1
|
Li X, Pan Z, Zhang L. Tecovirimat: A journey from discovery to mechanistic insights in poxvirus inhibition. PLoS Pathog 2025; 21:e1013140. [PMID: 40378361 DOI: 10.1371/journal.ppat.1013140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025] Open
Abstract
Tecovirimat (ST-246 or TPOXX) is an antiviral agent developed as part of a U.S. biodefense initiative aimed at addressing Orthopoxvirus infections, including smallpox and mpox. Although smallpox was declared eradicated in 1980, the potential for its reemergence as a biothreat persists due to illegal stockpiling and the possibility of laboratory synthesis. The F13 protein, which plays a critical role in the formation of extracellular viral particles, serves as the primary target for tecovirimat, inhibiting the transition from intracellular mature viruses (IMVs) to intracellular enveloped viruses (IEVs). Recent research indicates that tecovirimat stabilizes F13 homodimers as a molecular glue, effectively disrupting viral wrapping processes. However, the identification of tecovirimat-resistant mutations, particularly in immunocompromised individuals, highlights the urgent need for ongoing monitoring and the development of next-generation antiviral therapies. Investigating the structural dynamics of F13 and its interactions with tecovirimat may provide crucial insights into overcoming resistance mechanisms and improving therapeutic efficacy.
Collapse
Affiliation(s)
- Xue Li
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhengyang Pan
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Leiliang Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
2
|
İnkaya AÇ. Mpox: what sexual health physicians need to know? Int J Impot Res 2024; 36:556-561. [PMID: 39154147 DOI: 10.1038/s41443-024-00964-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Monkeypox virus (MPXV) is another zoonotic virus spilled over to the man and resulted in pandemic. World Health Organization declared it as a 'Public Health Emergency of International Concern (PHEIC) on July 22, 2022. Mpox affected over 95226 individuals among them claimed the lives of 185. Despite the fact that Mpox is generally mild and self-limited, immunocompromised people with low CD4 counts may experience severe disease course. Management of Mpox patients has three pillars. First symptomatic approach includes pain management, prophylaxis for secondary infections and when needed effective treatment of superinfections. Second, vaccines developed against smallpox can be used in preexposure or postexposure prophylaxis strategies against Mpox. Third, current antiviral options include tecovirimat, cidofovir and birincidofovir all of which have been recommended relying on experience from animal studies, clinical case reports or case series. Results of well-planned randomized control trials are not available. Occupational exposure to MPXV is especially a manageable risk for health care workers. Prevention of Mpox also requires risk communication with vulnerable population and their involvement in mitigation efforts.
Collapse
Affiliation(s)
- Ahmet Çağkan İnkaya
- Hacettepe University Faculty of Medicine, Department of Infectious Diseases, Sihhiye, Ankara, 06230, Turkey.
| |
Collapse
|
3
|
Samolej J, Mendonca DC, Upfold N, McElwee M, Landsberger M, Yakimovich A, Patel AH, Strang BL, Mercer J. Bisbenzimide compounds inhibit the replication of prototype and pandemic potential poxviruses. Microbiol Spectr 2024; 12:e0407223. [PMID: 38376353 PMCID: PMC10986486 DOI: 10.1128/spectrum.04072-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/01/2024] [Indexed: 02/21/2024] Open
Abstract
We previously identified the bisbenzimide Hoechst 33342 (H42) as a potent multi-stage inhibitor of the prototypic poxvirus, the vaccinia virus (VACV), and several parapoxviruses. A recent report showed that novel bisbenzimide compounds similar in structure to H42 could prevent human cytomegalovirus replication. Here, we assessed whether these compounds could also serve as poxvirus inhibitors. Using virological assays, we show that these bisbenzimide compounds inhibit VACV spread, plaque formation, and the production of infectious progeny VACV with relatively low cell toxicity. Further analysis of the VACV lifecycle indicated that the effective bisbenzimide compounds had little impact on VACV early gene expression but inhibited VACV late gene expression and truncated the formation of VACV replication sites. Additionally, we found that bisbenzimide compounds, including H42, can inhibit both monkeypox and a VACV mutant resistant to the widely used anti-poxvirus drug TPOXX (Tecovirimat). Therefore, the tested bisbenzimide compounds were inhibitors of both prototypic and pandemic potential poxviruses and could be developed for use in situations where anti-poxvirus drug resistance may occur. Additionally, these data suggest that bisbenzimide compounds may serve as broad-activity antiviral compounds, targeting diverse DNA viruses such as poxviruses and betaherpesviruses.IMPORTANCEThe 2022 mpox (monkeypox) outbreak served as a stark reminder that due to the cessation of smallpox vaccination over 40 years ago, most of the human population remains susceptible to poxvirus infection. With only two antivirals approved for the treatment of smallpox infection in humans, the need for additional anti-poxvirus compounds is evident. Having shown that the bisbenzimide H33342 is a potent inhibitor of poxvirus gene expression and DNA replication, here we extend these findings to include a set of novel bisbenzimide compounds that show anti-viral activity against mpox and a drug-resistant prototype poxvirus mutant. These results suggest that further development of bisbenzimides for the treatment of pandemic potential poxviruses is warranted.
Collapse
Affiliation(s)
- Jerzy Samolej
- Insititute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Diogo Correa Mendonca
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- CVR-CRUSH, MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Nicole Upfold
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- CVR-CRUSH, MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Marion McElwee
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- CVR-CRUSH, MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Mariann Landsberger
- Insititute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Artur Yakimovich
- Center for Advanced Systems Understanding (CASUS), Helmholtz-Zentrum Dresden-Rossendorf e.V. (HZDR), Görlitz, Germany
| | - Arvind H. Patel
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- CVR-CRUSH, MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Blair L. Strang
- Institute for Infection and Immunity, St George’s, University of London, London, United Kingdom
| | - Jason Mercer
- Insititute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
4
|
Samolej J, White IJ, Strang BL, Mercer J. Cardiac glycosides inhibit early and late vaccinia virus protein expression. J Gen Virol 2024; 105:001971. [PMID: 38546099 PMCID: PMC10995631 DOI: 10.1099/jgv.0.001971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
Cardiac glycosides (CGs) are natural steroid glycosides, which act as inhibitors of the cellular sodium-potassium ATPase pump. Although traditionally considered toxic to human cells, CGs are widely used as drugs for the treatment of cardiovascular-related medical conditions. More recently, CGs have been explored as potential anti-viral drugs and inhibit replication of a range of RNA and DNA viruses. Previously, a compound screen identified CGs that inhibited vaccinia virus (VACV) infection. However, no further investigation of the inhibitory potential of these compounds was performed, nor was there investigation of the stage(s) of the poxvirus lifecycle they impacted. Here, we investigated the anti-poxvirus activity of a broad panel of CGs. We found that all CGs tested were potent inhibitors of VACV replication. Our virological experiments showed that CGs did not impact virus infectivity, binding, or entry. Rather, experiments using recombinant viruses expressing reporter proteins controlled by VACV promoters and arabinoside release assays demonstrated that CGs inhibited early and late VACV protein expression at different concentrations. Lack of virus assembly in the presence of CGs was confirmed using electron microscopy. Thus, we expand our understanding of compounds with anti-poxvirus activity and highlight a yet unrecognized mechanism by which poxvirus replication can be inhibited.
Collapse
Affiliation(s)
- Jerzy Samolej
- Insititute of Microbiology and Infection, University of Birmingham, Birmingham, UK
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Ian J. White
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Blair L. Strang
- Institute for Infection and Immunity, St George's, University of London, London, UK
| | - Jason Mercer
- Insititute of Microbiology and Infection, University of Birmingham, Birmingham, UK
- Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|
5
|
Tempestilli M, Mondi A, D'Avolio A, Forini O, Pinnetti C, Mazzotta V, Gagliardini R, Beccacece A, De Nicolò A, Faccendini P, Cimini E, Maggi F, Girardi E, Nicastri E, Boffito M, Vaia F, Antinori A. Pharmacokinetics of tecovirimat in subjects with Mpox. Int J Antimicrob Agents 2024; 63:107068. [PMID: 38141836 DOI: 10.1016/j.ijantimicag.2023.107068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
OBJECTIVE To investigate the pharmacokinetics (PK) of tecovirimat in subjects with Mpox. METHODS This monocentric, prospective, observational study enrolled subjects with Mpox who received standard treatment with oral tecovirimat. Plasma samples for PK assessment were collected at steady state (5-8 days after initiation of antiviral therapy), before and 3, 5, 7 and 12 h after tecovirimat administration. Drug concentrations were determined by validated liquid chromatography coupled with tandem mass spectrometry. PK parameters were calculated using Phoenix 8.1. RESULTS Overall, 14 male patients hospitalized for severe Mpox with ongoing tecovirimat treatment were enrolled in this study. Six of the 14 patients were living with human immunodeficiency virus (HIV), all of whom were on antiretroviral therapy (ART) and virologically suppressed at the time of hospitalization. Significant differences in tecovirimat PK were observed in subjects without HIV compared with subjects with HIV. In subjects with HIV, the maximum tecovirimat plasma concentration (39%, P≤0.0001), minimum tecovirimat plasma concentration (42%, P=0.0079) and area under the curve from zero to the last measured time-point (40%, P≤0.0001) were significantly lower compared with subjects without HIV, but all concentrations remained above the in-vitro calculated 90% inhibitory concentration. No significant associations were found between demographic/clinical data and tecovirimat PK. All patients recovered completely within 14 (range 6-36) days of treatment initiation. CONCLUSIONS This study found a significant decrease in plasma exposure of tecovirimat in Mpox patients with HIV on effective ART compared with those without HIV, with no evident impact on clinical outcomes. Although these results need to be confirmed in larger studies, they may provide useful information on the PK of tecovirimat.
