1
|
Karthik M, Panchal NK, T M, Bakthavatchalam YD, Neeravi A, Abirami B, Walia K, Veeraraghavan B. Evolutionary insights into NDM variants: Identification and functional analysis of novel NDM-58 in Pseudomonas aeruginosa. Microb Pathog 2025; 204:107574. [PMID: 40228751 DOI: 10.1016/j.micpath.2025.107574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/27/2025] [Accepted: 04/09/2025] [Indexed: 04/16/2025]
Abstract
The emergence of New Delhi Metallo-β-lactamase (NDM) variants in P. aeruginosa has significantly contributed to carbapenem resistance, posing a global threat to antimicrobial therapy. The catalytic activity of NDM, dependent on Zn (II), is enhanced by specific mutations. In this study, we report the identification and characterization of a novel NDM-58 variant (GenBank: OR081828.1) in P. aeruginosa BA24848, which exhibited resistance to multiple β-lactams, including cephalosporins, carbapenems, and BL/BLI combinations. WGS revealed that NDM-58 harbors a unique P185S substitution. This strain is associated with other ARGs (blaPAO, PME-1, fosA, blaOXA-396, blaOXA-494, blaOXA-50, sul1, dfrA1, qacE, aph(3')-VI, qnrVC1, and cat7), indicating a XDR phenotype. Comparative genomic analysis revealed the presence of MGEs (ISpre2, ISPa6, ISPa2, ISPsy29, IS26, Tn4661, ISPa37, and ISUnCu4) associated with NDM-58, which may facilitate the horizontal transfer of resistance determinants. Structural modeling and molecular dynamics simulations demonstrated that NDM-58 exhibits altered stability and compactness compared to NDM-1, likely influencing its enzymatic activity and resistance profile. Residual conservation analysis revealed that Pro185 is highly conserved, and its substitution to serine may impact protein stability and function. The molecular dynamics analysis indicated that NDM-58 has lower residual fluctuations and increased flexibility, which may enhance its adaptability under varying physiological conditions. Our findings provide novel insights into the evolutionary dynamics of NDM enzymes and the role of genetic environments in their dissemination. Understanding these mechanisms is crucial for developing effective surveillance and mitigation strategies against emerging carbapenem-resistant P. aeruginosa.
Collapse
Affiliation(s)
- Maruthan Karthik
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Nagesh Kishan Panchal
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Monisha T
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | | | - Ayyanraj Neeravi
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Baby Abirami
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Kamini Walia
- Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India.
| |
Collapse
|
2
|
Xing J, Han R, Zhao J, Zhang Y, Zhang M, Zhang Y, Zhang H, Nang SC, Zhai Y, Yuan L, Wang S, Wu H. Revisiting therapeutic options against resistant klebsiella pneumoniae infection: Phage therapy is key. Microbiol Res 2025; 293:128083. [PMID: 39904002 DOI: 10.1016/j.micres.2025.128083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/10/2025] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
Multi-drug resistant and carbapenem-resistant hypervirulent Klebsiella pneumoniae strains are spreading globally at an alarming rate, emerging as one of the most serious threats to global public health. The formidable challenges posed by the current arsenal of antimicrobials highlight the urgent need for novel strategies to combat K. pneumoniae infections. This review begins with a comprehensive analysis of the global dissemination of virulence factors and critical resistance profiles in K. pneumoniae, followed by an evaluation of the accessibility of novel therapeutic approaches for treating K. pneumoniae in clinical settings. Among these, phage therapy stands out for its considerable potential in addressing life-threatening K. pneumoniae infections. We critically examine the existing preclinical and clinical evidence supporting phage therapy, identifying key limitations that impede its broader clinical adoption. Additionally, we rigorously explore the role of genetic engineering in expanding the host range of K. pneumoniae phages, and discuss the future trajectory of this technology. In light of the 'Bad Bugs, No Drugs' era, we advocate leveraging artificial intelligence and deep learning to optimize and expand the application of phage therapy, representing a crucial advancement in the fight against the escalating threat of K. pneumoniae infections.
Collapse
Affiliation(s)
- Jiabao Xing
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Rongjia Han
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jinxin Zhao
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Yuying Zhang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Meng Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yichao Zhang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Hang Zhang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Sue C Nang
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Yajun Zhai
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Li Yuan
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Shanmei Wang
- Department of Microbiology Laboratory, Henan Provincial People's Hospital, Zhengzhou, China.
| | - Hua Wu
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China; Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
3
|
Shi Y, Yang Y, Song Y, Zhu Y, Zhao G, Tang B. Characterisation of bla NDM-5-bearing IncHI2 plasmid from Escherichia fergusonii in China. J Glob Antimicrob Resist 2025; 42:222-228. [PMID: 40113086 DOI: 10.1016/j.jgar.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/19/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025] Open
Abstract
OBJECTIVE Carbapenems are considered to be the last resort for serious infections caused by multidrug-resistant Gram-negative bacteria, and the emergence of carbapenem-resistant Enterobacteriaceae has posed a serious threat to human health. However, carbapenem resistance is rarely reported in Escherichia fergusonii. In this study, a New Delhi metallo-β-lactamase (NDM)-5-producing E. fergusonii strain, EFSXRJ10, was isolated from a chicken in China. METHODS Minimal inhibitory concentrations were determined using broth microdilution-based antimicrobial susceptibility testing. The complete genome sequence of the NDM-positive isolate was obtained using the Illumina NovaSeq and Oxford Nanopore GridION sequencing platforms, followed by hybrid assembly with Unicycler. In the plasmid conjugation assay, a sodium azide-resistant Escherichia coli strain, J53, was employed as the recipient. RESULTS Strain EFSXRJ10 was resistant to ampicillin, amoxycillin-clavulanic acid, gentamicin, spectinomycin, tetracycline, florfenicol, sulfafurazole, cefotaxime, ceftazidime, apramycin and meropenem. The blaNDM-5 gene was located on the IncHI2 plasmid, which can be transferred by conjugation at a frequency of (4.78 ± 0.67) × 10-5. The blaNDM-5-carrying plasmid, which harbours 14 antibiotic resistance genes belonging to the IncHI2/ST3 type and exhibiting high similarity to other blaNDM-5-carrying IncHI2 plasmids, was deposited in GenBank. The genetic structure containing blaNDM-5 was organised as 'IS3000-ΔISAba125-IS5-ΔISAba125-blaNDM-5-bleMBL-trpF-dsbD-IS26-∆umuD-∆ISKox3-∆IS3000'. CONCLUSIONS This is the first report characterising the blaNDM-5-bearing IncHI2 plasmid in E. fergusonii. Surveillance and control measures should be implemented to halt transmission of blaNDM-5 in food animals.
Collapse
Affiliation(s)
- Yan Shi
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yue Yang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, Hangzhou, University of Chinese Academy of Sciences, China
| | - Yu Song
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, Hangzhou, University of Chinese Academy of Sciences, China
| | - Yujie Zhu
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai, China
| | - Guoping Zhao
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, Hangzhou, University of Chinese Academy of Sciences, China
| | - Biao Tang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, Hangzhou, University of Chinese Academy of Sciences, China.
| |
Collapse
|
4
|
Magnano San Lio R, Maugeri A, Barchitta M, Favara G, La Rosa MC, La Mastra C, Agodi A. Monitoring Antibiotic Resistance in Wastewater: Findings from Three Treatment Plants in Sicily, Italy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2025; 22:351. [PMID: 40238414 PMCID: PMC11942589 DOI: 10.3390/ijerph22030351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/17/2025] [Accepted: 02/25/2025] [Indexed: 04/18/2025]
Abstract
Antimicrobial resistance (AMR) poses a global public health threat. Wastewater analysis provides valuable insights into antimicrobial resistance genes (ARGs), identifying sources and trends and evaluating AMR control measures. Between February 2022 and March 2023, pre-treatment urban wastewater samples were collected weekly from treatment plants in Pantano D'Arci, Siracusa, and Giarre (Sicily, Italy). Monthly composite DNA extracts were prepared by combining weekly subsamples from each site, yielding 42 composite samples-14 from each treatment plant. Real-time PCR analysis targeted specific ARGs, including blaSHV, erm(A), erm(B), blaOXA, blaNDM, blaVIM, blaTEM, and blaCTX-M. The preliminary findings revealed that blaERM-B, blaOXA, blaTEM, and blaCTX-M were present in all samples, with erm(B) (median value: 8.51; range: 1.67-30.93), blaSHV (0.78; 0.00-6.36), and blaTEM (0.72; 0.34-4.30) showing the highest relative abundance. These results underscore the importance of integrating ARG data with broader research to understand the persistence and proliferation mechanisms of ARGs in wastewater environments. Future studies should employ metagenomic analyses to profile resistomes in urban, hospital, agricultural, and farm wastewater. Comparing these profiles will help identify contamination pathways and inform the development of targeted ARG surveillance programs. Monitoring shifts in ARG abundance could signal cross-sectoral contamination, enabling more effective AMR control strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, 95123 Catania, Italy; (R.M.S.L.); (A.M.); (M.B.); (G.F.); (M.C.L.R.); (C.L.M.)
| |
Collapse
|
5
|
Álvarez-Martínez FJ, Díaz-Puertas R, Barrajón-Catalán E, Micol V. Plant-Derived Natural Products for the Treatment of Bacterial Infections. Handb Exp Pharmacol 2025; 287:265-293. [PMID: 38418668 DOI: 10.1007/164_2024_706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Bacterial infections are a significant public health concern, and the emergence of antibiotic-resistant bacteria (ARB) has become a major challenge for modern medicine. The overuse and misuse of antibiotics have contributed to the development of ARB, which has led to the need for alternative therapies. Plant-derived natural products (PNPs) have been extensively studied for their potential as alternative therapies for the treatment of bacterial infections. The diverse chemical compounds found in plants have shown significant antibacterial properties, making them a promising source of novel antibacterial agents. The use of PNPs as antibacterial agents is particularly appealing because they offer a relatively safe and cost-effective approach to the treatment of bacterial infections. This chapter aims to provide an overview of the current state of research on PNPs as antibacterial agents. It will cover the mechanisms of action of the main PNPs against bacterial pathogens and discuss their potential to be used as complementary therapies to combat ARB. This chapter will also highlight the most common screening methodologies to discover new PNPs and the challenges and future prospects in the development of these compounds as antibacterial agents.
Collapse
Affiliation(s)
- Francisco Javier Álvarez-Martínez
- Institute for Research, Development and Innovation in Health Biotechnology of Elche (IDiBE), Miguel Hernández University (UMH), Elche, Spain
- Institute of Sanitary and Biomedical Research of Alicante (ISABIAL), Alicante, Spain
| | - Rocío Díaz-Puertas
- Institute for Research, Development and Innovation in Health Biotechnology of Elche (IDiBE), Miguel Hernández University (UMH), Elche, Spain
| | - Enrique Barrajón-Catalán
- Institute for Research, Development and Innovation in Health Biotechnology of Elche (IDiBE), Miguel Hernández University (UMH), Elche, Spain.
- Department of Pharmacy, Elche University Hospital-FISABIO, Elche, Spain.
| | - Vicente Micol
- Institute for Research, Development and Innovation in Health Biotechnology of Elche (IDiBE), Miguel Hernández University (UMH), Elche, Spain
- CIBER, Pathophysiology of Obesity and Nutrition, CIBERobn, Carlos III Health Institute (CB12/03/30038), Madrid, Spain
| |
Collapse
|
6
|
Al-Marzooq F, Ghazawi A, Allam M, Collyns T, Saleem A. Novel Variant of New Delhi Metallo-Beta-Lactamase ( blaNDM-60) Discovered in a Clinical Strain of Escherichia coli from the United Arab Emirates: An Emerging Challenge in Antimicrobial Resistance. Antibiotics (Basel) 2024; 13:1158. [PMID: 39766548 PMCID: PMC11672588 DOI: 10.3390/antibiotics13121158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Carbapenem resistance poses a significant health threat. This study reports the first detection and characterization of a novel variant of New Delhi metallo-β-lactamase (blaNDM-60) in Escherichia coli from the United Arab Emirates (UAE), including its genetic context and relationship to global strains. Methods: NDM-60-producing E. coli was isolated from a rectal swab during routine screening. Characterization involved whole-genome sequencing, antimicrobial susceptibility testing, and comparative genomic analysis with 66 known NDM variants. Core genome analysis was performed against 42 global E. coli strains, including the single other reported NDM-60-positive isolate. Results: The strain demonstrated extensive drug resistance, including resistance to novel β-lactam/β-lactamase inhibitor combinations, notably taniborbactam. NDM-60 differs from the closely related NDM-5 by a single amino acid substitution (Asp202Asn) and two amino acid substitutions (Val88Leu and Met154Leu) compared to NDM-1. NDM-60 is located on a nonconjugative IncX3 plasmid. The strain belongs to sequence type 940 (ST940). Phylogenetic analysis revealed high diversity among the global ST940 strains, which carry a plethora of resistance genes and originated from humans, animals, and the environment from diverse geographic locations. Conclusions: NDM-60 emergence in the UAE represents a significant evolution in carbapenemase diversity. Its presence on a nonconjugative plasmid may limit spread; however, its extensive resistance profile is concerning. Further studies are needed to determine the prevalence, dissemination, and clinical impact of NDM-60. NDM evolution underscores the ongoing challenge in managing antimicrobial resistance and the critical importance of vigilant molecular surveillance. It also highlights the pressing demand to discover new antibiotics to fight resistant bacteria.
Collapse
Affiliation(s)
- Farah Al-Marzooq
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Akela Ghazawi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Mushal Allam
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | | | - Aqeel Saleem
- Tawam Hospital, Al Ain P.O. Box 5674, United Arab Emirates
| |
Collapse
|
7
|
de Oliveira Santos IC, Silveira MC, Rodrigues DCS, Sued-Karam BR, Pribul BR, de Oliveira Santos G, Nunes JD, Dornelas-Ribeiro M, Kraychete GB, Picão RC, Marques EA, Leão RS, Rocha-de-Souza CM, D'Alincourt Carvalho-Assef AP. Genomic analysis of blaNDM-1-carrying-Pseudomonas aeruginosa ST2407 in the chromosome from Brazil. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 126:105702. [PMID: 39657902 DOI: 10.1016/j.meegid.2024.105702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/11/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024]
Abstract
Pseudomonas aeruginosa, an opportunistic pathogen often found in Healthcare-associated infections (HAI), has shown increased resistance to carbapenems (imipenem, meropenem, doripenem), the primary treatment options. We've seen a rise in carbapenemase-producing P. aeruginosa in Brazil, including NDM-producers. This study characterises an isolate carrying blaNDM-1 from a patient's skin fragment in a Brazilian hospital. The whole genomic sequence (WGS) of P. aeruginosa CCBH26428 was extracted and sequenced using Illumina and minION platforms. The assembly used MinION results mapped with Illumina reads, and annotation was performed by the RAST server. Resistance genes and clonality were identified using the CABGen platform. Additional information was carried out by manual annotation using Geneious software and BLAST tool. The genomic analysis revealed a genome of 6.995.008 bp and G+C 65.9 %. P. aeruginosa CCBH26428 belongs to ST2407. The blaNDM gene, associated with ISAba125, was found in a 63.862 pb genomic region flanked by IS26 insertion sequences. This region also contained the repA of the plasmid incompatibility group IncC2 and other resistance genes, suggesting it is a possible "translocation unit". Additionally, 17 resistance genes, mutations in OprD and GyrA, and several virulence genes were detected, potentially exacerbating the infection. This study is report a WGS analysis of P. aeruginosa carrying blaNDM-1 in Brazil, highlighting the role of IS26 in the acquisition and spread of resistance genes between plasmids and chromosomes.
