induced caspase-independent cell death. Am J Respir Cell Mol Biol 2006; 35:155-64. [PMID: 16543604 DOI: 10.1165/rcmb.2005-0433oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
CD40 and its ligand regulate pleiotropic biological responses, including cell proliferation, differentiation, and apoptosis. In many inflammatory lung diseases, tissue damage by environmental or endogenous oxidants plays a major role in disease pathogenesis. As the epithelial barrier is a major target for these oxidants, we postulated that CD40, the expression of which is increased in asthma, plays a role in the regulation of apoptosis of bronchial epithelial cells exposed to oxidants. Using 16HBE 14o- cells exposed to oxidant stress, we found that ligation of CD40 (induced by G28-5 monoclonal antibodies) enhanced cell survival and increased the number of cells in G2/M (interphase between DNA synthesis and mitosis) of the cell cycle. This was associated with NF-kappaB and activator protein-1 activation and increased expression of the inhibitor of apoptosis, c-IAP1. However, oxidant stress-induced apoptosis was found to be caspase- and calpain-independent implicating CD40 ligation as a regulator of caspase-independent cell death. This was confirmed by the demonstration that CD40 ligation prevented mitochondrial release and nuclear translocation of apoptosis inducing factor. In conclusion, we demonstrate a novel role for CD40 as a regulator of epithelial cell survival against oxidant stress. Furthermore, we have identified, for the first time, an endogenous inhibitory pathway of caspase-independent cell death.
Collapse
Affiliation(s)
- Anna M Merendino
- Department of Medicine, Pneumology, Physiology, and Human Nutrition, Universita' di Palermo, Ospedale V, Cervello, Via Trabucco 180, 90146 Palermo, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Luckey CJ, Bhattacharya D, Goldrath AW, Weissman IL, Benoist C, Mathis D. Memory T and memory B cells share a transcriptional program of self-renewal with long-term hematopoietic stem cells. Proc Natl Acad Sci U S A 2006; 103:3304-9. [PMID: 16492737 PMCID: PMC1413911 DOI: 10.1073/pnas.0511137103] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The only cells of the hematopoietic system that undergo self-renewal for the lifetime of the organism are long-term hematopoietic stem cells and memory T and B cells. To determine whether there is a shared transcriptional program among these self-renewing populations, we first compared the gene-expression profiles of naïve, effector and memory CD8(+) T cells with those of long-term hematopoietic stem cells, short-term hematopoietic stem cells, and lineage-committed progenitors. Transcripts augmented in memory CD8(+) T cells relative to naïve and effector T cells were selectively enriched in long-term hematopoietic stem cells and were progressively lost in their short-term and lineage-committed counterparts. Furthermore, transcripts selectively decreased in memory CD8(+) T cells were selectively down-regulated in long-term hematopoietic stem cells and progressively increased with differentiation. To confirm that this pattern was a general property of immunologic memory, we turned to independently generated gene expression profiles of memory, naïve, germinal center, and plasma B cells. Once again, memory-enriched and -depleted transcripts were also appropriately augmented and diminished in long-term hematopoietic stem cells, and their expression correlated with progressive loss of self-renewal function. Thus, there appears to be a common signature of both up- and down-regulated transcripts shared between memory T cells, memory B cells, and long-term hematopoietic stem cells. This signature was not consistently enriched in neural or embryonic stem cell populations and, therefore, appears to be restricted to the hematopoeitic system. These observations provide evidence that the shared phenotype of self-renewal in the hematopoietic system is linked at the molecular level.
