1
|
García-Barbazán I, Torres-Cano A, García-Rodas R, Sachse M, Luque D, Megías D, Zaragoza O. Accumulation of endogenous free radicals is required to induce titan-like cell formation in Cryptococcus neoformans. mBio 2024; 15:e0254923. [PMID: 38078728 PMCID: PMC10790760 DOI: 10.1128/mbio.02549-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/27/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE Cryptococcus neoformans is an excellent model to investigate fungal pathogenesis. This yeast can produce "titan cells," which are cells of an abnormally larger size that contribute to the persistence of the yeast in the host. In this work, we have used a new approach to characterize them by identifying drugs that inhibit this process. We have used a repurposing off-patent drug library, combined with an automatic method to image and analyze fungal cell size. In this way, we have identified many compounds that inhibit this transition. Interestingly, several compounds were antioxidants, allowing us to confirm that endogenous ROS and mitochondrial changes are important for titan cell formation. This work provides new evidence of the mechanisms required for titanization. Furthermore, the future characterization of the inhibitory mechanisms of the identified compounds by the scientific community will contribute to better understand the role of titan cells in virulence.
Collapse
Affiliation(s)
- Irene García-Barbazán
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Alba Torres-Cano
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Rocío García-Rodas
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Martin Sachse
- Electron Microscopy Unit, Central Core Facilities, Instituto de Salud Carlos III, Madrid, Spain
| | - Daniel Luque
- Electron Microscopy Unit, Central Core Facilities, Instituto de Salud Carlos III, Madrid, Spain
| | - Diego Megías
- Advanced Optical Microscopy Unit, Central Core Facilities, Instituto de Salud Carlos III, Madrid, Spain
| | - Oscar Zaragoza
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Center for Biomedical Research in Network in Infectious Diseases (CIBERINFEC-CB21/13/00105), Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
2
|
Munyonho FT, Clark RDE, Lin D, Khatun MS, Pungan D, Dai G, Kolls JK. Precision-cut lung slices as an ex vivo model to study Pneumocystis murina survival and antimicrobial susceptibility. mBio 2024; 15:e0146423. [PMID: 38117035 PMCID: PMC10790776 DOI: 10.1128/mbio.01464-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/16/2023] [Indexed: 12/21/2023] Open
Abstract
IMPORTANCE Our study reveals the potential of precision-cut lung slices as an ex vivo platform to study the growth/survival of Pneumocystis spp. that can facilitate the development of new anti-fungal drugs.
Collapse
Affiliation(s)
- Ferris T. Munyonho
- Center for Translational Research in Infection and Inflammation Tulane School of Medicine, New Orleans, Louisiana, USA
| | - Robert D. E. Clark
- Center for Translational Research in Infection and Inflammation Tulane School of Medicine, New Orleans, Louisiana, USA
| | - Dong Lin
- Center for Translational Research in Infection and Inflammation Tulane School of Medicine, New Orleans, Louisiana, USA
| | - Mst Shamima Khatun
- Center for Translational Research in Infection and Inflammation Tulane School of Medicine, New Orleans, Louisiana, USA
| | - Dora Pungan
- Center for Translational Research in Infection and Inflammation Tulane School of Medicine, New Orleans, Louisiana, USA
| | - Guixiang Dai
- Center for Translational Research in Infection and Inflammation Tulane School of Medicine, New Orleans, Louisiana, USA
| | - Jay K. Kolls
- Center for Translational Research in Infection and Inflammation Tulane School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
3
|
Demidoff FC, de Carvalho LL, Rodrigues Filho EJP, de Souza ALF, Netto CD. Cross-Coupling Reactions with 2-Amino-/Acetylamino-Substituted 3-Iodo-1,4-naphthoquinones: Convenient Synthesis of Novel Alkenyl- and Alkynylnaphthoquinones and Derivatives. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/s-0037-1610781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
AbstractFunctionalized 1,4-naphthoquinones have been employed as versatile synthons in organic synthesis, in addition to presenting a large array of biological activities. Herein, the applications of 2-amino-/ acetylamino-substituted 3-iodo-1,4-naphthoquinones in cross-coupling reactions are described to successfully afford sixteen novel 3-styryl-1,4-naphthoquinones (amino-stilbene-quinone hybrids) and four 3-alkynyl-1,4-naphthoquinone in overall good yields. Interestingly, the alkynylated derivatives could be obtained from ligand- and Pd-free CuI-mediated cross-coupling reactions, after extensive investigations to exclude Pd as a co-catalyst. Lastly, the desilanized terminal alkyne was subjected to click chemistry reactions to give two novel triazole-1,4-naphthoquinone hybrids.