Collapse
Affiliation(s)
- Ivson Cassiano de Oliveira Santos
- Laboratório de Bacteriologia Aplicada à Saúde Única e Resistência Antimicrobiana (LABSUR), Instituto Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, Brazil
| | - Melise Chaves Silveira
- Laboratório de Bacteriologia Aplicada à Saúde Única e Resistência Antimicrobiana (LABSUR), Instituto Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, Brazil
| | - Daiana Cristina Silva Rodrigues
- Laboratório de Bacteriologia Aplicada à Saúde Única e Resistência Antimicrobiana (LABSUR), Instituto Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, Brazil
| | - Bruna Ribeiro Sued-Karam
- Laboratório de Bacteriologia Aplicada à Saúde Única e Resistência Antimicrobiana (LABSUR), Instituto Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, Brazil
| | - Bruno Rocha Pribul
- Laboratório de Bacteriologia Aplicada à Saúde Única e Resistência Antimicrobiana (LABSUR), Instituto Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, Brazil; Coleção de Culturas de Bactérias de Origem Hospitalar (CCBH), Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Av. Brasil, Rio de Janeiro, RJ 436521045900, Brazil
| | - Giovanna de Oliveira Santos
- Laboratório de Bacteriologia Aplicada à Saúde Única e Resistência Antimicrobiana (LABSUR), Instituto Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, Brazil
| | - Jônathas Dias Nunes
- Laboratório Central Noel Nutels, Laboratório Central do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Gabriela Bergiante Kraychete
- Laboratório de Investigação em Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Renata Cristina Picão
- Laboratório de Investigação em Microbiologia Médica (LIMM), Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Departamento de Hidrobiologia, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Elizabeth Andrade Marques
- Departamento de Microbiologia e Imunologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson Souza Leão
- Departamento de Microbiologia e Imunologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cláudio Marcos Rocha-de-Souza
- Laboratório de Bacteriologia Aplicada à Saúde Única e Resistência Antimicrobiana (LABSUR), Instituto Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, Brazil; Coleção de Culturas de Bactérias de Origem Hospitalar (CCBH), Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Av. Brasil, Rio de Janeiro, RJ 436521045900, Brazil
| | - Ana Paula D'Alincourt Carvalho-Assef
- Laboratório de Bacteriologia Aplicada à Saúde Única e Resistência Antimicrobiana (LABSUR), Instituto Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, Brazil.
| |
Collapse
|
8
|
Valiatti TB, Santos FF, Bessa-Neto FO, Veiga R, Simionatto S, de Almeida Souza GH, Vaz MSM, Pignatari ACC, Cayô R, Gales AC. Emergence of multidrug-resistant Providencia rettgeri clone in food-producing animals: A public health threat. One Health 2024; 19:100887. [PMID: 39323428 PMCID: PMC11422129 DOI: 10.1016/j.onehlt.2024.100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/31/2024] [Accepted: 09/01/2024] [Indexed: 09/27/2024] Open
Abstract
The occurrence of carbapenemases encoding genes in Providencia rettgeri is a critical public health concern since this species has intrinsic resistance to several antimicrobials, including polymyxins. The identification of this multidrug-resistant (MDR) pathogen outside the hospital setting has become increasingly frequent, and raises an alert for the global health agencies, as they indicate a possible spread of such pathogens. Herein, we described three MDR P. rettgeri isolates carrying a diversity of antimicrobial resistance genes (ARGs) isolated from stool samples of swine and bovine in Brazil. Molecular analysis revealed that all isolates belonged to the same clone. The whole genome sequencing (WGS) of a representative isolate (PVR-188) was performed by MiSeq Illumina® platform, while the assembling and annotation was achieved using SPAdes and Prooka, respectively. The WGS analyses indicated the presence of ARGs that confer resistance to β-lactams (bla NDM-1, bla CTX-M-2), quinolones (qnrD1), aminoglycosides (aadA2, aadA1, aph(3')-Via), phenicol (catB2), sulfonamides (sul1, sul2), and trimethoprim (dfrA12, dfrA1). The presence of three plasmid replicons (Col3M, IncQ1, and IncT) was detected, but no phage sequences were found. The phylogenetic analyses confirmed the genomic relationship of the PVR-188 with P. rettgeri isolates recovered from animals and humans in the USA and Malaysia. In conclusion, we report the occurrence of MDR P. rettgeri clone colonizing the gut microbiota of food-producing animals in Brazil, revealing the spread of this pathogen beyond hospital boundaries.
Collapse
Affiliation(s)
- Tiago Barcelos Valiatti
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo, SP, Brazil
| | - Fernanda Fernandes Santos
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo, SP, Brazil
| | - Francisco Ozório Bessa-Neto
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo, SP, Brazil
- Universidade Federal de São Paulo (UNIFESP), Laboratório de Imunologia e Microbiologia (LIB), Setor de Biologia Molecular, Microbiologia e Imunologia, Departamento de Ciências Biológicas (DCB), Instituto de Ciências Ambientais, Químicas e Farmacêuticas (ICAQF), Diadema, SP, Brazil
| | - Ruanita Veiga
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo, SP, Brazil
| | - Simone Simionatto
- Universidade Federal da Grande Dourados (UFGD), Laboratório de Pesquisa em Ciências da Saúde, Dourados, MS, Brazil
| | | | - Márcia Soares Mattos Vaz
- Universidade Federal da Grande Dourados (UFGD), Laboratório de Pesquisa em Ciências da Saúde, Dourados, MS, Brazil
| | - Antônio Carlos Campos Pignatari
- Universidade Federal de São Paulo (UNIFESP), Laboratório Especial de Microbiologia Clínica (LEMC), Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo, SP, Brazil
| | - Rodrigo Cayô
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo, SP, Brazil
- Universidade Federal de São Paulo (UNIFESP), Laboratório de Imunologia e Microbiologia (LIB), Setor de Biologia Molecular, Microbiologia e Imunologia, Departamento de Ciências Biológicas (DCB), Instituto de Ciências Ambientais, Químicas e Farmacêuticas (ICAQF), Diadema, SP, Brazil
| | - Ana Cristina Gales
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo, SP, Brazil
- Universidade Federal de São Paulo (UNIFESP), Laboratório Especial de Microbiologia Clínica (LEMC), Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo, SP, Brazil
| |
Collapse
|
9
|
Wei X, Liu M, Mo C, Tan R, Li S, Liang H, Li M. Molecular characteristics and antibiotic resistance mechanisms of multidrug-resistant Pseudomonas aeruginosa in Nanning, China. BMC Microbiol 2024; 24:478. [PMID: 39548364 PMCID: PMC11566251 DOI: 10.1186/s12866-024-03640-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024] Open
Abstract
PURPOSE This study analyzed antibiotic resistance mechanisms and molecular epidemiology of multidrug-resistant Pseudomonas aeruginosa (MDR-PA), aiming at providing clues for prevention and control of MDR-PA infections. METHODS The carbapenemase resistance genes (VIM, IMP, NDM, KPC, GES, OXA-40) of MDR-PA strains were detected by polymerase chain reaction (PCR) and sequencing. The efflux pump system (MexA, MexC, MexE, MexX), AmpC and OprD2 were detected by real-time fluorescent quantitative PCR (qPCR) in MDR-PA group and sensitive-Pseudomonas aeruginosa (S-PA) group. The homology analysis of MDR-PA strains was performed by multilocus sequence typing (MLST). RESULTS A total of 81 MDR-PA strains were collected from the First Affiliated Hospital of Guangxi Medical University from October 2022 to October 2023. Among the carbapenemase detected, the detection rate of NDM-1 was the highest, with a rate of 34.57% (28/81). MexA had a higher expression in MDR-PA group than that in S-PA group (P<0.0001). 81 MDR-PA strains belonged to 40 different ST types, mainly including ST1971, ST244, ST357 and ST308, and the predominant ST type was ST1971 (34.57%, 28/81). CONCLUSION The mechanisms of antibiotic resistance of MDR-PA strains mainly were the production of MBLS and higher expression of MexA in our study, and ST1971 was the predominant ST type of MDR-PA strains in our hospital, our findings may assist in prevention and control of MDR-PA infections.
Collapse
Affiliation(s)
- Xianzhen Wei
- Department of Clinical Laboratory, The First People's Hospital of Qinzhou, Qinzhou, Guangxi, China
| | - Mingbo Liu
- Department of Clinical Laboratory, The First People's Hospital of Qinzhou, Qinzhou, Guangxi, China
| | - Cuiju Mo
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, Guangxi, China
| | - Runxian Tan
- Department of Clinical Laboratory, The First People's Hospital of Qinzhou, Qinzhou, Guangxi, China
| | - Shan Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Hongjie Liang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, Guangxi, China
| | - Meng Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
- Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, Guangxi, China.
| |
Collapse
|
10
|
Yao S, Yu J, Zhang T, Xie J, Yan C, Ni X, Guo B, Cui C. Comprehensive analysis of distribution characteristics and horizontal gene transfer elements of bla NDM-1-carrying bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173907. [PMID: 38906294 DOI: 10.1016/j.scitotenv.2024.173907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/08/2024] [Accepted: 06/08/2024] [Indexed: 06/23/2024]
Abstract
The worldwide dissemination of New Delhi metallo-β-lactamase-1 (NDM-1), which mediates resistance to almost all clinical β-lactam antibiotics, is a major public health problem. The global distribution, species, sources, and potential transfer risk of blaNDM-1-carrying bacteria are unclear. Results of a comprehensive analysis of literature in 2010-2022 showed that a total of 6002 blaNDM-1 carrying bacteria were widely distributed around 62 countries with a high trend in the coastal areas. Opportunistic pathogens or pathogens like Klebsiella sp., Escherichia sp., Acinetobacter sp. and Pseudomonas sp. were the four main species indicating the potential microbial risk. Source analysis showed that 86.45 % of target bacteria were isolated from the source of hospital (e.g., Hospital patients and wastewater) and little from surface water (5.07 %) and farms (3.98 %). A plasmid-encoded blaNDM-1Acinetobacter sp. with the resistance mechanisms of antibiotic efflux pump, antibiotic target change and antibiotic degradation was isolated from the wastewater of a typical tertiary hospital. Insertion sequences (IS3 and IS30) located in the adjacent 5 kbp of blaNDM-1-bleMBL gene cluster indicating the transposon-mediated horizontal gene transfer risk. These results showed that the worldwide spread of blaNDM-1-carrying bacteria and its potential horizontal gene transfer risk deserve good control.
Collapse
Affiliation(s)
- Shijie Yao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaqin Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tianyang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jianhao Xie
- Children's Hospital of Fudan University, Shanghai 200233, China
| | - Chicheng Yan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuan Ni
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bingbing Guo
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Shanghai environmental protection key laboratory on environmental standard and risk management of chemical pollutants, East China University of Science & Technology, Shanghai 200237, China.
| |
Collapse
|
11
|
Das BJ, Singha KM, Wangkheimayum J, Chanda DD, Bhattacharjee A. Occurrence of blaOXA-116 Carbapenemase in Escherichia coli ST2519 of Clinical Origin: A Report from Northeast India. Microb Drug Resist 2024; 30:399-406. [PMID: 39093870 DOI: 10.1089/mdr.2024.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Carbapenem-resistant Escherichia coli pose a significant threat to global public health due to the dearth of available treatment options, resulting in infections with high mortality and morbidity. The study aimed to investigate the mechanism of carbapenem resistance in a carbapenem non-susceptible E. coli isolate recovered from an urinary tract infection patient admitted to a tertiary referral hospital, through whole-genome sequencing using Illumina NovaSeq 6000 platform. Carbapenemase production followed by antibiotic susceptibility testing were performed following Clinical Laboratory Standard Institute guidelines. Polymerase chain reaction targeting carbapenemase genes was performed followed by an investigation of horizontal transferability. The Center for Genomic Epidemiology database was used to analyze the sequenced data. ST2519 E. coli BJD_EC1808 with a genome size of 5.8 Mb harbored Col440I plasmid and a chromosomally located blaOXA-116 gene with an IS18 element upstream, along with multiple antibiotic resistance genes conferring clinical resistance toward beta-lactams, aminoglycosides, amphenicols, sulfonamides, tetracyclines, trimethoprim, rifampin, macrolide, and streptogramin antibiotics and antiseptics. E. coli ST2519 harboring blaOXA-116 associated with a mobile genetic element exhibiting carbapenem resistance is a public health threat due to its limiting effect on the therapeutic usage of carbapenem and their dissemination into carbapenem non-susceptible phenotypes will contribute to carbapenem resistance burden and, therefore, warrants urgent monitoring and clinical intervention.
Collapse
Affiliation(s)
| | - K Melson Singha
- Department of Microbiology, Silchar Medical College and Hospital, Silchar, India
| | | | | | | |
Collapse
|
12
|
Sabtcheva S, Stoikov I, Ivanov IN, Donchev D, Lesseva M, Georgieva S, Teneva D, Dobreva E, Christova I. Genomic Characterization of Carbapenemase-Producing Enterobacter hormaechei, Serratia marcescens, Citrobacter freundii, Providencia stuartii, and Morganella morganii Clinical Isolates from Bulgaria. Antibiotics (Basel) 2024; 13:455. [PMID: 38786183 PMCID: PMC11117914 DOI: 10.3390/antibiotics13050455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Carbapenemase-producing Enterobacter spp. Serratia marcescens, Citrobacter freundii, Providencia spp., and Morganella morganii (CP-ESCPM) are increasingly identified as causative agents of nosocomial infections but are still not under systematic genomic surveillance. In this study, using a combination of whole-genome sequencing and conjugation experiments, we sought to elucidate the genomic characteristics and transferability of resistance genes in clinical CP-ESCPM isolates from Bulgaria. Among the 36 sequenced isolates, NDM-1 (12/36), VIM-4 (11/36), VIM-86 (8/36), and OXA-48 (7/36) carbapenemases were identified; two isolates carried both NDM-1 and VIM-86. The majority of carbapenemase genes were found on self-conjugative plasmids. IncL plasmids were responsible for the spread of OXA-48 among E. hormaechei, C. freundii, and S. marcescens. IncM2 plasmids were generally associated with the spread of NDM-1 in C. freundii and S. marcescens, and also of VIM-4 in C. freundii. IncC plasmids were involved in the spread of the recently described VIM-86 in P. stuartii isolates. IncC plasmids carrying blaNDM-1 and blaVIM-86 were observed too. blaNDM-1 was also detected on IncX3 in S. marcescens and on IncT plasmid in M. morganii. The significant resistance transfer rates we observed highlight the role of the ESCPM group as a reservoir of resistance determinants and stress the need for strengthening infection control measures.
Collapse
Affiliation(s)
- Stefana Sabtcheva
- Laboratory for Clinical Microbiology, National Oncology Center, 1797 Sofia, Bulgaria; (I.S.); (S.G.)
| | - Ivan Stoikov
- Laboratory for Clinical Microbiology, National Oncology Center, 1797 Sofia, Bulgaria; (I.S.); (S.G.)