Collapse
Affiliation(s)
- Chance John Luckey
- *Joslin Diabetes Center; Departments of Pathology and Medicine, Brigham and Women’s Hospital, Harvard Medical School, 1 Joslin Place, Boston, MA 02215; and
| | - Deepta Bhattacharya
- *Joslin Diabetes Center; Departments of Pathology and Medicine, Brigham and Women’s Hospital, Harvard Medical School, 1 Joslin Place, Boston, MA 02215; and
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305-5323
| | - Ananda W. Goldrath
- *Joslin Diabetes Center; Departments of Pathology and Medicine, Brigham and Women’s Hospital, Harvard Medical School, 1 Joslin Place, Boston, MA 02215; and
| | - Irving L. Weissman
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305-5323
| | - Christophe Benoist
- *Joslin Diabetes Center; Departments of Pathology and Medicine, Brigham and Women’s Hospital, Harvard Medical School, 1 Joslin Place, Boston, MA 02215; and
| | - Diane Mathis
- *Joslin Diabetes Center; Departments of Pathology and Medicine, Brigham and Women’s Hospital, Harvard Medical School, 1 Joslin Place, Boston, MA 02215; and
| |
Collapse
|
30
|
Zapata JM, Krajewska M, Morse HC, Choi Y, Reed JC. TNF receptor-associated factor (TRAF) domain and Bcl-2 cooperate to induce small B cell lymphoma/chronic lymphocytic leukemia in transgenic mice. Proc Natl Acad Sci U S A 2004; 101:16600-5. [PMID: 15545599 PMCID: PMC534512 DOI: 10.1073/pnas.0407541101] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Indexed: 11/18/2022] Open
Abstract
Transgenic mice overexpressing in B lymphocytes either Bcl-2 or a TNF receptor-associated factor (TRAF)2 mutant lacking the N-terminal RING and zinc finger domains located at the N terminus of the molecule (TRAF2DN), which mimics TRAF1, developed lymphadenopathy and splenomegaly due to polyclonal B cell expansion. Remarkably, TRAF2DN/Bcl-2 double-transgenic mice contained B cell populations similar to those observed in TRAF2DN mice. However, over time, they developed severe splenomegaly and lymphadenopathy, and most animals also developed leukemia, pleural effusion, and, in some cases, ascites associated with monoclonal and oligoclonal B cell neoplasms. The life span of TRAF2DN/Bcl-2 mice was markedly reduced compared with Bcl-2 and TRAF2DN single-transgenics or wild-type littermates. The expanded B cell population of TRAF2DN/Bcl-2 double-transgenic mice was primarily comprised of small/medium-size noncycling B220(M)/IgM(H)/IgD(L)/CD21(L)/CD23(NULL)/CD11b(+)/CD5+ cells that were Bcl-6-negative, consistent with a B-1 phenotype. The cells also expressed high levels of CD54 and other adhesion molecules. In vitro, these B cells showed comparable proliferation rates to those of wild-type counterparts but exhibited markedly increased survival and were resistant to apoptosis induced by chemotherapeutic agents and glucocorticoids. Histopathologic features were consistent with mouse small B cell lymphoma progressing to leukemia with many similarities to human chronic lymphocytic leukemia. Given that many human chronic lymphocytic leukemias overexpress TRAF1 and Bcl-2, our findings suggest that cooperation between Bcl-2 and TRAF pathways contributes to the development of this type of leukemia.
Collapse
MESH Headings
- Animals
- Apoptosis
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- Gene Rearrangement, B-Lymphocyte
- Genes, bcl-2
- Humans
- Integrin beta1/metabolism
- Intercellular Adhesion Molecule-1/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/etiology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphoma, B-Cell/etiology
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Protein Structure, Tertiary
- Sequence Deletion
- TNF Receptor-Associated Factor 2/chemistry
- TNF Receptor-Associated Factor 2/genetics
- TNF Receptor-Associated Factor 2/physiology
Collapse
Affiliation(s)
- Juan M Zapata
- The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|
31
|
Kazemi S, Papadopoulou S, Li S, Su Q, Wang S, Yoshimura A, Matlashewski G, Dever TE, Koromilas AE. Control of alpha subunit of eukaryotic translation initiation factor 2 (eIF2 alpha) phosphorylation by the human papillomavirus type 18 E6 oncoprotein: implications for eIF2 alpha-dependent gene expression and cell death. Mol Cell Biol 2004; 24:3415-29. [PMID: 15060162 PMCID: PMC381675 DOI: 10.1128/mcb.24.8.3415-3429.2004] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2 (eIF2alpha) at serine 51 inhibits protein synthesis in cells subjected to various forms of stress including virus infection. The human papillomavirus (HPV) E6 oncoprotein contributes to virus-induced pathogenicity through multiple mechanisms including the inhibition of apoptosis and the blockade of interferon (IFN) action. We have investigated a possible functional relationship between the E6 oncoprotein and eIF2alpha phosphorylation by an inducible-dimerization form of the IFN-inducible protein kinase PKR. Herein, we demonstrate that HPV type 18 E6 protein synthesis is rapidly repressed upon eIF2alpha phosphorylation caused by the conditional activation of the kinase. The remainder of E6, however, can rescue cells from PKR-mediated inhibition of protein synthesis and induction of apoptosis. E6 physically associates with GADD34/PP1 holophosphatase complex, which mediates translational recovery, and facilitates eIF2alpha dephosphorylation. Inhibition of eIF2alpha phosphorylation by E6 mitigates eIF2alpha-dependent responses to transcription and translation of proapoptotic genes. These findings demonstrate, for the first time, a role of the oncogenic E6 in apoptotic signaling induced by PKR and eIF2alpha phosphorylation. The functional interaction between E6 and the eIF2alpha phosphorylation pathway may have important implications for HPV infection and associated pathogenesis.
