1
|
Keerti, Yadav NK, Joshi S, Ratnapriya S, Sahasrabuddhe AA, Dube A. Combined immunotherapeutic effect of Leishmania-derived recombinant aldolase and Ambisome against experimental visceral leishmaniasis. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:163-171. [PMID: 35835687 DOI: 10.1016/j.jmii.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 05/12/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Available therapeutics for visceral leishmaniasis (VL), a deadly parasitic infection, are usually associated with inadequate efficacy and adverse aftereffects. Further, the primary site of Leishmania parasite are host macrophages resulting in compromised immunity; ensuing marked T-cell immunosuppression. Such settings emphasize the exploration of chemo-immunotherapeutic strategies for improvising the infected person's immune status with better resolution of infection. METHODS Present work employs the immunization of Leishmania-infected hamsters with Leishmania-derived recombinant aldolase (rLdAld) and enolase (rLdEno) proteins in consort with the sub-optimal dose of Ambisome (2.5 mg/kg). After the completion of immunization, hamsters were sacrificed on day 60 and 90 post infection and different organ samples were collected to perform immunological assay for evaluating the therapeutic efficacy and modulation in protective cellular immune responses. RESULTS Combining these proteins, particularly rLdAld with Ambisome (2.5 mg/kg), has significantly reduced the parasitic load (∼80%) with remarkable enhancement in DTH and lymphoproliferative responses compared to the infected control and only Ambisome treated groups. Moreover, cytokine levels at RNA and protein levels were noticed to be inclined towards Th-1 phenotype through up-regulation of IFN-γ and TNF-α with significant down-regulation in IL-10 and TGF-β expression, an indication towards the generation of protective immunity against experimental VL. CONCLUSION Our experimental findings demonstrated that the chemo-immunotherapeutic approach could be an effective way of controlling human VL infection at minimal dosages of antileishmanial with reduced side-effects and propensity of drug resistance emergence.
Collapse
Affiliation(s)
- Keerti
- Divisions of Molecular and Structural Biology, CSIR-CDRI, Lucknow 226031, India
| | | | - Sumit Joshi
- Parasitology, CSIR-CD-RI, Lucknow 226031, India
| | - Sneha Ratnapriya
- Divisions of Molecular and Structural Biology, CSIR-CDRI, Lucknow 226031, India
| | | | | |
Collapse
|
2
|
da Silva DAM, Santana FR, Katz S, Garcia DM, Teixeira D, Longo-Maugéri IM, Barbiéri CL. Protective Cellular Immune Response Induction for Cutaneous Leishmaniasis by a New Immunochemotherapy Schedule. Front Immunol 2020; 11:345. [PMID: 32194563 PMCID: PMC7062680 DOI: 10.3389/fimmu.2020.00345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/12/2020] [Indexed: 11/13/2022] Open
Abstract
The palladacycle complex DPPE 1.2 was previously shown to inhibit Leishmania (Leishmania) amazonensis infection in vitro and in vivo. The present study aimed to evaluate the effect of DPPE 1.2 associated with a recombinant cysteine proteinase, rLdccys1, and the adjuvant Propionibacterium acnes on L. (L.) amazonensis infection in two mouse strains, BALB/c, and C57BL/6. Treatment with this association potentiated the leishmanicidal effect of DPPE 1.2 resulting in a reduction of parasite load in both strains of mice which was higher compared to that found in groups treated with either DPPE 1.2 alone or associated with P. acnes or rLdccys1. The reduction of parasite load in both mice strains was followed by immunomodulation mediated by an increase of memory CD4+ and CD8+ T lymphocytes, IFN-γ levels and reduction of active TGF-β in treated animals. No infection relapse was observed 1 month after the end of treatment in mice which received DPPE 1.2 associated with rLdccys1 or rLdccys1 plus P. acnes in comparison to that exhibited by animals treated with DPPE 1.2 alone. Evaluation of serum levels of AST, ALT, urea, and creatinine showed no alterations among treated groups, indicating that this treatment schedule did not induce hepato or nephrotoxicity. These data indicate the potential use of this association as a therapeutic alternative for cutaneous leishmaniasis caused by L. (L) amazonensis.
Collapse
Affiliation(s)
- Danielle A M da Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fabiana R Santana
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Simone Katz
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Daniel M Garcia
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Daniela Teixeira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ieda M Longo-Maugéri
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Clara L Barbiéri
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Guegan H, Ory K, Belaz S, Jan A, Dion S, Legentil L, Manuel C, Lemiègre L, Vives T, Ferrières V, Gangneux JP, Robert-Gangneux F. In vitro and in vivo immunomodulatory properties of octyl-β-D-galactofuranoside during Leishmania donovani infection. Parasit Vectors 2019; 12:600. [PMID: 31870416 PMCID: PMC6929453 DOI: 10.1186/s13071-019-3858-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 12/17/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The chemotherapeutic arsenal available to treat visceral leishmaniasis is currently limited, in view of many drawbacks such as high cost, toxicity or emerging resistance. New therapeutic strategies are particularly needed to improve the management and the outcome in immunosuppressed patients. The combination of an immunomodulatory drug to a conventional anti-Leishmania treatment is an emerging concept to reverse the immune bias from Th2 to Th1 response to boost healing and prevent relapses. METHODS Here, immunostimulating and leishmanicidal properties of octyl-β-D-galactofuranose (Galf) were assessed in human monocyte-derived macrophages (HM) and in a murine model, after challenge with Leishmania donovani promastigotes. We recorded parasite loads and expression of various cytokines and immune effectors in HM and mouse organs (liver, spleen, bone marrow), following treatment with free (Galf) and liposomal (L-Galf) formulations. RESULTS Both treatments significantly reduced parasite proliferation in HM, as well as liver parasite burden in vivo (Galf, P < 0.05). Consistent with in vitro results, we showed that Galf- and L-Galf-treated mice displayed an enhanced Th1 immune response, particularly in the spleen where pro-inflammatory cytokines TNF-α, IL-1β and IL-12 were significantly overexpressed compared to control group. The hepatic recruitment of myeloid cells was also favored by L-Galf treatment as evidenced by the five-fold increase of myeloperoxidase (MPO) induction, which was associated with a higher number of MPO-positive cells within granulomas. By contrast, the systemic level of various cytokines such as IL-1β, IL-6, IL-17A or IL-27 was drastically reduced at the end of treatment. CONCLUSIONS Overall, these results suggest that Galf could be tested as an adjuvant in combination with current anti-parasitic drugs, to restore an efficient immune response against infection in a model of immunosuppressed mice.