Collapse
|
4
|
Tetz G, Collins M, Vikina D, Tetz V. In Vitro Activity of a Novel Antifungal Compound, MYC-053, against Clinically Significant Antifungal-Resistant Strains of Candida glabrata, Candida auris, Cryptococcus neoformans, and Pneumocystis spp. Antimicrob Agents Chemother 2019; 63:e01975-18. [PMID: 30917977 PMCID: PMC6437499 DOI: 10.1128/aac.01975-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/12/2019] [Indexed: 01/28/2023] Open
Abstract
An urgent need exists for new antifungal compounds to treat fungal infections in immunocompromised patients. The aim of the current study was to investigate the potency of a novel antifungal compound, MYC-053, against the emerging yeast and yeast-like pathogens Candida glabrata, Candida auris, Cryptococcus neoformans, and Pneumocystis species. MYC-053 was equally effective against the susceptible control strains, clinical isolates, and resistant strains, with MICs of 0.125 to 4.0 μg/ml. Notably, unlike other antifungals such as azoles, polyenes, and echinocandins, MYC-053 was effective against Pneumocystis isolates, therefore being the only synthetic antifungal that may potentially be used against Pneumocystis spp., Candida spp., and Cryptococcus spp. MYC-053 was highly effective against preformed 48-h-old C. glabrata and C. neoformans biofilms, with minimal biofilm eradication concentrations equal to 1 to 4 times the MIC. Together, these data indicated that MYC-053 may be developed into a promising antifungal agent for the treatment and prevention of invasive fungal infections caused by yeasts and yeast-like fungi.
Collapse
Affiliation(s)
- G Tetz
- TGV-Therapeutics, New York, New York, USA
| | - M Collins
- Pulmonary Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - D Vikina
- Human Microbiology Institute, New York, New York, USA
| | - V Tetz
- Human Microbiology Institute, New York, New York, USA
| |
Collapse
|
5
|
Ma L, Cissé OH, Kovacs JA. A Molecular Window into the Biology and Epidemiology of Pneumocystis spp. Clin Microbiol Rev 2018; 31:e00009-18. [PMID: 29899010 PMCID: PMC6056843 DOI: 10.1128/cmr.00009-18] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pneumocystis, a unique atypical fungus with an elusive lifestyle, has had an important medical history. It came to prominence as an opportunistic pathogen that not only can cause life-threatening pneumonia in patients with HIV infection and other immunodeficiencies but also can colonize the lungs of healthy individuals from a very early age. The genus Pneumocystis includes a group of closely related but heterogeneous organisms that have a worldwide distribution, have been detected in multiple mammalian species, are highly host species specific, inhabit the lungs almost exclusively, and have never convincingly been cultured in vitro, making Pneumocystis a fascinating but difficult-to-study organism. Improved molecular biologic methodologies have opened a new window into the biology and epidemiology of Pneumocystis. Advances include an improved taxonomic classification, identification of an extremely reduced genome and concomitant inability to metabolize and grow independent of the host lungs, insights into its transmission mode, recognition of its widespread colonization in both immunocompetent and immunodeficient hosts, and utilization of strain variation to study drug resistance, epidemiology, and outbreaks of infection among transplant patients. This review summarizes these advances and also identifies some major questions and challenges that need to be addressed to better understand Pneumocystis biology and its relevance to clinical care.