- Department of Microbiology, National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria; (I.N.I.); (D.D.); (D.T.); (E.D.); (I.C.)
| | - Ivan N. Ivanov
- Department of Microbiology, National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria; (I.N.I.); (D.D.); (D.T.); (E.D.); (I.C.)
| | - Deyan Donchev
- Department of Microbiology, National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria; (I.N.I.); (D.D.); (D.T.); (E.D.); (I.C.)
| | - Magdalena Lesseva
- Department of Microbiology, University Multiprofile Hospital for Active Treatment and Emergency Medicine “N. I. Pirogov”, 1606 Sofia, Bulgaria;
| | - Sylvia Georgieva
- Laboratory for Clinical Microbiology, National Oncology Center, 1797 Sofia, Bulgaria; (I.S.); (S.G.)
| | - Deana Teneva
- Department of Microbiology, National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria; (I.N.I.); (D.D.); (D.T.); (E.D.); (I.C.)
| | - Elina Dobreva
- Department of Microbiology, National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria; (I.N.I.); (D.D.); (D.T.); (E.D.); (I.C.)
| | - Iva Christova
- Department of Microbiology, National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria; (I.N.I.); (D.D.); (D.T.); (E.D.); (I.C.)
| |
Collapse
|
13
|
Raddaoui A, Mabrouk A, Chebbi Y, Frigui S, Salah Abbassi M, Achour W, Thabet L. Co-occurrence of blaNDM-1 and blaOXA-23 in carbapenemase-producing Acinetobacter baumannii belonging to high-risk lineages isolated from burn patients in Tunisia. J Appl Microbiol 2024; 135:lxae039. [PMID: 38346864 DOI: 10.1093/jambio/lxae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/10/2024] [Accepted: 02/09/2024] [Indexed: 03/21/2024]
Abstract
AIMS Carbapenem-resistant Acinetobacter baumannii (CR-Ab) is an important cause of infections in burn patients. This study aimed to characterize the antimicrobial susceptibility pattern of CR-Ab isolated from burns in Burn Intensive Care Unit (BICU) of the Trauma and Burn Centre of Ben Arous, to determine the prevalence of β-lactamase-encoding genes and to search eventual genetic relatedness of CR-Ab strains. METHODS AND RESULTS From 15 December 2016 to 2 April 2017, all nonduplicated CR-Ab isolated in burn patients in the BICU were screened by simplex Polymerase Chain Reaction (PCR) for the class A, B, C, and D β-lactamase genes. Sequencing was performed for NDM gene only. Genetic relatedness was determined by using pulsed field gel electrophoresis (PFGE) and by multilocus sequence typing. During the study period, 34 strains of CR-Ab were isolated in burns, mainly in blood culture (n = 14) and central vascular catheter (n = 10). CR-Ab strains were susceptible to colistin but resistant to amikacin (91%), ciprofloxacin (100%), rifampicin (97%), and trimethoprim-sulfamethoxazole (100%). All strains harbored blaOXA-51-like and blaOXA-23 genes, only or associated to blaGES (n = 26; 76%), blaADC (n = 20; 59%), blaPER-1 (n = 6; 18%) or/and blaNDM-1 (n = 3; 9%). PFGE identified 16 different clusters and revealed that most strains belonged to one major cluster A (n = 15; 44.1%). Among NDM-1 isolates, two were clonally related in PFGE and belonged to two single locus variant sequence type ST-6 and ST-85. CONCLUSIONS This is the first description of clonally related NDM-1 and OXA-23-producing A. baumannii strains in the largest Tunisian BICU associated with two single locus variant sequence types ST6 and ST85.
Collapse
Affiliation(s)
- Anis Raddaoui
- Laboratory Ward, National Bone Marrow Transplant Center, 1006 Tunis, Tunisia
- Faculty of Medicine of Tunis, LR18ES39, University of Tunis El Manar, 1006 Tunis, Tunisia
| | - Aymen Mabrouk
- Laboratory Ward, National Bone Marrow Transplant Center, 1006 Tunis, Tunisia
- Faculty of Medicine of Tunis, LR18ES39, University of Tunis El Manar, 1006 Tunis, Tunisia
| | - Yosra Chebbi
- Laboratory Ward, National Bone Marrow Transplant Center, 1006 Tunis, Tunisia
- Faculty of Medicine of Tunis, LR18ES39, University of Tunis El Manar, 1006 Tunis, Tunisia
| | - Siwar Frigui
- Laboratory Ward, National Bone Marrow Transplant Center, 1006 Tunis, Tunisia
- Faculty of Medicine of Tunis, LR18ES39, University of Tunis El Manar, 1006 Tunis, Tunisia
| | - Mohamed Salah Abbassi
- Faculty of Medicine of Tunis, Laboratory of Antibiotic Resistance LR99ES09, University of Tunis El Manar, 1006 Tunis, Tunisia
- Institute of Veterinary Research of Tunisia, University of Tunis El Manar, 1006 Tunis, Tunisia
| | - Wafa Achour
- Laboratory Ward, National Bone Marrow Transplant Center, 1006 Tunis, Tunisia
- Faculty of Medicine of Tunis, LR18ES39, University of Tunis El Manar, 1006 Tunis, Tunisia
| | - Lamia Thabet
- Laboratory Ward, Traumatology and Great Burned Center, 2074 Ben Arous, Tunisia
| |
Collapse
|
14
|
Rezzoug I, Emeraud C, Girlich D, Creton E, Naas T, Bonnin RA, Dortet L. Characterization of VIM-29 and VIM-86, two VIM-1 variants isolated in multidrug-resistant Enterobacterales in France. J Antimicrob Chemother 2024; 79:683-685. [PMID: 38197500 DOI: 10.1093/jac/dkad400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Affiliation(s)
- Inès Rezzoug
- Department of Bacteriology-Hygiene, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
- INSERM UMR 1184, Paris-Saclay University, Le Kremlin-Bicêtre, France
- French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France
- Faculty of Medicine, Paris-Saclay University, Le Kremlin-Bicêtre, France
| | - Cécile Emeraud
- Department of Bacteriology-Hygiene, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
- INSERM UMR 1184, Paris-Saclay University, Le Kremlin-Bicêtre, France
- French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France
- Faculty of Medicine, Paris-Saclay University, Le Kremlin-Bicêtre, France
| | - Delphine Girlich
- INSERM UMR 1184, Paris-Saclay University, Le Kremlin-Bicêtre, France
- Faculty of Medicine, Paris-Saclay University, Le Kremlin-Bicêtre, France
| | - Elodie Creton
- French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France
| | - Thierry Naas
- Department of Bacteriology-Hygiene, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
- INSERM UMR 1184, Paris-Saclay University, Le Kremlin-Bicêtre, France
- French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France
- Faculty of Medicine, Paris-Saclay University, Le Kremlin-Bicêtre, France
| | - Remy A Bonnin
- Department of Bacteriology-Hygiene, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
- INSERM UMR 1184, Paris-Saclay University, Le Kremlin-Bicêtre, France
- French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France
- Faculty of Medicine, Paris-Saclay University, Le Kremlin-Bicêtre, France
| | - Laurent Dortet
- Department of Bacteriology-Hygiene, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
- INSERM UMR 1184, Paris-Saclay University, Le Kremlin-Bicêtre, France
- French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France
- Faculty of Medicine, Paris-Saclay University, Le Kremlin-Bicêtre, France
| |
Collapse
|
15
|
Chen R, Li C, Ge H, Qiao J, Fang L, Liu C, Gou J, Guo X. Difference analysis and characteristics of incompatibility group plasmid replicons in gram-negative bacteria with different antimicrobial phenotypes in Henan, China. BMC Microbiol 2024; 24:64. [PMID: 38373913 PMCID: PMC10875880 DOI: 10.1186/s12866-024-03212-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 02/02/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Multi-drug-resistant organisms (MDROs) in gram-negative bacteria have caused a global epidemic, especially the bacterial resistance to carbapenem agents. Plasmid is the common vehicle for carrying antimicrobial resistance genes (ARGs), and the transmission of plasmids is also one of the important reasons for the emergence of MDROs. Different incompatibility group plasmid replicons are highly correlated with the acquisition, dissemination, and evolution of resistance genes. Based on this, the study aims to identify relevant characteristics of various plasmids and provide a theoretical foundation for clinical anti-infection treatment. METHODS 330 gram-negative strains with different antimicrobial phenotypes from a tertiary hospital in Henan Province were included in this study to clarify the difference in incompatibility group plasmid replicons. Additionally, we combined the information from the PLSDB database to elaborate on the potential association between different plasmid replicons and ARGs. The VITEK mass spectrometer was used for species identification, and the VITEK-compact 2 automatic microbial system was used for the antimicrobial susceptibility test (AST). PCR-based replicon typing (PBRT) detected the plasmid profiles, and thirty-three different plasmid replicons were determined. All the carbapenem-resistant organisms (CROs) were tested for the carbapenemase genes. RESULTS 21 plasmid replicon types were detected in this experiment, with the highest prevalence of IncFII, IncFIB, IncR, and IncFIA. Notably, the detection rate of IncX3 plasmids in CROs is higher, which is different in strains with other antimicrobial phenotypes. The number of plasmid replicons they carried increased with the strain resistance increase. Enterobacterales took a higher number of plasmid replicons than other gram-negative bacteria. The same strain tends to have more than one plasmid replicon type. IncF-type plasmids tend to be associated with MDROs. Combined with PLSDB database analysis, IncFII and IncX3 are critical platforms for taking blaKPC-2 and blaNDM. CONCLUSIONS MDROs tend to carry more complex plasmid replicons compared with non-MDROs. The plasmid replicons that are predominantly prevalent and associated with ARGs differ in various species. The wide distribution of IncF-type plasmids and their close association with MDROs should deserve our attention. Further investigation into the critical role of plasmids in the carriage, evolution, and transmission of ARGs is needed.
Collapse
Affiliation(s)
- Ruyan Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chenyu Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haoyu Ge
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Qiao
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Fang
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Cailin Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianjun Gou
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Xiaobing Guo
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
16
|
Hamed SM, Mohamed HO, Ashour HM, Fahmy LI. Comparative genomic analysis of strong biofilm-forming Klebsiella pneumoniae isolates uncovers novel IS Ecp1-mediated chromosomal integration of a full plasmid-like sequence. Infect Dis (Lond) 2024; 56:91-109. [PMID: 37897710 DOI: 10.1080/23744235.2023.2272624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND The goal of the current study was to elucidate the genomic background of biofilm formation in Klebsiella pneumoniae. METHODS Clinical isolates were screened for biofilm formation using the crystal violet assay. Antimicrobial resistance (AMR) profiles were assessed by disk diffusion and broth microdilution tests. Biofilm formation was correlated to virulence and resistance genes screened by PCR. Draft genomes of three isolates that form strong biofilm were generated by Illumina sequencing. RESULTS Only the siderophore-coding gene iutA was significantly associated with more pronounced biofilm formation. ST1399-KL43-O1/O2v1 and ST11-KL15-O4 were assigned to the multidrug-resistant strain K21 and the extensively drug-resistant strain K237, respectively. ST1999-KL38-O12 was assigned to K57. Correlated with CRISPR/Cas distribution, more plasmid replicons and prophage sequences were identified in K21 and K237 compared to K57. The acquired AMR genes (blaOXA-48, rmtF, aac(6')-Ib and qnrB) and (blaNDM-1, blaCTX-M, aph(3')-VI, qnrS, and aac(6')-Ib-cr) were found in K237 and K21, respectively. The latter showed a novel ISEcp1-mediated chromosomal integration of replicon type IncM1 plasmid-like structure harboring blaCTX-M-14 and aph(3')-VI that uniquely interrupted rcsC. The plasmid-mediated heavy metal resistance genes merACDEPRT and arsABCDR were spotted in K21, which also exclusively carried the acquired virulence genes mrkABCDF and the hypervirulence-associated genes iucABCD-iutA, and rmpA/A2. Pangenome analysis revealed NTUH-K2044 accessory genes most frequently shared with K21. CONCLUSIONS While less virulent to Galleria mellonella than ST1999 (K57), the strong biofilm former, multidrug-resistant, NDM-producer K. pneumoniae K21 (ST1399-KL43-O1/O2v1) carries a novel chromosomally integrated plasmid-like structure and hypervirulence-associated genes and represents a serious threat to countries in the area.
Collapse
Affiliation(s)
- Samira M Hamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Hend O Mohamed
- Department of Biological Control Research, Plant Protection Research Institute, Agricultural Research Center, Giza, Egypt
| | - Hossam M Ashour
- Department of Integrative Biology, College of Arts and Sciences, University of South Florida, St. Petersburg, FL, USA
| | - Lamiaa I Fahmy
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| |
Collapse
|
17
|
Moussa J, Nassour E, Tahan E, El Chaar M, Jisr T, Tokajian S. Carbapenem resistance determinants and their transmissibility among clinically isolated Enterobacterales in Lebanon. J Infect Public Health 2023; 16:1947-1953. [PMID: 37871361 DOI: 10.1016/j.jiph.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/13/2023] [Accepted: 10/02/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND The occurrence of carbapenem-resistant bacterial infections has increased significantly over the years with Gram-negative bacteria exhibiting the broadest resistance range. In this study we aimed to investigate the genomic characteristics of clinical carbapenem-resistant Enterobacterales (CRE). METHODS Seventeen representative multi-drug resistant (MDR) isolates from a hospital setting showing high level of resistance to carbapenems (ertapenem, meropenem and imipenem) were chosen for further characterization through whole-genome sequencing. Resistance mechanisms and transferability of plasmids carrying carbapenemase-encoding genes were also determined in silico and through conjugative mating assays. RESULTS We detected 18 different β-lactamases, including four carbapenemases (blaNDM-1, blaNDM-5, blaNDM-7, blaOXA-48) on plasmids with different Inc groups. The combined results from PBRT and in silico replicon typing revealed 20 different replicons linked to plasmids ranging in size between 80 and 200 kb. The most prevalent Inc groups were IncFIB(K) and IncM. OXA-48, detected on 76-kb IncM1 conjugable plasmid, was the most common carbapenemase. We also detected other conjugative plasmids with different carbapenemases confirming the role of horizontal gene transfer in the dissemination of antimicrobial resistance genes. CONCLUSION Our findings verified the continuing spread of carbapenemases in Enterobacterales and revealed the types of mobile elements circulating in a hospital setting and contributing to the spread of resistance determinants. The occurrence and transmission of plasmids carrying carbapenemase-encoding genes call for strengthening active surveillance and prevention efforts to control antimicrobial resistance dissemination in healthcare settings.
Collapse
Affiliation(s)
- Jennifer Moussa
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos 1401, Lebanon
| | - Elie Nassour
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos 1401, Lebanon
| | - Elio Tahan
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos 1401, Lebanon
| | - Mira El Chaar
- Faculty of Health Sciences, University of Balamand, Beirut, Lebanon
| | - Tamima Jisr
- Laboratory Medicine Department, Makassed General Hospital, Lebanon
| | - Sima Tokajian
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos 1401, Lebanon.
| |
Collapse
|
18
|
Teng J, Imani S, Zhou A, Zhao Y, Du L, Deng S, Li J, Wang Q. Combatting resistance: Understanding multi-drug resistant pathogens in intensive care units. Biomed Pharmacother 2023; 167:115564. [PMID: 37748408 DOI: 10.1016/j.biopha.2023.115564] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023] Open
Abstract
The escalating misuse and excessive utilization of antibiotics have led to the widespread dissemination of drug-resistant bacteria, posing a significant global healthcare crisis. Of particular concern is the increasing prevalence of multi-drug resistant (MDR) opportunistic pathogens in Intensive Care Units (ICUs), which presents a severe threat to public health and contributes to substantial morbidity and mortality. Among them, MDR ESKAPE pathogens account for the vast majority of these opportunistic pathogens. This comprehensive review provides a meticulous analysis of the current prevalence landscape of MDR opportunistic pathogens in ICUs, especially in ESKAPE pathogens, illuminating their resistance mechanisms against commonly employed first-line antibiotics, including polymyxins, carbapenems, and tigecycline. Furthermore, this review explores innovative strategies aimed at preventing and controlling the emergence and spread of resistance. By emphasizing the urgent need for robust measures to combat nosocomial infections caused by MDR opportunistic pathogens in ICUs, this study serves as an invaluable reference for future investigations in the field of antibiotic resistance.