Collapse
Affiliation(s)
- Shirin Kazemi
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Siegler G, Kremmer E, Gonnella R, Niedobitek G. Epstein-Barr virus encoded latent membrane protein 1 (LMP1) and TNF receptor associated factors (TRAF): colocalisation of LMP1 and TRAF1 in primary EBV infection and in EBV associated Hodgkin lymphoma. Mol Pathol 2003; 56:156-61. [PMID: 12782762 PMCID: PMC1187311 DOI: 10.1136/mp.56.3.156] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS Epstein-Barr virus (EBV) immortalises B cells in vitro and is associated with several malignancies. Most phenotypic effects of EBV are mediated by latent membrane protein 1 (LMP1), which interacts with tumour necrosis factor receptor associated factors (TRAFs) to activate NF-kappaB. This study examines TRAF1 and LMP1 expression in EBV associated lymphoproliferations. METHODS TRAF1 expression was investigated in 26 Hodgkin lymphomas (HL; 18 EBV+, eight EBV-), seven EBV+ Burkitt lymphomas (BL), two infectious mononucleosis (IM) tonsils, and lymphoreticular tissue from eight chronic virus carriers. Seven anaplastic large cell lymphomas and 10 follicular B cell lymphomas were also studied. Colocalisation of TRAF1 and LMP1 was studied by immunofluorescent double labelling and confocal laser microscopy. RESULTS TRAF1 colocalises with LMP1 in EBV infected cells in IM. EBV positive lymphocytes from chronic virus carriers were negative for TRAF1 and LMP1. In HL biopsies, TRAF1 was strongly expressed independently of EBV status, whereas all BL cases were TRAF1-. In EBV+ HL cases, TRAF1 colocalised with LMP1. Eight of 10 follicular lymphomas expressed TRAF1 in centroblast-like cells. Four of seven anaplastic large cell lymphomas weakly expressed TRAF1. CONCLUSIONS These results suggest that in non-neoplastic lymphocytes, TRAF1 expression is dependent on the presence of LMP1, and that in IM B cells in vivo, LMP1 associated signalling pathways are active. In HL, TRAF1 is expressed independently of EBV status, probably because of constitutive NF-kappaB activation. The function of TRAF1 in HL remains to be determined.
Collapse
Affiliation(s)
- G Siegler
- Institute for Pathology, Friedrich-Alexander-University, Krankenhausstr. 8-10, 91054 Erlangen, Germany
| | | | | | | |
Collapse
|
33
|
Eliopoulos AG, Waites ER, Blake SMS, Davies C, Murray P, Young LS. TRAF1 is a critical regulator of JNK signaling by the TRAF-binding domain of the Epstein-Barr virus-encoded latent infection membrane protein 1 but not CD40. J Virol 2003; 77:1316-28. [PMID: 12502848 PMCID: PMC140818 DOI: 10.1128/jvi.77.2.1316-1328.2003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The oncogenic Epstein-Barr virus (EBV)-encoded latent infection membrane protein 1 (LMP1) mimics a constitutive active tumor necrosis factor (TNF) family receptor in its ability to recruit TNF receptor-associated factors (TRAFs) and TNF receptor-associated death domain protein (TRADD) in a ligand-independent manner. As a result, LMP1 constitutively engages signaling pathways, such as the JNK and p38 mitogen-activated protein kinases (MAPK), the transcription factor NF-kappaB, and the JAK/STAT cascade, and these activities may explain many of its pleiotropic effects on cell phenotype, growth, and transformation. In this study we demonstrate the ability of the TRAF-binding domain of LMP1 to signal on the JNK/AP-1 axis in a cell type- dependent manner that critically involves TRAF1 and TRAF2. Thus, expression of this LMP1 domain in TRAF1-positive lymphoma cells promotes significant JNK activation, which is blocked by dominant-negative TRAF2 but not TRAF5. However, TRAF1 is absent in many established epithelial cell lines and primary nasopharyngeal carcinoma (NPC) biopsy specimens. In these cells, JNK activation by the TRAF-binding domain of LMP1 depends on the reconstitution of TRAF1 expression. The critical role of TRAF1 in the regulation of TRAF2-dependent JNK signaling is particular to the TRAF-binding domain of LMP1, since a homologous region in the cytoplasmic tail of CD40 or the TRADD-interacting domain of LMP1 signal on the JNK axis independently of TRAF1 status. These data further dissect the signaling components used by LMP1 and identify a novel role for TRAF1 as a modulator of oncogenic signals.
Collapse
Affiliation(s)
- Aristides G Eliopoulos
- Cancer Research UK Institute for Cancer Studies, The University of Birmingham Medical School, United Kingdom.
| | | | | | | | | | | |
Collapse
|