1
|
Cross GB, Sari IP, Burkill SM, Yap CW, Nguyen H, Quyet D, Dalay VB, Gutierrez E, Balanag VM, Castillo RJ, Chang CC, Kelleher AD, O'Doherty J, Paton NI. PET-CT outcomes from a randomised controlled trial of rosuvastatin as an adjunct to standard tuberculosis treatment. Nat Commun 2024; 15:10475. [PMID: 39622823 PMCID: PMC11611914 DOI: 10.1038/s41467-024-54419-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 11/11/2024] [Indexed: 12/06/2024] Open
Abstract
Adjunctive rosuvastatin for rifampicin-susceptible pulmonary tuberculosis (rs-PTB) shows no effect on microbiological or radiological outcomes in a phase IIb randomised, controlled trial (NCT04504851). We explore the impact of adjunctive rosuvastatin on 18F-fluorodeoxyglucose (FDG) positron emission tomography-computed tomography (PET-CT) imaging in a sub-study of 24 participants. Changes in standardised uptake value (SUVmax, SUVmean), Total Metabolic Volume, (TMV), Total Lesion Glycolysis (TLG), cavity diameter and volume, between week 0 and week 8 post-randomisation, are evaluated. Here we show no evidence of difference in the reduction in TLG [median 65.8% for the rosuvastatin group (Q1, Q3 38.6, 94.5) vs 64.3% for standard tuberculosis treatment group (Q1, Q3 -20.0, 81.7), P = 0.32], reduction in cavity volume on CT [median 3.2 cm3 (IQR 11.1, 0.5) for rosuvastatin, 2.2 cm3 (IQR 4.6, 0.7) for control (p = 0.72)], or any other PET-CT parameter measured. We show that the first 8-weeks of standard tuberculosis treatment results in a reduction in the volumetric indices (TLG and TMV), but had little change in SUVmax or SUVmean. Change in TLG and TMV holds promise as biomarkers of tuberculosis treatment response: future PET-CT studies should evaluate their role in predicting relapse-free cure, and the overall role of 18F-FDG-PET-CT as a tool for early-phase tuberculosis clinical trials.
Collapse
Affiliation(s)
- Gail B Cross
- National University Hospital, Department of Medicine, Singapore, Singapore.
- National University of Singapore, Infectious Disease Translational Research Programme, Singapore, Singapore.
- Kirby Institute, University of New South Wales, Sydney, Australia.
- Burnet Institute, Melbourne, Australia.
| | - Intan P Sari
- National University Hospital, Department of Medicine, Singapore, Singapore
| | | | - Chee Woei Yap
- National University Health Systems, Department of Diagnostic Imaging, Singapore, Singapore
| | - Han Nguyen
- Vietnam Military Medical University, Respiratory Medicine, Hanoi, Viet Nam
- Karolinska Institute, Department of Medicine Solna, Stockholm, Sweden
| | - Do Quyet
- Vietnam Military Medical University, Respiratory Medicine, Hanoi, Viet Nam
| | - Victoria B Dalay
- De La Salle Medical and Health Sciences Institute, Cavite, Philippines
| | | | | | | | | | | | - Jim O'Doherty
- National University of Singapore, Clinical Imaging Research Centre, Singapore, Singapore
- Siemens Medical Solutions, Malvern, USA
| | - Nicholas I Paton
- National University Hospital, Department of Medicine, Singapore, Singapore
- National University of Singapore, Infectious Disease Translational Research Programme, Singapore, Singapore
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
2
|
Sarkar M, Sarkar J. Therapeutic drug monitoring in tuberculosis. Eur J Clin Pharmacol 2024; 80:1659-1684. [PMID: 39240337 DOI: 10.1007/s00228-024-03749-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
PURPOSE Therapeutic drug monitoring (TDM) is a standard clinical procedure that uses the pharmacokinetic and pharmacodynamic parameters of the drug in the body to determine the optimal dose. The pharmacokinetic variability of the drug(s) is a significant contributor to poor treatment outcomes, including the development of acquired drug resistance. TDM aids in dose optimization and improves outcomes while lessening drug toxicity. TDM is used to manage patients with tuberculosis (TB) who exhibit a slow response to therapy, despite good compliance and drug-susceptible organisms. Additional indications include patients at risk of malabsorption or delayed absorption of TB drugs and patients with drug-drug interaction and drug toxicity, which confirm compliance with therapy. TDM usually requires two blood samples: the 2 h and the 6 h post-dose. This narrative review will discuss the pharmacokinetics and pharmacodynamics of TB drugs, determinants of poor response to therapy, indications of TDM, methods of performing TDM, and its interpretations. METHODS This is a narrative review. We searched PubMed, Embase, and the CINAHL from inception to April 2024. We used the following search terms: tuberculosis, therapeutic drug monitoring, anti-TB drugs, pharmacokinetics, pharmacodynamics, limited sample strategies, diabetes and TB, HIV and TB, and multidrug-resistant TB. All types of articles were selected. RESULTS TDM is beneficial in managing TB, especially in patients with slow responses, drug-resistance TB, recurrent TB, and comorbidities such as diabetes mellitus and human immunodeficiency virus infection. CONCLUSION TDM is beneficial for improving outcomes, reducing the risk of acquired drug resistance, and avoiding side effects.
Collapse
Affiliation(s)
- M Sarkar
- Department of Pulmonary Medicine, Indira Gandhi Medical College, Shimla, 171001, Himachal Pradesh, India.
| | - J Sarkar
- MRes Neuroscience, University of Leeds, Leeds, UK
| |
Collapse
|
3
|
Sarathy JP. Molecular and microbiological methods for the identification of nonreplicating Mycobacterium tuberculosis. PLoS Pathog 2024; 20:e1012595. [PMID: 39383167 PMCID: PMC11463790 DOI: 10.1371/journal.ppat.1012595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024] Open
Abstract
Chronic tuberculosis (TB) disease, which requires months-long chemotherapy with multiple antibiotics, is defined by diverse pathological manifestations and bacterial phenotypes. Targeting drug-tolerant bacteria in the host is critical to achieving a faster and durable cure for TB. In order to facilitate this field of research, we need to consider the physiology of persistent MTB during infection, which is often associated with the nonreplicating (NR) state. However, the traditional approach to quantifying bacterial burden through colony enumeration alone only informs on the abundance of live bacilli at the time of sampling, and provides an incomplete picture of the replicative state of the pathogen and the extent to which bacterial replication is balanced by ongoing cell death. Modern approaches to profiling bacterial replication status provide a better understanding of inter- and intra-population dynamics under different culture conditions and in distinct host microenvironments. While some methods use molecular markers of DNA replication and cell division, other approaches take advantage of advances in the field of microfluidics and live-cell microscopy. Considerable effort has been made over the past few decades to develop preclinical in vivo models of TB infection and some are recognized for more closely recapitulating clinical disease pathology than others. Unique lesion compartments presenting different environmental conditions produce significant heterogeneity between Mycobacterium tuberculosis populations within the host. While cellular lesion compartments appear to be more permissive of ongoing bacterial replication, caseous foci are associated with the maintenance of M. tuberculosis in a state of static equilibrium. The accurate identification of nonreplicators and where they hide within the host have significant implications for the way novel chemotherapeutic agents and regimens are designed for persistent infections.
Collapse
Affiliation(s)
- Jansy Passiflora Sarathy
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, United States of America
- Hackensack Meridian School of Medicine, Department of Medical Sciences, Nutley, New Jersey, United States of America
| |
Collapse
|
4
|
Wen X, Li D, Wang H, Zhang D, Song J, Zhou Z, Huang W, Xia X, Hu X, Liu W, Gonzales J, Via LE, Zhang L, Wang D. IQGAP1 domesticates macrophages to favor mycobacteria survival via modulating NF-κB signal and augmenting VEGF secretion. Int Immunopharmacol 2024; 138:112549. [PMID: 38944950 DOI: 10.1016/j.intimp.2024.112549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/02/2024]
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), still ranks among the leading causes of annual human death by infectious disease. Mtb has developed several strategies to survive for years at a time within the host despite the presence of a robust immune response, including manipulating the progression of the inflammatory response and forming granulomatous lesions. Here we demonstrate that IQGAP1, a highly conserved scaffolding protein, compartmentalizes and coordinates multiple signaling pathways in macrophages infected with Mycobacterium marinum (Mm or M.marinum), the closest relative of Mtb. Upregulated IQGAP1 ultimately suppresses TNF-α production by repressing the MKK3 signal and reducing NF-κBp65 translocation, deactivating the p38MAPK pathway. Accordingly, IQGAP1 silencing and overexpression significantly alter p38MAPK activity by modulating the production of phosphorylated MKK3 during mycobacterial infection. Pharmacological inhibition of IQGAP1-associated microtubule assembly not only alleviates tissue damage caused by M.marinum infection but also significantly decreases the production of VEGF-a critical player for granuloma-associated angiogenesis during pathogenic mycobacterial infection. Similarly, IQGAP1 silencing in Mm-infected macrophages diminishes VEGF production, while IQGAP1 overexpression upregulates VEGF. Our data indicate that mycobacteria induce IQGAP1 to hijack NF-κBp65 activation, preventing the expression of proinflammatory cytokines as well as promoting VEGF production during infection and granuloma formation. Thus, therapies targeting host IQGAP1 may be a promising strategy for treating tuberculosis, particularly in drug-resistant diseases.
Collapse
Affiliation(s)
- Xin Wen
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, PR China; Yichang Key Laboratory of Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, PR China
| | - Dan Li
- Department of Tuberculosis, The Third People's Hospital of Yichang, Yichang 443003, PR China
| | - Hankun Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, PR China; Yichang Key Laboratory of Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, PR China
| | - Ding Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, PR China; Yichang Key Laboratory of Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, PR China
| | - Jingrui Song
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, PR China; Yichang Key Laboratory of Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, PR China
| | - Ziwei Zhou
- State Key Laboratory of Genetic Engineering, Institute of Genetics, MOE Engineering Research Center of Gene Technology, School of Life Science, Fudan University, Shanghai 200433, PR China
| | - Weifeng Huang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, PR China; Yichang Key Laboratory of Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, PR China
| | - Xuan Xia
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, PR China; Yichang Key Laboratory of Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, PR China
| | - Xiaohong Hu
- Department of Tuberculosis, The Third People's Hospital of Yichang, Yichang 443003, PR China
| | - Wei Liu
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, PR China; Institute of Digestive Disease, China Three Gorges University, Yichang, PR China; Department of Gastroenterology, Yichang Central People's Hospital, Yichang, PR China
| | - Jacqueline Gonzales
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda 20982, MD, USA
| | - Laura E Via
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda 20982, MD, USA
| | - Lu Zhang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, MOE Engineering Research Center of Gene Technology, School of Life Science, Fudan University, Shanghai 200433, PR China.
| | - Decheng Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, PR China; Yichang Key Laboratory of Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, PR China.
| |
Collapse
|
5
|
Boshoff HIM, Young K, Ahn YM, Yadav VD, Crowley BM, Yang L, Su J, Oh S, Arora K, Andrews J, Manikkam M, Sutphin M, Smith AJ, Weiner DM, Piazza MK, Fleegle JD, Gomez F, Dayao EK, Prideaux B, Zimmerman M, Kaya F, Sarathy J, Tan VY, Via LE, Tschirret-Guth R, Lenaerts AJ, Robertson GT, Dartois V, Olsen DB, Barry CE. Mtb-Selective 5-Aminomethyl Oxazolidinone Prodrugs: Robust Potency and Potential Liabilities. ACS Infect Dis 2024; 10:1679-1695. [PMID: 38581700 DOI: 10.1021/acsinfecdis.4c00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
Linezolid is a drug with proven human antitubercular activity whose use is limited to highly drug-resistant patients because of its toxicity. This toxicity is related to its mechanism of action─linezolid inhibits protein synthesis in both bacteria and eukaryotic mitochondria. A highly selective and potent series of oxazolidinones, bearing a 5-aminomethyl moiety (in place of the typical 5-acetamidomethyl moiety of linezolid), was identified. Linezolid-resistant mutants were cross-resistant to these molecules but not vice versa. Resistance to the 5-aminomethyl molecules mapped to an N-acetyl transferase (Rv0133) and these mutants remained fully linezolid susceptible. Purified Rv0133 was shown to catalyze the transformation of the 5-aminomethyl oxazolidinones to their corresponding N-acetylated metabolites, and this transformation was also observed in live cells of Mycobacterium tuberculosis. Mammalian mitochondria, which lack an appropriate N-acetyltransferase to activate these prodrugs, were not susceptible to inhibition with the 5-aminomethyl analogues. Several compounds that were more potent than linezolid were taken into C3HeB/FeJ mice and were shown to be highly efficacious, and one of these (9) was additionally taken into marmosets and found to be highly active. Penetration of these 5-aminomethyl oxazolidinone prodrugs into caseum was excellent. Unfortunately, these compounds were rapidly converted into the corresponding 5-alcohols by mammalian metabolism which retained antimycobacterial activity but resulted in substantial mitotoxicity.