Collapse
Affiliation(s)
- Jianying Teng
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, PR China; The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang 310000, PR China
| | - Saber Imani
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, PR China
| | - Aiping Zhou
- Department of Laboratory Medicine, Shanghai East Hospital, School of Medicine, Tongji University, 1800 Yuntai Road, Shanghai, PR China
| | - Yuheng Zhao
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, PR China
| | - Lailing Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, PR China
| | - Shuli Deng
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang 310000, PR China.
| | - Jun Li
- College of Food Science and Engineering, Jiangxi Agricultural University, 1225 Zhimin Avenue, Nanchang, Jiangxi Province, PR China.
| | - Qingjing Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, PR China.
| |
Collapse
|
19
|
Zhang Y, Xu D, He Z, Han J, Qu D. Characterization and fitness cost analysis of two plasmids carrying different subtypes of bla NDM in aquaculture farming. Food Microbiol 2023; 115:104327. [PMID: 37567620 DOI: 10.1016/j.fm.2023.104327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 08/13/2023]
Abstract
In recent years, the blaNDM gene, which mediate resistance to carbapenems, has disseminated all over the world, and has also been detected in animals. Understanding the dissemination and accumulation of antibiotic resistance genes (ARGs) in a human-impacted environment is essential to solve the food safety problems caused by antibiotics. In this study, two strains of carbapenem bacteria carrying blaNDM were screened from 244 strains isolated from two T. sinensis farms in Zhejiang province, China. After their plasmids were isolated and sequenced, their structure and gene environment were analyzed and the mechanism of blaNDM gene transfer was explored. The study measured the fitness cost of plasmids carrying different blaNDM subtypes by four biological characteristics experiments. The results showed that the fitness cost of IncC plasmid carrying blaNDM-1 was higher than that of IncX3 plasmid carrying blaNDM-5. Furthermore, the real-time PCR showed that the decrease of transcription level of fitness-related genes lead to the different fitness cost of plasmids carrying different blaNDM subtypes. Fitness of many blaNDM-harboring plasmids enhanced the further dissemination of this gene and increase the risk of blaNDM gene spreading in aquatic environment, and thus further investigation of carbapenem-resistant bacterias among food animals are in urgent need.
Collapse
Affiliation(s)
- Yaru Zhang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Dingting Xu
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 311100, Zhejiang, China
| | - Ze He
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Jianzhong Han
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Daofeng Qu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
20
|
Rao A, Naha S, Bhattacharjee A, Chattopadhyay P, Dutta S, Basu S. Plasmid-mediated AmpC in Klebsiella pneumoniae and Escherichia coli from septicaemic neonates: diversity, transmission and phenotypic detection. J Glob Antimicrob Resist 2023; 34:9-14. [PMID: 37328061 DOI: 10.1016/j.jgar.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 05/17/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023] Open
Abstract
OBJECTIVES Presence and dissemination of plasmid-mediated AmpC genes (pAmpCs) have made bacteria cephalosporin-resistant and assessment of their prevalence and diversity is essential. Coexistence of pAmpCs with New Delhi metallo-β-lactamase (blaNDM) has facilitated their spread and NDM interferes with correct pAmpC phenotypic identification. METHODS Assessment of pAmpCs in different species and sequence types (STs), co-transmission with blaNDM and phenotypic detection were analysed among Klebsiella pneumoniae (n = 256) and Escherichia coli (n = 92) isolated from septicaemic neonates over 13 years. RESULTS pAmpCs were present in 9% (30/348) of strains, 5% in K. pneumoniae and 18% in E. coli. pAmpC genes (blaCMY and blaDHA) were detected, blaCMY-42 and blaDHA-1 variants being predominant. Strains were resistant to most antimicrobials tested. blaCMY and blaDHA were dominant among E. coli (14/17) and K. pneumoniae (9/13), respectively. pAmpC-bearing strains belonged to diverse STs, including epidemic K. pneumoniae ST11 and ST147. Some strains co-harboured carbapenemase genes, blaNDM (17/30) and blaOXA-48 (5/30). In 40% (12/30) of strains, pAmpC genes were transferred by conjugation, of which 8/12 exhibited co-transfer with blaNDM. pAmpCs were frequently found in replicons as follows: blaDHA-1 with IncHIB-M, blaCMY-4 with IncA/C, blaCMY-6 with IncA/C, and blaCMY-42 with IncFII. The combination disk-diffusion test correctly detected pAmpC in 77% (23/30) of pAmpC-bearing strains. However, correct detection of pAmpC was higher in strains that did not harbour blaNDM vs. those with blaNDM (85% vs. 71%). CONCLUSION Presence of pAmpCs along with carbapenemases, linkage with multiple STs, and replicon types indicated their potential for spread. pAmpCs can go undetected in the presence of blaNDM; hence, regular surveillance is required.
Collapse
Affiliation(s)
- Ankur Rao
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Sharmi Naha
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Amrita Bhattacharjee
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Pinaki Chattopadhyay
- Department of Neonatology, Institute of Post-Graduate Medical Education and Research and SSKM Hospital, Kolkata, India
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Sulagna Basu
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India.
| |
Collapse
|
21
|
Yang Y, Liu H, Chen L, Mao M, Zhang X, Zhou L, Duan D, Li X, Zhou H. Molecular characterization and comparison of bla NDM-1-carrying and bla NDM-5-harboring IncX3-type plasmids in carbapenem-resistant Klebsiella pneumoniae. Microbiol Spectr 2023; 11:e0102823. [PMID: 37623430 PMCID: PMC10581223 DOI: 10.1128/spectrum.01028-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/14/2023] [Indexed: 08/26/2023] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP), which harbors the bla NDM plasmid, has been reported extensively and is considered a global threat clinically. However, characterization and comparisons of bla NDM-1-carrying and bla NDM-5-harboring IncX3-type plasmids in CRKP are lacking. Here, we systematically compared the differences in the characteristics, genetic backgrounds, transferability, and fitness costs between bla NDM-1-carrying and bla NDM-5-carrying plasmids in K. pneumoniae isolates. Fifteen NDM-producing CRKP isolates were recovered from 1376 CRKP isolates between 2019 and 2021, of which 4 were positive for bla NDM-1 and 11 were positive for bla NDM-5. All strains were highly resistant to carbapenem but remained susceptible to tigecycline and colistin. Core-genome-based phylogenetic analyses revealed that these strains were not clonally related. Whole-genome sequencing showed that bla NDM-1 and bla NDM-5 were located on ~54 kb and ~46 kb IncX3-type plasmids, respectively. The backbone, genetic context, and fitness cost of the bla NDM-1-bearing plasmid were highly similar to those of the bla NDM-5-carrying plasmid, but the transferability of the bla NDM-1-positive plasmid was greater than that of the bla NDM-5-positive plasmid. In conclusion, the transmission of bla NDM-1 or bla NDM-5 is mainly disseminated by plasmids rather than clonal spread. The high transfer frequency of the IncX3 plasmid facilitates the prevalence and dissemination of NDM-KP among Enterobacteriaceae. IMPORTANCE The emergence of NDM-producing Klebsiella pneumoniae is a severe challenge to public health. The widespread presence of bla NDM-1 and bla NDM-5 in Enterobacteriaceae has aroused broad concern. In this study, we performed molecular characterization of bla NDM-1-carrying and bla NDM-5-harboring IncX3-type plasmids in carbapenem-resistant Klebsiella pneumoniae (CRKP) and compared their phenotypes between strains with different bla NDM subtype. Our findings highlight the importance of IncX3-type plasmids in the transfer of the bla NDM-1 and bla NDM-5 genes and demonstrate that the bla NDM-1 plasmid possesses higher transfer ability. These data will provide important insights into carbapenem resistance gene transfer via plasmids and their further spread in clinical settings.
Collapse
Affiliation(s)
- Yunxing Yang
- Department of Clinical Laboratory, Affiliated Hangzhou First People’s Hospital, Zhejiang School of Medicine, Hangzhou, China
| | - Haiyang Liu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Lingxia Chen
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Minjie Mao
- Department of Clinical Laboratory, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Xiaofan Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Longjie Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Darong Duan
- Department of Laboratory Medicine, Huangyan Hospital of Wenzhou Medical University, Taizhou First People’ s Hospital, Taizhou, Zhejiang, China
| | - Xi Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Hua Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
22
|
Tan MF, Li HQ, Yang Q, Zhang FF, Tan J, Zeng YB, Wei QP, Huang JN, Wu CC, Li N, Kang ZF. Prevalence and antimicrobial resistance profile of bacterial pathogens isolated from poultry in Jiangxi Province, China from 2020 to 2022. Poult Sci 2023; 102:102830. [PMID: 37343345 PMCID: PMC10404785 DOI: 10.1016/j.psj.2023.102830] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/22/2023] [Accepted: 05/31/2023] [Indexed: 06/23/2023] Open
Abstract
Poultry is one of the most commonly farmed species and the most widespread meat industries. However, numerous poultry flocks have been long threatened by pathogenic bacterial infections, especially antimicrobial resistant pathogens. Here the prevalence and the antimicrobial resistance (AMR) profiles of bacterial pathogens isolated from poultry in Jiangxi Province, China were investigated. From 2020 to 2022, 283 tissue and liquid samples were collected from clinically diseased poultry, including duck, chicken, and goose, with an overall positive isolation rate of 62.90%. Among all the 219 bacterial isolates, 29 strains were gram-positive and 190 strains were gram-negative. Major bacteria species involved were avian pathogenic Escherichia coli (APEC; 57.53%; 126/219), followed by Salmonella spp. (11.87%, 26/219), Pasteurella multocida (6.39%, 14/219), and Staphylococcus spp. (1.22%, 11/219). Antimicrobial susceptibility testing showed the APEC isolates displayed considerably higher levels of AMR than the Salmonella and P. multocida isolates. The APEC isolates showed high resistance rate to amoxicillin (89.68%), ampicillin (89.68%), and florfenicol (83.33%), followed by streptomycin (75.40%), cefradine (65.87%), and enrofloxacin (64.29%). Multidrug-resistant isolates were observed in APEC (99.21%), Salmonella spp. (96.16%), and P. multocida (85.71%), and nearly 3 quarters of the APEC strains were resistant to 7 or more categories of antimicrobial drugs. Moreover, blaNDM genes associated with carbapenemase resistance and mcr-1 associated with colisitin resistance were detected in the APEC isolates. Our findings could provide evidence-based guidance for veterinarians to prevent and control bacterial diseases, and be helpful for monitoring the emerging and development of AMR in poultry bacterial pathogens.
Collapse
Affiliation(s)
- Mei-Fang Tan
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Hai-Qin Li
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Qun Yang
- Institute of Agricultural Engineering, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Fan-Fan Zhang
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Jia Tan
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Yan-Bing Zeng
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Qi-Peng Wei
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Jiang-Nan Huang
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Cheng-Cheng Wu
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Na Li
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Zhao-Feng Kang
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China.
| |
Collapse
|
23
|
Meletis G, Malousi A, Tychala A, Kassomenaki A, Vlachodimou N, Mantzana P, Metallidis S, Skoura L, Protonotariou E. Probable Three-Species In Vivo Transfer of blaNDM-1 in a Single Patient in Greece: Occurrence of NDM-1-Producing Klebsiella pneumoniae, Proteus mirabilis, and Morganella morganii. Antibiotics (Basel) 2023; 12:1206. [PMID: 37508302 PMCID: PMC10376024 DOI: 10.3390/antibiotics12071206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
NDM carbapenemase-encoding genes disseminate commonly among Enterobacterales through transferable plasmids carrying additional resistance determinants. Apart from the intra-species dissemination, the inter-species exchange of plasmids seems to play an additional important role in the spread of blaNDM. We here present the genetics related to the isolation of three species (Klebsiella pneumoniae, Proteus mirabilis, and Morganella morganii) harboring the blaNDM-1 gene from a single patient in Greece. Bacterial identification and antimicrobial susceptibility testing were performed using the Vitek2. Whole genome sequencing and bioinformatic tools were used to identify resistance genes and plasmids. BlaNDM-1 harboring plasmids were found in all three isolates. Moreover, the plasmid constructs of the respective incomplete or circular contigs showed that the blaNDM-1 and its neighboring genes form a cluster that was found in all isolates. Our microbiological findings, together with the patient's history, suggest the in vivo transfer of the blaNDM-1-containing cluster through three different species in a single patient.
Collapse
Affiliation(s)
- Georgios Meletis
- Department of Microbiology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Andigoni Malousi
- Laboratory of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Areti Tychala
- Department of Microbiology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Angeliki Kassomenaki
- Department of Microbiology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Nikoletta Vlachodimou
- Department of Microbiology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Paraskevi Mantzana
- Department of Microbiology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Simeon Metallidis
- First Department of Internal Medicine, Infectious Diseases Division, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Lemonia Skoura
- Department of Microbiology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Efthymia Protonotariou
- Department of Microbiology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| |
Collapse
|
24
|
Lascols C, Cherney B, Conley AB, Rishishwar L, Crawford MA, Morse SA, Fisher DJ, Anderson K, Hodge DR, Pillai SP, Hughes MA, Khan E, Sue D. Investigation of multidrug-resistant plasmids from carbapenemase-producing Klebsiella pneumoniae clinical isolates from Pakistan. Front Microbiol 2023; 14:1192097. [PMID: 37455731 PMCID: PMC10340517 DOI: 10.3389/fmicb.2023.1192097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Objectives The study aim was to investigate multidrug-resistant (MDR) plasmids from a collection of 10 carbapenemase-producing Klebsiella pneumoniae clinical isolates identified within the same healthcare institution in Pakistan. Full characterization of the MDR plasmids including structure, typing characteristics, and AMR content as well as determination of their plasmid-based antimicrobial susceptibility profiles were carried out. Methods Plasmids were isolated from 10 clinical isolates of Klebsiella pneumoniae, and from a corresponding set of Escherichia coli transconjugants, then sequenced using Nanopore/Illumina technology to generate plasmid hybrid assemblies. Full characterization of MDR plasmids, including determination of next generation sequencing (NGS)-based AMR profiles, plasmid incompatibility groups, and types, was carried out. The structure of MDR plasmids was analyzed using the Galileo AMR platform. For E. coli transconjugants, the NGS-based AMR profiles were compared to NGS-predicted AMR phenotypes and conventional broth microdilution (BMD) antimicrobial susceptibility testing (AST) results. Results All carbapenemase-producing K. pneumoniae isolates (carrying either blaNDM-1, or/and blaOXA-48) carried multiple AMR plasmids encoding 34 antimicrobial resistance genes (ARGs) conferring resistance to antimicrobials from 6 different classes. The plasmid incompatibility groups and types identified were: IncC (types 1 and 3), IncFIA (type 26) IncFIB, IncFII (types K1, K2, K7, and K9), IncHI1B, and IncL. None of the blaNDM-1 and blaESBL-plasmids identified in this study were previously described. Most blaNDM-1-plasmids shared identical AMR regions suggesting potential genetic material/plasmid exchange between K. pneumoniae isolates of this collection. The majority of NGS-based AMR profiles from the E. coli transconjugants correlated well with both NGS-based predicted and conventional AST results. Conclusion This study highlights the complexity and diversity of the plasmid-based genetic background of carbapenemase-producing clinical isolates from Pakistan. This study emphasizes the need for characterization of MDR plasmids to determine their complete molecular background and monitor AMR through plasmid transmission between multi-resistant bacterial pathogens.