Collapse
Affiliation(s)
- Massimo Tempestilli
- Laboratory of Cellular Immunology and Clinical Pharmacology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Annalisa Mondi
- Clinical and Research Infectious Diseases Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy.
| | - Antonio D'Avolio
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Amedeo di Savoia Hospital, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Olindo Forini
- Laboratory of Cellular Immunology and Clinical Pharmacology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Carmela Pinnetti
- Clinical and Research Infectious Diseases Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Valentina Mazzotta
- Clinical and Research Infectious Diseases Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Roberta Gagliardini
- Clinical and Research Infectious Diseases Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Alessia Beccacece
- Clinical and Research Infectious Diseases Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Amedeo De Nicolò
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Amedeo di Savoia Hospital, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Paolo Faccendini
- Pharmacy Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Eleonora Cimini
- Laboratory of Cellular Immunology and Clinical Pharmacology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Enrico Girardi
- Scientific Direction, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Emanuele Nicastri
- Laboratory of Cellular Immunology and Clinical Pharmacology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Marta Boffito
- Chelsea and Westminster Healthcare NHS Foundation Trust, London, UK
| | - Francesco Vaia
- General Direction, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy; General Directorate for Health Prevention, Ministry of Health, Rome, Italy
| | - Andrea Antinori
- Clinical and Research Infectious Diseases Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| |
Collapse
|
6
|
Temrikar ZH, Golden JE, Jonsson CB, Meibohm B. Clinical and Translational Pharmacology Considerations for Anti-infectives Approved Under the FDA Animal Rule. Clin Pharmacokinet 2023; 62:943-953. [PMID: 37326917 PMCID: PMC10471120 DOI: 10.1007/s40262-023-01267-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2023] [Indexed: 06/17/2023]
Abstract
The US Food and Drug Administration's Animal Rule provides a pathway for approval of drugs and biologics aimed to treat serious or life-threatening conditions wherein traditional clinical trials are either not ethical or feasible. In such a scenario, determination of safety and efficacy are based on integration of data on drug disposition and drug action collected from in vitro models, infected animals, and healthy volunteer human studies. The demonstration of clinical efficacy and safety in humans based on robust, well-controlled animal studies is filled with challenges. This review elaborates on the challenges in the translation of data from in vitro and animal models to human dosing for antimicrobials. In this context, it discusses precedents of drugs approved under the Animal Rule, along with the approaches and guidance undertaken by sponsors.
Collapse
Affiliation(s)
- Zaid H Temrikar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA
| | - Jennifer E Golden
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI, USA
| | - Colleen B Jonsson
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA
- Department of Microbiology, Immunology, Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA.
| |
Collapse
|
7
|
Nyame J, Punniyakotti S, Khera K, Pal RS, Varadarajan N, Sharma P. Challenges in the treatment and prevention of Monkeypox infection; a comprehensive review. Acta Trop 2023:106960. [PMID: 37276922 PMCID: PMC10239200 DOI: 10.1016/j.actatropica.2023.106960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/07/2023]
Abstract
Human monkeypox (HMPX) is a zoonotic disease, literally meaning that it can be passed on from animals (non-primate) to human (primate). All the reported and recorded cases have been traced back either to international travel or import of African animals. In the Unites states, sporadic monkeypox cases have been reported in specific over the past 50 years, starting its first identification in the Democratic Republic of the Congo (D.R.C.) in 1970. Due to its extreme versatility, this disease poses threat as a serious public health issue that needs to be monitored, researched and prevented. Data indicate that prior immunization with the smallpox vaccine is beneficial and may provide protection against the monkeypox virus. JYNNEOSTM is a live viral vaccine that has been approved to improve clinical manifestations of the infection. On the other hand, public ignorance about safety precaution towards monkeypox post-COVID is another challenge that needs to be overcome in tackling HMPX as a possible re-emergent infection. This review is a collation of the epidemiology, etiology, transmission, clinical features and treatment of human monkeypox (HMPX).
Collapse
Affiliation(s)
- Jennifer Nyame
- Lovely Institute of Technology, Lovely School of Pharmaceutical Sciences, Lovely Professional University, Punjab, 144411, India
| | - Saranya Punniyakotti
- Department of Pharmacy Practice, Lovely Institute of Technology, Lovely School of Pharmaceutical Sciences, Lovely Professional University, Punjab, 144411, India.
| | - Kanav Khera
- Department of Pharmacy Practice, Lovely Institute of Technology, Lovely School of Pharmaceutical Sciences, Lovely Professional University, Punjab, 144411, India
| | - Rashmi Saxena Pal
- Department of Pharmacognosy, Lovely Institute of Technology, Lovely School of Pharmaceutical Sciences, Lovely Professional University, Punjab, 144411, India
| | - Nithya Varadarajan
- Department of Pharmacy Practice, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai
| | - Prachi Sharma
- Department of Pharmacology, Lovely Institute of Technology, Lovely School of Pharmaceutical Sciences Lovely Professional University, Punjab, 144411, India
| |
Collapse
|
8
|
Wang J, Shahed-Ai-Mahmud M, Chen A, Li K, Tan H, Joyce R. An Overview of Antivirals against Monkeypox Virus and Other Orthopoxviruses. J Med Chem 2023; 66:4468-4490. [PMID: 36961984 DOI: 10.1021/acs.jmedchem.3c00069] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
The current monkeypox outbreaks during the COVID-19 pandemic have reignited interest in orthopoxvirus antivirals. Monkeypox belongs to the Orthopoxvirus genus of the Poxviridae family, which also includes the variola virus, vaccinia virus, and cowpox virus. Two orally bioavailable drugs, tecovirimat and brincidofovir, have been approved for treating smallpox infections. Given their human safety profiles and in vivo antiviral efficacy in animal models, both drugs have also been recommended to treat monkeypox infection. To facilitate the development of additional orthopoxvirus antivirals, we summarize the antiviral activity, mechanism of action, and mechanism of resistance of orthopoxvirus antivirals. This perspective covers both direct-acting and host-targeting antivirals with an emphasis on drug candidates showing in vivo antiviral efficacy in animal models. We hope to speed the orthopoxvirus antiviral drug discovery by providing medicinal chemists with insights into prioritizing proper drug targets and hits for further development.
Collapse
Affiliation(s)
- Jun Wang
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Md Shahed-Ai-Mahmud
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Angelo Chen
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Kan Li
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Haozhou Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Ryan Joyce
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
9
|
Tang H, Zhang A. Human mpox: Biology, epidemiology, therapeutic options, and development of small molecule inhibitors. Med Res Rev 2023. [PMID: 36891882 DOI: 10.1002/med.21943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/22/2023] [Accepted: 02/26/2023] [Indexed: 03/10/2023]
Abstract
Although monkeypox (mpox) has been endemic in Western and Central Africa for 50 years, it has not received sufficient prophylactic and therapeutical attention to avoid evolving into an epidemic. From January 2022 to January 2023, more than 84,000 of mpox cases were reported from 110 countries worldwide. Case numbers appear to be rising every day, making mpox an increasing global public health threat for the foreseeable future. In this perspective, we review the known biology and epidemiology of mpox virus, together with the latest therapeutic options available for mpox treatment. Further, small molecule inhibitors against mpox virus and the future directions in this field are discussed as well.
Collapse
Affiliation(s)
- Hairong Tang
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, and the Engineering Research Center of Cell and Therapeutic Antibody of the Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ao Zhang
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, and the Engineering Research Center of Cell and Therapeutic Antibody of the Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.,Lingang Laboratory, Shanghai, China
| |
Collapse
|
10
|
Shchelkunova GA, Shchelkunov SN. Smallpox, Monkeypox and Other Human Orthopoxvirus Infections. Viruses 2022; 15:103. [PMID: 36680142 PMCID: PMC9865299 DOI: 10.3390/v15010103] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/18/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
Considering that vaccination against smallpox with live vaccinia virus led to serious adverse effects in some cases, the WHO, after declaration of the global eradication of smallpox in 1980, strongly recommended to discontinue the vaccination in all countries. This led to the loss of immunity against not only smallpox but also other zoonotic orthopoxvirus infections in humans over the past years. An increasing number of human infections with zoonotic orthopoxviruses and, first of all, monkeypox, force us to reconsider a possible re-emergence of smallpox or a similar disease as a result of natural evolution of these viruses. The review contains a brief analysis of the results of studies on genomic organization and evolution of human pathogenic orthopoxviruses, development of modern methods for diagnosis, vaccination, and chemotherapy of smallpox, monkeypox, and other zoonotic human orthopoxvirus infections.