Collapse
Affiliation(s)
- Hélène Guegan
- CHU Rennes, Inserm, EHESP IRSET (Institut de Recherche en Santé Environnement et Travail) - UMR_S 1085, University of Rennes, 35000, Rennes, France
| | - Kevin Ory
- Inserm, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail) - UMR_S 1085, University of Rennes, 35000, Rennes, France
| | - Sorya Belaz
- CHU Rennes, Inserm, EHESP IRSET (Institut de Recherche en Santé Environnement et Travail) - UMR_S 1085, University of Rennes, 35000, Rennes, France
| | - Aurélien Jan
- Inserm, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail) - UMR_S 1085, University of Rennes, 35000, Rennes, France
| | - Sarah Dion
- Inserm, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail) - UMR_S 1085, University of Rennes, 35000, Rennes, France
| | - Laurent Legentil
- Ecole Nationale Supérieure de Chimie, CNRS, UMR 6226, University of Rennes, avenue du Général Leclerc CS 50837, 35708, Rennes cedex 7, France
| | - Christelle Manuel
- Inserm, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail) - UMR_S 1085, University of Rennes, 35000, Rennes, France
| | - Loïc Lemiègre
- Ecole Nationale Supérieure de Chimie, CNRS, UMR 6226, University of Rennes, avenue du Général Leclerc CS 50837, 35708, Rennes cedex 7, France
| | - Thomas Vives
- Ecole Nationale Supérieure de Chimie, CNRS, UMR 6226, University of Rennes, avenue du Général Leclerc CS 50837, 35708, Rennes cedex 7, France
| | - Vincent Ferrières
- Ecole Nationale Supérieure de Chimie, CNRS, UMR 6226, University of Rennes, avenue du Général Leclerc CS 50837, 35708, Rennes cedex 7, France
| | - Jean-Pierre Gangneux
- CHU Rennes, Inserm, EHESP IRSET (Institut de Recherche en Santé Environnement et Travail) - UMR_S 1085, University of Rennes, 35000, Rennes, France
| | - Florence Robert-Gangneux
- CHU Rennes, Inserm, EHESP IRSET (Institut de Recherche en Santé Environnement et Travail) - UMR_S 1085, University of Rennes, 35000, Rennes, France.
| |
Collapse
|
4
|
Forrester S, Siefert K, Ashwin H, Brown N, Zelmar A, James S, Lagos D, Timmis J, Chatterjee M, Mottram JC, Croft SL, Kaye PM. Tissue-specific transcriptomic changes associated with AmBisome® treatment of BALB/c mice with experimental visceral leishmaniasis. Wellcome Open Res 2019; 4:198. [PMID: 31976381 PMCID: PMC6961418 DOI: 10.12688/wellcomeopenres.15606.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2019] [Indexed: 01/11/2023] Open
Abstract
Background: Liposomal amphotericin B (AmBisome®) as a treatment modality for visceral leishmaniasis (VL) has had significant impact on patient care in some but not all regions where VL is endemic. As the mode of action of AmBisome® in vivo is poorly understood, we compared the tissue-specific transcriptome in drug-treated vs untreated mice with experimental VL. Methods: BALB/c mice infected with L. donovani were treated with 8mg/kg AmBisome®, resulting in parasite elimination from liver and spleen over a 7-day period. At day 1 and day 7 post treatment (R x+1 and R x+7), transcriptomic profiling was performed on spleen and liver tissue from treated and untreated mice and uninfected mice. BALB/c mice infected with M. bovis BCG (an organism resistant to amphotericin B) were analysed to distinguish between direct effects of AmBisome® and those secondary to parasite death. Results: AmBisome® treatment lead to rapid parasitological clearance. At R x+1, spleen and liver displayed only 46 and 88 differentially expressed (DE) genes (P<0.05; 2-fold change) respectively. In liver, significant enrichment was seen for pathways associated with TNF, fatty acids and sterol biosynthesis. At R x+7, the number of DE genes was increased (spleen, 113; liver 400). In spleen, these included many immune related genes known to be involved in anti-leishmanial immunity. In liver, changes in transcriptome were largely accounted for by loss of granulomas. PCA analysis indicated that treatment only partially restored homeostasis. Analysis of BCG-infected mice treated with AmBisome® revealed a pattern of immune modulation mainly targeting macrophage function. Conclusions: Our data indicate that the tissue response to AmBisome® treatment varies between target organs and that full restoration of homeostasis is not achieved at parasitological cure. The pathways required to restore homeostasis deserve fuller attention, to understand mechanisms associated with treatment failure and relapse and to promote more rapid restoration of immune competence.