Collapse
Affiliation(s)
- Christine Lascols
- National Center for Emerging and Zoonotic Infectious DiseasesCenters for Disease Control and Prevention, Atlanta, GA, United States
| | - Blake Cherney
- National Center for Emerging and Zoonotic Infectious DiseasesCenters for Disease Control and Prevention, Atlanta, GA, United States
| | | | | | - Matthew A. Crawford
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | | | - Debra J. Fisher
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Kevin Anderson
- Science and Technology Directorate, U.S. Department of Homeland Security, Washington, DC, United States
| | - David R. Hodge
- Science and Technology Directorate, U.S. Department of Homeland Security, Washington, DC, United States
| | - Segaran P. Pillai
- Office of the Commissioner, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Molly A. Hughes
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Erum Khan
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - David Sue
- National Center for Emerging and Zoonotic Infectious DiseasesCenters for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
25
|
Sahoo S, Sahoo RK, Dixit S, Behera DU, Subudhi E. NDM-5-carrying Klebsiella pneumoniae ST437 belonging to high-risk clonal complex (CC11) from an urban river in eastern India. 3 Biotech 2023; 13:139. [PMID: 37124981 PMCID: PMC10133422 DOI: 10.1007/s13205-023-03556-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/06/2023] [Indexed: 05/02/2023] Open
Abstract
In this study, we described the carbapenem bla NDM-5-carrying extensive drug-resistant (XDR) K. pneumoniae ST437 from an urban river water Kathajodi in Odisha, India. The presence of carbapenem and co-occurrence of other resistance determinants (bla NDM-5, bla CTX-M, bla SHV, and bla TEM), virulence factors (fimH, mrkD, entB, irp-1, and ybtS), and capsular serotype (K54) represent its pathogenic potential. The insertion sequence ISAba125 and the bleomycin resistance gene ble MBL at upstream and downstream, respectively, could play a significant role in the horizontal transmission of the bla NDM-5. Its biofilm formation ability contributes toward environmental protection and its survivability. MLST analysis assigned the isolate to ST437 and clonal lineage to ST11 (CC11) with a single locus variant. The ST437 K. pneumoniae, a global epidemic clone, has been reported in North America, Europe, and Asia. This work contributes in understanding of the mechanisms behind the spread of bla NDM-5 K. pneumoniae ST437 and demands extensive molecular surveillance of river and nearby hospitals for better community health. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03556-5.
Collapse
Affiliation(s)
- Saubhagini Sahoo
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to Be University), Kalinga Nagar, Ghatikia, Bhubaneswar, 751029 Odisha India
| | - Rajesh Kumar Sahoo
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to Be University), Kalinga Nagar, Ghatikia, Bhubaneswar, 751029 Odisha India
| | - Sangita Dixit
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to Be University), Kalinga Nagar, Ghatikia, Bhubaneswar, 751029 Odisha India
| | - Dibyajyoti Uttameswar Behera
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to Be University), Kalinga Nagar, Ghatikia, Bhubaneswar, 751029 Odisha India
| | - Enketeswara Subudhi
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to Be University), Kalinga Nagar, Ghatikia, Bhubaneswar, 751029 Odisha India
| |
Collapse
|
26
|
Fortunato G, Vaz-Moreira I, Gajic I, Manaia CM. Insight into phylogenomic bias of bla VIM-2 or bla NDM-1 dissemination amongst carbapenem-resistant Pseudomonas aeruginosa. Int J Antimicrob Agents 2023; 61:106788. [PMID: 36924802 DOI: 10.1016/j.ijantimicag.2023.106788] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/06/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023]
Abstract
OBJECTIVES Pseudomonas aeruginosa (P. aeruginosa) are ubiquitous opportunistic pathogens that combine intrinsic and acquired multidrug resistance phenotypes. Due to different types of acquired genes, carbapenem resistance has been expanding in this species. This study hypothesised that the spread of carbapenem resistance among P. aeruginosa is influenced by phylogenomic features, being distinct for different genes. METHODS To test this hypothesis, the genomes of P. aeruginosa harbouring blaVIM-2 or blaNDM-1 genes were compared. The blaVIM-2 gene was selected because, although frequent, it is almost restricted to this species and blaNDM-1 gene due to its wide interspecies distribution. A group of genomes harbouring the genes blaVIM-2 (n = 116) or blaNDM-1 (n = 27), available in GenBank, was characterised based on core phylogenomic analysis, functional categories in the accessory genome and mobile genetic elements flanking the selected genes. RESULTS Most blaVIM-2 gene hosts belonged to multilocus sequence types (ST) ST111 (n = 32 of 116) and ST233 (n = 27 of 116) and were reported in Europe (n = 75 of 116). The blaNDM-1 gene hosts were distributed by different STs (ST38, ST773, ST235, ST357 and ST654), frequently from Asia (n = 11 of 27). Significant differences in the prevalence of functional protein/enzyme annotations per number of accessory genomes were observed between blaVIM-2+ and blaNDM-1+. The blaVIM-2 gene was frequently inserted in the Tn402-like and Tn21 transposons family and rarely in IS6100, while blaNDM-1 gene was preferentially flanked by ISAba125 and bleMBL genes or associated with IS91 insertion sequence. CONCLUSION The hypothesis that carbapenem resistance gene acquisition is not random among phylogenomic lineages was confirmed, suggesting the importance of phylogeny in the dissemination of antibiotic resistance genes.
Collapse
Affiliation(s)
- Gianuario Fortunato
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Ivone Vaz-Moreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Ina Gajic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal.
| |
Collapse
|
27
|
Larrouy-Maumus G, Dortet L, Nix ID, Maier T, Oberheitmann B, Sparbier K, Kostrzewa M. Two-site study on performances of a commercially available MALDI-TOF MS-based assay for the detection of colistin resistance in Escherichia coli. Eur J Clin Microbiol Infect Dis 2023; 42:669-679. [PMID: 36973378 PMCID: PMC10172212 DOI: 10.1007/s10096-023-04587-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023]
Abstract
AbstractColistin is a last resort drug for the treatment of multiple drug-resistant (MDR) Gram-negative bacterial infections. Rapid methods to detect resistance are highly desirable. Here, we evaluated the performance of a commercially available MALDI-TOF MS-based assay for colistin resistance testing in Escherichia coli at two different sites. Ninety clinical E. coli isolates were provided by France and tested in Germany and UK using a MALDI-TOF MS-based colistin resistance assay. Lipid A molecules of the bacterial cell membrane were extracted using the MBT Lipid Xtract Kit™ (RUO; Bruker Daltonics, Germany). Spectra acquisition and evaluation were performed by the MBT HT LipidART Module of MBT Compass HT (RUO; Bruker Daltonics) on a MALDI Biotyper® sirius system (Bruker Daltonics) in negative ion mode. Phenotypic colistin resistance was determined by broth microdilution (MICRONAUT MIC-Strip Colistin, Bruker Daltonics) and used as a reference. Comparing the results of the MALDI-TOF MS-based colistin resistance assay with the data of the phenotypic reference method for the UK, sensitivity and specificity for the detection of colistin resistance were 97.1% (33/34) and 96.4% (53/55), respectively. Germany showed 97.1% (33/34) sensitivity and 100% (55/55) specificity for the detection of colistin resistance by MALDI-TOF MS. Applying the MBT Lipid Xtract™ Kit in combination with MALDI-TOF MS and dedicated software showed excellent performances for E. coli. Analytical and clinical validation studies must be performed to demonstrate the performance of the method as a diagnostic tool.
Collapse
|
28
|
Girlich D, Emeraud C, Vanparis O, Naas T, Bonnin RA, Dortet L. Uncommon close genetic environment responsible for weak expression of bla NDM-1 in Klebsiella pneumoniae of ST147. J Glob Antimicrob Resist 2023; 32:1-3. [PMID: 36521647 DOI: 10.1016/j.jgar.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Affiliation(s)
- Delphine Girlich
- INSERM UMR 1184-Team RESIST, Paris-Saclay University, Le Kremlin-Bicêtre, France
| | - Cécile Emeraud
- INSERM UMR 1184-Team RESIST, Paris-Saclay University, Le Kremlin-Bicêtre, France; Associated French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France; Department of Bacteriology-Hygiene, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Océane Vanparis
- Associated French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France; Department of Bacteriology-Hygiene, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Thierry Naas
- INSERM UMR 1184-Team RESIST, Paris-Saclay University, Le Kremlin-Bicêtre, France; Associated French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France; Department of Bacteriology-Hygiene, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Rémy A Bonnin
- INSERM UMR 1184-Team RESIST, Paris-Saclay University, Le Kremlin-Bicêtre, France; Associated French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France
| | - Laurent Dortet
- INSERM UMR 1184-Team RESIST, Paris-Saclay University, Le Kremlin-Bicêtre, France; Associated French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France; Department of Bacteriology-Hygiene, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France.
| |
Collapse
|
29
|
Zhang M, Yu Y, Wang Q, Chen R, Wang Y, Bai Y, Song Z, Lu X, Hao Y. Conjugation of plasmid harboring bla NDM-1 in a clinical Providencia rettgeri strain through the formation of a fusion plasmid. Front Microbiol 2023; 13:1071385. [PMID: 36687647 PMCID: PMC9845711 DOI: 10.3389/fmicb.2022.1071385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023] Open
Abstract
Providencia rettgeri has recently gained increased importance owing to the New Delhi metallo-β-lactamase (NDM) and other β-lactamases produced by its clinical isolates. These enzymes reduce the efficiency of antimicrobial therapy. Herein, we reported the findings of whole-genome sequence analysis and a comprehensive pan-genome analysis performed on a multidrug-resistant P. rettgeri 18004577 clinical strain recovered from the urine of a hospitalized patient in Shandong, China, in 2018. Providencia rettgeri 18004577 was found to have a genome assembly size of 4.6 Mb with a G + C content of 41%; a circular plasmid p18004577_NDM of 273.3 Kb, harboring an accessory multidrug-resistant region; and a circular, stable IncT plasmid p18004577_Rts of 146.2 Kb. Additionally, various resistance genes were identified in its genome, including bla NDM-1, bla OXA-10, bla PER-4, aph(3')-VI, ant(2'')-Ia, ant(3')-Ia, sul1, catB8, catA1, mph(E), and tet. Conjugation experiments and whole-genome sequencing revealed that the bla NDM-1 gene could be transferred to the transconjugant via the formation of pJ18004577_NDM, a novel hybrid plasmid. Based on the genetic comparison, the main possible formation process for pJ18004577_NDM was the insertion of the [ΔISKox2-IS26-ΔISKox2]-aph(3')-VI-bla NDM-1 translocatable unit module from p18004577_NDM into plasmid p18004577_Rts in the Russian doll insertion structure (ΔISKox2-IS26-ΔISKox2), which played a role similar to that of IS26 using the "copy-in" route in the mobilization of [aph(3')-VI]-bla NDM-1. The array, multiplicity, and diversity of the resistance and virulence genes in this strain necessitate stringent infection control, antibiotic stewardship, and periodic resistance surveillance/monitoring policies to preempt further horizontal and vertical spread of the resistance genes. Roary analysis based on 30 P. rettgeri strains pan genome identified 415 core, 756 soft core, 5,744 shell, and 12,967 cloud genes, highlighting the "close" nature of P. rettgeri pan-genome. After a comprehensive pan-genome analysis, representative biological information was revealed that included phylogenetic distances, presence or absence of genes across the P. rettgeri bacteria clade, and functional distribution of proteins. Moreover, pan-genome analysis has been shown to be an effective approach to better understand P. rettgeri bacteria because it helps develop various tailored therapeutic strategies based on their biological similarities and differences.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,Department of Clinical Laboratory, Liaocheng Second People’s Hospital, Liaocheng, Shandong, China
| | - Yanhua Yu
- Department of Clinical Laboratory, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Qian Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ran Chen
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yueling Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuanyuan Bai
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhen Song
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xinglun Lu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yingying Hao
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,*Correspondence: Yingying Hao,
| |
Collapse
|
30
|
Kumari M, Bhattarai NR, Rai K, Pandit TK, Khanal B. Multidrug-Resistant Acinetobacter: Detection of ESBL, MBL, bla NDM-1 Genotype, and Biofilm Formation at a Tertiary Care Hospital in Eastern Nepal. Int J Microbiol 2022; 2022:8168000. [PMID: 36536809 PMCID: PMC9759386 DOI: 10.1155/2022/8168000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/06/2022] [Accepted: 11/25/2022] [Indexed: 10/29/2023] Open
Abstract
Background The Acinetobacter species is an important hospital-acquired pathogen. The rapid development of resistance to multiple drugs and the ability to form biofilm make these bacteria more adaptable to survive in healthcare facilities, thus posing a challenge to their effective management. Objective This study aimed to characterize clinical isolates of Acinetobacter spp and to study their antimicrobial susceptibility patterns and ability to form biofilm. Resistant Acinetobacter was further analyzed for the detection of extended-spectrum β-lactamases (ESBLs), metallo β-lactamases (MBLs), carbapenemase production, and presence of blaNDM-1 gene. Materials and Methods A total of 324 Acinetobacter species were isolated from various clinical specimens which were submitted to the Department of Microbiology, B.P. Koirala Institute of Health Sciences, Dharan, Nepal, and were studied for antibiotic susceptibility testing, detection of ESBL and MBL production, and formerly biofilm formation was performed by standard microbiological methods. PCR was carried out to determine the presence of the blaNDM-1 gene. Results The predominant Acinetobacter species isolated was A calcoaceticus-baumannii Complex (Acb complex) 167 (51.5%). Among those, all A. species 128 (40%) were multidrug resistant (MDR). In which 13 (4.0%) were ESBL producers, 70 (61.9%) were MBL, and 12 (10.6%) were carbapenemases producers. The blaNDM1 gene was present in 33 isolates. Thirty-seven percent (121/324) of isolates formed biofilm. The majority of A. species were resistant to cefotaxime 73.8% (239) and cefepime 74.4% (241). A significant proportion of biofilm producers were MDR (p < 0.001). Conclusion Drug-resistant Acinetobacter formed a substantial proportion of this hospital's samples with a large presence of the bla NDM-1 gene. A matter of great concern is the association of multidrug-resistant phenotype with biofilm formation. This situation warranted stringent surveillance and adherence to infection prevention and control practices.
Collapse
Affiliation(s)
- Manisha Kumari
- Department of Microbiology, B. P. Koirala Institute of Health Sciences, Dharan, Nepal
| | - Narayan Raj Bhattarai
- Department of Microbiology, B. P. Koirala Institute of Health Sciences, Dharan, Nepal
| | - Keshav Rai
- Department of Microbiology, B. P. Koirala Institute of Health Sciences, Dharan, Nepal
| | - Tejendra Kumar Pandit
- Department of Microbiology, B. P. Koirala Institute of Health Sciences, Dharan, Nepal
| | - Basudha Khanal
- Department of Microbiology, B. P. Koirala Institute of Health Sciences, Dharan, Nepal
| |
Collapse
|
31
|
Noel HR, Petrey JR, Palmer LD. Mobile genetic elements in Acinetobacter antibiotic-resistance acquisition and dissemination. Ann N Y Acad Sci 2022; 1518:166-182. [PMID: 36316792 PMCID: PMC9771954 DOI: 10.1111/nyas.14918] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Pathogenic Acinetobacter species, most notably Acinetobacter baumannii, are a significant cause of healthcare-associated infections worldwide. Acinetobacter infections are of particular concern to global health due to the high rates of multidrug resistance and extensive drug resistance. Widespread genome sequencing and analysis has determined that bacterial antibiotic resistance is often acquired and disseminated through the movement of mobile genetic elements, including insertion sequences (IS), transposons, integrons, and conjugative plasmids. In Acinetobacter specifically, resistance to carbapenems and cephalosporins is highly correlated with IS, as many ISAba elements encode strong outwardly facing promoters that are required for sufficient expression of β-lactamases to confer clinical resistance. Here, we review the role of mobile genetic elements in antibiotic resistance in Acinetobacter species through the framework of the mechanism of resistance acquisition and with a focus on experimentally validated mechanisms.