Collapse
Affiliation(s)
| | - Sergei N. Shchelkunov
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, 630559 Novosibirsk, Russia
| |
Collapse
|
11
|
Li H, Huang QZ, Zhang H, Liu ZX, Chen XH, Ye LL, Luo Y. The land-scape of immune response to monkeypox virus. EBioMedicine 2022; 87:104424. [PMID: 36584594 PMCID: PMC9797195 DOI: 10.1016/j.ebiom.2022.104424] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/11/2022] [Accepted: 12/06/2022] [Indexed: 12/29/2022] Open
Abstract
Human monkeypox is a viral zoonotic smallpox-like disease caused by the monkeypox virus (MPXV) and has become the greatest public health threat in the genus Orthopoxvirus after smallpox was eradicated. The host immune response to MPXV plays an essential role in disease pathogenesis and clinical manifestations. MPXV infection leads to skin lesions with the genital area as the main feature in the current outbreak and triggers a strong immune response that results in sepsis, deep tissue abscess, severe respiratory disease, and injuries to multiple immune organs. Emerging evidence shows that the immunopathogenesis of MPXV infection is closely associated with impaired NK-cell function, lymphopenia, immune evasion, increased antibodies, increased blood monocytes and granulocytes, cytokine storm, inhibition of the host complement system, and antibody-dependent enhancement. In this overview, we discuss the immunopathology and immunopathogenesis of monkeypox to aid the development of novel immunotherapeutic strategies against monkeypox.
Collapse
Affiliation(s)
- Heng Li
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China
| | - Qi-Zhao Huang
- Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Hong Zhang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 250033, Jinan, Shandong, China
| | - Zhen-Xing Liu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China
| | - Xiao-Hui Chen
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China
| | - Li-Lin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, 400038, PR China,Corresponding author: Institute of Immunology, Third Military Medical University, Chongqing, 400038, PR China.
| | - Yang Luo
- College of Life Sciences and Laboratory Medicine, Kunming Medical University, Kunming, Yunnan, 650500, PR China,Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, 650118, PR China,Department of Laboratory Medicine, Jiangjin Hospital, Chongqing University, Chongqing, 402260, PR China,Corresponding author: College of Life Sciences and Laboratory Medicine, Kunming Medical University, Kunming, Yunnan, 650500, PR China.
| |
Collapse
|
12
|
Abstract
Human monkeypox is a viral zoonosis endemic to West and Central Africa that has recently generated increased interest and concern on a global scale as an emerging infectious disease threat in the midst of the slowly relenting COVID-2019 disease pandemic. The hallmark of infection is the development of a flu-like prodrome followed by the appearance of a smallpox-like exanthem. Precipitous person-to-person transmission of the virus among residents of 100 countries where it is nonendemic has motivated the immediate and widespread implementation of public health countermeasures. In this review, we discuss the origins and virology of monkeypox virus, its link with smallpox eradication, its record of causing outbreaks of human disease in regions where it is endemic in wildlife, its association with outbreaks in areas where it is nonendemic, the clinical manifestations of disease, laboratory diagnostic methods, case management, public health interventions, and future directions.
Collapse
Affiliation(s)
- Sameer Elsayed
- Department of Medicine, Western University, London, Ontario, Canada
- Department of Pathology & Laboratory Medicine, Western University, London, Ontario, Canada
- Department of Epidemiology & Biostatistics, Western University, London, Ontario, Canada
| | - Lise Bondy
- Department of Medicine, Western University, London, Ontario, Canada
| | - William P. Hanage
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
13
|
DeLaurentis CE, Kiser J, Zucker J. New Perspectives on Antimicrobial Agents: Tecovirimat for Treatment of Human Monkeypox Virus. Antimicrob Agents Chemother 2022; 66:e0122622. [PMID: 36374026 PMCID: PMC9765296 DOI: 10.1128/aac.01226-22] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tecovirimat is an antiviral drug initially developed against variola virus (VARV) to treat smallpox infection. Due to its mechanism of action, it has activity against the family of orthopoxviruses, including vaccinia and the human monkeypox virus (HMPXV). Efficacy studies have thus far been limited to animal models, with human safety trials showing no serious adverse events. Currently approved by the FDA only for the treatment of smallpox, tecovirimat shows promise for the treatment of HMPXV. Tecovirimat has been prescribed via an expanded access for an investigational new drug protocol during the 2022 outbreak. This review will examine the literature surrounding tecovirimat's mechanism of action, pharmacokinetics, safety, efficacy, and potential for resistance.
Collapse
Affiliation(s)
- Clare E. DeLaurentis
- Division of Infectious Diseases, Columbia University Medical Center, New York, New York, USA
| | - Jennifer Kiser
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jason Zucker
- Division of Infectious Diseases, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
14
|
Therapeutic strategies for human poxvirus infections: Monkeypox (mpox), smallpox, molluscipox, and orf. Travel Med Infect Dis 2022; 52:102528. [PMID: 36539022 PMCID: PMC9758798 DOI: 10.1016/j.tmaid.2022.102528] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/01/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Therapeutic and vaccine development for human poxvirus infections (e.g., monkeypox (mpox) virus, variola virus, molluscum contagiosum virus, orf virus) has been largely deserted, especially after the eradication of smallpox by 1980. Human mpox is a self-limited disease confined to Central and West Africa for decades. However, since April 2022, mpox has quickly emerged as a multi-country outbreak, urgently calling for effective antiviral agents and vaccines to control mpox. Here, this review highlights possible therapeutic options (e.g., tecovirimat, brincidofovir, cidofovir) and other strategies (e.g., vaccines, intravenous vaccinia immune globulin) for the management of human poxvirus infections worldwide.
Collapse
|
15
|
James J, A P, P K, Rani J, V S. An Update on the Pharmacological Aspects of Vaccines and Antivirals for the Management of Monkeypox. J Pharmacol Pharmacother 2022. [DOI: 10.1177/0976500x231156733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Monkeypox is a self-limiting zoonotic disease caused by the monkeypox virus belonging to the genus of orthopox viruses. Initially considered an ‘African disease’, this infection has crossed the boundaries to affect other continents and it has raised tremendous concerns among the general public as well as the medical fraternity all over the world, particularly because of the lack of specific vaccinations and drugs for the management of the illness. Epidemiological evaluation of the current infection has reported that it is mainly transmitted through sexual contact in bisexual men, mostly whites, and in those with pre-existing human immunodeficiency virus infection. The most common presentations were skin rash, anogenital lesions, or mucosal lesions along with systemic symptoms. It has been established that the vaccines and drugs approved for the management of smallpox could be used for the management of the current monkeypox outbreak. Vaccinia Immune Globulin (VIG) and vaccines like JYNNEOS and ACAM2000 and antiviral drugs like tecovirimat, cidofovir (CDV), and brincidofovir are being considered for those patients with serious diseases. It is imperative for physicians to understand the pharmacological aspects of these drugs for delivering better care to patients with monkeypox, which is eventually essential for the containment of this infection. This review covers updates on vaccines as well as drugs for the prevention and management of monkeypox.
Collapse
|
16
|
Lepelletier D, Pozzetto B, Chauvin F, Chidiac C. Management of patients with monkeypox virus infection and contacts in the community and in healthcare settings: a French position paper. Clin Microbiol Infect 2022; 28:1572-1577. [PMID: 36058544 PMCID: PMC9534082 DOI: 10.1016/j.cmi.2022.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022]
Abstract
SCOPE Since April 2022, a large number of monkeypox (MPX) cases have emerged across the globe in regions that are known to be totally free of zoonotic reservoir. The High Council for Public Health is a national institute commissioned to provide guidelines to the French Ministry of Health. The objective of these guidelines and recommendations is to inform the public, people at risk of severe MPX infection, infected patients and their families and contacts and healthcare workers in charge of infected patients. METHODS A review of the literature from the MEDLINE database was carried out using the single keyword 'monkeypox', including recent and older articles from January 2000 to June 2022. There was no filter for the type of study, except English language. The titles and summaries of all the articles were read by the experts to select articles of interest. The High Council for Public Health brought together specialists with expertise in the field to analyse the scientific literature and international recommendations. Recommendations were classified with clinical practice methodology using four levels (strong recommendation, recommendation, optional recommendation and no recommendation) without grading the level of evidence. To develop and methodologically validate the recommendations, the Appraisal of Guidelines for Research and Evaluation Instrument (AGREE-II)chart was partially used. QUESTIONS ADDRESSED BY THE GUIDELINES AND RECOMMENDATIONS: (a) What are the therapeutic management measures for hospitalized patients with severe forms of MPX infection, and what are the preventive measures to protect healthcare professionals? (b) What are the isolation and prevention measures in the community for patients with mild or moderate severity MPX infection? (c) what are the preventive measures for contacts of an MPX-infected person? (d) Who should be vaccinated? (e) What are the specific prevention measures for children and schools?