Collapse
Affiliation(s)
- Sarah Forrester
- York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| | - Karin Siefert
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Helen Ashwin
- York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| | - Najmeeyah Brown
- York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| | - Andrea Zelmar
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Sally James
- Biosciences Technology Facility, University of York, York, YO10 5DD, UK
| | - Dimitris Lagos
- York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| | - Jon Timmis
- Department of Electronic Engineering, University of York, UK, York, YO10 5DD, UK
| | - Mitali Chatterjee
- Department of Pharmacology, Jawaharlal Institute of Post Graduate Medical Education and Research, Kolkata, 700 020, India
| | - Jeremy C. Mottram
- York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| | - Simon L. Croft
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Paul M. Kaye
- York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| |
Collapse
|
5
|
Martínez-Rodrigo A, S. Dias D, Ribeiro PAF, Roatt BM, Mas A, Carrión J, Coelho EAF, Domínguez-Bernal G. Immunization with the HisAK70 DNA Vaccine Induces Resistance against Leishmania Amazonensis Infection in BALB/c Mice. Vaccines (Basel) 2019; 7:vaccines7040183. [PMID: 31739549 PMCID: PMC6963319 DOI: 10.3390/vaccines7040183] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 12/04/2022] Open
Abstract
Leishmania amazonensis is the aetiological agent of a broad spectrum of leishmaniosis in South America. It can cause not only numerous cases of cutaneous leishmaniosis but also diffuse cutaneous leishmaniosis. Considering the diversity of parasite species causing different forms of the disease that coexist in the same region, it is desirable to develop a vaccine capable of eliciting cross-protection. We have previously described the use of HisAK70 DNA vaccine for immunization of mice to assess the induction of a resistant phenotype against Leishmania major and infantum infections. In this study, we extended its application in the murine model of infection by using L. amazonensis promastigotes. Our data revealed that 14 weeks post-infection, HisAK70-vaccinated mice showed key biomarkers of protection, such as higher iNOS/arginase activity, IFN-γ/IL-10, IFN-γ/IL-4, and GM-CSF/IL-10 ratios, in addition to an IgG2a-type response when compared to the control group. These findings correlated with the presentation of lower footpad swelling and parasite burdens in the immunized compared to the control mice. Overall, this study suggests that immunization with HisAK70 may be considered a suitable tool to combat leishmaniosis as it is able to induce a potent cellular immune response, which allows to control the infection caused by L. amazonensis.
Collapse
Affiliation(s)
- Abel Martínez-Rodrigo
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense Madrid, INMIVET, 28040 Madrid, Spain; (A.M.-R.); (A.M.); (J.C.)
| | - Daniel S. Dias
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil; (D.S.D.); (P.A.F.R.); (E.A.F.C.)
| | - Patrícia A. F. Ribeiro
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil; (D.S.D.); (P.A.F.R.); (E.A.F.C.)
| | - Bruno M. Roatt
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Minas Gerais, Brazil;
| | - Alicia Mas
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense Madrid, INMIVET, 28040 Madrid, Spain; (A.M.-R.); (A.M.); (J.C.)
| | - Javier Carrión
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense Madrid, INMIVET, 28040 Madrid, Spain; (A.M.-R.); (A.M.); (J.C.)
| | - Eduardo A. F. Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil; (D.S.D.); (P.A.F.R.); (E.A.F.C.)
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Gustavo Domínguez-Bernal
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense Madrid, INMIVET, 28040 Madrid, Spain; (A.M.-R.); (A.M.); (J.C.)
- Correspondence: ; Tel.: +34-913943712
| |
Collapse
|
6
|
Ashwin H, Seifert K, Forrester S, Brown N, MacDonald S, James S, Lagos D, Timmis J, Mottram JC, Croft SL, Kaye PM. Tissue and host species-specific transcriptional changes in models of experimental visceral leishmaniasis. Wellcome Open Res 2019; 3:135. [PMID: 30542664 PMCID: PMC6248268 DOI: 10.12688/wellcomeopenres.14867.2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2018] [Indexed: 12/19/2022] Open
Abstract
Background: Human visceral leishmaniasis, caused by infection with Leishmania donovani or L. infantum, is a potentially fatal disease affecting 50,000-90,000 people yearly in 75 disease endemic countries, with more than 20,000 deaths reported. Experimental models of infection play a major role in understanding parasite biology, host-pathogen interaction, disease pathogenesis, and parasite transmission. In addition, they have an essential role in the identification and pre-clinical evaluation of new drugs and vaccines. However, our understanding of these models remains fragmentary. Although the immune response to Leishmania donovani infection in mice has been extensively characterized, transcriptomic analysis capturing the tissue-specific evolution of disease has yet to be reported. Methods: We provide an analysis of the transcriptome of spleen, liver and peripheral blood of BALB/c mice infected with L. donovani. Where possible, we compare our data in murine experimental visceral leishmaniasis with transcriptomic data in the public domain obtained from the study of L. donovani-infected hamsters and patients with human visceral leishmaniasis. Digitised whole slide images showing the histopathology in spleen and liver are made available via a dedicated website, www.leishpathnet.org. Results: Our analysis confirms marked tissue-specific alterations in the transcriptome of infected mice over time and identifies previously unrecognized parallels and differences between murine, hamster and human responses to infection. We show commonality of interferon-regulated genes whilst confirming a greater activation of type 2 immune pathways in infected hamsters compared to mice. Cytokine genes and genes encoding immune checkpoints were markedly tissue specific and dynamic in their expression, and pathways focused on non-immune cells reflected tissue specific immunopathology. Our data also addresses the value of measuring peripheral blood transcriptomics as a potential window into underlying systemic disease. Conclusions: Our transcriptomic data, coupled with histopathologic analysis of the tissue response, provide an additional resource to underpin future mechanistic studies and to guide clinical research.