Collapse
Affiliation(s)
- Hannah R. Noel
- Department of Microbiology and ImmunologyUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Jessica R. Petrey
- Department of Microbiology and ImmunologyUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Lauren D. Palmer
- Department of Microbiology and ImmunologyUniversity of Illinois ChicagoChicagoIllinoisUSA
| |
Collapse
|
32
|
A Broad-Host-Range Plasmid Outbreak: Dynamics of IncL/M Plasmids Transferring Carbapenemase Genes. Antibiotics (Basel) 2022; 11:antibiotics11111641. [DOI: 10.3390/antibiotics11111641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
IncL/M broad-host-range conjugative plasmids are involved in the global spread of blaOXA-48 and the emergence of blaNDM-1. The aim of this study was to evaluate the transmission potential of plasmids encoding the emergent NDM-1 carbapenemase compared to the pandemic OXA-48. The conjugation rate and fitness cost of IncM2 and IncL plasmids encoding these carbapenemase genes were tested using a variety of host bacteria. Genomic analysis of uropathogenic Escherichia coli SAP1756 revealed that blaNDM-1 was encoded on an IncM2 plasmid, which also harboured blaTEM-1, bleMBL and sul1 and was highly similar to plasmids isolated from the same geographical area. Conjugation experiments demonstrated that NDM-1 and OXA-48-carrying plasmids transfer successfully between different Enterobacterales species, both in vitro and in vivo. Interestingly, E. coli isolates tested as recipients belonging to phylogroups A, B1, D and F were able to receive IncM2 plasmid pSAP1756, while phylogroups B2, C, E and G were not permissive to its acquisition. In general, the IncL OXA-48-carrying plasmids tested transferred at higher rates than IncM2 harbouring NDM-1 and imposed a lower burden to their host, possibly due to the inactivation of the tir fertility inhibition gene and reflecting their worldwide dissemination. IncM2 plasmids carrying blaNDM-1 are considered emergent threats that need continuous monitoring. In addition to sequencing efforts, phenotypic analysis of conjugation rates and fitness cost are effective methods for estimating the pandemic potential of antimicrobial resistance plasmids.
Collapse
|
33
|
Zhao J, Zheng B, Xu H, Li J, Sun T, Jiang X, Liu W. Emergence of a NDM-1-producing ST25 Klebsiella pneumoniae strain causing neonatal sepsis in China. Front Microbiol 2022; 13:980191. [PMID: 36338063 PMCID: PMC9630351 DOI: 10.3389/fmicb.2022.980191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) seriously threaten the efficacy of modern medicine with a high associated mortality rate and unprecedented transmission rate. In this study, we isolated a clinical K. pneumoniae strain DY1928 harboring blaNDM-1 from a neonate with blood infection. Antimicrobial susceptibility testing indicated that DY1928 was resistant to various antimicrobial agents, including meropenem, imipenem, ceftriaxone, cefotaxime, ceftazidime, cefepime, piperacillin-tazobactam, and amoxicillin-clavulanate. S1 nuclease-pulsed field gel electrophoresis (S1-PFGE), southern blot and conjugation experiment revealed that the blaNDM-1 gene was located on a conjugative plasmid of IncA/C2 type with a 147.9 kb length. Whole-genome sequencing showed that there was a conservative structure sequence (blaNDM-1-ble-trpF-dsbD) located downstream of the blaNDM-1 gene. Multilocus sequence typing (MLST) classified DY1928 as ST25, which was a hypervirulent K. pneumoniae type. Phylogenetic analysis of genomic data from all ST25 K. pneumoniae strains available in the NCBI database suggested that all blaNDM-1 positive strains were isolated in China and had clinical origins. A mouse bloodstream infection model was constructed to test the virulence of DY1928, and 11 K. pneumoniae strains homologous to DY1928 were isolated from the feces of infected mice. Moreover, we found that DY1928 had a tendency to flow from the blood into the intestine in mice and caused multiple organ damage. To our knowledge, this is the first study to report an infection caused by blaNDM-1-positive ST25 K. pneumoniae in the neonatal unit. Our findings indicated that stricter surveillance and more effective actions were needed to reduce the risk of disseminating such K. pneumoniae strains in clinical settings, especially in neonatal wards.
Collapse
Affiliation(s)
- Junhui Zhao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Beiwen Zheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Junfeng Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tengfei Sun
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiawei Jiang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Xiawei Jiang,
| | - Wenhong Liu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Wenhong Liu,
| |
Collapse
|
34
|
Camargo CH, Yamada AY, de Souza AR, Reis AD, Santos MBN, de Assis DB, de Carvalho E, Takagi EH, Cunha MPV, Tiba-Casas MR. Genomic Diversity of NDM-Producing Klebsiella Species from Brazil, 2013-2022. Antibiotics (Basel) 2022; 11:1395. [PMID: 36290053 PMCID: PMC9598336 DOI: 10.3390/antibiotics11101395] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Since its first report in the country in 2013, NDM-producing Enterobacterales have been identified in all the Brazilian administrative regions. In this study, we characterized by antimicrobial susceptibility testing and by molecular typing a large collection of NDM-producing Klebsiella isolates from different hospitals in Brazil, mainly from the state of Sao Paulo, over the last decade. Methods: Bacterial isolates positive for blaNDM-genes were identified by MALDI-TOF MS and submitted to antimicrobial susceptibility testing by disk diffusion or broth microdilution (for polymyxin B). All isolates were submitted to pulsed-field gel electrophoresis, and isolates belonging to different clusters were submitted to whole genome sequencing by Illumina technology and downstream analysis. Mating out assays were performed by conjugation, plasmid sizes were determined by S1-PFGE, and plasmid content was investigated by hybrid assembly after MinIon long reads sequencing. Results: A total of 135 NDM-producing Klebsiella were identified, distributed into 107 different pulsotypes; polymyxin B was the only antimicrobial with high activity against 88.9% of the isolates. Fifty-four isolates presenting diversified pulsotypes were distributed in the species K. pneumoniae (70%), K. quasipneumoniae (20%), K. variicola (6%), K. michiganensis (a K. oxytoca Complex species, 2%), and K. aerogenes (2%); blaNDM-1 was the most frequent allele (43/54, 80%). There was a predominance of Clonal Group 258 (ST11 and ST340) encompassing 35% of K. pneumoniae isolates, but another thirty-one different sequence types (ST) were identified, including three described in this study (ST6244 and ST6245 for K. pneumoniae, and ST418 for K. michiganensis). The blaNDM-1 and blaNDM-7 were found to be located into IncF and IncX3 type transferable plasmids, respectively. Conclusions: Both clonal (mainly driven by CG258) and non-clonal expansion of NDM-producing Klebsiella have been occurring in Brazil in different species and clones, associated with different plasmids, since 2013.
Collapse
Affiliation(s)
- Carlos Henrique Camargo
- Centro de Bacteriologia, Instituto Adolfo Lutz, São Paulo 01246-902, Brazil
- Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Amanda Yaeko Yamada
- Centro de Bacteriologia, Instituto Adolfo Lutz, São Paulo 01246-902, Brazil
- Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, Brazil
| | | | - Alex Domingos Reis
- Laboratório Estratégico, Instituto Adolfo Lutz, São Paulo 01246-000, Brazil
| | | | - Denise Brandão de Assis
- Divisão de Infecção Hospitalar, Centro de Vigilância Epidemiológica, São Paulo 01246-902, Brazil
| | - Eneas de Carvalho
- Department of Biotechnology (NuCEL), Instituto Butantan, São Paulo 05503-900, Brazil
| | | | - Marcos Paulo Vieira Cunha
- School of Veterinary Medicine and Animal Science, Universidade de São Paulo, São Paulo 05508-270, Brazil
| | | |
Collapse
|
35
|
Shahid M, Ahmad N, Saeed NK, Shadab M, Joji RM, Al-Mahmeed A, Bindayna KM, Tabbara KS, Dar FK. Clinical carbapenem-resistant Klebsiella pneumoniae isolates simultaneously harboring blaNDM-1, blaOXA types and qnrS genes from the Kingdom of Bahrain: Resistance profile and genetic environment. Front Cell Infect Microbiol 2022; 12:1033305. [PMID: 36304935 PMCID: PMC9592905 DOI: 10.3389/fcimb.2022.1033305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/26/2022] [Indexed: 11/22/2022] Open
Abstract
The prevalence of Carbapenem-resistant Klebsiella pneumoniae (CRKP) is currently increasing worldwide, prompting WHO to classify it as an urgent public health threat. CRKP is considered a difficult to treat organism owing to limited therapeutic options. In this study, a total of 24 CRKP clinical isolates were randomly collected from Salmaniya Medical Complex, Bahrain. Bacterial identification and antibiotic susceptibility testing were performed, on MALDI-TOF and VITEK-2 compact, respectively. The isolates were screened for carbapenem resistance markers (blaNDM,blaOXA-23,blaOXA-48 and blaOXA-51) and plasmid-mediated quinolone resistance genes (qnrA, qnrB, and qnrS) by monoplex PCR. On the other hand, only colistin-resistant isolates (n=12) were screened for MCR-1, MCR-2 and MCR-3 genes by monoplex PCR. Moreover, the Genetic environment of blaNDM, integrons analysis, and molecular characterization of plasmids was also performed. Antibiotic susceptibility revealed that all the isolates (100%) were resistant to ceftolozane/tazobactam, piperacillin/tazobactam, 96% resistant to ceftazidime, trimethoprim/sulfamethoxazole, 92% resistant to meropenem, gentamicin and cefepime, 88% resistant to ciprofloxacin, imipenem, and 37% resistant to amikacin. Ceftazidime/avibactam showed the least resistance (12%). 75% (n=12/16) were resistant to colistin and 44% (n=7/16) showed intermediate susceptibility to tigecycline. The detection of resistant determinants showed that the majority (95.8%) of CRKP harbored blaNDM-1, followed by blaOXA-48 (91.6%) blaOXA-51 (45.8%), and blaOXA-23 (41.6%). Sequencing of the blaNDM amplicons revealed the presence of blaNDM-1. Alarmingly, 100% of isolates showed the presence of qnrS. These predominant genes were distributed in various combinations wherein the majority were blaNDM-1 + blaOXA-51+ qnrS + blaOXA-48 (n =10, 41.7%), blaNDM-1 + blaOXA-23+ qnrS + blaOXA-48 (n=8, 33.3%), among others. In conclusion, the resistance rate to most antibiotics is very high in our region, including colistin and tigecycline, and the genetic environment of CRKP is complex with the carriage of multiple resistance markers. Resistance to ceftazidime/avibactam is uncommon and hence can be used as a valuable option for empirical therapy. Molecular data on resistance markers and the genetic environment of CRKP is lacking from this geographical region; this would be the first report addressing the subject matter. Surveillance and strict infection control strategies should be reinforced in clinical settings to curb the emergence and spread of such isolates.
Collapse
Affiliation(s)
- Mohammad Shahid
- Department of Microbiology, Immunology, and Infectious Diseases, College of Medicine & Medical Sciences, Arabian Gulf University, Manama, Bahrain
- *Correspondence: Mohammad Shahid,
| | - Nayeem Ahmad
- Department of Microbiology, Immunology, and Infectious Diseases, College of Medicine & Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Nermin Kamal Saeed
- Department of Pathology, Microbiology Section, Salmaniya Medical Complex, Manama, Bahrain
| | - Mohd Shadab
- Department of Microbiology, Immunology, and Infectious Diseases, College of Medicine & Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Ronni Mol Joji
- Department of Microbiology, Immunology, and Infectious Diseases, College of Medicine & Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Ali Al-Mahmeed
- Department of Microbiology, Immunology, and Infectious Diseases, College of Medicine & Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Khalid M. Bindayna
- Department of Microbiology, Immunology, and Infectious Diseases, College of Medicine & Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Khaled Saeed Tabbara
- Department of Microbiology, Immunology, and Infectious Diseases, College of Medicine & Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Fazal K. Dar
- Department of Microbiology, Immunology, and Infectious Diseases, College of Medicine & Medical Sciences, Arabian Gulf University, Manama, Bahrain
| |
Collapse
|
36
|
Guo X, Chen R, Wang Q, Li C, Ge H, Qiao J, Li Y. Global prevalence, characteristics, and future prospects of IncX3 plasmids: A review. Front Microbiol 2022; 13:979558. [PMID: 36147856 PMCID: PMC9485871 DOI: 10.3389/fmicb.2022.979558] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
IncX3 plasmids are narrow host range plasmids mostly found in Enterobacteriaceae with great conjugation ability, high stability, no fitness cost, and the ability to improve biofilm formation in their bacterial hosts. IncX3 plasmids have spread swiftly, primarily in several nations and among different species over the last 10 years. blaNDM, blaKPC, and blaOXA-181 are the carbapenemase genes carried by IncX3 plasmids. Among them, blaNDM is often located on the IncX3 plasmid, which is deemed as the primary vehicle of blaNDM transmission. Isolates harboring IncX3 plasmids are found in nations all over the world from human, animal, and environmental sources. Cointegrate plasmids related to IncX3 have recently been discovered to increase the antibiotic resistance spectrum and potentially broaden the host range of plasmids, restricting the use of antibiotics in the clinic. There are, however, few reviews based on the physiological and epidemiological properties of IncX3 plasmid, as well as studies on the plasmid itself. Hence, we conducted a retrospective literature review to summarize the characteristics of IncX3 plasmids aiming to provide a theoretical basis for controlling the global prevalence of IncX3 plasmids and directions for further research on the functions of the related genes on the IncX3 plasmid.
Collapse
Affiliation(s)
- Xiaobing Guo
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Xiaobing Guo,
| | - Ruyan Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qian Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Chenyu Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haoyu Ge
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Qiao
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuan Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
37
|
Genomic Analysis of Acinetobacter baumannii Isolates Carrying OXA-23 and OXA-58 Genes from Animals Reveals ST1 and ST25 as Major Clonal Lineages. Antibiotics (Basel) 2022; 11:antibiotics11081045. [PMID: 36009914 PMCID: PMC9404926 DOI: 10.3390/antibiotics11081045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
Acinetobacter baumannii is increasingly being recognized as a relevant pathogen for animals with a putative zoonotic impact. This study aimed at identifying and characterizing carbapenemase-producing A. baumannii from animals. Among 503 A. baumannii, mainly isolated from dogs/cats (75.7%) between 2013 and 2018, 42 isolates from 22 veterinary clinics (VCs) harboured blaOXA-58 (n = 29) or blaOXA-23 (n = 13). The blaOXA-58 gene was located on plasmids (11.4–21.1 kb) within different genetic surroundings (patterns A–D). BlaOXA-23 was embedded in Tn2006 on the chromosome (n = 4; pattern a) or Tn2008 on plasmids (n = 9; 41.2–71.3 kb; patterns b–e). The predominant IC1-ST1P-OXA-58 (66.7%; 96.4% cgMLST complex type (CT)-1808) was disseminated among 11 VCs in Germany. Resistance islands AbaR3-like (n = 15) and AbaR10 (n = 1) have emerged among ST1-isolates since 2016. IC7-ST25P-OXA-23 isolates (21.4%) occurred in seven VCs in Germany, France and Italy and differed in their resistance gene patterns from those of OXA-58 isolates. They were separated into six CTs, basically according to their regional origin. Other STs observed were ST10, ST578 and ST602. In conclusion, OXA-23 and OXA-58 were linked with ST1 and ST25, two globally distributed lineages in humans. The suggested transmission of certain lineages within and among VCs together with the acquisition of AbaR islands hints at a successful dissemination of multidrug-resistant strains in the VC environment.