Collapse
Affiliation(s)
- Didier Lepelletier
- High Council for Public Health, Ministry of Solidarity and Health, Paris, France.
| | - Bruno Pozzetto
- High Council for Public Health, Ministry of Solidarity and Health, Paris, France
| | - Franck Chauvin
- High Council for Public Health, Ministry of Solidarity and Health, Paris, France
| | - Christian Chidiac
- High Council for Public Health, Ministry of Solidarity and Health, Paris, France
| |
Collapse
|
17
|
Affiliation(s)
- Antoine Gessain
- From Institut Pasteur, Université de Paris Cité, Centre National de la Recherche Scientifique, UMR3569, Unité d'Épidémiologie et Physiopathologie des Virus Oncogènes, Département de Virologie (A.G.), and Assistance Publique-Hôpitaux de Paris, Department of Infectious and Tropical Diseases, Bichat-Claude Bernard University Hospital, INSERM, ANRS Maladies Infectieuses Émergentes (Y.Y.) - both in Paris; and Institut Pasteur de Bangui, Bangui, Central African Republic (E.N.)
| | - Emmanuel Nakoune
- From Institut Pasteur, Université de Paris Cité, Centre National de la Recherche Scientifique, UMR3569, Unité d'Épidémiologie et Physiopathologie des Virus Oncogènes, Département de Virologie (A.G.), and Assistance Publique-Hôpitaux de Paris, Department of Infectious and Tropical Diseases, Bichat-Claude Bernard University Hospital, INSERM, ANRS Maladies Infectieuses Émergentes (Y.Y.) - both in Paris; and Institut Pasteur de Bangui, Bangui, Central African Republic (E.N.)
| | - Yazdan Yazdanpanah
- From Institut Pasteur, Université de Paris Cité, Centre National de la Recherche Scientifique, UMR3569, Unité d'Épidémiologie et Physiopathologie des Virus Oncogènes, Département de Virologie (A.G.), and Assistance Publique-Hôpitaux de Paris, Department of Infectious and Tropical Diseases, Bichat-Claude Bernard University Hospital, INSERM, ANRS Maladies Infectieuses Émergentes (Y.Y.) - both in Paris; and Institut Pasteur de Bangui, Bangui, Central African Republic (E.N.)
| |
Collapse
|
18
|
Ortiz-Saavedra B, León-Figueroa DA, Montes-Madariaga ES, Ricardo-Martínez A, Alva N, Cabanillas-Ramirez C, Barboza JJ, Siddiq A, Coaguila Cusicanqui LA, Bonilla-Aldana DK, Rodriguez-Morales AJ. Antiviral Treatment against Monkeypox: A Scoping Review. Trop Med Infect Dis 2022; 7:369. [PMID: 36355910 PMCID: PMC9696364 DOI: 10.3390/tropicalmed7110369] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 08/25/2023] Open
Abstract
During the COVID-19 pandemic, the increase in reports of human monkeypox virus infection cases spreading in many countries outside Africa is a major cause for concern. Therefore, this study aimed to explore the evidence of antiviral pharmacotherapy available for the treatment of adult patients with monkeypox. A scoping review of the literature was conducted using PubMed, Scopus, Web of Science, Embase, and CENTRAL databases until 12 September 2022. The key search terms used were "monkeypox" and "treatment". A total of 1927 articles were retrieved using the search strategy. After removing duplicates (n = 1007) and examining by title, abstract, and full text, 11 studies reporting case reports of monkeypox with antiviral treatment were included, detailing the number of monkeypox cases, clinical manifestations, number of participants with antiviral treatment, history of sexually transmitted diseases, method of diagnosis, location of skin lesions, drugs used in antiviral treatment, route of administration, and outcome. A total of 1281 confirmed cases of monkeypox have been reported, of which 65 monkeypox cases had antiviral treatment distributed most frequently in the United States (n = 30), the United Kingdom (n = 6), and Spain (n = 6). Of the total cases, 1269 (99.1%) were male with an age range of 18 to 76 years, and 1226 (95.7%) had a sexual behavior of being men who have sex with men. All confirmed cases of monkeypox were diagnosed by reverse transcriptase polymerase chain reaction (RT-PCR). The most frequent clinical manifestations were skin lesions, fever, lymphadenopathy, headache, fatigue, and myalgia. The most frequent locations of the lesions were perianal, genital, facial, and upper and lower extremities. The most commonly used drugs for antiviral treatment of monkeypox were: tecovirimat, cidofovir, and brincidofovir. All patients had a complete recovery. According to current evidence, the efficacy and safety of antiviral drugs against monkeypox is of low quality and scarce.
Collapse
Affiliation(s)
- Brando Ortiz-Saavedra
- Facultad de Medicina, Universidad Nacional de San Agustín de Arequipa, Arequipa 04000, Peru
| | - Darwin A. León-Figueroa
- Facultad de Medicina Humana, Universidad de San Martín de Porres, Chiclayo 14012, Peru
- Unidad de Revisiones Sistemáticas y Meta-Análisis, Tau-Relaped Group, Trujillo 13001, Peru
| | | | | | - Niza Alva
- Escuela de Medicina, Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru
| | | | - Joshuan J. Barboza
- Vicerrectorado de Investigación, Universidad Norbert Wiener, Lima 15023, Peru
| | | | | | | | - Alfonso J. Rodriguez-Morales
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundacion Universitaria Autonoma de las Americas, Pereira 660001, Risaralda, Colombia
- Latin American Network of MOnkeypox VIrus Research (LAMOVI), Pereira 660001, Risaralda, Colombia
- Master of Clinical Epidemiology and Biostatistics, Universidad Cientifica del Sur, Lima 15023, Peru
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut P.O. Box 36, Lebanon
| |
Collapse
|
19
|
Singh S, Kumar R, Singh SK. All That We Need to Know About the Current and Past Outbreaks of Monkeypox: A Narrative Review. Cureus 2022; 14:e31109. [DOI: 10.7759/cureus.31109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2022] [Indexed: 11/07/2022] Open
|
20
|
Lucar J, Roberts A, Saardi KM, Yee R, Siegel MO, Palmore TN. Monkeypox Virus-Associated Severe Proctitis Treated With Oral Tecovirimat: A Report of Two Cases. Ann Intern Med 2022; 175:1626-1627. [PMID: 35981225 DOI: 10.7326/l22-0300] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Jose Lucar
- Division of Infectious Diseases, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Afsoon Roberts
- Division of Infectious Diseases, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Karl M Saardi
- Department of Dermatology, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Rebecca Yee
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Marc O Siegel
- Division of Infectious Diseases, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Tara N Palmore
- Division of Infectious Diseases, George Washington University School of Medicine and Health Sciences, Washington, DC
| |
Collapse
|
21
|
Mileto D, Riva A, Cutrera M, Moschese D, Mancon A, Meroni L, Giacomelli A, Bestetti G, Rizzardini G, Gismondo MR, Antinori S. New challenges in human monkeypox outside Africa: A review and case report from Italy. Travel Med Infect Dis 2022; 49:102386. [PMID: 35738529 PMCID: PMC9528171 DOI: 10.1016/j.tmaid.2022.102386] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND Human monkeypox (MPX) is a neglected zoonotic disease caused by the MPX virus a double-stranded DNA virus which belongs to the Poxviridae family genus Orthopoxvirus. It is endemic in the rural rainforests of Central and Western Africa where it is responsible of human sporadic cases and outbreaks since 1970. Outside Africa MPXV caused an outbreak in 2003 in the United States linked to importation of infected rodents from Ghana and a few travel-related cases in the USA, United Kingdom, Israel and Singapore. Actually, a worldwide outbreak with more than 1200 confirmed cases mainly concentrated among men who have sex with men is ongoing. CASE REPORT We present the case of an Italian man living in Portugal that was diagnosed with MPX at our clinic in Milan, Italy. Monkeypox virus infection was confirmed by a specific homemade Real-Time PCR. Samples obtained from different sites (pharynx, skin lesions, anal ulcer, seminal fluid) turned all positive with different viral load. CONCLUSIONS Our report illustrates the challenge of a disease that seems to present in a different way from classic description with possible human-to-human transmission through sexual contact.
Collapse
Affiliation(s)
- Davide Mileto
- Clinical Microbiology, Virology and Bioemergency Diagnostics, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
| | - Agostino Riva
- Department of Biomedical and Clinical Sciences, Università Degli Studi di Milano, Italy; III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
| | - Miriam Cutrera
- Clinical Microbiology, Virology and Bioemergency Diagnostics, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
| | - Davide Moschese
- I Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
| | - Alessandro Mancon
- Clinical Microbiology, Virology and Bioemergency Diagnostics, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
| | - Luca Meroni
- III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
| | - Andrea Giacomelli
- III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
| | - Giovanna Bestetti
- III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
| | - Giuliano Rizzardini
- I Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
| | - Maria Rita Gismondo
- Clinical Microbiology, Virology and Bioemergency Diagnostics, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy; Department of Biomedical and Clinical Sciences, Università Degli Studi di Milano, Italy
| | - Spinello Antinori
- Department of Biomedical and Clinical Sciences, Università Degli Studi di Milano, Italy; III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy.
| |
Collapse
|
22
|
A Glance at the Development and Patent Literature of Tecovirimat: The First-in-Class Therapy for Emerging Monkeypox Outbreak. Viruses 2022; 14:v14091870. [PMID: 36146675 PMCID: PMC9505384 DOI: 10.3390/v14091870] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 12/11/2022] Open
Abstract
Monkeypox disease (MPX) is currently considered a global threat after COVID-19. European Medicines Agency (EMA) approved Tecovirimat in capsule dosage form (200 mg) as the first treatment for MPX in January 2022. This article highlights Tecovirimat’s development and patent literature review and is believed to benefit the scientists working on developing MPX treatments. The literature for Tecovirimat was gathered from the website of SIGA Technologies (developer of Tecovirimat), regulatory agencies (EMA, United States Food and Drug Administration (USFDA), and Health Canada), PubMed, and freely accessible clinical/patent databases. Tecovirimat was first recognized as an anti-orthopoxvirus molecule in 2002 and developed by SIGA Technologies. The USFDA and Health Canada have also recently approved Tecovirimat to treat smallpox in 2018 and 2021, respectively. The efficacy of Tecovirimat was verified in infected non-human primates (monkeys) and rabbits under the USFDA’s Animal Rule. Most clinical studies have been done on Tecovirimat’s safety and pharmacokinetic parameters. The patent literature has revealed inventions related to the capsule, injection, suspension, crystalline forms, amorphous form, and drug combinations (Tecovirimat + cidofovir) and process for preparing Tecovirimat. The authors foresee the off-label use of Tecovirimat in the USA and Canada for MPX and other orthopoxvirus infections. The authors also trust that there is immense scope for developing new Tecovirimat-based treatments (new drug combinations with other antivirals) for orthopoxvirus and other viral diseases. Drug interaction studies and drug resistance studies on Tecovirimat are also recommended. Tecovirimat is believed to handle the current MPX outbreak and is a new hope of biosecurity against smallpox or orthopoxvirus-related bioterrorism attack.