Collapse
Affiliation(s)
- Liang Ma
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, Maryland, USA
| | - Ousmane H Cissé
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, Maryland, USA
| | - Joseph A Kovacs
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Azeredo NF, Souza FP, Demidoff FC, Netto CD, Resende JA, Franco RW, Colepicolo P, Ferreira AM, Fernandes C. New strategies for the synthesis of naphthoquinones employing Cu(II) complexes: Crystal structures and cytotoxicity. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.08.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Abstract
Fungi in the genus Pneumocystis live in the lungs of mammals, where they can cause a fatal pneumonia (PCP [Pneumocystis pneumonia]) in hosts with compromised immune systems. The absence of a continuous in vitro culture system for any species of Pneumocystis has led to limited understanding of these fungi, especially for the discovery of new therapies. We recently reported that Pneumocystis carinii, Pneumocystis murina, and most significantly, Pneumocystis jirovecii lack both enzymes necessary for myo-inositol biosynthesis but contain genes with homologies to fungal myo-inositol transporters. Since myo-inositol is essential for eukaryotic viability, the primary transporter, ITR1, was functionally and structurally characterized in P. carinii The predicted structure of P. carinii ITR1 (PcITR1) contained 12 transmembrane alpha-helices with intracellular C and N termini, consistent with other inositol transporters. The apparent Km was 0.94 ± 0.08 (mean ± standard deviation), suggesting that myo-inositol transport in P. carinii is likely through a low-affinity, highly selective transport system, as no other sugars or inositol stereoisomers were significant competitive inhibitors. Glucose transport was shown to use a different transport system. The myo-inositol transport was distinct from mammalian transporters, as it was not sodium dependent and was cytochalasin B resistant. Inositol transport in these fungi offers an attractive new drug target because of the reliance of the fungi on its transport, clear differences between the mammalian and fungal transporters, and the ability of the host to both synthesize and transport this critical nutrient, predicting low toxicity of potential inhibitors to the fungal transporter. IMPORTANCE myo-Inositol is a sugarlike nutrient that is essential for life in most organisms. Humans and microbes alike can obtain it by making it, which involves only 2 enzymes, by taking it from the environment by a transport process, or by recycling it from other cellular constituents. Inspection of the genomes of the pathogenic fungi of the genus Pneumocystis showed that these pneumonia-causing parasites could not make myo-inositol, as they lacked the 2 enzymes. Instead, we found evidence of inositol transporters, which would import the sugar from the lungs where the fungi reside. In the present report, we characterized the transport of myo-inositol in the fungus and found that the transporter was highly selective for myo-inositol and did not transport any other molecules. The transport was distinct from that in mammalian cells, and since mammals can both make and transport myo-inositol, while Pneumocystis fungi must transport it, this process offers a potential new drug target.
Collapse
|
8
|
Maciejewska D, Zabinski J, Kaźmierczak P, Rezler M, Krassowska-Świebocka B, Collins MS, Cushion MT. Analogs of pentamidine as potential anti-Pneumocystis chemotherapeutics. Eur J Med Chem 2011; 48:164-73. [PMID: 22200403 DOI: 10.1016/j.ejmech.2011.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 12/05/2011] [Accepted: 12/07/2011] [Indexed: 01/08/2023]
Abstract
A series of 20 pentamidine analogs were prepared using 2 general Schemes that evaluated heteroatoms, sulfobenzene and alkanediamide groups in the aliphatic linker and methoxy substituents attached to the benzene rings for efficacy against the fungal pathogen, Pneumocystis carinii in an ATP bioassay. All but one of the 20 bisamidines reduced the ATP content of the P. carinii over the 72 h of the assay period. The highest activities were associated with the lack of methoxy groups and the presence of the O, N and S heteroatoms. Activity (IC(50)) for compounds 1, 5, 6, 10 ranged from 1.1 to 2.13 μM. The compound 11 with similar activity (1.33 μM), bears a sulfobenzene group at a nitrogen in the aliphatic linker. The alkanediamide-linked bisbenzamidines showed a moderate inhibition of ATP. Generally, the inclusion of a heteroatom in the aliphatic linker and absence of methoxy groups at the benzene rings were associated with higher activities in this assay. Of note, most of the compounds had little to no cytotoxicity in mammalian cell cultures. Although not quite as potent as other pentamidine derivatives, these compounds hold promise for decreased side effects within the mammalian host.