Collapse
Affiliation(s)
- Helen Ashwin
- Centre for Immunology and Infection, University of York, York, YO10 5DD, UK
| | - Karin Seifert
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Sarah Forrester
- Centre for Immunology and Infection, University of York, York, YO10 5DD, UK
| | - Najmeeyah Brown
- Centre for Immunology and Infection, University of York, York, YO10 5DD, UK
| | - Sandy MacDonald
- Bioscience Technology Facility, Deptartment of Biology, University of York, York, YO10 5DD, UK
| | - Sally James
- Bioscience Technology Facility, Deptartment of Biology, University of York, York, YO10 5DD, UK
| | - Dimitris Lagos
- Centre for Immunology and Infection, University of York, York, YO10 5DD, UK
| | - Jon Timmis
- Dept of Electronic Engineering, University of York, York, YO10 5DD, UK
| | - Jeremy C Mottram
- Centre for Immunology and Infection, University of York, York, YO10 5DD, UK
| | - Simon L. Croft
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Paul M. Kaye
- Centre for Immunology and Infection, University of York, York, YO10 5DD, UK
| |
Collapse
|
7
|
Ashwin H, Seifert K, Forrester S, Brown N, MacDonald S, James S, Lagos D, Timmis J, Mottram JC, Croft SL, Kaye PM. Tissue and host species-specific transcriptional changes in models of experimental visceral leishmaniasis. Wellcome Open Res 2018; 3:135. [PMID: 30542664 PMCID: PMC6248268 DOI: 10.12688/wellcomeopenres.14867.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2018] [Indexed: 11/08/2023] Open
Abstract
Background: Human visceral leishmaniasis, caused by infection with Leishmania donovani or L. infantum, is a potentially fatal disease affecting 50,000-90,000 people yearly in 75 disease endemic countries, with more than 20,000 deaths reported. Experimental models of infection play a major role in understanding parasite biology, host-pathogen interaction, disease pathogenesis, and parasite transmission. In addition, they have an essential role in the identification and pre-clinical evaluation of new drugs and vaccines. However, our understanding of these models remains fragmentary. Although the immune response to Leishmania donovani infection in mice has been extensively characterized, transcriptomic analysis capturing the tissue-specific evolution of disease has yet to be reported. Methods: We provide an analysis of the transcriptome of spleen, liver and peripheral blood of BALB/c mice infected with L. donovani. Where possible, we compare our data in murine experimental visceral leishmaniasis with transcriptomic data in the public domain obtained from the study of L. donovani-infected hamsters and patients with human visceral leishmaniasis. Digitised whole slide images showing the histopathology in spleen and liver are made available via a dedicated website, www.leishpathnet.org. Results: Our analysis confirms marked tissue-specific alterations in the transcriptome of infected mice over time and identifies previously unrecognized parallels and differences between murine, hamster and human responses to infection. We show commonality of interferon-regulated genes whilst confirming a greater activation of type 2 immune pathways in infected hamsters compared to mice. Cytokine genes and genes encoding immune checkpoints were markedly tissue specific and dynamic in their expression, and pathways focused on non-immune cells reflected tissue specific immunopathology. Our data also addresses the value of measuring peripheral blood transcriptomics as a potential window into underlying systemic disease. Conclusions: Our transcriptomic data, coupled with histopathologic analysis of the tissue response, provide an additional resource to underpin future mechanistic studies and to guide clinical research.
Collapse
Affiliation(s)
- Helen Ashwin
- Centre for Immunology and Infection, University of York, York, YO10 5DD, UK
| | - Karin Seifert
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Sarah Forrester
- Centre for Immunology and Infection, University of York, York, YO10 5DD, UK
| | - Najmeeyah Brown
- Centre for Immunology and Infection, University of York, York, YO10 5DD, UK
| | - Sandy MacDonald
- Bioscience Technology Facility, Deptartment of Biology, University of York, York, YO10 5DD, UK
| | - Sally James
- Bioscience Technology Facility, Deptartment of Biology, University of York, York, YO10 5DD, UK
| | - Dimitris Lagos
- Centre for Immunology and Infection, University of York, York, YO10 5DD, UK
| | - Jon Timmis
- Dept of Electronic Engineering, University of York, York, YO10 5DD, UK
| | - Jeremy C Mottram
- Centre for Immunology and Infection, University of York, York, YO10 5DD, UK
| | - Simon L. Croft
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Paul M. Kaye
- Centre for Immunology and Infection, University of York, York, YO10 5DD, UK
| |
Collapse
|
8
|
Das A, Asad M, Sabur A, Didwania N, Ali N. Monophosphoryl Lipid A Based Cationic Liposome Facilitates Vaccine Induced Expansion of Polyfunctional T Cell Immune Responses against Visceral Leishmaniasis. ACS APPLIED BIO MATERIALS 2018; 1:999-1018. [PMID: 34996141 DOI: 10.1021/acsabm.8b00184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Amrita Das
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Mohammad Asad
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Abdus Sabur
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Nicky Didwania
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| |
Collapse
|
9
|
dos Santos IB, da Silva DAM, Paz FACR, Garcia DM, Carmona AK, Teixeira D, Longo-Maugéri IM, Katz S, Barbiéri CL. Leishmanicidal and Immunomodulatory Activities of the Palladacycle Complex DPPE 1.1, a Potential Candidate for Treatment of Cutaneous Leishmaniasis. Front Microbiol 2018; 9:1427. [PMID: 30018604 PMCID: PMC6038773 DOI: 10.3389/fmicb.2018.01427] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/11/2018] [Indexed: 01/18/2023] Open
Abstract