Collapse
|
23
|
Abstract
Introduction Monkeypox is a viral zoonosis, with symptoms similar to those seen in smallpox patients, although the clinical presentation may be less severe. Until recently, human monkeypox infection was rare, and primarily occurred in Central and West Africa. Areas covered An international outbreak began in May 2022, and monkeypox has now been detected on every continent except Antarctica. The first recognized case from the current outbreak was confirmed in the United Kingdom on 6 May 2022, in an adult with travel links to Nigeria, but it has been suggested that cases had been spreading in Europe for months. On 23 July 2022 the Director-General of the World Health Organization declared the monkeypox outbreak a public health emergency of international concern. Expert opinion There are no treatments specifically for monkeypox virus infections. However, monkeypox and smallpox viruses are genetically similar, and therapeutics developed to combat smallpox may be used to treat monkeypox. This manuscripts reviews what is known about these potential treatments, including tecovirimat and brincidofovir, based on a literature search of PubMed through 9 August 2022, and explores how these therapeutics may be used in the future to address the expanding monkeypox pandemic.
Collapse
Affiliation(s)
- Matthew W McCarthy
- Weill Cornell Medicine, Department of Medicine, 525 East 68th Street, Box 130, New York, NY, 10065
| |
Collapse
|
24
|
Development and Validation of a Method of Liquid Chromatography Coupled with Tandem Mass Spectrometry for Quantification of ST-246 (Tecovirimat) in Human Plasma. Molecules 2022; 27:molecules27113577. [PMID: 35684513 PMCID: PMC9182130 DOI: 10.3390/molecules27113577] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 01/20/2023] Open
Abstract
The aim of this work was to develop and validate a sensitive and robust method of liquid chromatography coupled with tandem mass spectrometry to quantitate ST-246 (tecovirimat) in plasma using an internal standard (2-hydroxy-N-{3,5-dioxo-4-azatetracyclo [5.3.2.02.6.08.10]dodec-11-en-4-yl}-5-methylbenzamide). The method was validated in negative multiple reaction monitoring mode following recommendations of the European Medicines Agency for the validation of bioanalytical methods. The calibration curve for the analyte was linear in the 10−2500 ng/mL range with determination coefficient R2 > 0.99. Intra- and inter-day accuracy and precision for three concentrations of quality control were <15%. Testing of long-term stability of ST-246 (tecovirimat) in plasma showed no degradation at −20 °C for at least 3 months. The method was applied to a clinical assay of a new antipoxvirus compound, NIOCH-14. Thus, the proposed method is suitable for therapeutic drug monitoring of ST-246 (tecovirimat) itself and of NIOCH-14 as its metabolic precursor.
Collapse
|
25
|
Zhang Z, Fu S, Wang F, Yang C, Wang L, Yang M, Zhang W, Zhong W, Zhuang X. A PBPK Model of Ternary Cyclodextrin Complex of ST-246 Was Built to Achieve a Reasonable IV Infusion Regimen for the Treatment of Human Severe Smallpox. Front Pharmacol 2022; 13:836356. [PMID: 35370741 PMCID: PMC8966223 DOI: 10.3389/fphar.2022.836356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
ST-246 is an oral drug against pathogenic orthopoxvirus infections. An intravenous formulation is required for some critical patients. A ternary complex of ST-246/meglumine/hydroxypropyl-β-cyclodextrin with well-improved solubility was successfully developed in our institute. The aim of this study was to achieve a reasonable intravenous infusion regimen of this novel formulation by a robust PBPK model based on preclinical pharmacokinetic studies. The pharmacokinetics of ST-246 after intravenous injection at different doses in rats, dogs, and monkeys were conducted to obtain clearances. The clearance of humans was generated by using the allometric scaling approach. Tissue distribution of ST-246 was conducted in rats to obtain tissue partition coefficients (Kp). The PBPK model of the rat was first built using in vivo clearance and Kp combined with in vitro physicochemical properties, unbound fraction, and cyclodextrin effect parameters of ST-246. Then the PBPK model was transferred to a dog and monkey and validated simultaneously. Finally, pharmacokinetic profiles after IV infusion at different dosages utilizing the human PBPK model were compared to the observed oral PK profile of ST-246 at therapeutic dosage (600 mg). The mechanistic PBPK model described the animal PK behaviors of ST-246 via intravenous injection and infusion with fold errors within 1.2. It appeared that 6h-IV infusion at 5 mg/kg BID produced similar Cmax and AUC as oral administration at 600 mg. A PBPK model of ST-246 was built to achieve a reasonable regimen of IV infusion for the treatment of severe smallpox, which will facilitate the clinical translation of this novel formulation.
Collapse
Affiliation(s)
- Zhiwei Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Shuang Fu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Furun Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Chunmiao Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Lingchao Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Meiyan Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Wenpeng Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Wu Zhong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xiaomei Zhuang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
26
|
Russo AT, Grosenbach DW, Chinsangaram J, Honeychurch KM, Long PG, Lovejoy C, Maiti B, Meara I, Hruby DE. An overview of tecovirimat for smallpox treatment and expanded anti-orthopoxvirus applications. Expert Rev Anti Infect Ther 2020; 19:331-344. [PMID: 32882158 PMCID: PMC9491074 DOI: 10.1080/14787210.2020.1819791] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction Tecovirimat (TPOXX®; ST-246) was approved for the treatment of symptomatic smallpox by the USFDA in July of 2018 and has been stockpiled by the US government for use in a smallpox outbreak. While there has not been a reported case of smallpox since 1978 it is still considered a serious bioterrorism threat. Areas covered A brief history of smallpox from its proposed origins as a human disease through its eradication in the late 20th century is presented. The current smallpox threat and the current public health response plans are described. The discovery, and development of tecovirimat through NDA submission and subsequent approval for treatment of smallpox are discussed. Google Scholar and PubMed were searched over all available dates for relevant publications. Expert opinion Approval of tecovirimat to treat smallpox represents an important milestone in biosecurity preparedness. Incorporating tecovirimat into the CDC smallpox response plan, development of pediatric liquid and intravenous formulations, and approval for post-exposure prophylaxis would provide additional health security benefit. Tecovirimat shows broad efficacy against orthopoxviruses in vitro and in vivo and could be developed for use against emerging orthopoxvirus diseases such as monkeypox, vaccination-associated adverse events, and side effects of vaccinia oncolytic virus therapy.
Collapse
Affiliation(s)
- Andrew T Russo
- Poxvirus Research Group, SIGA Technologies, Inc, Corvallis, OR, USA
| | | | | | | | - Paul G Long
- Regulatory Affairs, SIGA Technologies, Inc, Corvallis, OR, USA
| | - Candace Lovejoy
- Program Management, SIGA Technologies, Inc, Corvallis, OR, USA
| | - Biswajit Maiti
- Drug Metabolism & Pharmacokinetics, SIGA Technologies, Inc, Corvallis, OR, USA
| | - Ingrid Meara
- Clinical Research, SIGA Technologies, Inc, Corvallis, OR, USA
| | - Dennis E Hruby
- Chief Scientific Officer, SIGA Technologies, Inc, Corvallis, OR, USA
| |
Collapse
|
27
|
Working Safely with Vaccinia Virus: Laboratory Technique and Review of Published Cases of Accidental Laboratory Infections with Poxviruses. Methods Mol Biol 2020. [PMID: 31240668 DOI: 10.1007/978-1-4939-9593-6_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Vaccinia virus, the prototype Orthopoxvirus, is widely used in the laboratory as a model system to study various aspects of viral biology and virus-host interactions, as a protein expression system, as a vaccine vector, and as an oncolytic agent. The ubiquitous use of vaccinia viruses in laboratories around the world raises certain safety concerns because the virus can be a pathogen in individuals with immunological and dermatological abnormalities, and on occasion can cause serious problems in normal hosts. This chapter reviews standard operating procedures when working with vaccinia virus and reviews published cases of accidental laboratory infections with poxviruses.
Collapse
|
28
|
Abstract
Forty years after the last endemic smallpox case, variola virus (VARV) is still considered a major threat to humans due to its possible use as a bioterrorism agent. For many years, the risk of disease reemergence was thought to solely be through deliberate misuse of VARV strains kept in clandestine laboratories. However, recent experiments using synthetic biology have proven the feasibility of recreating a poxvirus de novo, implying that VARV could, in theory, be resurrected. Because of this new perspective, the WHO Advisory Committee on VARV Research released new recommendations concerning research on poxviruses that strongly encourages pursuing the development of new antiviral drugs against orthopoxviruses. In 2018, the U.S. FDA advised in favor of two molecules for smallpox treatment, tecovirimat and brincidofovir. This review highlights the difficulties to develop new drugs targeting an eradicated disease, especially as it requires working under the FDA "animal efficacy rule" with the few, and imperfect, animal models available.