Collapse
Affiliation(s)
- Dorota Maciejewska
- Medical University of Warsaw, Faculty of Pharmacy, Department of Organic Chemistry, Banacha 1 Str., 02 097 Warsaw, Poland.
| | | | | | | | | | | | | |
Collapse
|
9
|
Susceptibility of Pneumocystis to echinocandins in suspension and biofilm cultures. Antimicrob Agents Chemother 2011; 55:4513-8. [PMID: 21788469 DOI: 10.1128/aac.00017-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The targeted inhibition of cyst but not trophic development by anidulafungin, caspofungin, and micafungin on Pneumocystis murina and Pneumocystis carinii in rodent models of Pneumocystis carinii pneumonia (PCP) was recently reported by us (M. T. Cushion et al., PLoS One 5:e8524, 2010). To better understand the effects of echinocandins on P. carinii, the same three compounds were evaluated in standard suspension and biofilm cultures supplemented with various concentrations of sera using the measurement of ATP as the indicator. In suspension cultures with 1 and 5% serum, anidulafungin was the most active compound but 10 and 20% serum abrogated the efficacy of all three echinocandins. Established biofilm cultures that included both the nonadherent and adherent phases were more resistant to micafungin than caspofungin regardless of serum concentration, while anidulafungin had significant activity at 1 and 5% serum concentrations. Nascent biofilms were mostly affected by anidulafungin in 1 and 5% serum, but none of the compounds showed significant activity in 20% serum. We show for the first time that (i) echinocandins differ in their abilities to deplete the ATP of Pneumocystis in biofilms and in suspension cultures, (ii) this variability mostly reflected the reported efficacies in animal models of infection, and (iii) high serum levels decreased the anti-Pneumocystis activities of the echinocandins in both in vitro systems.
Collapse
|
10
|
Arseculeratne SN, Eriyagama NB. Comparison of in vivo and in vitro inactivation of endospores of Rhinosporidium seeberi following dapsone treatment. MYCOSCIENCE 2011. [DOI: 10.1007/s10267-010-0079-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Matos J, Vale N, Collins MS, Gut J, Rosenthal PJ, Cushion MT, Moreira R, Gomes P. PRIMACENES: novel non-cytotoxic primaquine-ferrocene conjugates with anti-Pneumocystis carinii activity. MEDCHEMCOMM 2010. [DOI: 10.1039/c0md00082e] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Vale N, Prudêncio M, Marques CA, Collins MS, Gut J, Nogueira F, Matos J, Rosenthal PJ, Cushion MT, do Rosário VE, Mota MM, Moreira R, Gomes P. Imidazoquines as antimalarial and antipneumocystis agents. J Med Chem 2009; 52:7800-7. [PMID: 19799426 PMCID: PMC2788672 DOI: 10.1021/jm900738c] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptidomimetic imidazolidin-4-one derivatives of primaquine (imidazoquines) recently displayed in vitro activity against blood schizonts of a chloroquine-resistant strain of Plasmodium falciparum. Preliminary studies with a subset of such imidazoquines showed them to both block transmission of P. berghei malaria from mouse to mosquito and be highly stable toward hydrolysis at physiological conditions. This prompted us to have deeper insight into the activity of imidazoquines against both Plasmodia and Pneumocystis carinii, on which primaquine is also active. Full assessment of the in vivo transmission-blocking activity of imidazoquines, in vitro tissue-schizontocidal activity on P. berghei-infected hepatocytes, and in vitro anti-P. carinii activity is now reported. All compounds were active in these biological assays, with generally lower activity than the parent drug. However, imidazoquines' stability against both oxidative deamination and proteolytic degradation suggest that they will probably have higher oral bioavailability and lower hematotoxicity than primaquine, which might translate into higher therapeutic indexes.