Collapse
|
38
|
Role of Chromosome- and/or Plasmid-Located blaNDM on the Carbapenem Resistance and the Gene Stability in Escherichia coli. Microbiol Spectr 2022; 10:e0058722. [PMID: 35916525 PMCID: PMC9430279 DOI: 10.1128/spectrum.00587-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The spread of New Delhi metallo-β-lactamase (NDM)-producing Enterobacterales represents a public health risk. The horizontal transfer of plasmids encoding the NDM gene, blaNDM, usually mediates its spread to other bacteria within the family. In contrast, Enterobacterales with a chromosome-located blaNDM is rarely reported. The phenotypic differences between chromosome- and plasmid-located carbapenemase genes are poorly understood. To determine the significance in terms of the location of drug resistance genes, we examined carbapenemase activity and stability of chromosome- and plasmid-located blaNDM. Escherichia coli M719 possessing both chromosomes- and plasmid-located blaNDM genes was used as a wild-type strain (WT) for the construction of mutants, ΔpblaNDM and ΔcblaNDM, wherein chromosome- or plasmid-located blaNDM, was knocked out, respectively. The mutant ΔpblaNDM showed lower hydrolyzing activity against imipenem and gene expression than the WT or ΔcblaNDM mutant. The MICs of both mutant strains were still above the breakpoint of imipenem and meropenem. Moreover, the chromosome-located blaNDM gene was stable for at least 30 days in the absence of antimicrobial pressure, whereas the ΔcblaNDM mutant lost blaNDM to 87% at 30 days compared to that of the initial inoculum. Organisms harboring the plasmid-located carbapenemase genes were found to provide a higher level of carbapenem resistance than those with chromosome-located genes. However, the latter organisms with chromosomal carbapenemase genes exhibited more stable carbapenem resistance than did the former ones. In summary, chromosomally located carbapenemase genes require further monitoring and more attention should be paid to them. IMPORTANCE Carbapenem-resistant Enterobacterales (CRE) carrying blaNDM have spread worldwide since they were first reported in 2009. Many studies using whole-genome sequencing have identified the genetic structures, plasmid scaffolds of blaNDM, and mechanisms of spread via horizontal transfer. Chromosome-located blaNDM and integration mechanisms from plasmids have rarely been reported, and their significance is not fully understood. Here, we showed that the chromosome-located blaNDM was associated with lower levels of carbapenem resistance and carbapenemase activity than the plasmid-located blaNDM. However, it conferred carbapenem resistance above the breakpoints and the loss of chromosome-located blaNDM was not observed in the absence of antibiotic pressure. This study suggests that CRE strains carrying chromosome-located blaNDM may persist in clinical and environmental settings for a long period even without antibiotic pressure and need to be monitored along with plasmid-located blaNDM.
Collapse
|
39
|
Price S, Mehta R, Tan D, Hinojosa A, Thomas PW, Cummings T, Fast W, Que EL. Structural insights into the design of reversible fluorescent probes for metallo-β-lactamases NDM-1, VIM-2, and IMP-1. J Inorg Biochem 2022; 233:111869. [PMID: 35653820 PMCID: PMC9216179 DOI: 10.1016/j.jinorgbio.2022.111869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 12/31/2022]
Abstract
Metallo-β-lactamases (MBLs) are enzymes that are capable of hydrolyzing most β-lactam antibiotics and all clinically relevant carbapenems. We developed a library of reversible fluorescent turn-on probes that are designed to directly bind to the dizinc active site of these enzymes and can be used to study their dynamic metalation state and enzyme-inhibitor interactions. Structure-function relationships with regards to inhibitory strength and fluorescence turn-on response were evaluated for three representative MBLs.
Collapse
Affiliation(s)
- Sky Price
- Department of Chemistry, University of Texas at Austin, 105 E 24th St Stop A5300, Austin, TX 78712, United States of America
| | - Radhika Mehta
- Department of Chemistry, University of Texas at Austin, 105 E 24th St Stop A5300, Austin, TX 78712, United States of America
| | - Dominique Tan
- Department of Chemistry, University of Texas at Austin, 105 E 24th St Stop A5300, Austin, TX 78712, United States of America
| | - Abigail Hinojosa
- Department of Chemistry, University of Texas at Austin, 105 E 24th St Stop A5300, Austin, TX 78712, United States of America
| | - Pei W. Thomas
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, and the LaMontagne Center for Infectious Disease, University of Texas at Austin, Austin, TX 78712, United States of America
| | - Tawanda Cummings
- Department of Chemistry, University of Texas at Austin, 105 E 24th St Stop A5300, Austin, TX 78712, United States of America
| | - Walter Fast
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, and the LaMontagne Center for Infectious Disease, University of Texas at Austin, Austin, TX 78712, United States of America
| | - Emily L. Que
- Department of Chemistry, University of Texas at Austin, 105 E 24th St Stop A5300, Austin, TX 78712, United States of America,Corresponding author. (E.L. Que)
| |
Collapse
|
40
|
Perera V, de Silva S, Jayatilleke K, de Silva N, Aydin A, Enne V, Corea E. Antimicrobial Resistance Genes, Virulence Genes, and Associated Mobile Genetic Elements of Eight Multidrug-Resistant Enterobacterales Isolated from Hospital-Acquired Urinary Tract Infections in Sri Lanka. Microb Drug Resist 2022; 28:882-892. [PMID: 35972764 DOI: 10.1089/mdr.2022.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The study describes the first isolation of multidrug-resistant (MDR) Klebsiella pneumoniae ST16, Escherichia coli ST131 (Esc), and Enterobacter hormaechei subsp. steigerwaltii ST93 (Enterobacter cloacae complex [ECC]) in Sri Lanka. Eight MDR strains of uropathogenic Enterobacterales isolated from hospital acquired urinary tract infections (UTIs) were analyzed using genomic sequencing and comparative genomics. Isolates carried multiple carbapenemase, AmpC, and ESBL (extended-spectrum β-lactamase) genes. ECC manifested both blaNDM-4 and blaOXA-181. The K. pneumoniae strains harbored fimbrial genes that facilitate pathogenesis of UTI. Several extraintestinal pathogenic E. coli associated virulence genes were identified in Esc. The efflux pump gene, acrA, and the T6SS gene cluster were detected in ECC. Many antimicrobial resistance (AMR) and virulence genes were identified associated with mobile genetic elements. ISEcp1 flanked upstream of blaCTX-M-15. The carbapenemase genes were carried on ColKP3 plasmids and were associated with ISEcp1. In Esc, the AMR gene blaTEM-1B and virulence gene traT were found on an IncF plasmid replicon. In K. pneumoniae the AMR genes sul1 and tetB present on IncR plasmid replicons and were associated with the insertion sequence IS6100. In Kp5, blaLAP-2 and qnrS1 coexisted and were flanked by ISEcl. AMR gene clusters, conferring resistance to multiple antimicrobial classes, flanked by mobile elements were identified in seven isolates.
Collapse
Affiliation(s)
- Vindya Perera
- Department of Microbiology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka.,Department of Microbiology, Faculty of Medicine, Sabaragamuwa University of Sri Lanka, Ratnapura, Sri Lanka
| | - Sara de Silva
- Sri Jayewardenepura General Hospital, Nugegoda, Sri Lanka
| | | | - Nelun de Silva
- Department of Microbiology, Faculty of Medicine, Sabaragamuwa University of Sri Lanka, Ratnapura, Sri Lanka.,Neville Fernando Teaching Hospital, Malabe, Sri Lanka
| | - Alp Aydin
- Centre for Clinical Microbiology, Division of Infection and Immunity, University College London, Royal Free Campus, Rowland Hill Street, London, United Kingdom
| | - Virve Enne
- Centre for Clinical Microbiology, Division of Infection and Immunity, University College London, Royal Free Campus, Rowland Hill Street, London, United Kingdom
| | - Enoka Corea
- Department of Microbiology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
41
|
El-Defrawy I, Aitta AA, Fam N, Khaled M, Madany N, El Damarawy M, Gamal D, Alkholy MA. In Vitro Activity of Single and Combined Antibiotics against Carbapenem Resistant Enterobacteriaceae Clinical Isolates in Relation to their Resistance Genes. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Mortality due to infection with carbapenem-resistant Enterobacteriaceae (CRE) is reported globally and carbapenemase production is the main mechanism of resistance in these isolates. The detection and treatment of carbapenemase-producing Enterobacteriaceae (CPE) is a major challenge in health care facilities.
Objectives: The aim of the current study was to evaluate the in-vitro effect of different single and combined antibiotic agents against CRE clinical isolates.
Methodology: Fifty CRE isolates were detected using disk diffusion test as a screening test. Species identification and antibiotic susceptibility testing was done using Vitek 2 system. Carbapenemase enzyme production was confirmed by Carba NP test. Multiplex PCR was done to detect carbapenem resistance genes. Antibiotics were tested in the form of single agents (colistin and tigecycline) and combined (tigecycline/ colistin, doripenem/ colistin and dual carbapenem therapy (ertapenem and doripenem) against CRE isolates using E-test method.
Results: Most of the CRE isolates were K. pneumoniae, 68%, followed by E. coli, 22%, S. marcescens, 4%, E. cloacae, 4% and C. freundii, 2%. CPE was confirmed in 46 isolates by multiplex PCR; blaNDM-like was the main carbapenem resistance gene in (84%) of the isolates, followed by blaOXA-48-like (6%) and blaKPC-like (2%). Carba NP test detected 90% of CPE isolates. Single use of colistin and tigecycline showed 100% sensitivity against all tested CRE isolates except in blaNDM-like (83%). Combination of colistin/tigecycline showed synergetic activity in 18% of CRE that was correlated to their carbapenemase R genes showing a significant increase in blaOXA-48-like and blaKPC-like positive isolates (100%) compared to blaNDM-like (7%). Other combinations showed indifferent effect whereas antagonism was not detected in any of the tested combinations.
Conclusions: blaNDM-like is the main carbapenemase-producing gene detected among our CPE isolates followed by blaOXA-48-like. Colistin and tigecycline are still effective when used as single agents, and may offer effective treatment options when used in combination for CRE infections. Characterization of carbapenemases is crucial in determining treatment options. There is urgent demand for the development of novel therapeutic agents against NDM-producing CPE isolates.
Collapse
|
42
|
Screening and Characterization of Multidrug-Resistant Enterobacterales among Hospitalized Patients in the African Archipelago of Cape Verde. Microorganisms 2022; 10:microorganisms10071426. [PMID: 35889144 PMCID: PMC9318797 DOI: 10.3390/microorganisms10071426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 12/10/2022] Open
Abstract
This study aimed to investigate, for the first time, the occurrence and characteristics of extended-spectrum β-lactamase (ESBL)- and carbapenemase-producing Enterobacterales in Cape Verde. A total of 98 inpatients hospitalized at Hospital Universitário Agostinho Neto were screened for rectal colonization. All ESBL- and carbapenemase-producing isolates were tested for antimicrobial susceptibility and characterized by multilocus sequence typing. Mating-out assay followed by PCR-based replicon typing were performed to characterize the plasmids harboring carbapenemase encoding genes. A large proportion of patients carried ESBL- or carbapenemase-producing Enterobacterales (56% and 6%, respectively). Among 93 ESBL-producing isolates, there were mainly Klebsiella pneumoniae (58%) and Escherichia coli (37%). Five different ESBLs were detected, with CTX-M-15 being highly predominant (92%). Six carbapenemase-producing isolates (five E. coli and one K. pneumoniae) were recovered, and all of the OXA-48-like type (four OXA-181, one OXA-48, and one OXA-244). The blaOXA-48 gene was located on an IncFI-type plasmid, the blaOXA-181 gene on IncFI or IncX3 plasmids, and the blaOXA-244 gene was found to be chromosomally located. The five carbapenemase-producing E. coli isolates belonged to five distinct sequence types. This study overall showed a very high prevalence of ESBL-producing Enterobacterales, as well as the emergence of carbapenemase producers in this hospital.
Collapse
|
43
|
Gomez-Simmonds A, Annavajhala MK, Tang N, Rozenberg FD, Ahmad M, Park H, Lopatkin AJ, Uhlemann AC. Population structure of blaKPC-harbouring IncN plasmids at a New York City medical centre and evidence for multi-species horizontal transmission. J Antimicrob Chemother 2022; 77:1873-1882. [PMID: 35412609 PMCID: PMC9633718 DOI: 10.1093/jac/dkac114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/14/2022] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Carbapenem-resistant Enterobacterales (CRE) are highly concerning MDR pathogens. Horizontal transfer of broad-host-range IncN plasmids may contribute to the dissemination of the Klebsiella pneumoniae carbapenemase (KPC), spreading carbapenem resistance among unrelated bacteria. However, the population structure and genetic diversity of IncN plasmids has not been fully elucidated. OBJECTIVES We reconstructed blaKPC-harbouring IncN plasmid genomes to characterize shared gene content, structural variability, and putative horizontal transfer within and across patients and diverse bacterial clones. METHODS We performed short- and long-read sequencing and hybrid assembly on 45 CRE isolates with blaKPC-harbouring IncN plasmids. Eight serial isolates from two patients were included to assess intra-patient plasmid dynamics. Comparative genomic analysis was performed to assess structural and sequence similarity across plasmids. Within IncN sublineages defined by plasmid MLST and kmer-based clustering, phylogenetic analysis was used to identify closely related plasmids. RESULTS Comparative analysis of IncN plasmid genomes revealed substantial heterogeneity including large rearrangements in serial patient plasmids and differences in structure and content across plasmid clusters. Within plasmid sublineages, core genome content and resistance gene regions were largely conserved. Closely related plasmids (≤1 SNP) were found in highly diverse isolates, including ten pST6 plasmids found in eight bacterial clones from three different species. CONCLUSIONS Genomic analysis of blaKPC-harbouring IncN plasmids revealed the presence of several distinct sublineages as well as substantial host diversity within plasmid clusters suggestive of frequent mobilization. This study reveals complex plasmid dynamics within a single plasmid family, highlighting the challenge of tracking plasmid-mediated transmission of blaKPC in clinical settings.