The present study focused on the activity of the palladacycle complex DPPE 1.1 on Leishmania (Leishmania) amazonensis. Promastigotes of L. (L.) amazonensis were destroyed in vitro by nanomolar concentrations of DPPE 1.1, whereas intracellular amastigotes were killed at drug concentrations fivefold less toxic than those harmful to macrophages. L. (L.) amazonensis-infected BALB/c mice were treated by intralesional injection of DPPE 1.1. Animals treated with 3.5 and 7.0 mg/kg of DPPE 1.1 showed a significant decrease of foot lesion sizes and a parasite load reduction of 93 and 99%, respectively, when compared to untreated controls. Furthermore, DPPE 1.1 was non-toxic to treated animals. The cathepsin B activity of L. (L.) amazonensis amastigotes was inhibited by DPPE 1.1 as demonstrated spectrofluorometrically by use of a specific fluorogenic substrate. Analysis of T-cells populations in mice treated with DPPE 1.1 and untreated controls was performed by fluorescence-activated cell sorter (FACS). IFN-γ was measured in supernatants of lymphocytes from popliteal and inguinal lymph nodes isolated from treated and untreated mice and stimulated with L. (L.) amazonensis amastigotes extract and active TGF-β was evaluated in supernatants of foot lesions; both dosages were carried out by means of a double-sandwich ELISA assay. A significant increase of TCD4+ and TCD8+ lymphocytes and IFN-γ secretion was displayed in mice treated with DPPE 1.1 compared to untreated animals, whereas a significant reduction of active TGF-β was observed in treated mice. These findings open perspectives for further investment in DPPE 1.1 as an alternative option for the chemotherapy of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Isabela B. dos Santos
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Danielle A. M. da Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fabiana A. C. R. Paz
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Daniel M. Garcia
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Adriana K. Carmona
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Daniela Teixeira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ieda M. Longo-Maugéri
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Simone Katz
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Clara L. Barbiéri
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Salguero FJ, Garcia-Jimenez WL, Lima I, Seifert K. Histopathological and immunohistochemical characterisation of hepatic granulomas in Leishmania donovani-infected BALB/c mice: a time-course study. Parasit Vectors 2018; 11:73. [PMID: 29386047 PMCID: PMC5793367 DOI: 10.1186/s13071-018-2624-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 01/08/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Visceral leishmaniasis (VL) is a neglected tropical disease (NTD), caused by the intracellular protozoan parasites Leishmania donovani and Leishmania infantum. Symptomatic VL is considered fatal when left untreated. At present, there is no effective vaccine licensed for human use and available chemotherapies have limitations. Understanding the local immune mechanisms required for the control of infection is a key factor for developing effective vaccines and therapeutics. METHODS We have investigated the development of the typical granulomatous lesions in the liver in experimental VL over time, together with the local immune responses. BALB/c mice were infected intravenously with a dose of 2 × 107 L. donovani amastigotes (MHOM/ET/67/HU3) and sacrificed at 15, 35 and 63 days post-infection (dpi). Histopathology and immunohistochemical techniques were used for the detection of Leishmania antigen, selected cell types including B and T lymphocytes, macrophages and neutrophils (CD45R-B220+, CD3+, F4/80+ and Ly-6G+) and iNOS. RESULTS Granulomatous lesions were identified as early as 15 dpi in the livers of all infected animals. Three categories were used to classify liver granulomas (immature, mature and clear). Clear granulomas were exclusively detected from 35 dpi onwards. Kupffer cells (F4/80+) were predominant in immature granulomas, regardless of the dpi. Nonetheless, the highest expression was found 63 dpi. Positive staining for iNOS was mainly observed in the cytoplasm of fused Kupffer cells and the highest expression observed at 35 dpi. T cells (CD3+) and B cells (CD45R-B220+) were predominant in more advanced granuloma stages, probably related to the establishment of acquired immunity. Neutrophils (Ly-6G+) were predominantly observed in mature granulomas with the highest expression at 15 dpi. Neutrophils were lower in numbers compared to other cell types, particularly at later time points. CONCLUSIONS Our results reflect the role of macrophages during the early stage of infection and the establishment of a lymphocytic response to control the infection in more advanced stages.
Collapse
Affiliation(s)
- Francisco J Salguero
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, UK
| | - Waldo L Garcia-Jimenez
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, UK
| | - Isadora Lima
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, UK.,Fundação Oswaldo Cruz, Centro de Pesquisas Gonçalo Moniz, Salvador, Bahia, Brazil
| | - Karin Seifert
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| |
Collapse
|
11
|
Adriaensen W, Dorlo TPC, Vanham G, Kestens L, Kaye PM, van Griensven J. Immunomodulatory Therapy of Visceral Leishmaniasis in Human Immunodeficiency Virus-Coinfected Patients. Front Immunol 2018; 8:1943. [PMID: 29375567 PMCID: PMC5770372 DOI: 10.3389/fimmu.2017.01943] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/18/2017] [Indexed: 12/23/2022] Open
Abstract
Patients with visceral leishmaniasis (VL)–human immunodeficiency virus (HIV) coinfection experience increased drug toxicity and treatment failure rates compared to VL patients, with more frequent VL relapse and death. In the era of VL elimination strategies, HIV coinfection is progressively becoming a key challenge, because HIV-coinfected patients respond poorly to conventional VL treatment and play an important role in parasite transmission. With limited chemotherapeutic options and a paucity of novel anti-parasitic drugs, new interventions that target host immunity may offer an effective alternative. In this review, we first summarize current views on how VL immunopathology is significantly affected by HIV coinfection. We then review current clinical and promising preclinical immunomodulatory interventions in the field of VL and discuss how these may operate in the context of a concurrent HIV infection. Caveats are formulated as these interventions may unpredictably impact the delicate balance between boosting of beneficial VL-specific responses and deleterious immune activation/hyperinflammation, activation of latent provirus or increased HIV-susceptibility of target cells. Evidence is lacking to prioritize a target molecule and a more detailed account of the immunological status induced by the coinfection as well as surrogate markers of cure and protection are still required. We do, however, argue that virologically suppressed VL patients with a recovered immune system, in whom effective antiretroviral therapy alone is not able to restore protective immunity, can be considered a relevant target group for an immunomodulatory intervention. Finally, we provide perspectives on the translation of novel theories on synergistic immune cell cross-talk into an effective treatment strategy for VL–HIV-coinfected patients.