Collapse
Affiliation(s)
- Nuno Vale
- CIQUP – Centro de Investigação em Química da Universidade do Porto, Departamento de Química, Faculdade de Ciências, Universidade do Porto, P-4169-007 Porto, Portugal
| | - Miguel Prudêncio
- Unidade de Malária, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, P-1649-028 Lisboa, Portugal
| | - Catarina A. Marques
- Unidade de Malária, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, P-1649-028 Lisboa, Portugal
| | - Margaret S. Collins
- Research Services, Veterans Affairs Medical Center, Cincinnati, OH 45220, USA
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati, OH 45267-0560, USA
| | - Jiri Gut
- Department of Medicine, San Francisco General Hospital, University of California, CA 94143-0811, USA
| | - Fátima Nogueira
- Centro de Malária e Outras Doenças Tropicais, IHMT - Universidade Nova de Lisboa, P-1349-008 Lisboa, Portugal
| | - Joana Matos
- CIQUP – Centro de Investigação em Química da Universidade do Porto, Departamento de Química, Faculdade de Ciências, Universidade do Porto, P-4169-007 Porto, Portugal
| | - Philip J. Rosenthal
- Department of Medicine, San Francisco General Hospital, University of California, CA 94143-0811, USA
| | - Melanie T. Cushion
- Research Services, Veterans Affairs Medical Center, Cincinnati, OH 45220, USA
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati, OH 45267-0560, USA
| | - Virgílio E. do Rosário
- Centro de Malária e Outras Doenças Tropicais, IHMT - Universidade Nova de Lisboa, P-1349-008 Lisboa, Portugal
| | - Maria M. Mota
- Unidade de Malária, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, P-1649-028 Lisboa, Portugal
| | - Rui Moreira
- iMed.UL, CECF, Faculdade de Farmácia, Universidade de Lisboa, P-1600-083 Lisboa, Portugal
| | - Paula Gomes
- CIQUP – Centro de Investigação em Química da Universidade do Porto, Departamento de Química, Faculdade de Ciências, Universidade do Porto, P-4169-007 Porto, Portugal
| |
Collapse
|
13
|
Structural analysis of bis-amidines and bis-nitriles in solid-state by combining NMR spectroscopy and molecular modeling. J Mol Struct 2009. [DOI: 10.1016/j.molstruc.2009.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Abstract
Pneumocystis spp. can cause a lethal pneumonia in hosts with debilitated immune systems. The manner in which these fungal infections spread throughout the lung, the life cycles of the organisms, and their strategies used for survival within the mammalian host are largely unknown, due in part to the lack of a continuous cultivation method. Biofilm formation is one strategy used by microbes for protection against environmental assaults, for communication and differentiation, and as foci for dissemination. We posited that the attachment and growth of Pneumocystis within the lung alveoli is akin to biofilm formation. An in vitro system comprised of insert wells suspended in multiwell plates containing supplemented RPMI 1640 medium supported biofilm formation by P. carinii (from rat) and P. murina (from mouse). Dramatic morphological changes accompanied the transition to a biofilm. Cyst and trophic forms became highly refractile and produced branching formations that anastomosed into large macroscopic clusters that spread across the insert. Confocal microscopy revealed stacking of viable organisms enmeshed in concanavalin A-staining extracellular matrix. Biofilms matured over a 3-week time period and could be passaged. These passaged organisms were able to cause infection in immunosuppressed rodents. Biofilm formation was inhibited by farnesol, a quorum-sensing molecule in Candida spp., suggesting that a similar communication system may be operational in the Pneumocystis biofilms. Intense staining with a monoclonal antibody to the major surface glycoproteins and an increase in (1,3)-beta-D-glucan content suggest that these components contributed to the refractile properties. Identification of this biofilm process provides a tractable in vitro system that should fundamentally advance the study of Pneumocystis.