Collapse
Affiliation(s)
- Helena I M Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Katherine Young
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Yong-Mo Ahn
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Veena D Yadav
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institutes of Health, Bethesda, Maryland 20892, United States
| | | | - Lihu Yang
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Jing Su
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Sangmi Oh
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kriti Arora
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jenna Andrews
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Michelle Manikkam
- Tuberculosis Imaging Program, Division of Intramural Research, National Insititute of Allergy and Infectious Disease, National Insititutes of Health, Bethesda, Maryland 20892, United States
| | - Michelle Sutphin
- Tuberculosis Imaging Program, Division of Intramural Research, National Insititute of Allergy and Infectious Disease, National Insititutes of Health, Bethesda, Maryland 20892, United States
| | - Anthony J Smith
- Mycobacterial Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Ft Collins, Colorado 80521, United States
| | - Danielle M Weiner
- Tuberculosis Imaging Program, Division of Intramural Research, National Insititute of Allergy and Infectious Disease, National Insititutes of Health, Bethesda, Maryland 20892, United States
| | - Michaela K Piazza
- Tuberculosis Imaging Program, Division of Intramural Research, National Insititute of Allergy and Infectious Disease, National Insititutes of Health, Bethesda, Maryland 20892, United States
| | - Joel D Fleegle
- Tuberculosis Imaging Program, Division of Intramural Research, National Insititute of Allergy and Infectious Disease, National Insititutes of Health, Bethesda, Maryland 20892, United States
| | - Felipe Gomez
- Tuberculosis Imaging Program, Division of Intramural Research, National Insititute of Allergy and Infectious Disease, National Insititutes of Health, Bethesda, Maryland 20892, United States
| | - Emmannual K Dayao
- Tuberculosis Imaging Program, Division of Intramural Research, National Insititute of Allergy and Infectious Disease, National Insititutes of Health, Bethesda, Maryland 20892, United States
| | - Brendan Prideaux
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Matthew Zimmerman
- Hackensack Meridian Health Center for Discovery & Innovation, Nutley, New Jersey 07110, United States
| | - Firat Kaya
- Hackensack Meridian Health Center for Discovery & Innovation, Nutley, New Jersey 07110, United States
| | - Jansy Sarathy
- Hackensack Meridian Health Center for Discovery & Innovation, Nutley, New Jersey 07110, United States
| | - Vee Yang Tan
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Laura E Via
- Tuberculosis Imaging Program, Division of Intramural Research, National Insititute of Allergy and Infectious Disease, National Insititutes of Health, Bethesda, Maryland 20892, United States
| | | | - Anne J Lenaerts
- Mycobacterial Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Ft Collins, Colorado 80521, United States
| | - Gregory T Robertson
- Mycobacterial Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Ft Collins, Colorado 80521, United States
| | - Véronique Dartois
- Mycobacterial Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Ft Collins, Colorado 80521, United States
| | - David B Olsen
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Clifton E Barry
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
6
|
Dartois V, Dick T. Therapeutic developments for tuberculosis and nontuberculous mycobacterial lung disease. Nat Rev Drug Discov 2024; 23:381-403. [PMID: 38418662 PMCID: PMC11078618 DOI: 10.1038/s41573-024-00897-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Tuberculosis (TB) drug discovery and development has undergone nothing short of a revolution over the past 20 years. Successful public-private partnerships and sustained funding have delivered a much-improved understanding of mycobacterial disease biology and pharmacology and a healthy pipeline that can tolerate inevitable attrition. Preclinical and clinical development has evolved from decade-old concepts to adaptive designs that permit rapid evaluation of regimens that might greatly shorten treatment duration over the next decade. But the past 20 years also saw the rise of a fatal and difficult-to-cure lung disease caused by nontuberculous mycobacteria (NTM), for which the drug development pipeline is nearly empty. Here, we discuss the similarities and differences between TB and NTM lung diseases, compare the preclinical and clinical advances, and identify major knowledge gaps and areas of cross-fertilization. We argue that applying paradigms and networks that have proved successful for TB, from basic research to clinical trials, will help to populate the pipeline and accelerate curative regimen development for NTM disease.
Collapse
Affiliation(s)
- Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA.
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA.
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA
- Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| |
Collapse
|
7
|
Cross GB, O’ Doherty J, Chang CC, Kelleher AD, Paton NI. Does PET-CT Have a Role in the Evaluation of Tuberculosis Treatment in Phase 2 Clinical Trials? J Infect Dis 2024; 229:1229-1238. [PMID: 37788578 PMCID: PMC11011169 DOI: 10.1093/infdis/jiad425] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/10/2023] [Accepted: 10/01/2023] [Indexed: 10/05/2023] Open
Abstract
Positron emission tomography-computed tomography (PET-CT) has the potential to revolutionize research in infectious diseases, as it has done with cancer. There is growing interest in it as a biomarker in the setting of early-phase tuberculosis clinical trials, particularly given the limitations of current biomarkers as adequate predictors of sterilizing cure for tuberculosis. PET-CT is a real-time tool that provides a 3-dimensional view of the spatial distribution of tuberculosis within the lung parenchyma and the nature of lesions with uptake (ie, whether nodular, consolidative, or cavitary). Its ability to provide functional data on changes in metabolism, drug penetration, and immune control of tuberculous lesions has the potential to facilitate drug development and regimen selection for advancement to phase 3 trials in tuberculosis. In this narrative review, we discuss the role that PET-CT may have in evaluating responses to drug therapy in active tuberculosis treatment and the challenges in taking PET-CT forward as predictive biomarker of relapse-free cure in the setting of phase 2 clinical trials.
Collapse
Affiliation(s)
- Gail B Cross
- Immunovirology and Pathogenesis Program, The Kirby Institute, UNSW, Sydney
- Burnet Institute, Victoria, Australia
| | - Jim O’ Doherty
- Siemens Medical Solutions, Malvern, PA
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
- Radiography & Diagnostic Imaging, University College Dublin, Dublin, Ireland
| | - Christina C Chang
- Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| | - Anthony D Kelleher
- Immunovirology and Pathogenesis Program, The Kirby Institute, UNSW, Sydney
- St Vincent's Hospital, Sydney, Australia
| | - Nicholas I Paton
- Infectious Disease Translational Research Programme, National University of Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
8
|
Datta M, Via LE, Dartois V, Weiner DM, Zimmerman M, Kaya F, Walker AM, Fleegle JD, Raplee ID, McNinch C, Zarodniuk M, Kamoun WS, Yue C, Kumar AS, Subudhi S, Xu L, Barry CE, Jain RK. Normalizing granuloma vasculature and matrix improves drug delivery and reduces bacterial burden in tuberculosis-infected rabbits. Proc Natl Acad Sci U S A 2024; 121:e2321336121. [PMID: 38530888 PMCID: PMC10998582 DOI: 10.1073/pnas.2321336121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
Host-directed therapies (HDTs) represent an emerging approach for bacterial clearance during tuberculosis (TB) infection. While most HDTs are designed and implemented for immuno-modulation, other host targets-such as nonimmune stromal components found in pulmonary granulomas-may prove equally viable. Building on our previous work characterizing and normalizing the aberrant granuloma-associated vasculature, here we demonstrate that FDA-approved therapies (bevacizumab and losartan, respectively) can be repurposed as HDTs to normalize blood vessels and extracellular matrix (ECM), improve drug delivery, and reduce bacterial loads in TB granulomas. Granulomas feature an overabundance of ECM and compressed blood vessels, both of which are effectively reduced by losartan treatment in the rabbit model of TB. Combining both HDTs promotes secretion of proinflammatory cytokines and improves anti-TB drug delivery. Finally, alone and in combination with second-line antitubercular agents (moxifloxacin or bedaquiline), these HDTs significantly reduce bacterial burden. RNA sequencing analysis of HDT-treated lung and granuloma tissues implicates up-regulated antimicrobial peptide and proinflammatory gene expression by ciliated epithelial airway cells as a putative mechanism of the observed antitubercular benefits in the absence of chemotherapy. These findings demonstrate that bevacizumab and losartan are well-tolerated stroma-targeting HDTs, normalize the granuloma microenvironment, and improve TB outcomes, providing the rationale to clinically test this combination in TB patients.
Collapse
Affiliation(s)
- Meenal Datta
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Laura E Via
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, NIH, Bethesda, MD 20892
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110
- Hackensack Meridian School of Medicine, Hackensack Meridian Health, Nutley, NJ 07110
| | - Danielle M Weiner
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, NIH, Bethesda, MD 20892
| | - Matthew Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110
| | - Firat Kaya
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110
| | - April M Walker
- Tuberculosis Imaging Program, Division of Intramural Research, National Institute of Allergy and Infectious Disease, NIH, Bethesda, MD 20892
| | - Joel D Fleegle
- Tuberculosis Imaging Program, Division of Intramural Research, National Institute of Allergy and Infectious Disease, NIH, Bethesda, MD 20892
| | - Isaac D Raplee
- Bioinformatics and Computational Bioscience Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Colton McNinch
- Bioinformatics and Computational Bioscience Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Maksym Zarodniuk
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556
| | - Walid S Kamoun
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Changli Yue
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556
| | - Ashwin S Kumar
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Sonu Subudhi
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Lei Xu
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Clifton E Barry
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, NIH, Bethesda, MD 20892
| | - Rakesh K Jain
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| |
Collapse
|
9
|
Zhou S, Zhang D, Li D, Wang H, Ding C, Song J, Huang W, Xia X, Zhou Z, Han S, Jin Z, Yan B, Gonzales J, Via LE, Zhang L, Wang D. Pathogenic mycobacterium upregulates cholesterol 25-hydroxylase to promote granuloma development via foam cell formation. iScience 2024; 27:109204. [PMID: 38420591 PMCID: PMC10901098 DOI: 10.1016/j.isci.2024.109204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/20/2023] [Accepted: 02/07/2024] [Indexed: 03/02/2024] Open
Abstract
Pathogenic mycobacteria orchestrate the complex cell populations known as granuloma that is the hallmark of tuberculosis. Foam cells, a lipid-rich cell-type, are considered critical for granuloma formation; however, the causative factor in foam cell formation remains unclear. Atherosclerosis is a chronic inflammatory disease characterized by the abundant accumulation of lipid-laden-macrophage-derived foam cells during which cholesterol 25-hydroxylase (CH25H) is crucial in foam cell formation. Here, we show that M. marinum (Mm), a relative of M. tuberculosis, induces foam cell formation, leading to granuloma development following CH25H upregulation. Moreover, the Mm-driven increase in CH25H expression is associated with the presence of phthiocerol dimycocerosate, a determinant for Mm virulence and integrity. CH25H-null mice showed decreased foam cell formation and attenuated pathology. Atorvastatin, a recommended first-line lipid-lowering drug, promoted the elimination of M. marinum and concomitantly reduced CH25H production. These results define a previously unknown role for CH25H in controlling macrophage-derived foam cell formation and Tuberculosis pathology.