Collapse
|
29
|
Merchlinsky M, Albright A, Olson V, Schiltz H, Merkeley T, Hughes C, Petersen B, Challberg M. The development and approval of tecoviromat (TPOXX ®), the first antiviral against smallpox. Antiviral Res 2019; 168:168-174. [PMID: 31181284 DOI: 10.1016/j.antiviral.2019.06.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 11/16/2022]
Abstract
The classification of smallpox by the U.S. Centers for Disease Control and Prevention (CDC) as a Category A Bioterrorism threat agent has resulted in the U.S. Government investing significant funds to develop and stockpile a suite of medical countermeasures to ameliorate the consequences of a smallpox epidemic. This stockpile includes both vaccines for prophylaxis and antivirals to treat symptomatic patients. In this manuscript, we describe the path to approval for the first therapeutic against smallpox, identified during its development as ST-246, now known as tecovirimat and TPOXX®, a small-molecule antiviral compound sponsored by SIGA Technologies to treat symptomatic smallpox. Because the disease is no longer endemic, the development and approval of TPOXX® was only possible under the U.S. Food and Drug and Administration Animal Rule (FDA 2002). In this article, we describe the combination of animal model studies and clinical trials that were used to satisfy the FDA requirements for the approval of TPOXX ® under the Animal Rule.
Collapse
Affiliation(s)
- Michael Merchlinsky
- Biomedical Advanced Research and Development Authority, 300 C Street SW, Washington DC, 20201, USA.
| | - Andrew Albright
- Biomedical Advanced Research and Development Authority, 300 C Street SW, Washington DC, 20201, USA
| | - Victoria Olson
- National Center for Emerging and Zoonotic Infectious Disease, Centers for Disease Control and Prevention, Mail Stop G-06, 1600 Clifton Road, NE, Atlanta, 30333, Georgia
| | - Helen Schiltz
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, MSC 9825, 5601 Fishers Lane, Rockville, MD, 20851, USA
| | - Tyler Merkeley
- Biomedical Advanced Research and Development Authority, 300 C Street SW, Washington DC, 20201, USA
| | - Claiborne Hughes
- Biomedical Advanced Research and Development Authority, 300 C Street SW, Washington DC, 20201, USA
| | - Brett Petersen
- National Center for Emerging and Zoonotic Infectious Disease, Centers for Disease Control and Prevention, Mail Stop G-06, 1600 Clifton Road, NE, Atlanta, 30333, Georgia
| | - Mark Challberg
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, MSC 9825, 5601 Fishers Lane, Rockville, MD, 20851, USA
| |
Collapse
|
30
|
|
31
|
Grosenbach DW, Honeychurch K, Rose EA, Chinsangaram J, Frimm A, Maiti B, Lovejoy C, Meara I, Long P, Hruby DE. Oral Tecovirimat for the Treatment of Smallpox. N Engl J Med 2018; 379:44-53. [PMID: 29972742 PMCID: PMC6086581 DOI: 10.1056/nejmoa1705688] [Citation(s) in RCA: 242] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Smallpox was declared eradicated in 1980, but variola virus (VARV), which causes smallpox, still exists. There is no known effective treatment for smallpox; therefore, tecovirimat is being developed as an oral smallpox therapy. Because clinical trials in a context of natural disease are not possible, an alternative developmental path to evaluate efficacy and safety was needed. METHODS We investigated the efficacy of tecovirimat in nonhuman primate (monkeypox) and rabbit (rabbitpox) models in accordance with the Food and Drug Administration (FDA) Animal Efficacy Rule, which was interpreted for smallpox therapeutics by an expert advisory committee. We also conducted a placebo-controlled pharmacokinetic and safety trial involving 449 adult volunteers. RESULTS The minimum dose of tecovirimat required in order to achieve more than 90% survival in the monkeypox model was 10 mg per kilogram of body weight for 14 days, and a dose of 40 mg per kilogram for 14 days was similarly efficacious in the rabbitpox model. Although the effective dose per kilogram was higher in rabbits, exposure was lower, with a mean steady-state maximum, minimum, and average (mean) concentration (Cmax, Cmin, and Cavg, respectively) of 374, 25, and 138 ng per milliliter, respectively, in rabbits and 1444, 169, and 598 ng per milliliter in nonhuman primates, as well as an area under the concentration-time curve over 24 hours (AUC0-24hr) of 3318 ng×hours per milliliter in rabbits and 14,352 ng×hours per milliliter in nonhuman primates. These findings suggested that the nonhuman primate was the more conservative model for the estimation of the required drug exposure in humans. A dose of 600 mg twice daily for 14 days was selected for testing in humans and provided exposures in excess of those in nonhuman primates (mean steady-state Cmax, Cmin, and Cavg of 2209, 690, and 1270 ng per milliliter and AUC0-24hr of 30,632 ng×hours per milliliter). No pattern of troubling adverse events was observed. CONCLUSIONS On the basis of its efficacy in two animal models and pharmacokinetic and safety data in humans, tecovirimat is being advanced as a therapy for smallpox in accordance with the FDA Animal Rule. (Funded by the National Institutes of Health and the Biomedical Advanced Research and Development Authority; ClinicalTrials.gov number, NCT02474589 .).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Paul Long
- From SIGA Technologies, Corvallis, OR
| | | |
Collapse
|
32
|
Mucker EM, Wollen-Roberts SE, Kimmel A, Shamblin J, Sampey D, Hooper JW. Intranasal monkeypox marmoset model: Prophylactic antibody treatment provides benefit against severe monkeypox virus disease. PLoS Negl Trop Dis 2018; 12:e0006581. [PMID: 29927927 PMCID: PMC6029809 DOI: 10.1371/journal.pntd.0006581] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 07/03/2018] [Accepted: 06/04/2018] [Indexed: 02/08/2023] Open
Abstract
Concerns regarding outbreaks of human monkeypox or the potential reintroduction of smallpox into an immunological naïve population have prompted the development of animal models and countermeasures. Here we present a marmoset model of monkeypox and smallpox disease utilizing a relevant poxvirus via a natural exposure route. We found that 1000 plaque forming units (PFU) of Monkeypox virus was sufficient to recapitulate smallpox disease, to include an incubation period of approximately 13 days, followed by the onset of rash, and death between 15 and 17 days. Temporally accurate manifestation of viremia and oral shedding were also features. The number of lesions ranged from no lesions to 299, the most reported in a marmoset exposed to a poxvirus. To both evaluate the efficacy of our antibodies and the applicability of the model system, marmosets were prophylactically treated with two monoclonal antibodies, c7D11 and c8A. Of three marmosets, two were completely free of disease and a single marmoset died 8 days after the mock (n = 1) or PBS control(s) (n = 2). Evaluation of the serum levels of the three animals provided a possible explanation to the animal succumbing to disease. Interestingly, more females had lesions (and a greater number of lesions) and lower viral burden (viremia and oral shedding) than males in our studies, suggesting a possible gender effect.
Collapse
Affiliation(s)
- Eric M. Mucker
- United States Army Medical Research Institute of Infectious Diseases, Virology Division, Fort Detrick Maryland, United States of America
| | - Suzanne E. Wollen-Roberts
- United States Army Medical Research Institute of Infectious Diseases, Virology Division, Fort Detrick Maryland, United States of America
| | - Adrienne Kimmel
- United States Army Medical Research Institute of Infectious Diseases, Virology Division, Fort Detrick Maryland, United States of America
| | - Josh Shamblin
- United States Army Medical Research Institute of Infectious Diseases, Virology Division, Fort Detrick Maryland, United States of America
| | - Darryl Sampey
- BioFactura, Inc, Frederick, Maryland, United States of America
| | - Jay W. Hooper
- United States Army Medical Research Institute of Infectious Diseases, Virology Division, Fort Detrick Maryland, United States of America
| |
Collapse
|
33
|
Delaune D, Iseni F, Ferrier-Rembert A, Peyrefitte CN, Ferraris O. The French Armed Forces Virology Unit: A Chronological Record of Ongoing Research on Orthopoxvirus. Viruses 2017; 10:E3. [PMID: 29295488 PMCID: PMC5795416 DOI: 10.3390/v10010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 01/04/2023] Open
Abstract
Since the official declaration of smallpox eradication in 1980, the general population vaccination has ceased worldwide. Therefore, people under 40 year old are generally not vaccinated against smallpox and have no cross protection against orthopoxvirus infections. This naïve population may be exposed to natural or intentional orthopoxvirus emergences. The virology unit of the Institut de Recherche Biomédicale des Armées (France) has developed research programs on orthopoxviruses since 2000. Its missions were conceived to improve the diagnosis capabilities, to foster vaccine development, and to develop antivirals targeting specific viral proteins. The role of the virology unit was asserted in 2012 when the responsibility of the National Reference Center for the Orthopoxviruses was given to the unit. This article presents the evolution of the unit activity since 2000, and the past and current research focusing on orthopoxviruses.