Collapse
Affiliation(s)
- Wim Adriaensen
- Unit of HIV and Neglected Tropical Diseases, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Thomas P C Dorlo
- Department of Pharmacy and Pharmacology, Antoni van Leeuwenhoek Hospital, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Guido Vanham
- Unit of Virology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Luc Kestens
- Unit of Immunology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Paul M Kaye
- Centre for Immunology and Infection, Department of Biology, Hull York Medical School, University of York, Heslington, York, United Kingdom
| | - Johan van Griensven
- Unit of HIV and Neglected Tropical Diseases, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
12
|
Didwania N, Shadab M, Sabur A, Ali N. Alternative to Chemotherapy-The Unmet Demand against Leishmaniasis. Front Immunol 2017; 8:1779. [PMID: 29312309 PMCID: PMC5742582 DOI: 10.3389/fimmu.2017.01779] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/28/2017] [Indexed: 12/15/2022] Open
Abstract
Leishmaniasis is a neglected protozoan disease that mainly affects the tropical as well as subtropical countries of the world. The primary option to control the disease still relies on chemotherapy. However, a hindrance to treatments owing to the emergence of drug-resistant parasites, enormous side effects of the drugs, their high cost, and requirement of long course hospitalization has added to the existing problems of leishmaniasis containment program. This review highlights the prospects of immunotherapy and/or immunochemotherapy to address the limitations for current treatment measures for leishmaniasis. In addition to the progress in alternate therapeutic strategies, the possibility and advances in developing preventive measures against the disease have been pointed. The review highlights our recent understandings of the protective immunology that can be exploited to develop an effective vaccine against leishmaniasis. Moreover, an update on the approaches that have evolved over the recent years are predominantly focused to overcome the current challenges in developing immunotherapeutic as well as prophylactic antileishmanial vaccines is discussed.
Collapse
Affiliation(s)
- Nicky Didwania
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Md Shadab
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Abdus Sabur
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
13
|
Velásquez AMA, Ribeiro WC, Venn V, Castelli S, Camargo MSD, de Assis RP, de Souza RA, Ribeiro AR, Passalacqua TG, da Rosa JA, Baviera AM, Mauro AE, Desideri A, Almeida-Amaral EE, Graminha MAS. Efficacy of a Binuclear Cyclopalladated Compound Therapy for Cutaneous Leishmaniasis in the Murine Model of Infection with Leishmania amazonensis and Its Inhibitory Effect on Topoisomerase 1B. Antimicrob Agents Chemother 2017; 61:e00688-17. [PMID: 28507113 PMCID: PMC5527659 DOI: 10.1128/aac.00688-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/02/2017] [Indexed: 12/29/2022] Open
Abstract
Leishmaniasis is a disease found throughout the (sub)tropical parts of the world caused by protozoan parasites of the Leishmania genus. Despite the numerous problems associated with existing treatments, pharmaceutical companies continue to neglect the development of better ones. The high toxicity of current drugs combined with emerging resistance makes the discovery of new therapeutic alternatives urgent. We report here the evaluation of a binuclear cyclopalladated complex containing Pd(II) and N,N'-dimethylbenzylamine (Hdmba) against Leishmania amazonensis The compound [Pd(dmba)(μ-N3)]2 (CP2) inhibits promastigote growth (50% inhibitory concentration [IC50] = 13.2 ± 0.7 μM) and decreases the proliferation of intracellular amastigotes in in vitro incubated macrophages (IC50 = 10.2 ± 2.2 μM) without a cytotoxic effect when tested against peritoneal macrophages (50% cytotoxic concentration = 506.0 ± 10.7 μM). In addition, CP2 was also active against T. cruzi intracellular amastigotes (IC50 = 2.3 ± 0.5 μM, selective index = 225), an indication of its potential for use in Chagas disease therapy. In vivo assays using L. amazonensis-infected BALB/c showed an 80% reduction in parasite load compared to infected and nontreated animals. Also, compared to amphotericin B treatment, CP2 did not show any side effects, which was corroborated by the analysis of plasma levels of different hepatic and renal biomarkers. Furthermore, CP2 was able to inhibit Leishmania donovani topoisomerase 1B (Ldtopo1B), a potentially important target in this parasite. (This study has been registered at ClinicalTrials.gov under identifier NCT02169141.).
Collapse
Affiliation(s)
- Angela Maria Arenas Velásquez
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, Brazil
| | - Willian Campos Ribeiro
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
| | - Vutey Venn
- University of Rome, Tor Vergata, Rome, Italy
| | | | | | - Renata Pires de Assis
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
| | | | | | - Thaís Gaban Passalacqua
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, Brazil
| | - João Aristeu da Rosa
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
| | - Amanda Martins Baviera
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
| | | | | | | | - Marcia A S Graminha
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
| |
Collapse
|
14
|
Paladi CS, da Silva DAM, Motta PD, Garcia DM, Teixeira D, Longo-Maugéri IM, Katz S, Barbiéri CL. Treatment of Leishmania (Leishmania) Amazonensis-Infected Mice with a Combination of a Palladacycle Complex and Heat-Killed Propionibacterium acnes Triggers Protective Cellular Immune Responses. Front Microbiol 2017; 8:333. [PMID: 28321209 PMCID: PMC5337482 DOI: 10.3389/fmicb.2017.00333] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/17/2017] [Indexed: 12/12/2022] Open
Abstract
Palladacycle complex DPPE 1.2 was previously reported to inhibit the in vitro and in vivo infection by Leishmania (Leishmania) amazonensis. The aim of the present study was to compare the effect of DPPE 1.2, in association with heat-killed Propionibacterium acnes, on L. (L.) amazonensis infection in two mouse strains, BALB/c and C57BL/6, and to evaluate the immune responses of the treated animals. Foot lesions of L. (L.) amazonensis-infected mice were injected with DPPE 1.2 alone, or associated with P. acnes as an adjuvant. Analysis of T-cell populations in the treated mice and in untreated controls was performed by FACS. Detection of IFN-γ-secreting lymphocytes was carried out by an ELISPOT assay and active TGF-β was measured by means of a double-sandwich ELISA test. The treatment with DPPE 1.2 resulted in a significant reduction of foot lesion sizes and parasite burdens in both mouse strains, and the lowest parasite burden was found in mice treated with DPPE 1.2 plus P. acnes. Mice treated with DPPE 1.2 alone displayed a significant increase of TCD4+ and TCD8+ lymphocytes and IFN-γ secretion which were significantly higher in animals treated with DPPE 1.2 plus P. acnes. A significant reduction of active TGF-β was observed in mice treated with DPPE 1.2 alone or associated with P. acnes. Moreover, DPPE 1.2 associated to P. acnes was non-toxic to treated animals. The destruction of L. (L.) amazonensis by DPPE 1.2 was followed by host inflammatory responses which were exacerbated when the palladacycle complex was associated with P. acnes.