Collapse
Affiliation(s)
- Shuang Zhou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University; Institute of Infection and Inflammation, China Three Gorges University; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Ding Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University; Institute of Infection and Inflammation, China Three Gorges University; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Dan Li
- Department of Tuberculosis, The Third People’s Hospital of Yichang, Yichang 443003, P.R. China
| | - Hankun Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University; Institute of Infection and Inflammation, China Three Gorges University; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Cairong Ding
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University; Institute of Infection and Inflammation, China Three Gorges University; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Jingrui Song
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University; Institute of Infection and Inflammation, China Three Gorges University; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Weifeng Huang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University; Institute of Infection and Inflammation, China Three Gorges University; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Xuan Xia
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University; Institute of Infection and Inflammation, China Three Gorges University; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Ziwei Zhou
- State Key Laboratory of Genetic Engineering, Institute of Genetics, MOE Engineering Research Center of Gene Technology, School of Life Science, Fudan University, Shanghai 200433, P.R. China
| | - Shanshan Han
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University; Institute of Infection and Inflammation, China Three Gorges University; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Zhu Jin
- Department of Tuberculosis, The Third People’s Hospital of Yichang, Yichang 443003, P.R. China
| | - Bo Yan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai China
| | - Jacqueline Gonzales
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20982, USA
| | - Laura E. Via
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20982, USA
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Lu Zhang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, MOE Engineering Research Center of Gene Technology, School of Life Science, Fudan University, Shanghai 200433, P.R. China
| | - Decheng Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University; Institute of Infection and Inflammation, China Three Gorges University; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| |
Collapse
|
10
|
Song L, Zhang D, Wang H, Xia X, Huang W, Gonzales J, Via LE, Wang D. Automated quantitative assay of fibrosis characteristics in tuberculosis granulomas. Front Microbiol 2024; 14:1301141. [PMID: 38235425 PMCID: PMC10792068 DOI: 10.3389/fmicb.2023.1301141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/06/2023] [Indexed: 01/19/2024] Open
Abstract
Introduction Granulomas, the pathological hallmark of Mycobacterium tuberculosis (Mtb) infection, are formed by different cell populations. Across various stages of tuberculosis conditions, most granulomas are classical caseous granulomas. They are composed of a necrotic center surrounded by multilayers of histocytes, with the outermost layer encircled by fibrosis. Although fibrosis characterizes the architecture of granulomas, little is known about the detailed parameters of fibrosis during this process. Methods In this study, samples were collected from patients with tuberculosis (spanning 16 organ types), and Mtb-infected marmosets and fibrotic collagen were characterized by second harmonic generation (SHG)/two-photon excited fluorescence (TPEF) microscopy using a stain-free, fully automated analysis program. Results Histopathological examination revealed that most granulomas share common features, including necrosis, solitary and compact structure, and especially the presence of multinuclear giant cells. Masson's trichrome staining showed that different granuloma types have varying degrees of fibrosis. SHG imaging uncovered a higher proportion (4%~13%) of aggregated collagens than of disseminated type collagens (2%~5%) in granulomas from matched tissues. Furthermore, most of the aggregated collagen presented as short and thick clusters (200~620 µm), unlike the long and thick (200~300 µm) disseminated collagens within the matched tissues. Matrix metalloproteinase-9, which is involved in fibrosis and granuloma formation, was strongly expressed in the granulomas in different tissues. Discussion Our data illustrated that different tuberculosis granulomas have some degree of fibrosis in which collagen strings are short and thick. Moreover, this study revealed that the SHG imaging program could contribute to uncovering the fibrosis characteristics of tuberculosis granulomas.
Collapse
Affiliation(s)
- Li Song
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People’s Hospital, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Ding Zhang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People’s Hospital, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Hankun Wang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People’s Hospital, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Xuan Xia
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People’s Hospital, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Weifeng Huang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People’s Hospital, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Jacqueline Gonzales
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Laura E. Via
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Decheng Wang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People’s Hospital, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| |
Collapse
|
11
|
Nanda P, Budak M, Michael CT, Krupinsky K, Kirschner DE. Development and Analysis of Multiscale Models for Tuberculosis: From Molecules to Populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566861. [PMID: 38014103 PMCID: PMC10680629 DOI: 10.1101/2023.11.13.566861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Although infectious disease dynamics are often analyzed at the macro-scale, increasing numbers of drug-resistant infections highlight the importance of within-host modeling that simultaneously solves across multiple scales to effectively respond to epidemics. We review multiscale modeling approaches for complex, interconnected biological systems and discuss critical steps involved in building, analyzing, and applying such models within the discipline of model credibility. We also present our two tools: CaliPro, for calibrating multiscale models (MSMs) to datasets, and tunable resolution, for fine- and coarse-graining sub-models while retaining insights. We include as an example our work simulating infection with Mycobacterium tuberculosis to demonstrate modeling choices and how predictions are made to generate new insights and test interventions. We discuss some of the current challenges of incorporating novel datasets, rigorously training computational biologists, and increasing the reach of MSMs. We also offer several promising future research directions of incorporating within-host dynamics into applications ranging from combinatorial treatment to epidemic response.
Collapse
|
12
|
Budak M, Cicchese JM, Maiello P, Borish HJ, White AG, Chishti HB, Tomko J, Frye LJ, Fillmore D, Kracinovsky K, Sakal J, Scanga CA, Lin PL, Dartois V, Linderman JJ, Flynn JL, Kirschner DE. Optimizing tuberculosis treatment efficacy: Comparing the standard regimen with Moxifloxacin-containing regimens. PLoS Comput Biol 2023; 19:e1010823. [PMID: 37319311 PMCID: PMC10306236 DOI: 10.1371/journal.pcbi.1010823] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/28/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
Tuberculosis (TB) continues to be one of the deadliest infectious diseases in the world, causing ~1.5 million deaths every year. The World Health Organization initiated an End TB Strategy that aims to reduce TB-related deaths in 2035 by 95%. Recent research goals have focused on discovering more effective and more patient-friendly antibiotic drug regimens to increase patient compliance and decrease emergence of resistant TB. Moxifloxacin is one promising antibiotic that may improve the current standard regimen by shortening treatment time. Clinical trials and in vivo mouse studies suggest that regimens containing moxifloxacin have better bactericidal activity. However, testing every possible combination regimen with moxifloxacin either in vivo or clinically is not feasible due to experimental and clinical limitations. To identify better regimens more systematically, we simulated pharmacokinetics/pharmacodynamics of various regimens (with and without moxifloxacin) to evaluate efficacies, and then compared our predictions to both clinical trials and nonhuman primate studies performed herein. We used GranSim, our well-established hybrid agent-based model that simulates granuloma formation and antibiotic treatment, for this task. In addition, we established a multiple-objective optimization pipeline using GranSim to discover optimized regimens based on treatment objectives of interest, i.e., minimizing total drug dosage and lowering time needed to sterilize granulomas. Our approach can efficiently test many regimens and successfully identify optimal regimens to inform pre-clinical studies or clinical trials and ultimately accelerate the TB regimen discovery process.
Collapse
Affiliation(s)
- Maral Budak
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Joseph M. Cicchese
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - H. Jacob Borish
- Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Alexander G. White
- Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Harris B. Chishti
- Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jaime Tomko
- Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - L. James Frye
- Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Daniel Fillmore
- Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Kara Kracinovsky
- Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jennifer Sakal
- Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Charles A. Scanga
- Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Philana Ling Lin
- Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, United States of America
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, United States of America
| | - Jennifer J. Linderman
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - JoAnne L. Flynn
- Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Denise E. Kirschner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
13
|
Peters J, Maselli DJ, Mangat M, Coalson JJ, Hinojosa C, Giavedoni L, Brown-Elliott BA, Chan E, Griffith D. A marmoset model for Mycobacterium avium complex pulmonary disease. PLoS One 2023; 18:e0260563. [PMID: 36893126 PMCID: PMC9997968 DOI: 10.1371/journal.pone.0260563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/29/2022] [Indexed: 03/10/2023] Open
Abstract
RATIONALE Mycobacterium avium complex, is the most common nontuberculous mycobacterial respiratory pathogen in humans. Disease mechanisms are poorly understood due to the absence of a reliable animal model for M. avium complex pulmonary disease. OBJECTIVES The objectives of this study were to assess the susceptibility, immunologic and histopathologic responses of the common marmoset (Callithrix jacchus) to M. avium complex pulmonary infection. METHODS 7 adult female marmosets underwent endobronchial inoculation with 108 colony-forming units of M. intracellulare and were monitored for 30 or 60 days. Chest radiograph was assessed at baseline (prior to infection) and at the time of sacrifice (30 days for 3 animals and 60 days for 4 animals), and bronchoalveolar lavage cytokines, histopathology and cultures of the bronchoalveolar lavage, lungs, liver and kidney were assessed at time of sacrifice. Serum cytokines were monitored at baseline and weekly for 30 days for all animals and at 60 days for those alive. Group differences in serum cytokine measurements between those that tested positive versus negative for the M. intracellulare infection were assessed using a series of linear mixed models. MEASUREMENTS AND MAIN RESULTS Five of seven animals (two at 30 days and three at 60 days of infection) had positive lung cultures for M. intracellulare. Extra-pulmonary cultures were positive in three animals. All animals appeared healthy throughout the study. All five animals with positive lung cultures had radiographic changes consistent with pneumonitis. At 30 days, those with M. intracellulare lung infection showed granulomatous inflammation, while at 60 days there were fewer inflammatory changes but bronchiectasis was noted. The cytokine response in the bronchoalveolar lavage fluid was uniformly greater in the animals with positive M. intracellulare cultures than those without a productive infection, with greater levels at 30-days compared to 60-days. Similarly, serum cytokines were more elevated in the animals that had positive M. intracellulare cultures compared to those without a productive infection, peaking 14-21 days after inoculation. CONCLUSION Endobronchial instillation of M. intracellulare resulted in pulmonary mycobacterial infection in marmosets with a differential immune response, radiographic and histopathologic abnormalities, and an indolent course consistent with M. avium complex lung infection in humans.
Collapse
Affiliation(s)
- Jay Peters
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, United States of America
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Diego Jose Maselli
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, United States of America
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Mandeep Mangat
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Jacqueline J. Coalson
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Cecilia Hinojosa
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Luis Giavedoni
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Barbara A. Brown-Elliott
- Department of Microbiology, University of Texas Health Science Center, Tyler, TX, United States of America
| | - Edward Chan
- Department of Medicine, National Jewish Health, Denver, CO, United States of America
| | - David Griffith
- Department of Medicine, National Jewish Health, Denver, CO, United States of America
- Department of Medicine, University of Texas Health Science Center, Tyler, TX, United States of America
| |
Collapse
|
14
|
Greenstein T, Aldridge BB. Tools to develop antibiotic combinations that target drug tolerance in Mycobacterium tuberculosis. Front Cell Infect Microbiol 2023; 12:1085946. [PMID: 36733851 PMCID: PMC9888313 DOI: 10.3389/fcimb.2022.1085946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/20/2022] [Indexed: 01/08/2023] Open
Abstract
Combination therapy is necessary to treat tuberculosis to decrease the rate of disease relapse and prevent the acquisition of drug resistance, and shorter regimens are urgently needed. The adaptation of Mycobacterium tuberculosis to various lesion microenvironments in infection induces various states of slow replication and non-replication and subsequent antibiotic tolerance. This non-heritable tolerance to treatment necessitates lengthy combination therapy. Therefore, it is critical to develop combination therapies that specifically target the different types of drug-tolerant cells in infection. As new tools to study drug combinations earlier in the drug development pipeline are being actively developed, we must consider how to best model the drug-tolerant cells to use these tools to design the best antibiotic combinations that target those cells and shorten tuberculosis therapy. In this review, we discuss the factors underlying types of drug tolerance, how combination therapy targets these populations of bacteria, and how drug tolerance is currently modeled for the development of tuberculosis multidrug therapy. We highlight areas for future studies to develop new tools that better model drug tolerance in tuberculosis infection specifically for combination therapy testing to bring the best drug regimens forward to the clinic.
Collapse
Affiliation(s)
- Talia Greenstein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | - Bree B Aldridge
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, MA, United States
- Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA, United States
| |
Collapse
|
15
|
Larkins-Ford J, Aldridge BB. Advances in the design of combination therapies for the treatment of tuberculosis. Expert Opin Drug Discov 2023; 18:83-97. [PMID: 36538813 PMCID: PMC9892364 DOI: 10.1080/17460441.2023.2157811] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Tuberculosis requires lengthy multi-drug therapy. Mycobacterium tuberculosis occupies different tissue compartments during infection, making drug access and susceptibility patterns variable. Antibiotic combinations are needed to ensure each compartment of infection is reached with effective drug treatment. Despite drug combinations' role in treating tuberculosis, the design of such combinations has been tackled relatively late in the drug development process, limiting the number of drug combinations tested. In recent years, there has been significant progress using in vitro, in vivo, and computational methodologies to interrogate combination drug effects. AREAS COVERED This review discusses the advances in these methodologies and how they may be used in conjunction with new successful clinical trials of novel drug combinations to design optimized combination therapies for tuberculosis. Literature searches for approaches and experimental models used to evaluate drug combination effects were undertaken. EXPERT OPINION We are entering an era richer in combination drug effect and pharmacokinetic/pharmacodynamic data, genetic tools, and outcome measurement types. Application of computational modeling approaches that integrate these data and produce predictive models of clinical outcomes may enable the field to generate novel, effective multidrug therapies using existing and new drug combination backbones.
Collapse
Affiliation(s)
- Jonah Larkins-Ford
- Department of Molecular Biology and Microbiology and Tufts University School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance (CIMAR), Tufts University, Boston, MA, USA
- Current address: MarvelBiome Inc, Woburn, MA, USA
| | - Bree B. Aldridge
- Department of Molecular Biology and Microbiology and Tufts University School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance (CIMAR), Tufts University, Boston, MA, USA
- Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA, USA
| |
Collapse
|
16
|
Verma A, Ghoshal A, Dwivedi VP, Bhaskar A. Tuberculosis: The success tale of less explored dormant Mycobacterium tuberculosis. Front Cell Infect Microbiol 2022; 12:1079569. [PMID: 36619761 PMCID: PMC9813417 DOI: 10.3389/fcimb.2022.1079569] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis (M.tb) is an intracellular pathogen that predominantly affects the alveolar macrophages in the respiratory tract. Upon infection, the activation of TLR2 and TLR4- mediated signaling pathways leads to lysosomal degradation of the bacteria. However, bacterium counteracts the host immune cells and utilizes them as a cellular niche for its survival. One distinctive mechanism of M.tb to limit the host stress responses such as hypoxia and nutrient starvation is induction of dormancy. As the environmental conditions become favorable, the bacteria resuscitate, resulting in a relapse of clinical symptoms. Different bacterial proteins play a critical role in maintaining the state of dormancy and resuscitation, namely, DevR (DosS), Hrp1, DATIN and RpfA-D, RipA, etc., respectively. Existing knowledge regarding the key proteins associated with dormancy and resuscitation can be employed to develop novel therapies. In this review we aim to highlight the current knowledge of bacterial progression from dormancy to resuscitation and the gaps in understanding the transition from dormant to active state. We have also focused on elucidating a few therapeutic strategies employed to prevent M.tb resuscitation.