Collapse
Affiliation(s)
- Déborah Delaune
- Unité de virologie, Centre National de Référence-Laboratoire Expert Orthopoxvirus, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France.
| | - Frédéric Iseni
- Unité de virologie, Centre National de Référence-Laboratoire Expert Orthopoxvirus, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France.
| | - Audrey Ferrier-Rembert
- Unité de virologie, Centre National de Référence-Laboratoire Expert Orthopoxvirus, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France.
| | - Christophe N Peyrefitte
- Unité de virologie, Centre National de Référence-Laboratoire Expert Orthopoxvirus, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France.
| | - Olivier Ferraris
- Unité de virologie, Centre National de Référence-Laboratoire Expert Orthopoxvirus, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France.
| |
Collapse
|
34
|
Olson VA, Shchelkunov SN. Are We Prepared in Case of a Possible Smallpox-Like Disease Emergence? Viruses 2017; 9:E242. [PMID: 32962316 PMCID: PMC5618008 DOI: 10.3390/v9090242] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 12/16/2022] Open
Abstract
Smallpox was the first human disease to be eradicated, through a concerted vaccination campaign led by the World Health Organization. Since its eradication, routine vaccination against smallpox has ceased, leaving the world population susceptible to disease caused by orthopoxviruses. In recent decades, reports of human disease from zoonotic orthopoxviruses have increased. Furthermore, multiple reports of newly identified poxviruses capable of causing human disease have occurred. These facts raise concerns regarding both the opportunity for these zoonotic orthopoxviruses to evolve and become a more severe public health issue, as well as the risk of Variola virus (the causative agent of smallpox) to be utilized as a bioterrorist weapon. The eradication of smallpox occurred prior to the development of the majority of modern virological and molecular biological techniques. Therefore, there is a considerable amount that is not understood regarding how this solely human pathogen interacts with its host. This paper briefly recounts the history and current status of diagnostic tools, vaccines, and anti-viral therapeutics for treatment of smallpox disease. The authors discuss the importance of further research to prepare the global community should a smallpox-like virus emerge.
Collapse
Affiliation(s)
- Victoria A. Olson
- Poxvirus and Rabies Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Sergei N. Shchelkunov
- Department of Genomic Research and Development of DNA Diagnostics of Poxviruses, State Research Center of Virology and Biotechnology VECTOR, Koltsovo, 630559 Novosibirsk Region, Russia
- Department of Molecular Biology, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
35
|
Inhibition of Poxvirus Gene Expression and Genome Replication by Bisbenzimide Derivatives. J Virol 2017; 91:JVI.00838-17. [PMID: 28659488 PMCID: PMC5571260 DOI: 10.1128/jvi.00838-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 06/22/2017] [Indexed: 12/19/2022] Open
Abstract
Virus infection of humans and livestock can be devastating for individuals and populations, sometimes resulting in large economic and societal impact. Prevention of virus disease by vaccination or antiviral agents is difficult to achieve. A notable exception was the eradication of human smallpox by vaccination over 30 years ago. Today, humans and animals remain susceptible to poxvirus infections, including zoonotic poxvirus transmission. Here we identified a small molecule, bisbenzimide (bisbenzimidazole), and its derivatives as potent agents against prototypic poxvirus infection in cell culture. We show that bisbenzimide derivatives, which preferentially bind the minor groove of double-stranded DNA, inhibit vaccinia virus infection by blocking viral DNA replication and abrogating postreplicative intermediate and late gene transcription. The bisbenzimide derivatives are potent against vaccinia virus and other poxviruses but ineffective against a range of other DNA and RNA viruses. The bisbenzimide derivatives are the first inhibitors of their class, which appear to directly target the viral genome without affecting cell viability. IMPORTANCE Smallpox was one of the most devastating diseases in human history until it was eradicated by a worldwide vaccination campaign. Due to discontinuation of routine vaccination more than 30 years ago, the majority of today's human population remains susceptible to infection with poxviruses. Here we present a family of bisbenzimide (bisbenzimidazole) derivatives, known as Hoechst nuclear stains, with high potency against poxvirus infection. Results from a variety of assays used to dissect the poxvirus life cycle demonstrate that bisbenzimides inhibit viral gene expression and genome replication. These findings can lead to the development of novel antiviral drugs that target viral genomes and block viral replication.
Collapse
|
36
|
Retrograde Transport from Early Endosomes to the trans-Golgi Network Enables Membrane Wrapping and Egress of Vaccinia Virus Virions. J Virol 2016; 90:8891-905. [PMID: 27466413 DOI: 10.1128/jvi.01114-16] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/18/2016] [Indexed: 02/01/2023] Open
Abstract
UNLABELLED The anterograde pathway, from the endoplasmic reticulum through the trans-Golgi network to the cell surface, is utilized by trans-membrane and secretory proteins. The retrograde pathway, which directs traffic in the opposite direction, is used following endocytosis of exogenous molecules and recycling of membrane proteins. Microbes exploit both routes: viruses typically use the anterograde pathway for envelope formation prior to exiting the cell, whereas ricin and Shiga-like toxins and some nonenveloped viruses use the retrograde pathway for cell entry. Mining a human genome-wide RNA interference (RNAi) screen revealed a need for multiple retrograde pathway components for cell-to-cell spread of vaccinia virus. We confirmed and extended these results while discovering that retrograde trafficking was required for virus egress rather than entry. Retro-2, a specific retrograde trafficking inhibitor of protein toxins, potently prevented spread of vaccinia virus as well as monkeypox virus, a human pathogen. Electron and confocal microscopy studies revealed that Retro-2 prevented wrapping of virions with an additional double-membrane envelope that enables microtubular transport, exocytosis, and actin polymerization. The viral B5 and F13 protein components of this membrane, which are required for wrapping, normally colocalize in the trans-Golgi network. However, only B5 traffics through the secretory pathway, suggesting that F13 uses another route to the trans-Golgi network. The retrograde route was demonstrated by finding that F13 was largely confined to early endosomes and failed to colocalize with B5 in the presence of Retro-2. Thus, vaccinia virus makes novel use of the retrograde transport system for formation of the viral wrapping membrane. IMPORTANCE Efficient cell-to-cell spread of vaccinia virus and other orthopoxviruses depends on the wrapping of infectious particles with a double membrane that enables microtubular transport, exocytosis, and actin polymerization. Interference with wrapping or subsequent steps results in severe attenuation of the virus. Some previous studies had suggested that the wrapping membrane arises from the trans-Golgi network, whereas others suggested an origin from early endosomes. Some nonenveloped viruses use retrograde trafficking for entry into the cell. In contrast, we provided evidence that retrograde transport from early endosomes to the trans-Golgi network is required for the membrane-wrapping step in morphogenesis of vaccinia virus and egress from the cell. The potent in vitro inhibition of this step by the drug Retro-2 suggests that derivatives with enhanced pharmacological properties might serve as useful antipoxviral agents.
Collapse
|
37
|
Duraffour S, Lorenzo MM, Zöller G, Topalis D, Grosenbach D, Hruby DE, Andrei G, Blasco R, Meyer H, Snoeck R. ST-246 is a key antiviral to inhibit the viral F13L phospholipase, one of the essential proteins for orthopoxvirus wrapping. J Antimicrob Chemother 2015; 70:1367-80. [PMID: 25630650 PMCID: PMC7539645 DOI: 10.1093/jac/dku545] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/02/2014] [Indexed: 12/28/2022] Open
Abstract
Objectives ST-246 is one of the key antivirals being developed to fight orthopoxvirus (OPV) infections. Its exact mode of action is not completely understood, but it has been reported to interfere with the wrapping of infectious virions, for which F13L (peripheral membrane protein) and B5R (type I glycoprotein) are required. Here we monitored the appearance of ST-246 resistance to identify its molecular target. Methods Vaccinia virus (VACV), cowpox virus (CPXV) and camelpox virus (CMLV) with reduced susceptibility to ST-246 were selected in cell culture and further characterized by antiviral assays and immunofluorescence. A panel of recombinant OPVs was engineered and a putative 3D model of F13L coupled with molecular docking was used to visualize drug–target interaction. The F13L gene of 65 CPXVs was sequenced to investigate F13L amino acid heterogeneity. Results Amino acid substitutions or insertions were found in the F13L gene of six drug-resistant OPVs and production of four F13L-recombinant viruses confirmed their role(s) in the occurrence of ST-246 resistance. F13L, but not B5R, knockout OPVs showed resistance to ST-246. ST-246 treatment of WT OPVs delocalized F13L- and B5R-encoded proteins and blocked virus wrapping. Putative modelling of F13L and ST-246 revealed a probable pocket into which ST-246 penetrates. None of the identified amino acid changes occurred naturally among newly sequenced or NCBI-derived OPV F13L sequences. Conclusions Besides demonstrating that F13L is a direct target of ST-246, we also identified novel F13L residues involved in the interaction with ST-246. These findings are important for ST-246 use in the clinic and crucial for future drug-resistance surveillance programmes.