Collapse
|
15
|
Kaneshiro ES, Basselin M, Merali S, Kayser O. Ubiquinone synthesis and its regulation in Pneumocystis carinii. J Eukaryot Microbiol 2008; 53:435-44. [PMID: 17123407 DOI: 10.1111/j.1550-7408.2006.00127.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The opportunistic pathogen Pneumocystis causes a type of pneumonia in individuals with defective immune systems such as AIDS patients. Atovaquone, an analog of ubiquinone (coenzyme Q [CoQ]), is effective in clearing mild to moderate cases of the infection. Rat-derived Pneumocystis carinii was the first organism in which CoQ synthesis was clearly demonstrated to occur in both mitochondrial and microsomal subcellular fractions. Atovaquone inhibits microsomal CoQ synthesis with no effect on mitochondrial CoQ synthesis. We here report on additional studies evaluating CoQ synthesis and its regulation in the organism. Buparvaquone also inhibited CoQ synthesis and it reduced the synthesis of all four CoQ homologs in the microsomal but not the mitochondrial fraction. Glyphosate, which inhibits a reaction in the de novo synthesis of the benzoquinone moiety of CoQ reduced cellular ATP levels. Bacterial and plant quinones, and several chemically synthesized phenolics, flavanoids, and naphthoquinones that inhibit electron transport in other organisms were shown to reduce CoQ synthesis in P. carinii. The inhibitory action of naphthoquinone compounds appeared to depend on their molecular size and structural flexibility rather than redox potential. Results of experiments examining the synthesis of the polyprenyl chain of CoQ were consistent with negative feedback control of CoQ synthesis. These studies on P. carinii suggest that cellular sites and the control of CoQ synthesis in different organisms and cell types might be more diverse than previously thought.
Collapse
Affiliation(s)
- Edna S Kaneshiro
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio 45221, USA.
| | | | | | | |
Collapse
|
16
|
Anti-Pneumocystis carinii and antiplasmodial activities of primaquine-derived imidazolidin-4-ones. Bioorg Med Chem Lett 2008; 18:485-8. [DOI: 10.1016/j.bmcl.2007.11.105] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 11/22/2007] [Accepted: 11/27/2007] [Indexed: 11/23/2022]
|
17
|
Joffrion TM, Collins MS, Cushion MT. Microaerophilic conditions increase viability and affect responses of Pneumocystis carinii to drugs in vitro. J Eukaryot Microbiol 2007; 53 Suppl 1:S117-8. [PMID: 17169023 DOI: 10.1111/j.1550-7408.2006.00196.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Tiffany M Joffrion
- University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0560, USA
| | | | | |
Collapse
|
18
|
Cushion MT, Walzer PD, Ashbaugh A, Rebholz S, Brubaker R, Vanden Eynde JJ, Mayence A, Huang TL. In vitro selection and in vivo efficacy of piperazine- and alkanediamide-linked bisbenzamidines against Pneumocystis pneumonia in mice. Antimicrob Agents Chemother 2006; 50:2337-43. [PMID: 16801410 PMCID: PMC1489771 DOI: 10.1128/aac.00126-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 03/27/2006] [Accepted: 04/07/2006] [Indexed: 11/20/2022] Open
Abstract
Bisbenzamidines, such as pentamidine isethionate, are aromatic dicationic compounds that are active against Pneumocystis and other microbes but are oftentimes toxic to the host. To identify potential anti-Pneumocystis agents, we synthesized bisbenzamidine derivatives in which the parent compound pentamidine was modified by a 1,4-piperazinediyl, alkanediamide, or 1,3-phenylenediamide moiety as the central linker. Several of the compounds were more active against P. carinii and less toxic than pentamidine in cytotoxicity assays. For this study, we evaluated nine bisbenzamidine derivatives representing a range of in vitro activities, from highly active to inactive, for the treatment of pneumocystosis in an immunosuppressed mouse model. Six of these in vitro-active compounds, 01, 02, 04, 06, 100, and 101, exhibited marked efficacies against infection at a dose of 10 mg/kg of body weight, and four compounds, 01, 04, 100, and 101, showed significant increases in survival versus that of untreated infected control mice. Compound 100 was highly efficacious against the infection at 20 mg/kg and 40 mg/kg, with > 1,000-fold reductions in burden, and resulted in improved survival curves versus those for pentamidine-treated mice (at the same doses). All six bisbenzamidine compounds that exhibited high in vitro activity significantly decreased the infection in vivo; two compounds, 12 and 102, with marked to moderate in vitro activities had slight or no activity in vivo, while compound 31 was inactive in vitro and was also inactive in vivo. Thus, the selection of highly active compounds from in vitro cytotoxicity assays was predictive of activity in the mouse model of Pneumocystis pneumonia. We conclude that a number of these bisbenzamidine compounds, especially compound 100, may show promise as new anti-Pneumocystis drugs.