Collapse
|
17
|
Dartois VA, Rubin EJ. Anti-tuberculosis treatment strategies and drug development: challenges and priorities. Nat Rev Microbiol 2022; 20:685-701. [PMID: 35478222 PMCID: PMC9045034 DOI: 10.1038/s41579-022-00731-y] [Citation(s) in RCA: 197] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 12/12/2022]
Abstract
Despite two decades of intensified research to understand and cure tuberculosis disease, biological uncertainties remain and hamper progress. However, owing to collaborative initiatives including academia, the pharmaceutical industry and non-for-profit organizations, the drug candidate pipeline is promising. This exceptional success comes with the inherent challenge of prioritizing multidrug regimens for clinical trials and revamping trial designs to accelerate regimen development and capitalize on drug discovery breakthroughs. Most wanted are markers of progression from latent infection to active pulmonary disease, markers of drug response and predictors of relapse, in vitro tools to uncover synergies that translate clinically and animal models to reliably assess the treatment shortening potential of new regimens. In this Review, we highlight the benefits and challenges of 'one-size-fits-all' regimens and treatment duration versus individualized therapy based on disease severity and host and pathogen characteristics, considering scientific and operational perspectives.
Collapse
Affiliation(s)
- Véronique A Dartois
- Center for Discovery and Innovation, and Hackensack Meridian School of Medicine, Department of Medical Sciences, Hackensack Meridian Health, Nutley, NJ, USA.
| | - Eric J Rubin
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA, USA
| |
Collapse
|
18
|
Nelson CE, Namasivayam S, Foreman TW, Kauffman KD, Sakai S, Dorosky DE, Lora NE, Brooks K, Potter EL, Garza NL, Lafont BAP, Johnson RF, Roederer M, Sher A, Weiskopf D, Sette A, de Wit E, Hickman HD, Brenchley JM, Via LE, Barber DL. Mild SARS-CoV-2 infection in rhesus macaques is associated with viral control prior to antigen-specific T cell responses in tissues. Sci Immunol 2022; 7:eabo0535. [PMID: 35271298 PMCID: PMC8995035 DOI: 10.1126/sciimmunol.abo0535] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/04/2022] [Indexed: 12/24/2022]
Abstract
SARS-CoV-2 primarily replicates in mucosal sites, and more information is needed about immune responses in infected tissues. Here, we used rhesus macaques to model protective primary immune responses in tissues during mild COVID-19. Viral RNA levels were highest on days 1-2 post-infection and fell precipitously thereafter. 18F-fluorodeoxyglucose (FDG)-avid lung abnormalities and interferon (IFN)-activated monocytes and macrophages in the bronchoalveolar lavage (BAL) were found on days 3-4 post-infection. Virus-specific effector CD8+ and CD4+ T cells became detectable in the BAL and lung tissue on days 7-10, after viral RNA, radiologic evidence of lung inflammation, and IFN-activated myeloid cells had substantially declined. Notably, SARS-CoV-2-specific T cells were not detectable in the nasal turbinates, salivary glands, and tonsils on day 10 post-infection. Thus, SARS-CoV-2 replication wanes in the lungs of rhesus macaques prior to T cell responses, and in the nasal and oral mucosa despite the apparent lack of antigen-specific T cells, suggesting that innate immunity efficiently restricts viral replication during mild COVID-19.
Collapse
Affiliation(s)
- Christine E. Nelson
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Sivaranjani Namasivayam
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Taylor W. Foreman
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Keith D. Kauffman
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Shunsuke Sakai
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Danielle E. Dorosky
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Nickiana E. Lora
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - NIAID/DIR Tuberculosis Imaging Program3†
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
- Division of Intramural Research, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
- ImmunoTechnology Section, Vaccine Research Center, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
- Laboratory of Virology, Division of Intramural Research, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, USA
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
- Institute of Infectious Disease & Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Kelsie Brooks
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - E. Lake Potter
- ImmunoTechnology Section, Vaccine Research Center, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Nicole L. Garza
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Bernard A. P. Lafont
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Reed F. Johnson
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Mario Roederer
- ImmunoTechnology Section, Vaccine Research Center, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Emmie de Wit
- Laboratory of Virology, Division of Intramural Research, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT, USA
| | - Heather D. Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Jason M. Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Laura E. Via
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
- Institute of Infectious Disease & Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Daniel L. Barber
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
19
|
Lee DG, Kim HJ, Lee Y, Kim JH, Hwang Y, Ha J, Ryoo S. 10-DEBC Hydrochloride as a Promising New Agent against Infection of Mycobacterium abscessus. Int J Mol Sci 2022; 23:591. [PMID: 35054777 PMCID: PMC8775589 DOI: 10.3390/ijms23020591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/03/2022] [Accepted: 01/03/2022] [Indexed: 11/17/2022] Open
Abstract
Mycobacterium abscessus (M. abscessus) causes chronic pulmonary infections. Its resistance to current antimicrobial drugs makes it the most difficult non-tuberculous mycobacteria (NTM) to treat with a treatment success rate of 45.6%. Therefore, there is a need for new therapeutic agents against M. abscessus. We identified 10-DEBC hydrochloride (10-DEBC), a selective AKT inhibitor that exhibits inhibitory activity against M. abscessus. To evaluate the potential of 10-DEBC as a treatment for lung disease caused by M. abscessus, we measured its effectiveness in vitro. We established the intracellular activity of 10-DEBC against M. abscessus in human macrophages and human embryonic cell-derived macrophages (iMACs). 10-DEBC significantly inhibited the growth of wild-type M. abscessus and clinical isolates and clarithromycin (CLR)-resistant M. abscessus strains. 10-DEBC's drug efficacy did not have cytotoxicity in the infected macrophages. In addition, 10-DEBC operates under anaerobic conditions without replication as well as in the presence of biofilms. The alternative caseum binding assay is a unique tool for evaluating drug efficacy against slow and nonreplicating bacilli in their native caseum media. In the surrogate caseum, the mean undiluted fraction unbound (fu) for 10-DEBC is 5.696. The results of an in vitro study on the activity of M. abscessus suggest that 10-DEBC is a potential new drug for treating M. abscessus infections.
Collapse
Affiliation(s)
- Da-Gyum Lee
- Center for Clinical Research, Masan National Tuberculosis Hospital, Changwon 51755, Korea; (D.-G.L.); (Y.H.)
| | - Hye-Jung Kim
- New Drug Development Center, KBIO OSONG Medical Innovation Foundation, Cheongju 28160, Korea; (H.-J.K.); (J.H.)
| | - Youngsun Lee
- Division of Intractable Diseases Research, Department of Chronic Diseases Convergence Research, Korea National Institute of Health, Cheongju 28160, Korea; (Y.L.); (J.-H.K.)
| | - Jung-Hyun Kim
- Division of Intractable Diseases Research, Department of Chronic Diseases Convergence Research, Korea National Institute of Health, Cheongju 28160, Korea; (Y.L.); (J.-H.K.)
| | - Yoohyun Hwang
- Center for Clinical Research, Masan National Tuberculosis Hospital, Changwon 51755, Korea; (D.-G.L.); (Y.H.)
| | - Jeongyeop Ha
- New Drug Development Center, KBIO OSONG Medical Innovation Foundation, Cheongju 28160, Korea; (H.-J.K.); (J.H.)
| | - Sungweon Ryoo
- Center for Clinical Research, Masan National Tuberculosis Hospital, Changwon 51755, Korea; (D.-G.L.); (Y.H.)
| |
Collapse
|
20
|
Yang HJ, Wang D, Wen X, Weiner DM, Via LE. One Size Fits All? Not in In Vivo Modeling of Tuberculosis Chemotherapeutics. Front Cell Infect Microbiol 2021; 11:613149. [PMID: 33796474 PMCID: PMC8008060 DOI: 10.3389/fcimb.2021.613149] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Tuberculosis (TB) remains a global health problem despite almost universal efforts to provide patients with highly effective chemotherapy, in part, because many infected individuals are not diagnosed and treated, others do not complete treatment, and a small proportion harbor Mycobacterium tuberculosis (Mtb) strains that have become resistant to drugs in the standard regimen. Development and approval of new drugs for TB have accelerated in the last 10 years, but more drugs are needed due to both Mtb's development of resistance and the desire to shorten therapy to 4 months or less. The drug development process needs predictive animal models that recapitulate the complex pathology and bacterial burden distribution of human disease. The human host response to pulmonary infection with Mtb is granulomatous inflammation usually resulting in contained lesions and limited bacterial replication. In those who develop progressive or active disease, regions of necrosis and cavitation can develop leading to lasting lung damage and possible death. This review describes the major vertebrate animal models used in evaluating compound activity against Mtb and the disease presentation that develops. Each of the models, including the zebrafish, various mice, guinea pigs, rabbits, and non-human primates provides data on number of Mtb bacteria and pathology resolution. The models where individual lesions can be dissected from the tissue or sampled can also provide data on lesion-specific bacterial loads and lesion-specific drug concentrations. With the inclusion of medical imaging, a compound's effect on resolution of pathology within individual lesions and animals can also be determined over time. Incorporation of measurement of drug exposure and drug distribution within animals and their tissues is important for choosing the best compounds to push toward the clinic and to the development of better regimens. We review the practical aspects of each model and the advantages and limitations of each in order to promote choosing a rational combination of them for a compound's development.
Collapse
Affiliation(s)
- Hee-Jeong Yang
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Decheng Wang
- Medical College, China Three Gorges University, Yichang, China.,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Xin Wen
- Medical College, China Three Gorges University, Yichang, China.,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Danielle M Weiner
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States.,Tuberculosis Imaging Program, DIR, NIAID, NIH, Bethesda, MD, United States
| | - Laura E Via
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States.,Tuberculosis Imaging Program, DIR, NIAID, NIH, Bethesda, MD, United States.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
21
|
Rayner CR, Smith PF, Andes D, Andrews K, Derendorf H, Friberg LE, Hanna D, Lepak A, Mills E, Polasek TM, Roberts JA, Schuck V, Shelton MJ, Wesche D, Rowland‐Yeo K. Model-Informed Drug Development for Anti-Infectives: State of the Art and Future. Clin Pharmacol Ther 2021; 109:867-891. [PMID: 33555032 PMCID: PMC8014105 DOI: 10.1002/cpt.2198] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/05/2021] [Indexed: 12/13/2022]
Abstract
Model-informed drug development (MIDD) has a long and rich history in infectious diseases. This review describes foundational principles of translational anti-infective pharmacology, including choice of appropriate measures of exposure and pharmacodynamic (PD) measures, patient subpopulations, and drug-drug interactions. Examples are presented for state-of-the-art, empiric, mechanistic, interdisciplinary, and real-world evidence MIDD applications in the development of antibacterials (review of minimum inhibitory concentration-based models, mechanism-based pharmacokinetic/PD (PK/PD) models, PK/PD models of resistance, and immune response), antifungals, antivirals, drugs for the treatment of global health infectious diseases, and medical countermeasures. The degree of adoption of MIDD practices across the infectious diseases field is also summarized. The future application of MIDD in infectious diseases will progress along two planes; "depth" and "breadth" of MIDD methods. "MIDD depth" refers to deeper incorporation of the specific pathogen biology and intrinsic and acquired-resistance mechanisms; host factors, such as immunologic response and infection site, to enable deeper interrogation of pharmacological impact on pathogen clearance; clinical outcome and emergence of resistance from a pathogen; and patient and population perspective. In particular, improved early assessment of the emergence of resistance potential will become a greater focus in MIDD, as this is poorly mitigated by current development approaches. "MIDD breadth" refers to greater adoption of model-centered approaches to anti-infective development. Specifically, this means how various MIDD approaches and translational tools can be integrated or connected in a systematic way that supports decision making by key stakeholders (sponsors, regulators, and payers) across the entire development pathway.