Collapse
Affiliation(s)
- Angela Gomez-Simmonds
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, 630 W 168th St, New York NY 10032, USA
| | - Medini K Annavajhala
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, 630 W 168th St, New York NY 10032, USA
| | - Nina Tang
- Barnard College, Columbia University, 3009 Broadway, New York NY 10027, USA
| | - Felix D Rozenberg
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, 630 W 168th St, New York NY 10032, USA
| | - Mehrose Ahmad
- Barnard College, Columbia University, 3009 Broadway, New York NY 10027, USA
| | - Heekuk Park
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, 630 W 168th St, New York NY 10032, USA
| | - Allison J Lopatkin
- Barnard College, Columbia University, 3009 Broadway, New York NY 10027, USA
- Data Science Institute, Columbia University, 550 W 120th St, New York NY 10027, USA
| | - Anne Catrin Uhlemann
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, 630 W 168th St, New York NY 10032, USA
| |
Collapse
|
44
|
Gong Y, Lu Y, Xue D, Wei Y, Li Q, Li G, Lu S, Wang J, Wang Y, Peng Y, Zhao Y. Emergence of a Carbapenem-Resistant Klebsiella pneumoniae Isolate Co-harbouring Dual bla NDM- 6 -Carrying Plasmids in China. Front Microbiol 2022; 13:900831. [PMID: 35663874 PMCID: PMC9158518 DOI: 10.3389/fmicb.2022.900831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
The widespread emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) with limited therapeutic options has become a global concern. In this study, a K. pneumoniae strain called KP2e was recovered from a human case of fatal septic shock in a Chinese hospital. Polymerase chain reaction and sequencing, antimicrobial susceptibility testing, conjugation experiments, S1 nuclease-pulsed field gel electrophoresis/southern blot, whole genome sequencing and comparative genomics were performed to investigate the phenotypic and molecular characteristics of this isolate. KP2e possessed the NDM-6-encoding gene and exhibited resistance to almost all β-lactams except for monobactam. This strain belonged to sequence type 4024, the complete genome of which was composed of one chromosome and three plasmids. Furthermore, blaNDM–6 coexisted on two self-transmissible plasmids, which were assigned to types IncFIB and IncN. A structure of IS26-composite transposon capturing an identical Tn125 remnant (ΔISAba125-blaNDM–6-bleMBL-trpF-dsbC-cutA-groES-ΔgroEL) was identified in the two plasmids, and this conserved blaNDM-surrounding genetic context was similar to that of few IncN plasmids found in other regions of China. Our research appears to be the first description of a clinical strain that emerged co-harbouring dual blaNDM-carrying plasmids, and the first report of NDM-6-positive CRKP in China. These findings demonstrated that IncN is a key medium in the evolution and expanding dissemination of blaNDM genes among various species, which indicates that close monitoring and rapid detection of blaNDM-harbouring plasmids is necessary.
Collapse
Affiliation(s)
- Yali Gong
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University, Chongqing, China
| | - Yifei Lu
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University, Chongqing, China
| | - Dongdong Xue
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University, Chongqing, China
| | - Yu Wei
- Department of Radiology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Qimeng Li
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University, Chongqing, China
| | - Gang Li
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Shuguang Lu
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Jing Wang
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Yunying Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yizhi Peng
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University, Chongqing, China
| | - Yan Zhao
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| |
Collapse
|
45
|
Intra- and interpopulation transposition of mobile genetic elements driven by antibiotic selection. Nat Ecol Evol 2022; 6:555-564. [PMID: 35347261 DOI: 10.1038/s41559-022-01705-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 02/17/2022] [Indexed: 12/30/2022]
Abstract
The spread of genes encoding antibiotic resistance is often mediated by horizontal gene transfer (HGT). Many of these genes are associated with transposons, a type of mobile genetic element that can translocate between the chromosome and plasmids. It is widely accepted that the translocation of antibiotic resistance genes onto plasmids potentiates their spread by HGT. However, it is unclear how this process is modulated by environmental factors, especially antibiotic treatment. To address this issue, we asked whether antibiotic exposure would select for the transposition of resistance genes from chromosomes onto plasmids and, if so, whether antibiotic concentration could tune the distribution of resistance genes between chromosomes and plasmids. We addressed these questions by analysing the transposition dynamics of synthetic and natural transposons that encode resistance to different antibiotics. We found that stronger antibiotic selection leads to a higher fraction of cells carrying the resistance on plasmids because the increased copy number of resistance genes on multicopy plasmids leads to higher expression of those genes and thus higher cell survival when facing antibiotic selection. Once they have transposed to plasmids, antibiotic resistance genes are primed for rapid spread by HGT. Our results provide quantitative evidence for a mechanism by which antibiotic selection accelerates the spread of antibiotic resistance in microbial communities.
Collapse
|
46
|
Yang WT, Chiu IJ, Huang YT, Liu PY. Comparative Genomics Revealed Fluoroquinolone Resistance Determinants and OmpF Deletion in Carbapenem-Resistant Escherichia coli. Front Microbiol 2022; 13:886428. [PMID: 35516434 PMCID: PMC9062692 DOI: 10.3389/fmicb.2022.886428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/22/2022] [Indexed: 12/13/2022] Open
Abstract
Escherichia coli (E. coli) is a major causative organism of complicated urinary tract infections, bloodstream infections, and pneumonia. With the widespread use of antimicrobial agents, the prevalence of carbapenem resistance in E. coli has been increasing with limited therapeutic options. Fluoroquinolone remains a choice in carbapenem-resistant E. coli (CREc) that were once susceptible to the drug. Despite robust studies on the fluoroquinolone-resistant mechanisms of E. coli, few studies focused specifically on the group of CREc. In this study, we used comparative genomics to identify the fluoroquinolone-resistant mechanisms of CREc and detected gyrA D87N mutation in all the fluoroquinolone-resistant and CREc. Moreover, to investigate the mechanism underlying non-carbapenemase-producing carbapenem-resistant E. coli, we targeted the complete genome sequences for in-depth analysis and found a deletion in OmpF (DEL264-269) that might contribute to carbapenem resistance, which has not been reported before. Further studies focusing on the impact of these mutations on the expression levels are warranted. We further investigate the MLST, serotype, fimH type, phylogroup, and clinical characteristics of the CREc. Combination analysis of clinical and genomic characteristics suggests the polyclonal and highly diverse nature of the CREc in Taiwan. This study provides an insight into the molecular epidemiology of CREc in Taiwan.
Collapse
Affiliation(s)
- Wan-Ting Yang
- Division of Infection, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - I-Ju Chiu
- Department of Computer Science and Information Engineering, National Chung Cheng University, Chia-Yi, Taiwan
| | - Yao-Ting Huang
- Department of Computer Science and Information Engineering, National Chung Cheng University, Chia-Yi, Taiwan,Yao-Ting Huang
| | - Po-Yu Liu
- Division of Infection, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan,Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan,Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan,*Correspondence: Po-Yu Liu
| |
Collapse
|
47
|
Biofilm and Gene Expression Characteristics of the Carbapenem-Resistant Enterobacterales, Escherichia coli IMP, and Klebsiella pneumoniae NDM-1 Associated with Common Bacterial Infections. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084788. [PMID: 35457654 PMCID: PMC9024719 DOI: 10.3390/ijerph19084788] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 01/16/2023]
Abstract
In light of the limited therapeutic options with Carbapenem-Resistant Enterobacterales (CRE) infections, understanding the bacterial risk factors, such as biofilm formation and related gene expression of CRE, is vital. This study investigates the biofilm formation and biofilm-related gene expression of two enteric Enterobacterales with major CR determinants Escherichia coli IMP and Klebsiella pneumoniae NDM-1, which were seen in high prevalence in most common bacterial infections over the past few years. To our knowledge, this is the first study that demonstrated the relationship between biofilm formation and the related gene expression, to understand the potential molecular mechanisms during the biofilm formation in CRE. Biofilms were quantified by tissue culture plate assay at the stages of the biofilm development: initial attachment (6 h), microcolony formation (12 h), maturation (24 h), and dispersion (48 h). In a dispersion, event bacteria detach without any mechanical means and colonise another area. To investigate the influence of different growth conditions on biofilm formation, biofilms were quantified under different growth conditions. In parallel, quantitative real-time PCR (qPCR) assessed the biofilm-related gene expression of a cluster of genes, including biofilm maturation, quorum sensing, stress survival, and antibiotic resistance. Structural changes during biofilm development were assessed via confocal laser scanning microscopy (CLSM). We observed that the biofilm formation of CRE is correlated with the biofilm development stages, with maximum biofilm observed at 24 h at the maturation stage. Our data also showed that biofilm growth, under the condition tested, is the major factor influencing the variability of biofilm gene expression quantification assays. qPCR analyses have demonstrated that the expression of biofilm-related genes is highly correlated with phenotypic biofilm development, and these findings can be further expanded to understand the variation in regulation of such genes in these significant CRE pathogens. Our study demonstrated that both CRE strains, E. coli IMP and K. pneumoniae NDM-1, are high biofilm formers, and genes involved in biofilm development are upregulated during biofilm growth. The characteristic of the increased biofilm formation with the upregulation of antibiotic-resistant and biofilm-related genes indicates the successful pathogenic role of biofilms of these selected CRE and is attributed to their multi-drug resistance ability and successful dissemination of CRE in common bacterial infections.
Collapse
|
48
|
Sarwar F, Rasool MH, Khurshid M, Qamar MU, Aslam B. Escherichia coli Isolates Harboring blaNDM Variants and 16S Methylases Belonging to Clonal Complex 131 in Southern Punjab, Pakistan. Microb Drug Resist 2022; 28:623-635. [PMID: 35363080 DOI: 10.1089/mdr.2021.0315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The emergence of carbapenem-resistant Escherichia coli (CREC) especially harboring the New Delhi Metallo-β-lactamase (blaNDM) variants are increasingly being reported from many countries, however, the data from Pakistan is limited. In the present study, 109 CREC isolates were obtained from 4,091 E. coli isolates in five tertiary care hospitals in southern Punjab, Pakistan. The antimicrobial susceptibility profiling and screening for the resistance determinants were performed followed by blaNDM typing and multilocus sequence typing (MLST) to characterize the CREC strains. Among the carbapenemases, 57 CREC isolates were found to harbor blaNDM. The blaNDM-1, blaNDM-5, blaNDM-7, and blaNDM-4 variants were identified in 30 (52.6%), 18 (31.6%), (12.3%), 2 (3.5%) isolates, respectively. The ESBL genes, such as blaCTX-M and blaTEM, were also found in different combinations, whereas the 16S methylases that is, rmtB and armA were found in 69 (63.3%) and 55 (50.5%) CREC isolates, respectively. The MLST of blaNDM carrying E. coli revealed eight different sequence types (STs) with ST131 belonging to 21 isolates being the most prevalent. The clonal complex 131 was the predominant complex corresponding to 47 (82.5%) of blaNDM-positive strains. Large-scale surveillance studies coupled with active infection control policies are suggested on an urgent basis to avoid an epidemic in the future.
Collapse
Affiliation(s)
- Faiza Sarwar
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Mohsin Khurshid
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Usman Qamar
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Bilal Aslam
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
49
|
Fournier C, Poirel L, Despont S, Kessler J, Nordmann P. Increasing Trends of Association of 16S rRNA Methylases and Carbapenemases in Enterobacterales Clinical Isolates from Switzerland, 2017–2020. Microorganisms 2022; 10:microorganisms10030615. [PMID: 35336192 PMCID: PMC8951535 DOI: 10.3390/microorganisms10030615] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
Aminoglycosides (AGs) in combination with β-lactams play an important role in antimicrobial therapy in severe infections. Pan-resistance to clinically relevant AGs increasingly arises from the production of 16S rRNA methylases (RMTases) that are mostly encoded by plasmids in Gram-negative bacteria. The recent emergence and spread of isolates encoding RMTases is worrisome, considering that they often co-produce extended-spectrum β-lactamases (ESBLs) or carbapenemases. Our study aimed to retrospectively analyze and characterize the association of carbapenem- and aminoglycoside-resistant clinical isolates in Switzerland during a 3.5-year period between January 2017 and June 2020. A total of 103 pan-aminoglycoside- and carbapenem-resistant clinical isolates were recovered at the NARA (Swiss National Reference Center for Emerging Antibiotic Resistance) during the 2017–2020 period. Carbapenemase and RMTase determinants were identified by PCR and sequencing. The characterization of plasmids bearing resistance determinants was performed by a mating-out assay followed by PCR-based replicon typing (PBRT). Clonality of the isolates was investigated by multilocus sequence typing (MLST). Over the 991 Enterobacterales collected at the NARA during this period, 103 (10.4%) of them were resistant to both carbapenems and all aminoglycosides. Among these 103 isolates, 35 isolates produced NDM-like carbapenemases, followed by OXA-48-like (n = 23), KPC-like (n = 21), or no carbapenemase (n = 13), OXA-48-like and NDM-like co-production (n = 7), and VIM-like enzymes (n = 4). The RMTases ArmA, RmtB, RmtC, RmtF, RmtG, and RmtB + RmtF were identified among 51.4%, 13.6%, 4.9%, 24.3%, 1%, and 1%, respectively. Plasmid co-localization of the carbapenemase and the RMTase encoding genes was found among ca. 20% of the isolates. A high diversity was identified in terms of the nature of associations between RMTase and carbapenemase-encoding genes, of incompatibility groups of the corresponding plasmids, and of strain genetic backgrounds, highlighting heterogeneous importations rather than clonal dissemination.
Collapse
Affiliation(s)
- Claudine Fournier
- Medical and Molecular Microbiology Unit, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland; (C.F.); (S.D.)
| | - Laurent Poirel
- Medical and Molecular Microbiology Unit, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland; (C.F.); (S.D.)
- INSERM European Unit (IAME, France), University of Fribourg, 1700 Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), 1700 Fribourg, Switzerland;
- Correspondence: (L.P.); (P.N.); Tel.: +41-26-300-9582 (L.P.)
| | - Sarah Despont
- Medical and Molecular Microbiology Unit, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland; (C.F.); (S.D.)
| | - Julie Kessler
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), 1700 Fribourg, Switzerland;
| | - Patrice Nordmann
- Medical and Molecular Microbiology Unit, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland; (C.F.); (S.D.)
- INSERM European Unit (IAME, France), University of Fribourg, 1700 Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), 1700 Fribourg, Switzerland;
- Institute for Microbiology, University of Lausanne and University Hospital Centre, 1011 Lausanne, Switzerland
- Correspondence: (L.P.); (P.N.); Tel.: +41-26-300-9582 (L.P.)
| |
Collapse
|
50
|
Acman M, Wang R, van Dorp L, Shaw LP, Wang Q, Luhmann N, Yin Y, Sun S, Chen H, Wang H, Balloux F. Role of mobile genetic elements in the global dissemination of the carbapenem resistance gene bla NDM. Nat Commun 2022; 13:1131. [PMID: 35241674 PMCID: PMC8894482 DOI: 10.1038/s41467-022-28819-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/14/2022] [Indexed: 12/24/2022] Open
Abstract
The mobile resistance gene blaNDM encodes the NDM enzyme which hydrolyses carbapenems, a class of antibiotics used to treat some of the most severe bacterial infections. The blaNDM gene is globally distributed across a variety of Gram-negative bacteria on multiple plasmids, typically located within highly recombining and transposon-rich genomic regions, which leads to the dynamics underlying the global dissemination of blaNDM to remain poorly resolved. Here, we compile a dataset of over 6000 bacterial genomes harbouring the blaNDM gene, including 104 newly generated PacBio hybrid assemblies from clinical and livestock-associated isolates across China. We develop a computational approach to track structural variants surrounding blaNDM, which allows us to identify prevalent genomic contexts, mobile genetic elements, and likely events in the gene's global spread. We estimate that blaNDM emerged on a Tn125 transposon before 1985, but only reached global prevalence around a decade after its first recorded observation in 2005. The Tn125 transposon seems to have played an important role in early plasmid-mediated jumps of blaNDM, but was overtaken in recent years by other elements including IS26-flanked pseudo-composite transposons and Tn3000. We found a strong association between blaNDM-carrying plasmid backbones and the sampling location of isolates. This observation suggests that the global dissemination of the blaNDM gene was primarily driven by successive between-plasmid transposon jumps, with far more restricted subsequent plasmid exchange, possibly due to adaptation of plasmids to their specific bacterial hosts.
Collapse
Affiliation(s)
- Mislav Acman
- UCL Genetics Institute, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Ruobing Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Lucy van Dorp
- UCL Genetics Institute, University College London, Gower Street, London, WC1E 6BT, UK
| | - Liam P Shaw
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Qi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Nina Luhmann
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Yuyao Yin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Shijun Sun
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Hongbin Chen
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Francois Balloux
- UCL Genetics Institute, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|