Collapse
Affiliation(s)
- Carolina S Paladi
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Danielle A M da Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Priscila D Motta
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Daniel M Garcia
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Daniela Teixeira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Ieda M Longo-Maugéri
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Simone Katz
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Clara L Barbiéri
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| |
Collapse
|
15
|
Abstract
Leishmaniasis is a vector-borne infectious disease caused by multiple Leishmania (L.) species with diverse clinical manifestations. There is currently no vaccine against any form of the disease approved in humans, and chemotherapy is the sole approach for treatment. Unfortunately, treatment options are limited to a small number of drugs, partly due to high cost and significant adverse effects. The other obstacle in leishmaniasis treatment is the potential for drug resistance, which has been observed in multiple endemic countries. Immunotherapy maybe another important avenue for controlling leishmaniasis and could help patients control the disease. There are different approaches for immunotherapy in different infectious diseases, generally with low-cost, limited side-effects and no possibility to developing resistance. In this paper, different immunotherapy approaches as alternatives to routine drug treatment will be reviewed against leishmaniasis.
Collapse
|
16
|
Mendonça SCF. Differences in immune responses against Leishmania induced by infection and by immunization with killed parasite antigen: implications for vaccine discovery. Parasit Vectors 2016; 9:492. [PMID: 27600664 PMCID: PMC5013623 DOI: 10.1186/s13071-016-1777-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 08/26/2016] [Indexed: 01/06/2023] Open
Abstract
The leishmaniases are a group of diseases caused by different species of the protozoan genus Leishmania and transmitted by sand fly vectors. They are a major public health problem in almost all continents. There is no effective control of leishmaniasis and its geographical distribution is expanding in many countries. Great effort has been made by many scientists to develop a vaccine against leishmaniasis, but, so far, there is still no effective vaccine against the disease. The only way to generate protective immunity against leishmaniasis in humans is leishmanization, consisting of the inoculation of live virulent Leishmania as a means to acquire long-lasting immunity against subsequent infections. At present, all that we know about human immune responses to Leishmania induced by immunization with killed parasite antigens came from studies with first generation candidate vaccines (killed promastigote extracts). In the few occasions that the T cell-mediated immune responses to Leishmania induced by infection and immunization with killed parasite antigens were compared, important differences were found both in humans and in animals. This review discusses these differences and their relevance to the development of a vaccine against leishmaniasis, the major problems involved in this task, the recent prospects for the selection of candidate antigens and the use of attenuated Leishmania as live vaccines.
Collapse
Affiliation(s)
- Sergio C F Mendonça
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. 4365 - Manguinhos, 21040-360, Rio de Janeiro, Brazil.
| |
Collapse
|
17
|
Zumla A, Rao M, Wallis RS, Kaufmann SHE, Rustomjee R, Mwaba P, Vilaplana C, Yeboah-Manu D, Chakaya J, Ippolito G, Azhar E, Hoelscher M, Maeurer M. Host-directed therapies for infectious diseases: current status, recent progress, and future prospects. THE LANCET. INFECTIOUS DISEASES 2016; 16:e47-63. [PMID: 27036359 PMCID: PMC7164794 DOI: 10.1016/s1473-3099(16)00078-5] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/16/2016] [Accepted: 02/02/2016] [Indexed: 12/13/2022]
Abstract
Despite extensive global efforts in the fight against killer infectious diseases, they still cause one in four deaths worldwide and are important causes of long-term functional disability arising from tissue damage. The continuing epidemics of tuberculosis, HIV, malaria, and influenza, and the emergence of novel zoonotic pathogens represent major clinical management challenges worldwide. Newer approaches to improving treatment outcomes are needed to reduce the high morbidity and mortality caused by infectious diseases. Recent insights into pathogen–host interactions, pathogenesis, inflammatory pathways, and the host's innate and acquired immune responses are leading to identification and development of a wide range of host-directed therapies with different mechanisms of action. Host-directed therapeutic strategies are now becoming viable adjuncts to standard antimicrobial treatment. Host-directed therapies include commonly used drugs for non-communicable diseases with good safety profiles, immunomodulatory agents, biologics (eg monoclonal antibodies), nutritional products, and cellular therapy using the patient's own immune or bone marrow mesenchymal stromal cells. We discuss clinically relevant examples of progress in identifying host-directed therapies as adjunct treatment options for bacterial, viral, and parasitic infectious diseases.
Collapse
Affiliation(s)
- Alimuddin Zumla
- Centre for Clinical Microbiology, Division of Infection and Immunity, University College London (UCL), London, UK; National Institute for Health Research Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, London, UK
| | - Martin Rao
- Division of Therapeutic Immunology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Allogeneic Stem Cell Transplantation, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | | | | | - Peter Mwaba
- University of Zambia-UCL Medical School (UNZA-UCLMS) Research and Training Project, University Teaching Hospital, Lusaka, Zambia; Ministry of Health, Lusaka, Zambia
| | - Cris Vilaplana
- Unitat de Tuberculosi Experimental Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol CIBER Enfermedades Respiratorias, Can Ruti Campus, Edifici Laboratoris de Recerca, Barcelona, Spain
| | - Dorothy Yeboah-Manu
- Bacteriology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | | | - Giuseppe Ippolito
- National Institute for Infectious Diseases, Lazzaro Spallanzani, Rome, Italy
| | - Esam Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Centre, and Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Michael Hoelscher
- Division of Infectious Diseases and Tropical Medicine, Medical Centre of the University of Munich, Munich, Germany; DZIF German Centre for Infection Research, Munich, Germany
| | - Markus Maeurer
- Division of Therapeutic Immunology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Allogeneic Stem Cell Transplantation, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| | | |
Collapse
|
18
|
Sabur A, Asad M, Ali N. Lipid based delivery and immuno-stimulatory systems: Master tools to combat leishmaniasis. Cell Immunol 2016; 309:55-60. [PMID: 27470274 DOI: 10.1016/j.cellimm.2016.07.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/06/2016] [Accepted: 07/20/2016] [Indexed: 11/25/2022]
Abstract
Disease management of leishmaniasis is appalling due to lack of a human vaccine and the toxicity and resistance concerns with limited therapeutic drugs. The challenges in development of a safe vaccine for generation and maintenance of robust antileishmanial protective immunity through a human administrable route of immunization can be addressed through immunomodulation and targeted delivery. The versatility of lipid based particulate system for deliberate delivery of diverse range of molecules including immunomodulators, antigens and drugs have essentially found pivotal role in design of proficient vaccination and therapeutic strategies against leishmaniasis. The prospects of lipid based preventive and curative formulations for leishmaniasis have been highlighted in this review.