Collapse
Affiliation(s)
- Craig R. Rayner
- CertaraPrincetonNew JerseyUSA
- Monash Institute of Pharmaceutical SciencesMonash UniversityMelbourneVictoriaAustralia
| | | | - David Andes
- University of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Kayla Andrews
- Bill & Melinda Gates Medical Research InstituteCambridgeMassachusettsUSA
| | | | | | - Debra Hanna
- Bill & Melinda Gates FoundationSeattleWashingtonUSA
| | - Alex Lepak
- University of Wisconsin‐MadisonMadisonWisconsinUSA
| | | | - Thomas M. Polasek
- CertaraPrincetonNew JerseyUSA
- Centre for Medicines Use and SafetyMonash UniversityMelbourneVictoriaAustralia
- Department of Clinical PharmacologyRoyal Adelaide HospitalAdelaideSouth AustraliaAustralia
| | - Jason A. Roberts
- Faculty of MedicineUniversity of Queensland Centre for Clinical ResearchThe University of QueenslandBrisbaneQueenslandAustralia
- Departments of Pharmacy and Intensive Care MedicineRoyal Brisbane and Women’s HospitalBrisbaneQueenslandAustralia
- Division of Anaesthesiology Critical Care Emergency and Pain MedicineNîmes University HospitalUniversity of MontpellierMontpellierFrance
| | | | | | | | | |
Collapse
|
22
|
Xie YL, de Jager VR, Chen RY, Dodd LE, Paripati P, Via LE, Follmann D, Wang J, Lumbard K, Lahouar S, Malherbe ST, Andrews J, Yu X, Goldfeder LC, Cai Y, Arora K, Loxton AG, Vanker N, Duvenhage M, Winter J, Song T, Walzl G, Diacon AH, Barry CE. Fourteen-day PET/CT imaging to monitor drug combination activity in treated individuals with tuberculosis. Sci Transl Med 2021; 13:eabd7618. [PMID: 33536283 PMCID: PMC11135015 DOI: 10.1126/scitranslmed.abd7618] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 01/14/2021] [Indexed: 12/20/2022]
Abstract
Early bactericidal activity studies monitor daily sputum bacterial counts in individuals with tuberculosis (TB) for 14 days during experimental drug treatment. The rate of change in sputum bacterial load over time provides an informative, but imperfect, estimate of drug activity and is considered a critical step in development of new TB drugs. In this clinical study, 160 participants with TB received isoniazid, pyrazinamide, or rifampicin, components of first-line chemotherapy, and moxifloxacin individually and in combination. In addition to standard bacterial enumeration in sputum, participants underwent 2-deoxy-2-[18F]fluoro-d-glucose positron emission tomography and computerized tomography ([18F]FDG-PET/CT) at the beginning and end of the 14-day drug treatment. Quantitating radiological responses to drug treatment provided comparative single and combination drug activity measures across lung lesion types that correlated more closely with established clinical outcomes when combined with sputum enumeration compared to sputum enumeration alone. Rifampicin and rifampicin-containing drug combinations were most effective in reducing both lung lesion volume measured by CT imaging and lesion-associated inflammation measured by PET imaging. Moxifloxacin was not superior to rifampicin in any measure by PET/CT imaging, consistent with its performance in recent phase 3 clinical trials. PET/CT imaging revealed synergy between isoniazid and pyrazinamide and demonstrated that the activity of pyrazinamide was limited to lung lesion, showing the highest FDG uptake during the first 2 weeks of drug treatment. [18F]FDG-PET/CT imaging may be useful for measuring the activity of single drugs and drug combinations during evaluation of potential new TB drug regimens before phase 3 trials.
Collapse
Affiliation(s)
- Yingda L Xie
- Division of Infectious Diseases, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | | | - Ray Y Chen
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Lori E Dodd
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Laura E Via
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Dean Follmann
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jing Wang
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Keith Lumbard
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Saher Lahouar
- Imaging Group, NET ESolutions Inc., McLean, VA 22102, USA
| | - Stephanus T Malherbe
- Department of Science and Technology-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7600, South Africa
| | - Jenna Andrews
- Microbial Pathogenesis, Yale University, New Haven, CT 06520, USA
| | - Xiang Yu
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lisa C Goldfeder
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ying Cai
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kriti Arora
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andre G Loxton
- Department of Science and Technology-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7600, South Africa
| | | | - Michael Duvenhage
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jill Winter
- Catalysis Foundation for Health, San Ramon, CA 94583, USA
| | - Taeksun Song
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Gerhard Walzl
- Department of Science and Technology-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7600, South Africa
| | - Andreas H Diacon
- TASK Applied Science, Cape Town 7500, South Africa
- Department of Medicine, Stellenbosch University, Cape Town 7505, South Africa
| | - Clifton E Barry
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA.
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
23
|
Kauffman KD, Sakai S, Lora NE, Namasivayam S, Baker PJ, Kamenyeva O, Foreman TW, Nelson CE, Oliveira-de-Souza D, Vinhaes CL, Yaniv Z, Lindestam Arleham CS, Sette A, Freeman GJ, Moore R, Sher A, Mayer-Barber KD, Andrade BB, Kabat J, Via LE, Barber DL. PD-1 blockade exacerbates Mycobacterium tuberculosis infection in rhesus macaques. Sci Immunol 2021; 6:6/55/eabf3861. [PMID: 33452107 DOI: 10.1126/sciimmunol.abf3861] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/10/2020] [Indexed: 12/16/2022]
Abstract
Boosting immune cell function by targeting the coinhibitory receptor PD-1 may have applications in the treatment of chronic infections. Here, we examine the role of PD-1 during Mycobacterium tuberculosis (Mtb) infection of rhesus macaques. Animals treated with anti-PD-1 monoclonal antibody developed worse disease and higher granuloma bacterial loads compared with isotype control-treated monkeys. PD-1 blockade increased the number and functionality of granuloma Mtb-specific CD8 T cells. In contrast, Mtb-specific CD4 T cells in anti-PD-1-treated macaques were not increased in number or function in granulomas, expressed increased levels of CTLA-4, and exhibited reduced intralesional trafficking in live imaging studies. In granulomas of anti-PD-1-treated animals, multiple proinflammatory cytokines were elevated, and more cytokines correlated with bacterial loads, leading to the identification of a role for caspase 1 in the exacerbation of tuberculosis after PD-1 blockade. Last, increased Mtb bacterial loads after PD-1 blockade were found to associate with the composition of the intestinal microbiota before infection in individual macaques. Therefore, PD-1-mediated coinhibition is required for control of Mtb infection in macaques, perhaps because of its role in dampening detrimental inflammation and allowing for normal CD4 T cell responses.
Collapse
Affiliation(s)
- Keith D Kauffman
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shunsuke Sakai
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nickiana E Lora
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sivaranjani Namasivayam
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Paul J Baker
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Olena Kamenyeva
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Taylor W Foreman
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christine E Nelson
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Deivide Oliveira-de-Souza
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Intituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Caian L Vinhaes
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Intituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Ziv Yaniv
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA.,Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Rashida Moore
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Katrin D Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bruno B Andrade
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Intituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Juraj Kabat
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Laura E Via
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel L Barber
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
24
|
Ernest JP, Strydom N, Wang Q, Zhang N, Nuermberger E, Dartois V, Savic RM. Development of New Tuberculosis Drugs: Translation to Regimen Composition for Drug-Sensitive and Multidrug-Resistant Tuberculosis. Annu Rev Pharmacol Toxicol 2021; 61:495-516. [PMID: 32806997 PMCID: PMC7790895 DOI: 10.1146/annurev-pharmtox-030920-011143] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tuberculosis (TB) kills more people than any other infectious disease. Challenges for developing better treatments include the complex pathology due to within-host immune dynamics, interpatient variability in disease severity and drug pharmacokinetics-pharmacodynamics (PK-PD), and the growing emergence of resistance. Model-informed drug development using quantitative and translational pharmacology has become increasingly recognized as a method capable of drug prioritization and regimen optimization to efficiently progress compounds through TB drug development phases. In this review, we examine translational models and tools, including plasma PK scaling, site-of-disease lesion PK, host-immune and bacteria interplay, combination PK-PD models of multidrug regimens, resistance formation, and integration of data across nonclinical and clinical phases.We propose a workflow that integrates these tools with computational platforms to identify drug combinations that have the potential to accelerate sterilization, reduce relapse rates, and limit the emergence of resistance.
Collapse
Affiliation(s)
- Jacqueline P Ernest
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94158, USA;
| | - Natasha Strydom
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94158, USA;
| | - Qianwen Wang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94158, USA;
| | - Nan Zhang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94158, USA;
| | - Eric Nuermberger
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian School of Medicine at Seton Hall University, Nutley, New Jersey 07110, USA
| | - Rada M Savic
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94158, USA;
| |
Collapse
|
25
|
Kim S, Scanga CA, Miranda Silva CD, Zimmerman M, Causgrove C, Stein B, Dartois V, Peloquin CA, Graham E, Louie A, Flynn JL, Schmidt S, Drusano GL. Pharmacokinetics of tedizolid, sutezolid, and sutezolid-M1 in non-human primates. Eur J Pharm Sci 2020; 151:105421. [DOI: 10.1016/j.ejps.2020.105421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/22/2020] [Accepted: 06/07/2020] [Indexed: 10/24/2022]
|
26
|
Sarathy JP, Dartois V. Caseum: a Niche for Mycobacterium tuberculosis Drug-Tolerant Persisters. Clin Microbiol Rev 2020; 33:e00159-19. [PMID: 32238365 PMCID: PMC7117546 DOI: 10.1128/cmr.00159-19] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Caseum, the central necrotic material of tuberculous lesions, is a reservoir of drug-recalcitrant persisting mycobacteria. Caseum is found in closed nodules and in open cavities connecting with an airway. Several commonly accepted characteristics of caseum were established during the preantibiotic era, when autopsies of deceased tuberculosis (TB) patients were common but methodologies were limited. These pioneering studies generated concepts such as acidic pH, low oxygen tension, and paucity of nutrients being the drivers of nonreplication and persistence in caseum. Here we review widely accepted beliefs about the caseum-specific stress factors thought to trigger the shift of Mycobacterium tuberculosis to drug tolerance. Our current state of knowledge reveals that M. tuberculosis is faced with a lipid-rich diet rather than nutrient deprivation in caseum. Variable caseum pH is seen across lesions, possibly transiently acidic in young lesions but overall near neutral in most mature lesions. Oxygen tension is low in the avascular caseum of closed nodules and high at the cavity surface, and a gradient of decreasing oxygen tension likely forms toward the cavity wall. Since caseum is largely made of infected and necrotized macrophages filled with lipid droplets, the microenvironmental conditions encountered by M. tuberculosis in foamy macrophages and in caseum bear many similarities. While there remain a few knowledge gaps, these findings constitute a solid starting point to develop high-throughput drug discovery assays that combine the right balance of oxygen tension, pH, lipid abundance, and lipid species to model the profound drug tolerance of M. tuberculosis in caseum.
Collapse
Affiliation(s)
- Jansy P Sarathy
- Center for Discovery and Innovation, Hackensack Meridian School of Medicine at Seton Hall University, Nutley, New Jersey, USA
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian School of Medicine at Seton Hall University, Nutley, New Jersey, USA
| |
Collapse
|
27
|
Urbanowski ME, Ordonez AA, Ruiz-Bedoya CA, Jain SK, Bishai WR. Cavitary tuberculosis: the gateway of disease transmission. THE LANCET. INFECTIOUS DISEASES 2020; 20:e117-e128. [PMID: 32482293 PMCID: PMC7357333 DOI: 10.1016/s1473-3099(20)30148-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022]
Abstract
Tuberculosis continues to be a major threat to global health. Cavitation is a dangerous consequence of pulmonary tuberculosis associated with poor outcomes, treatment relapse, higher transmission rates, and development of drug resistance. However, in the antibiotic era, cavities are often identified as the most extreme outcome of treatment failure and are one of the least-studied aspects of tuberculosis. We review the epidemiology, clinical features, and concurrent standards of care for individuals with cavitary tuberculosis. We also discuss developments in the understanding of tuberculosis cavities as dynamic physical and biochemical structures that interface the host response with a unique mycobacterial niche to drive tuberculosis-associated morbidity and transmission. Advances in preclinical models and non-invasive imaging can provide valuable insights into the drivers of cavitation. These insights will guide the development of specific pharmacological interventions to prevent cavitation and improve lung function for individuals with tuberculosis.