Collapse
Affiliation(s)
- Sophie Duraffour
- Rega Institute, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | | | - Gudrun Zöller
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Dimitri Topalis
- Rega Institute, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | | | | | - Graciela Andrei
- Rega Institute, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | | | - Hermann Meyer
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Robert Snoeck
- Rega Institute, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| |
Collapse
|
38
|
Graeden E, Fielding R, Steinhouse KE, Rubin IN. Modeling the Effect of Herd Immunity and Contagiousness in Mitigating a Smallpox Outbreak. Med Decis Making 2014; 35:648-59. [DOI: 10.1177/0272989x14561681] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 10/18/2014] [Indexed: 01/13/2023]
Abstract
The smallpox antiviral tecovirimat has recently been purchased by the U.S. Strategic National Stockpile. Given significant uncertainty regarding both the contagiousness of smallpox in a contemporary outbreak and the efficiency of a mass vaccination campaign, vaccine prophylaxis alone may be unable to control a smallpox outbreak following a bioterror attack. Here, we present the results of a compartmental epidemiological model that identifies conditions under which tecovirimat is required to curtail the epidemic by exploring how the interaction between contagiousness and prophylaxis coverage of the affected population affects the ability of the public health response to control a large-scale smallpox outbreak. Each parameter value in the model is based on published empirical data. We describe contagiousness parametrically using a novel method of distributing an assumed R-value over the disease course based on the relative rates of daily viral shedding from human and animal studies of cognate orthopoxvirus infections. Our results suggest that vaccination prophylaxis is sufficient to control the outbreak when caused either by a minimally contagious virus or when a very high percentage of the population receives prophylaxis. As vaccination coverage of the affected population decreases below 70%, vaccine prophylaxis alone is progressively less capable of controlling outbreaks, even those caused by a less contagious virus (R0 less than 4). In these scenarios, tecovirimat treatment is required to control the outbreak (total number of cases under an order of magnitude more than the number of initial infections). The first study to determine the relative importance of smallpox prophylaxis and treatment under a range of highly uncertain epidemiological parameters, this work provides public health decision-makers with an evidence-based guide for responding to a large-scale smallpox outbreak.
Collapse
|
39
|
KAY-2-41, a novel nucleoside analogue inhibitor of orthopoxviruses in vitro and in vivo. Antimicrob Agents Chemother 2013; 58:27-37. [PMID: 24126587 DOI: 10.1128/aac.01601-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The availability of adequate treatments for poxvirus infections would be valuable not only for human use but also for veterinary use. In the search for novel antiviral agents, a 1'-methyl-substituted 4'-thiothymidine nucleoside, designated KAY-2-41, emerged as an efficient inhibitor of poxviruses. In vitro, KAY-2-41 was active in the micromolar range against orthopoxviruses (OPVs) and against the parapoxvirus orf. The compound preserved its antiviral potency against OPVs resistant to the reference molecule cidofovir. KAY-2-41 had no noticeable toxicity on confluent monolayers, but a cytostatic effect was seen on growing cells. Genotyping of vaccinia virus (VACV), cowpox virus, and camelpox virus selected for resistance to KAY-2-41 revealed a nucleotide deletion(s) close to the ATP binding site or a nucleotide substitution close to the substrate binding site in the viral thymidine kinase (TK; J2R) gene. These mutations resulted in low levels of resistance to KAY-2-41 ranging from 2.7- to 6.0-fold and cross-resistance to 5-bromo-2'-deoxyuridine (5-BrdU) but not to cidofovir. The antiviral effect of KAY-2-41 relied, at least in part, on activation (phosphorylation) by the viral TK, as shown through enzymatic assays. The compound protected animals from disease and mortality after a lethal challenge with VACV, reduced viral loads in the serum, and abolished virus replication in tissues. In conclusion, KAY-2-41 is a promising nucleoside analogue for the treatment of poxvirus-induced diseases. Our findings warrant the evaluation of additional 1'-carbon-substituted 4'-thiothymidine derivatives as broad-spectrum antiviral agents, since this molecule also showed antiviral potency against herpes simplex virus 1 in earlier studies.
Collapse
|
40
|
Efficacy of tecovirimat (ST-246) in nonhuman primates infected with variola virus (Smallpox). Antimicrob Agents Chemother 2013; 57:6246-53. [PMID: 24100494 DOI: 10.1128/aac.00977-13] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Naturally occurring smallpox has been eradicated but remains a considerable threat as a biowarfare/bioterrorist weapon (F. Fleck, Bull. World Health Organ. 81:917-918, 2003). While effective, the smallpox vaccine is currently not recommended for routine use in the general public due to safety concerns (http://www.bt.cdc.gov/agent/smallpox/vaccination). Safe and effective countermeasures, particularly those effective after exposure to smallpox, are needed. Currently, SIGA Technologies is developing the small-molecule oral drug, tecovirimat (previously known as ST-246), as a postexposure therapeutic treatment of orthopoxvirus disease, including smallpox. Tecovirimat has been shown to be efficacious in preventing lethal orthopoxviral disease in numerous animal models (G. Yang, D. C. Pevear, M. H. Davies, M. S. Collett, T. Bailey, et al., J. Virol. 79:13139-13149, 2005; D. C. Quenelle, R. M. Buller, S. Parker, K. A. Keith, D. E. Hruby, et al., Antimicrob. Agents Chemother., 51:689-695, 2007; E. Sbrana, R. Jordan, D. E. Hruby, R. I. Mateo, S. Y. Xiao, et al., Am. J. Trop. Med. Hyg. 76:768-773, 2007). Furthermore, in clinical trials thus far, the drug appears to be safe, with a good pharmacokinetic profile. In this study, the efficacy of tecovirimat was evaluated in both a prelesional and postlesional setting in nonhuman primates challenged intravenously with 1 × 10(8) PFU of Variola virus (VARV; the causative agent of smallpox), a model for smallpox disease in humans. Following challenge, 50% of placebo-treated controls succumbed to infection, while all tecovirimat-treated animals survived regardless of whether treatment was started at 2 or 4 days postinfection. In addition, tecovirimat treatment resulted in dramatic reductions in dermal lesion counts, oropharyngeal virus shedding, and viral DNA circulating in the blood. Although clinical disease was evident in tecovirimat-treated animals, it was generally very mild and appeared to resolve earlier than in placebo-treated controls that survived infection. Tecovirimat appears to be an effective smallpox therapeutic in nonhuman primates, suggesting that it is reasonably likely to provide therapeutic benefit in smallpox-infected humans.
Collapse
|
41
|
Byrd CM, Grosenbach DW, Hruby DE. Antiviral options for biodefense. Curr Opin Virol 2013; 3:537-41. [DOI: 10.1016/j.coviro.2013.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 05/22/2013] [Accepted: 05/23/2013] [Indexed: 10/26/2022]
|
42
|
De Clercq E. A cutting-edge view on the current state of antiviral drug development. Med Res Rev 2013; 33:1249-77. [PMID: 23495004 DOI: 10.1002/med.21281] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Prominent in the current stage of antiviral drug development are: (i) for human immunodeficiency virus (HIV), the use of fixed-dose combinations (FDCs), the most recent example being Stribild(TM); (ii) for hepatitis C virus (HCV), the pleiade of direct-acting antivirals (DAAs) that should be formulated in the most appropriate combinations so as to obtain a cure of the infection; (iii)-(v) new strategies (i.e., AIC316, AIC246, and FV-100) for the treatment of herpesvirus infections: herpes simplex virus (HSV), cytomegalovirus (CMV), and varicella-zoster virus (VZV), respectively; (vi) the role of a new tenofovir prodrug, tenofovir alafenamide (TAF) (GS-7340) for the treatment of HIV infections; (vii) the potential use of poxvirus inhibitors (CMX001 and ST-246); (viii) the usefulness of new influenza virus inhibitors (peramivir and laninamivir octanoate); (ix) the position of the hepatitis B virus (HBV) inhibitors [lamivudine, adefovir dipivoxil, entecavir, telbivudine, and tenofovir disoproxil fumarate (TDF)]; and (x) the potential of new compounds such as FGI-103, FGI-104, FGI-106, dUY11, and LJ-001 for the treatment of filoviruses (i.e., Ebola). Whereas for HIV and HCV therapy is aimed at multiple-drug combinations, for all other viruses, HSV, CMV, VZV, pox, influenza, HBV, and filoviruses, current strategies are based on the use of single compounds.
Collapse
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, B-3000, Leuven, Belgium.
| |
Collapse
|
43
|
Leeds JM, Fenneteau F, Gosselin NH, Mouksassi MS, Kassir N, Marier JF, Chen Y, Grosenbach D, Frimm AE, Honeychurch KM, Chinsangaram J, Tyavanagimatt SR, Hruby DE, Jordan R. Pharmacokinetic and pharmacodynamic modeling to determine the dose of ST-246 to protect against smallpox in humans. Antimicrob Agents Chemother 2013; 57:1136-43. [PMID: 23254433 PMCID: PMC3591874 DOI: 10.1128/aac.00959-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 12/08/2012] [Indexed: 11/20/2022] Open
Abstract
Although smallpox has been eradicated, the United States government considers it a "material threat" and has funded the discovery and development of potential therapeutic compounds. As reported here, the human efficacious dose for one of these compounds, ST-246, was determined using efficacy studies in nonhuman primates (NHPs), together with pharmacokinetic and pharmacodynamic analysis that predicted the appropriate dose and exposure levels to provide therapeutic benefit in humans. The efficacy analysis combined the data from studies conducted at three separate facilities that evaluated treatment following infection with a closely related virus, monkeypox virus (MPXV), in a total of 96 NHPs. The effect of infection on ST-246 pharmacokinetics in NHPs was applied to humans using population pharmacokinetic models. Exposure at the selected human dose of 600 mg is more than 4-fold higher than the lowest efficacious dose in NHPs and is predicted to provide protection to more than 95% of the population.
Collapse
Affiliation(s)
| | | | | | | | - Nastya Kassir
- Pharsight Consulting Services, Montréal, Québec, Canada
| | - J. F. Marier
- Pharsight Consulting Services, Montréal, Québec, Canada
| | - Yali Chen
- SIGA Technologies, Corvallis, Oregon, USA
| | | | | | | | | | | | | | | |
Collapse
|