Collapse
Affiliation(s)
- Abdus Sabur
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| | - Mohammad Asad
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| | - Nahid Ali
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| |
Collapse
|
19
|
Flores-Romero JD, Rodríguez-Lozada J, López-Ortiz M, Magaña R, Ortega-Blake I, Regla I, Fernández-Zertuche M. Multigram Scale Synthesis of A21, A New Antibiotic Equally Effective and Less Toxic than Amphotericin B. Org Process Res Dev 2016. [DOI: 10.1021/acs.oprd.6b00211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- José David Flores-Romero
- Instituto
de Investigación en Ciencias Básicas y Aplicadas, Centro
de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa, 62209 Cuernavaca, Morelos, Mexico
| | - Josué Rodríguez-Lozada
- Instituto
de Investigación en Ciencias Básicas y Aplicadas, Centro
de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa, 62209 Cuernavaca, Morelos, Mexico
| | - Manuel López-Ortiz
- Facultad
de Estudios Superiores, Universidad Nacional Autónoma de México, Batalla del 5 de Mayo y Fuerte de Loreto, 09230 Iztapalapa, México
DF, México
| | - Ricardo Magaña
- Facultad
de Estudios Superiores, Universidad Nacional Autónoma de México, Batalla del 5 de Mayo y Fuerte de Loreto, 09230 Iztapalapa, México
DF, México
| | - Iván Ortega-Blake
- Instituto
de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 1001, Chamilpa, 62209 Cuernavaca, Morelos, Mexico
| | - Ignacio Regla
- Facultad
de Estudios Superiores, Universidad Nacional Autónoma de México, Batalla del 5 de Mayo y Fuerte de Loreto, 09230 Iztapalapa, México
DF, México
| | - Mario Fernández-Zertuche
- Instituto
de Investigación en Ciencias Básicas y Aplicadas, Centro
de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa, 62209 Cuernavaca, Morelos, Mexico
| |
Collapse
|
20
|
Domínguez-Bernal G, Horcajo P, Orden JA, Ruiz-Santa-Quiteria JA, De La Fuente R, Ordóñez-Gutiérrez L, Martínez-Rodrigo A, Mas A, Carrión J. HisAK70: progress towards a vaccine against different forms of leishmaniosis. Parasit Vectors 2015; 8:629. [PMID: 26653170 PMCID: PMC4675018 DOI: 10.1186/s13071-015-1246-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/03/2015] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Leishmania major and Leishmania infantum are among the main species that are responsible for cutaneous leishmaniosis (CL) and visceral leishmaniosis (VL), respectively. The leishmanioses represent the second-largest parasitic killer in the world after malaria. Recently, we succeeded in generating a plasmid DNA (pCMV-HISA70m2A) and demonstrated that immunized mice were protected against L. major challenge. The efficacy of the DNA-vaccine was further enhanced by the inclusion of KMP-11 antigen into the antibiotic-free plasmid pVAX1-asd. METHODS Here, we describe the use of a HisAK70 DNA-vaccine encoding seven Leishmania genes (H2A, H2B, H3, H4, A2, KMP11 and HSP70) for vaccination of mice to assess the induction of a resistant phenotype against VL and CL. RESULTS HisAK70 was successful in vaccinated mice, resulting in a high amount of efficient sterile hepatic granulomas associated with a hepatic parasite burden fully resolved in the VL model; and resulting in 100% inhibition of parasite visceralization in the CL model. CONCLUSIONS The results suggest that immunization with the HisAK70 DNA-vaccine may provide a rapid, suitable, and efficient vaccination strategy to confer cross-protective immunity against VL and CL.
Collapse
Affiliation(s)
- Gustavo Domínguez-Bernal
- INMIVET, Department of Animal Health, Faculty of Veterinary Science, Complutense University of Madrid, Madrid, 28040, Spain.
| | - Pilar Horcajo
- SALUVET, Department of Animal Health, Faculty of Veterinary Science, Complutense University of Madrid, Madrid, 28040, Spain.
| | - José A Orden
- INMIVET, Department of Animal Health, Faculty of Veterinary Science, Complutense University of Madrid, Madrid, 28040, Spain.
| | - José A Ruiz-Santa-Quiteria
- INMIVET, Department of Animal Health, Faculty of Veterinary Science, Complutense University of Madrid, Madrid, 28040, Spain.
| | - Ricardo De La Fuente
- INMIVET, Department of Animal Health, Faculty of Veterinary Science, Complutense University of Madrid, Madrid, 28040, Spain.
| | | | - Abel Martínez-Rodrigo
- INMIVET, Department of Animal Health, Faculty of Veterinary Science, Complutense University of Madrid, Madrid, 28040, Spain.
| | - Alicia Mas
- INMIVET, Department of Animal Health, Faculty of Veterinary Science, Complutense University of Madrid, Madrid, 28040, Spain.
| | - Javier Carrión
- INMIVET, Department of Animal Health, Faculty of Veterinary Science, Complutense University of Madrid, Madrid, 28040, Spain.
| |
Collapse
|