Collapse
Affiliation(s)
- Michael E. Urbanowski
- Center for Tuberculosis Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Infection and Inflammation Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alvaro A. Ordonez
- Center for Tuberculosis Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Infection and Inflammation Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Camilo A. Ruiz-Bedoya
- Center for Tuberculosis Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Infection and Inflammation Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sanjay K. Jain
- Center for Tuberculosis Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Infection and Inflammation Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William R. Bishai
- Center for Tuberculosis Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Infection and Inflammation Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
28
|
Asay BC, Edwards BB, Andrews J, Ramey ME, Richard JD, Podell BK, Gutiérrez JFM, Frank CB, Magunda F, Robertson GT, Lyons M, Ben-Hur A, Lenaerts AJ. Digital Image Analysis of Heterogeneous Tuberculosis Pulmonary Pathology in Non-Clinical Animal Models using Deep Convolutional Neural Networks. Sci Rep 2020; 10:6047. [PMID: 32269234 PMCID: PMC7142129 DOI: 10.1038/s41598-020-62960-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 03/18/2020] [Indexed: 01/28/2023] Open
Abstract
Efforts to develop effective and safe drugs for treatment of tuberculosis require preclinical evaluation in animal models. Alongside efficacy testing of novel therapies, effects on pulmonary pathology and disease progression are monitored by using histopathology images from these infected animals. To compare the severity of disease across treatment cohorts, pathologists have historically assigned a semi-quantitative histopathology score that may be subjective in terms of their training, experience, and personal bias. Manual histopathology therefore has limitations regarding reproducibility between studies and pathologists, potentially masking successful treatments. This report describes a pathologist-assistive software tool that reduces these user limitations, while providing a rapid, quantitative scoring system for digital histopathology image analysis. The software, called 'Lesion Image Recognition and Analysis' (LIRA), employs convolutional neural networks to classify seven different pathology features, including three different lesion types from pulmonary tissues of the C3HeB/FeJ tuberculosis mouse model. LIRA was developed to improve the efficiency of histopathology analysis for mouse tuberculosis infection models, this approach has also broader applications to other disease models and tissues. The full source code and documentation is available from https://Github.com/TB-imaging/LIRA.
Collapse
Affiliation(s)
- Bryce C Asay
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Blake Blue Edwards
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Computer Science, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jenna Andrews
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Michelle E Ramey
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jameson D Richard
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Brendan K Podell
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Juan F Muñoz Gutiérrez
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Chad B Frank
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Forgivemore Magunda
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Gregory T Robertson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Michael Lyons
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Asa Ben-Hur
- Department of Computer Science, Colorado State University, Fort Collins, Colorado, United States of America
| | - Anne J Lenaerts
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America.
| |
Collapse
|
29
|
Bucsan AN, Mehra S, Khader SA, Kaushal D. The current state of animal models and genomic approaches towards identifying and validating molecular determinants of Mycobacterium tuberculosis infection and tuberculosis disease. Pathog Dis 2020; 77:5543892. [PMID: 31381766 PMCID: PMC6687098 DOI: 10.1093/femspd/ftz037] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 07/25/2019] [Indexed: 12/31/2022] Open
Abstract
Animal models are important in understanding both the pathogenesis of and immunity to tuberculosis (TB). Unfortunately, we are beginning to understand that no animal model perfectly recapitulates the human TB syndrome, which encompasses numerous different stages. Furthermore, Mycobacterium tuberculosis infection is a very heterogeneous event at both the levels of pathogenesis and immunity. This review seeks to establish the current understanding of TB pathogenesis and immunity, as validated in the animal models of TB in active use today. We especially focus on the use of modern genomic approaches in these models to determine the mechanism and the role of specific molecular pathways. Animal models have significantly enhanced our understanding of TB. Incorporation of contemporary technologies such as single cell transcriptomics, high-parameter flow cytometric immune profiling, proteomics, proteomic flow cytometry and immunocytometry into the animal models in use will further enhance our understanding of TB and facilitate the development of treatment and vaccination strategies.
Collapse
Affiliation(s)
- Allison N Bucsan
- Tulane Center for Tuberculosis Research, Covington, LA, USA.,Tulane National Primate Research Center, Covington, LA, USA
| | - Smriti Mehra
- Tulane National Primate Research Center, Covington, LA, USA
| | | | - Deepak Kaushal
- Tulane Center for Tuberculosis Research, Covington, LA, USA.,Tulane National Primate Research Center, Covington, LA, USA.,Southwest National Primate Research Center, San Antonio, TX, USA.,Texas Biomedical Research Institute, San Antonio, TX, USA
| |
Collapse
|
30
|
Ortega-Gil A, Muñoz-Barrutia A, Roca JJ, Guijarro-López L, Vaquero JJ. A radiological score for the assessment of tuberculosis progression: Validation in mouse models. Tuberculosis (Edinb) 2020; 121:101918. [PMID: 32279874 DOI: 10.1016/j.tube.2020.101918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/05/2020] [Accepted: 02/29/2020] [Indexed: 11/30/2022]
Abstract
The sensitivity of in vivo low-dose high-resolution micro-computed tomography imaging enables monitoring the lung damage caused by tuberculosis. Here, we propose a radiological score integrated in the experimental workflow that enables longitudinal monitoring for prospective efficacy studies in drug development programs. The score is based on an automatic measurement of total unaffected lung volume in vivo normalized for inter-subject comparison. It was validated on well-characterized progression of chronic tuberculosis in Erdman and H37Rv strains in C3HeB/FeJ-based models. We demonstrated that a decrease in the score value indicates increasing adverse effects and vice versa. The colony-forming units count confirmed the variability in the host response suggested by the score values. The correlation between changes in the mice's weight and the score is consistent with disease progression. The classification of disease extent by k-means clustering of the score values provided the definition of the lung damage severity according to the bacillus strain. The proposed score will reduce sources of bias and improve the statistical robustness of studies by the attrition of non-infected subjects or subjects with a weak immune response. Readily available quantifications allow for a fast assessment of the therapeutic potential in drug-resistant tuberculosis strains.
Collapse
Affiliation(s)
- Ana Ortega-Gil
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain; Diseases of the Developing World, Infectious Diseases-Centre for Excellence in Drug Discovery (ID CEDD), GlaxoSmithKline, Madrid, Spain
| | - Arrate Muñoz-Barrutia
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.
| | - Jose Juan Roca
- Diseases of the Developing World, Infectious Diseases-Centre for Excellence in Drug Discovery (ID CEDD), GlaxoSmithKline, Madrid, Spain
| | - Laura Guijarro-López
- Diseases of the Developing World, Infectious Diseases-Centre for Excellence in Drug Discovery (ID CEDD), GlaxoSmithKline, Madrid, Spain
| | - Juan José Vaquero
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| |
Collapse
|
31
|
Abstract
Progress against tuberculosis (TB) requires faster-acting drugs. Mycobacterium tuberculosis (Mtb) is the leading cause of death by an infectious disease and its treatment is challenging and lengthy. Mtb is remarkably successful, in part, due to its ability to become dormant in response to host immune pressures. The DosRST two-component regulatory system is induced by hypoxia, nitric oxide and carbon monoxide and remodels Mtb physiology to promote nonreplicating persistence (NRP). NRP bacteria are thought to play a role in the long course of TB treatment. Therefore, inhibitors of DosRST-dependent adaptation may function to kill this reservoir of persisters and potentially shorten therapy. This review examines the function of DosRST, newly discovered compounds that inhibit DosRST signaling and considers future development of DosRST inhibitors as adjunct therapies.
Collapse
|
32
|
Nahid P, Mase SR, Migliori GB, Sotgiu G, Bothamley GH, Brozek JL, Cattamanchi A, Cegielski JP, Chen L, Daley CL, Dalton TL, Duarte R, Fregonese F, Horsburgh CR, Ahmad Khan F, Kheir F, Lan Z, Lardizabal A, Lauzardo M, Mangan JM, Marks SM, McKenna L, Menzies D, Mitnick CD, Nilsen DM, Parvez F, Peloquin CA, Raftery A, Schaaf HS, Shah NS, Starke JR, Wilson JW, Wortham JM, Chorba T, Seaworth B. Treatment of Drug-Resistant Tuberculosis. An Official ATS/CDC/ERS/IDSA Clinical Practice Guideline. Am J Respir Crit Care Med 2019; 200:e93-e142. [PMID: 31729908 PMCID: PMC6857485 DOI: 10.1164/rccm.201909-1874st] [Citation(s) in RCA: 262] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background: The American Thoracic Society, U.S. Centers for Disease Control and Prevention, European Respiratory Society, and Infectious Diseases Society of America jointly sponsored this new practice guideline on the treatment of drug-resistant tuberculosis (DR-TB). The document includes recommendations on the treatment of multidrug-resistant TB (MDR-TB) as well as isoniazid-resistant but rifampin-susceptible TB.Methods: Published systematic reviews, meta-analyses, and a new individual patient data meta-analysis from 12,030 patients, in 50 studies, across 25 countries with confirmed pulmonary rifampin-resistant TB were used for this guideline. Meta-analytic approaches included propensity score matching to reduce confounding. Each recommendation was discussed by an expert committee, screened for conflicts of interest, according to the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) methodology.Results: Twenty-one Population, Intervention, Comparator, and Outcomes questions were addressed, generating 25 GRADE-based recommendations. Certainty in the evidence was judged to be very low, because the data came from observational studies with significant loss to follow-up and imbalance in background regimens between comparator groups. Good practices in the management of MDR-TB are described. On the basis of the evidence review, a clinical strategy tool for building a treatment regimen for MDR-TB is also provided.Conclusions: New recommendations are made for the choice and number of drugs in a regimen, the duration of intensive and continuation phases, and the role of injectable drugs for MDR-TB. On the basis of these recommendations, an effective all-oral regimen for MDR-TB can be assembled. Recommendations are also provided on the role of surgery in treatment of MDR-TB and for treatment of contacts exposed to MDR-TB and treatment of isoniazid-resistant TB.
Collapse
|
33
|
Plasticity of the Mycobacterium tuberculosis respiratory chain and its impact on tuberculosis drug development. Nat Commun 2019; 10:4970. [PMID: 31672993 PMCID: PMC6823465 DOI: 10.1038/s41467-019-12956-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 10/09/2019] [Indexed: 12/30/2022] Open
Abstract
The viability of Mycobacterium tuberculosis (Mtb) depends on energy generated by its respiratory chain. Cytochrome bc1-aa3 oxidase and type-2 NADH dehydrogenase (NDH-2) are respiratory chain components predicted to be essential, and are currently targeted for drug development. Here we demonstrate that an Mtb cytochrome bc1-aa3 oxidase deletion mutant is viable and only partially attenuated in mice. Moreover, treatment of Mtb-infected marmosets with a cytochrome bc1-aa3 oxidase inhibitor controls disease progression and reduces lesion-associated inflammation, but most lesions become cavitary. Deletion of both NDH-2 encoding genes (Δndh-2 mutant) reveals that the essentiality of NDH-2 as shown in standard growth media is due to the presence of fatty acids. The Δndh-2 mutant is only mildly attenuated in mice and not differently susceptible to clofazimine, a drug in clinical use proposed to engage NDH-2. These results demonstrate the intrinsic plasticity of Mtb's respiratory chain, and highlight the challenges associated with targeting the pathogen's respiratory enzymes for tuberculosis drug development.
Collapse
|
34
|
Gordaliza PM, Muñoz-Barrutia A, Via LE, Sharpe S, Desco M, Vaquero JJ. Computed Tomography-Based Biomarker for Longitudinal Assessment of Disease Burden in Pulmonary Tuberculosis. Mol Imaging Biol 2019; 21:19-24. [PMID: 29845428 DOI: 10.1007/s11307-018-1215-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE Computed tomography (CT) images enable capturing specific manifestations of tuberculosis (TB) that are undetectable using common diagnostic tests, which suffer from limited specificity. In this study, we aimed to automatically quantify the burden of Mycobacterium tuberculosis (Mtb) using biomarkers extracted from x-ray CT images. PROCEDURES Nine macaques were aerosol-infected with Mtb and treated with various antibiotic cocktails. Chest CT scans were acquired in all animals at specific times independently of disease progression. First, a fully automatic segmentation of the healthy lungs from the acquired chest CT volumes was performed and air-like structures were extracted. Next, unsegmented pulmonary regions corresponding to damaged parenchymal tissue and TB lesions were included. CT biomarkers were extracted by classification of the probability distribution of the intensity of the segmented images into three tissue types: (1) Healthy tissue, parenchyma free from infection; (2) soft diseased tissue, and (3) hard diseased tissue. The probability distribution of tissue intensities was assumed to follow a Gaussian mixture model. The thresholds identifying each region were automatically computed using an expectation-maximization algorithm. RESULTS The estimated longitudinal course of TB infection shows that subjects that have followed the same antibiotic treatment present a similar response (relative change in the diseased volume) with respect to baseline. More interestingly, the correlation between the diseased volume (soft tissue + hard tissue), which was manually delineated by an expert, and the automatically extracted volume with the proposed method was very strong (R2 ≈ 0.8). CONCLUSIONS We present a methodology that is suitable for automatic extraction of a radiological biomarker from CT images for TB disease burden. The method could be used to describe the longitudinal evolution of Mtb infection in a clinical trial devoted to the design of new drugs.
Collapse
Affiliation(s)
- P M Gordaliza
- Dpto. Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - A Muñoz-Barrutia
- Dpto. Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés, Spain. .,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.
| | - L E Via
- Tuberculosis Research Section, LCIM, and Tuberculosis Imaging Program, DIR, NIAID, NIH, Bethesda, MD, USA
| | - S Sharpe
- National Infections Service, Public Health England, Porton Down, England
| | - M Desco
- Dpto. Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain
| | - J J Vaquero
- Dpto. Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| |
Collapse
|
35
|
Advancing the development of new tuberculosis treatment regimens: The essential role of translational and clinical pharmacology and microbiology. PLoS Med 2019; 16:e1002842. [PMID: 31276490 PMCID: PMC6611566 DOI: 10.1371/journal.pmed.1002842] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
36
|
Abstract
Common marmosets are susceptible to a number of bacterial infections, which may be enzootic, causing sporadic but occasionally severe disease, or which may result in epizootics associated with more severe colony morbidity and mortality. The spectrum of these diseases often differs from those observed in macaque species, and veterinarians caring for common marmosets need to be aware of these unique susceptibilities. In formulating differential diagnoses for sick or diseased animals, it should be recognized that diseases once common in imported animals in the 1960s and 1970s are now rare. It is also important to recognize that housing and sanitation conditions can influence exposure to potentially pathogenic bacteria. In a zoological setting where mixed- or free-ranging exhibits are utilized, animals may be exposed to many more potential pathogens than would be the case in animals raised in a barrier facility.
Collapse
|
37
|
Beteck RM, Seldon R, Coertzen D, van der Watt ME, Reader J, Mackenzie JS, Lamprecht DA, Abraham M, Eribez K, Müller J, Rui F, Zhu G, de Grano RV, Williams ID, Smit FJ, Steyn AJC, Winzeler EA, Hemphill A, Birkholtz LM, Warner DF, N’Da DD, Haynes RK. Accessible and distinct decoquinate derivatives active against Mycobacterium tuberculosis and apicomplexan parasites. Commun Chem 2018. [DOI: 10.1038/s42004-018-0062-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
38
|
Filate M, Mehari Z, Alemu YM. Longitudinal body weight and sputum conversion in patients with tuberculosis, Southwest Ethiopia: a retrospective follow-up study. BMJ Open 2018; 8:e019076. [PMID: 30185566 PMCID: PMC6129038 DOI: 10.1136/bmjopen-2017-019076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES To describe the association between change in body weight and sputum smear conversion and to identify factors linked with body weight and sputum smear conversion in Jimma University Specialized Hospital, Southwest Ethiopia. DESIGN A retrospective follow-up study. SETTING Teaching hospital in Southwest Ethiopia. PARTICIPANTS A total of 450 patients with tuberculosis (TB) were included in the follow-up between 2011 and 2013. MAIN OUTCOME MEASURES The association between body weight and sputum conversion was measured using joint modelling. RESULTS The association between change in body weight and change in sputum conversion was -0.698 (p<0.001). A strong inverse association between change in body weight and change in sputum conversion was observed. The study variables sex, age, type of TB, HIV status, dose of anti-TB drug and length of enrolment to TB treatment were significantly associated with change in body weight of patients with TB. The study variables age, type of TB, dose of anti-TB drug and length of enrolment were significantly associated with change in sputum status of patients with TB. CONCLUSIONS Among patients with TB who were on anti-TB treatment, increase in body weight and positive sputum status were inversely related over time. TB prevention and control strategies should give emphasis on factors such as female sex, older age, non-pulmonary positive type of TB, HIV-positive, lower dose of anti-TB drug and length of enrolment to TB treatment during monitoring of trends in body weight and sputum status.
Collapse
Affiliation(s)
- Mersha Filate
- Department of Statistics, Jimma University, Jimma, Ethiopia
| | - Zelalem Mehari
- Department of Epidemiology and Biostatistics, School of Public Health, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Yihun Mulugeta Alemu
- Department of Epidemiology and Biostatistics, School of Public Health, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| |
Collapse
|
39
|
J Libardo MD, Boshoff HI, Barry CE. The present state of the tuberculosis drug development pipeline. Curr Opin Pharmacol 2018; 42:81-94. [PMID: 30144650 DOI: 10.1016/j.coph.2018.08.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/27/2018] [Accepted: 08/01/2018] [Indexed: 10/28/2022]
Abstract
Tuberculosis now ranks as the leading cause of death in the world due to a single infectious agent. Current standard of care treatment can achieve very high cure rates for drug-sensitive disease but requires a 6-month duration of chemotherapy. Drug-resistant disease requires significantly longer treatment durations with drugs associated with a higher risk of adverse events. Thus, there is a pressing need for a drug regimen that is safer, shorter in duration and superior to current front-line chemotherapy in terms of efficacy. The TB drug pipeline contains several candidates that address one or more of the required attributes of chemotherapeutic regimens that may redefine the standard of care of this disease. Several new drugs have been reported and novel targets have been identified allowing regimens containing new compounds to trickle into clinical studies. Furthermore, a recent paradigm-shift in understanding the pharmacokinetics of anti-tubercular drugs is revolutionizing the way we select compounds for clinical progression.
Collapse
Affiliation(s)
- M Daben J Libardo
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Helena Im Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Clifton E Barry
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
40
|
Blanc L, Sarathy JP, Alvarez Cabrera N, O'Brien P, Dias-Freedman I, Mina M, Sacchettini J, Savic RM, Gengenbacher M, Podell BK, Prideaux B, Ioerger T, Dick T, Dartois V. Impact of immunopathology on the antituberculous activity of pyrazinamide. J Exp Med 2018; 215:1975-1986. [PMID: 30018074 PMCID: PMC6080910 DOI: 10.1084/jem.20180518] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/15/2018] [Accepted: 06/28/2018] [Indexed: 12/21/2022] Open
Abstract
In the 1970s, inclusion of pyrazinamide (PZA) in the drug regimen of tuberculosis (TB) patients for the first 2 mo achieved a drastic reduction of therapy duration. Until now, however, the mechanisms underlying PZA's unique contribution to efficacy have remained controversial, and animal efficacy data vary across species. To understand how PZA kills bacterial populations present in critical lung lesion compartments, we first characterized a rabbit model of active TB, showing striking similarities in lesion types and fates to nonhuman primate models deemed the most appropriate surrogates of human TB. We next employed this model with lesion-centric molecular and bacteriology readouts to demonstrate that PZA exhibits potent activity against Mycobacterium tuberculosis residing in difficult-to-sterilize necrotic lesions. Our data also indicate that PZA is slow acting, suggesting that PZA administration beyond the first 2 mo may accelerate the cure. In conclusion, we provide a pharmacodynamic explanation for PZA's treatment-shortening effect and deliver new tools to dissect the contribution of immune response versus drug at the lesion level.
Collapse
Affiliation(s)
- Landry Blanc
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
| | - Jansy Passiflora Sarathy
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
| | - Nadine Alvarez Cabrera
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
| | - Paul O'Brien
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
| | - Isabela Dias-Freedman
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
| | - Marizel Mina
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
| | - James Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX
| | - Radojka M Savic
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California, San Francisco, San Francisco, CA
| | - Martin Gengenbacher
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
| | - Brendan K Podell
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO
| | - Brendan Prideaux
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
| | - Thomas Ioerger
- Department of Computer Science, Texas A&M University, College Station, TX
| | - Thomas Dick
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
- Department of Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
| | - Véronique Dartois
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
- Department of Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
| |
Collapse
|
41
|
Sarathy JP, Via LE, Weiner D, Blanc L, Boshoff H, Eugenin EA, Barry CE, Dartois VA. Extreme Drug Tolerance of Mycobacterium tuberculosis in Caseum. Antimicrob Agents Chemother 2018; 62:e02266-17. [PMID: 29203492 PMCID: PMC5786764 DOI: 10.1128/aac.02266-17] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 11/29/2017] [Indexed: 11/26/2022] Open
Abstract
Tuberculosis (TB) recently became the leading infectious cause of death in adults, while attempts to shorten therapy have largely failed. Dormancy, persistence, and drug tolerance are among the factors driving the long therapy duration. Assays to measure in situ drug susceptibility of Mycobacterium tuberculosis bacteria in pulmonary lesions are needed if we are to discover new fast-acting regimens and address the global TB threat. Here we take a first step toward this goal and describe an ex vivo assay developed to measure the cidal activity of anti-TB drugs against M. tuberculosis bacilli present in cavity caseum obtained from rabbits with active TB. We show that caseum M. tuberculosis bacilli are largely nonreplicating, maintain viability over the course of the assay, and exhibit extreme tolerance to many first- and second-line TB drugs. Among the drugs tested, only the rifamycins fully sterilized caseum. A similar trend of phenotypic drug resistance was observed in the hypoxia- and starvation-induced nonreplicating models, but with notable qualitative and quantitative differences: (i) caseum M. tuberculosis exhibits higher drug tolerance than nonreplicating M. tuberculosis in the Wayne and Loebel models, and (ii) pyrazinamide is cidal in caseum but has no detectable activity in these classic nonreplicating assays. Thus, ex vivo caseum constitutes a unique tool to evaluate drug potency against slowly replicating or nonreplicating bacilli in their native caseous environment. Intracaseum cidal concentrations can now be related to the concentrations achieved in the necrotic foci of granulomas and cavities to establish correlations between clinical outcome and lesion-centered pharmacokinetics-pharmacodynamics (PK-PD) parameters.
Collapse
Affiliation(s)
- Jansy P Sarathy
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Laura E Via
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, NIAID, NIH, Bethesda, Maryland, USA
- Institute of Infectious Disease and Molecular Medicine, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
| | - Danielle Weiner
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Landry Blanc
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Helena Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Eliseo A Eugenin
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
- Department of Microbiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Clifton E Barry
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, NIAID, NIH, Bethesda, Maryland, USA
- Institute of Infectious Disease and Molecular Medicine, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
| | - Véronique A Dartois
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
- Department of Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| |
Collapse
|
42
|
Abstract
Tuberculosis is responsible for more deaths worldwide than any other infectious disease. For anyone looking to learn more about this persistent public health threat, this conversational "frequently asked questions" style review addresses a breadth of questions. It offers a brief, somewhat opinionated, review of what is and is not known, particularly in light of how findings in the lab do or do not help inform the understanding of human tuberculosis.
Collapse
Affiliation(s)
- Kristine M Guinn
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Eric J Rubin
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
43
|
Application of a whole blood mycobacterial growth inhibition assay to study immunity against Mycobacterium tuberculosis in a high tuberculosis burden population. PLoS One 2017; 12:e0184563. [PMID: 28886145 PMCID: PMC5590973 DOI: 10.1371/journal.pone.0184563] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/25/2017] [Indexed: 11/19/2022] Open
Abstract
The determinants of immunological protection against Mycobacterium tuberculosis (M.tb) infection in humans are not known. Mycobacterial growth inhibition assays have potential utility as in vitro surrogates of in vivo immunological control of M.tb. We evaluated a whole blood growth inhibition assay in a setting with high burden of TB and aimed to identify immune responses that correlate with control of mycobacterial growth. We hypothesized that individuals with underlying M.tb infection will exhibit greater M.tb growth inhibition than uninfected individuals and that children aged 4 to 12 years, an age during which TB incidence is curiously low, will also exhibit greater M.tb growth inhibition than adolescents or adults. Neither M.tb infection status, age of the study participants, nor M.tb strain was associated with differential control of mycobacterial growth. Abundance and function of innate or T cell responses were also not associated with mycobacterial growth. Our data suggest that this assay does not provide a useful measure of age-associated differential host control of M.tb infection in a high TB burden setting. We propose that universally high levels of mycobacterial sensitization (through environmental non-tuberculous mycobacteria and/or universal BCG vaccination) in persons from high TB burden settings may impart broad inhibition of mycobacterial growth, irrespective of M.tb infection status. This sensitization may mask the augmentative effects of mycobacterial sensitization on M.tb growth inhibition that is typical in low burden settings.
Collapse
|
44
|
Abstract
The interaction between the host and the pathogen is extremely complex and is affected by anatomical, physiological, and immunological diversity in the microenvironments, leading to phenotypic diversity of the pathogen. Phenotypic heterogeneity, defined as nongenetic variation observed in individual members of a clonal population, can have beneficial consequences especially in fluctuating stressful environmental conditions. This is all the more relevant in infections caused by Mycobacterium tuberculosis wherein the pathogen is able to survive and often establish a lifelong persistent infection in the host. Recent studies in tuberculosis patients and in animal models have documented the heterogeneous and diverging trajectories of individual lesions within a single host. Since the fate of the individual lesions appears to be determined by the local tissue environment rather than systemic response of the host, studying this heterogeneity is very relevant to ensure better control and complete eradication of the pathogen from individual lesions. The heterogeneous microenvironments greatly enhance M. tuberculosis heterogeneity influencing the growth rates, metabolic potential, stress responses, drug susceptibility, and eventual lesion resolution. Single-cell approaches such as time-lapse microscopy using microfluidic devices allow us to address cell-to-cell variations that are often lost in population-average measurements. In this review, we focus on some of the factors that could be considered as drivers of phenotypic heterogeneity in M. tuberculosis as well as highlight some of the techniques that are useful in addressing this issue.
Collapse
|
45
|
Mattila JT, Beaino W, Maiello P, Coleman MT, White AG, Scanga CA, Flynn JL, Anderson CJ. Positron Emission Tomography Imaging of Macaques with Tuberculosis Identifies Temporal Changes in Granuloma Glucose Metabolism and Integrin α4β1-Expressing Immune Cells. THE JOURNAL OF IMMUNOLOGY 2017; 199:806-815. [PMID: 28592427 DOI: 10.4049/jimmunol.1700231] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/08/2017] [Indexed: 12/19/2022]
Abstract
Positron emission tomography and computed tomography imaging (PET/CT) is an increasingly valuable tool for diagnosing tuberculosis (TB). The glucose analog [18F]fluoro-2-deoxy-2-d-glucose ([18F]-FDG) is commonly used in PET/CT that is retained by metabolically active inflammatory cells in granulomas, but lacks specificity for particular cell types. A PET probe that could identify recruitment and differentiation of different cell populations in granulomas would be a useful research tool and could improve TB diagnosis and treatment. We used the Mycobacterium-antigen murine inflammation model and macaques with TB to identify [64Cu]-labeled CB-TE1A1P-PEG4-LLP2A ([64Cu]-LLP2A), a high affinity peptidomimetic ligand for very late Ag-4 (VLA-4; also called integrin α4β1) binding cells in granulomas, and compared [64Cu]-LLP2A with [18F]-FDG over the course of infection. We found that [64Cu]-LLP2A retention was driven by macrophages and T cells, with less contribution from neutrophils and B cells. In macaques, granulomas had higher [64Cu]-LLP2A uptake than uninfected tissues, and immunohistochemical analysis of granulomas with known [64Cu]-LLP2A uptake identified significant correlations between LLP2A signal and macrophage and T cell numbers. The same cells coexpressed integrin α4 and β1, further supporting that macrophages and T cells drive [64Cu]-LLP2A avidity in granulomas. Over the course of infection, granulomas and thoracic lymph nodes experienced dynamic changes in affinity for both probes, suggesting metabolic changes and cell differentiation or recruitment occurs throughout granuloma development. These results indicate [64Cu]-LLP2A is a PET probe for VLA-4, which when used in conjunction with [18F]-FDG, may be a useful tool for understanding granuloma biology in TB.
Collapse
Affiliation(s)
- Joshua T Mattila
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213.,Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Wissam Beaino
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213
| | - M Teresa Coleman
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213
| | - Alexander G White
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213
| | - Charles A Scanga
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213
| | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213;
| | - Carolyn J Anderson
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213; .,Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15260.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213; and.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
46
|
Nuermberger EL. Preclinical Efficacy Testing of New Drug Candidates. Microbiol Spectr 2017; 5:10.1128/microbiolspec.tbtb2-0034-2017. [PMID: 28643624 PMCID: PMC11687513 DOI: 10.1128/microbiolspec.tbtb2-0034-2017] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Indexed: 01/17/2023] Open
Abstract
This is a review of the preclinical efficacy testing of new antituberculosis drug candidates. It describes existing dynamic in vitro and in vivo models of antituberculosis chemotherapy and their utility in preclinical evaluations of promising new drugs and combination regimens, with an effort to highlight recent developments. Emphasis is given to the integration of quantitative pharmacokinetic/pharmacodynamic analyses and the impact of lesion pathology on drug efficacy. Discussion also includes in vivo models of chemotherapy of latent tuberculosis infection.
Collapse
Affiliation(s)
- Eric L Nuermberger
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, and Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21231-1002
| |
Collapse
|
47
|
Rizk ML, Zou L, Savic RM, Dooley KE. Importance of Drug Pharmacokinetics at the Site of Action. Clin Transl Sci 2017; 10:133-142. [PMID: 28160433 PMCID: PMC5421734 DOI: 10.1111/cts.12448] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/10/2017] [Indexed: 12/25/2022] Open
Affiliation(s)
- ML Rizk
- Merck & Co., Inc.KenilworthNew JerseyUSA
| | - L Zou
- University of CaliforniaSan FranciscoCaliforniaUSA
| | - RM Savic
- University of CaliforniaSan FranciscoCaliforniaUSA
| | - KE Dooley
- Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
48
|
Sarathy JP, Zuccotto F, Hsinpin H, Sandberg L, Via LE, Marriner GA, Masquelin T, Wyatt P, Ray P, Dartois V. Prediction of Drug Penetration in Tuberculosis Lesions. ACS Infect Dis 2016; 2:552-63. [PMID: 27626295 DOI: 10.1021/acsinfecdis.6b00051] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The penetration of antibiotics in necrotic tuberculosis lesions is heterogeneous and drug-specific, but the factors underlying such differential partitioning are unknown. We hypothesized that drug binding to macromolecules in necrotic foci (or caseum) prevents passive drug diffusion through avascular caseum, a critical site of infection. Using a caseum binding assay and MALDI mass spectrometry imaging of tuberculosis drugs, we showed that binding to caseum inversely correlates with passive diffusion into the necrotic core. We developed a high-throughput assay relying on rapid equilibrium dialysis and a caseum surrogate designed to mimic the composition of native caseum. A set of 279 compounds was profiled in this assay to generate a large data set and explore the physicochemical drivers of free diffusion into caseum. Principle component analysis and modeling of the data set delivered an in silico signature predictive of caseum binding, combining 69 molecular descriptors. Among the major positive drivers of binding were high lipophilicity and poor solubility. Determinants of molecular shape such as the number of rings, particularly aromatic rings, number of sp(2) carbon counts, and volume-to-surface ratio negatively correlated with the free fraction, indicating that low-molecular-weight nonflat compounds are more likely to exhibit low caseum binding properties and diffuse effectively through caseum. To provide simple guidance in the property-based design of new compounds, a rule of thumb was derived whereby the sum of the hydrophobicity (clogP) and aromatic ring count is proportional to caseum binding. These tools can be used to ensure desirable lesion partitioning and guide the selection of optimal regimens against tuberculosis.
Collapse
Affiliation(s)
- Jansy P. Sarathy
- Public Health Research
Institute Centre, New Jersey Medical School, Rutgers, 225 Warren Street, Newark, New Jersey 07103, United States
| | - Fabio Zuccotto
- Drug Discovery Unit,
Division of Biological Chemistry and Drug Discovery, Sir James Black
Centre, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Ho Hsinpin
- Public Health Research
Institute Centre, New Jersey Medical School, Rutgers, 225 Warren Street, Newark, New Jersey 07103, United States
| | - Lars Sandberg
- Drug Discovery Unit,
Division of Biological Chemistry and Drug Discovery, Sir James Black
Centre, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Laura E. Via
- Tuberculosis
Research Section, Laboratory of Clinical Infectious Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Gwendolyn A. Marriner
- Tuberculosis
Research Section, Laboratory of Clinical Infectious Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Thierry Masquelin
- Discovery Chemistry Research, Lilly Corporate Center,
Eli Lilly and Company, 893 S. Delaware, MC/87/02/203 G17, Indianapolis, Indiana 46285, United States
| | - Paul Wyatt
- Drug Discovery Unit,
Division of Biological Chemistry and Drug Discovery, Sir James Black
Centre, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Peter Ray
- Drug Discovery Unit,
Division of Biological Chemistry and Drug Discovery, Sir James Black
Centre, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Véronique Dartois
- Public Health Research
Institute Centre, New Jersey Medical School, Rutgers, 225 Warren Street, Newark, New Jersey 07103, United States
| |
Collapse
|
49
|
Marakalala MJ, Raju RM, Sharma K, Zhang YJ, Eugenin EA, Prideaux B, Daudelin IB, Chen PY, Booty MG, Kim JH, Eum SY, Via LE, Behar SM, Barry CE, Mann M, Dartois V, Rubin EJ. Inflammatory signaling in human tuberculosis granulomas is spatially organized. Nat Med 2016; 22:531-8. [PMID: 27043495 PMCID: PMC4860068 DOI: 10.1038/nm.4073] [Citation(s) in RCA: 216] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 02/25/2016] [Indexed: 12/28/2022]
Abstract
Granulomas are the pathological hallmark of tuberculosis (TB). However, their function and mechanisms of formation remain poorly understood. To understand the role of granulomas in TB, we analyzed the proteomes of granulomas from subjects with tuberculosis in an unbiased fashion. Using laser capture microdissection, mass spectrometry and confocal microscopy, we generated detailed molecular maps of human granulomas. We found that the centers of granulomas possess a pro-inflammatory environment characterized by anti-microbial peptides, ROS and pro-inflammatory eicosanoids. Conversely, the tissue surrounding the caseum possesses a comparatively anti-inflammatory signature. These findings are consistent across a set of six subjects and in rabbits. While the balance between systemic pro- and anti-inflammatory signals is crucial to TB disease outcome, here we find that these signals are physically segregated within each granuloma. The protein and lipid snapshots of human and rabbit lesions analysed here suggest that the pathologic response to TB is shaped by the precise anatomical localization of these inflammatory pathways during the development of the granuloma.
Collapse
Affiliation(s)
- Mohlopheni J Marakalala
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Ravikiran M Raju
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Kirti Sharma
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Yanjia J Zhang
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Eliseo A Eugenin
- Public Health Research Institute, New Jersey Medical School, Newark, New Jersey, USA.,Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Brendan Prideaux
- Public Health Research Institute, New Jersey Medical School, Newark, New Jersey, USA
| | - Isaac B Daudelin
- Public Health Research Institute, New Jersey Medical School, Newark, New Jersey, USA
| | - Pei-Yu Chen
- Public Health Research Institute, New Jersey Medical School, Newark, New Jersey, USA
| | - Matthew G Booty
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Program in Immunology, Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, USA
| | - Jin Hee Kim
- National Masan TB Hospital, Changwon, Republic of Korea
| | - Seok Yong Eum
- International Tuberculosis Research Center, Changwon, Republic of Korea
| | - Laura E Via
- Tuberculosis Research Section, Laboratory of Clinical Infectious Disease, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland.,Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Rondebosch, Republic of South Africa.,Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Rondebosch, Republic of South Africa
| | - Samuel M Behar
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Clifton E Barry
- Tuberculosis Research Section, Laboratory of Clinical Infectious Disease, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland.,Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Rondebosch, Republic of South Africa.,Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Rondebosch, Republic of South Africa
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Véronique Dartois
- Public Health Research Institute, New Jersey Medical School, Newark, New Jersey, USA.,Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Eric J Rubin
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
50
|
Cadena AM, Klein EC, White AG, Tomko JA, Chedrick CL, Reed DS, Via LE, Lin PL, Flynn JL. Very Low Doses of Mycobacterium tuberculosis Yield Diverse Host Outcomes in Common Marmosets (Callithrix jacchus). Comp Med 2016; 66:412-419. [PMID: 27780009 PMCID: PMC5073067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/15/2016] [Accepted: 04/28/2016] [Indexed: 06/06/2023]
Abstract
Identifying and refining small-animal models of tuberculosis that recapitulate aspects of human Mycobacterium tuberculosis infection can contribute to advancing our understanding of critical facets of the disease. To study the effects of very low-dose infections with 2 strains of M. tuberculosis on disease progression and survival in common marmosets, animals were challenged with strains Erdman and CDC1551 at doses ranging from 1 to 12 cfu. These data revealed that the susceptibility of marmosets to M. tuberculosis infection is influenced by strain virulence and initial dose. Marmoset infection with the Erdman strain, even at very low doses, resulted in rapid disease progression associated with severe weight loss, extensive pathology, and poor survival. By contrast, challenge with the less virulent CDC1551 strain resulted in slower disease progression, delayed weight loss, and prolonged survival. One marmoset infected with CDC1551 at a very low dose (approximately 1 cfu) was able to contain and control M. tuberculosis infection in a subclinical state that persisted as long as 300 d. These findings underscore the critical importance of understanding the heterogeneity in host outcome that can arise in association with different infectious doses and strains in the marmoset model of tuberculosis.
Collapse
Affiliation(s)
- Anthony M Cadena
- Department of Microbiology and Molecular Genetics, Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Edwin C Klein
- Division of Laboratory Animal Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alexander G White
- Department of Microbiology and Molecular Genetics, Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jaime A Tomko
- Department of Microbiology and Molecular Genetics, Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Chelsea L Chedrick
- Department of Microbiology and Molecular Genetics, Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Douglas S Reed
- Center for Vaccine Research, Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Laura E Via
- Tuberculosis Research Section, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA; Institute of Infectious Disease and Molecular Medicine, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Philana Ling Lin
- Division of Infectious Diseases, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|