Collapse
Affiliation(s)
- Melanie T Cushion
- Research Service, Veterans Affairs Medical Center, Cincinnati, OH 45220, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Soeiro MNC, De Souza EM, Stephens CE, Boykin DW. Aromatic diamidines as antiparasitic agents. Expert Opin Investig Drugs 2006; 14:957-72. [PMID: 16050790 DOI: 10.1517/13543784.14.8.957] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Parasitic infections are widespread in developing countries and frequently associated with immunocompromised patients in developed countries. Consequently, such infections are responsible for a significant amount of human mortality, morbidity and economic hardship. A growing consensus has identified the urgent need for the development of new antiparasitic compounds, mostly due to the large number of drug-resistant parasites and the fact that currently available drugs are expensive, highly toxic, require long treatment regimens and frequently exhibit significantly reduced activity towards certain parasite strains and evolutive stages. In this context, the activity of aromatic diamidines has been explored against a widespread range of micro-organisms, and the authors' present aim is to review the current status of chemotherapy with these compounds against human parasitic infections.
Collapse
Affiliation(s)
- M N C Soeiro
- Lab. Biologia Celular, DUBC, Instituto Oswaldo Cruz, FIOCRUZ, Avenida Brasil 4365, Manguinhos, 21045-900, Rio de Janeiro, RJ, Brazil.
| | | | | | | |
Collapse
|
20
|
Abstract
Pneumocystis can transiently colonize healthy individuals without causing adverse symptoms, and most people test positive for exposure to this organism early in life. However, it can cause Pneumocystis pneumonia (PcP) in people with impaired immune systems and is a major cause of death in HIV/AIDS. Although it has close affinities to the Ascomycetes, Pneumocystis has features unlike those of any single group of fungi. For example, Pneumocystis does not synthesize ergosterol, which is consistent with the inefficacy of amphotericin B and some triazoles in clearing PcP. Pneumocystis sterols include distinct delta7 24-alkylsterols. Metabolic radiolabeling experiments demonstrated that P. carinii synthesizes sterols de novo. Cholesterol is the most abundant sterol in Pneumocystis; most, if not all, is scavenged from the mammalian host lung by the pathogen. The P. carinii erg7, erg6, and erg11 genes have been cloned, sequenced, and expressed in heterologous systems. The recombinant P. carinii S-adenosyl-L-methionine:C-24 sterol methyl transferase (SAM:SMT) has a preference for lanosterol over zymosterol as substrate, and the enzyme can catalyze the transfer of either one or two methyl groups to the C-24 position of the sterol side chain. Two different sterol compositions were detected among human-derived P. jirovecii; one was dominated by C28 and C29 sterols, and the other had high proportions of higher molecular mass components, notably the C32 sterol pneumocysterol. The latter phenotype apparently represents organisms blocked at 14alpha-demethylation of the sterol nucleus. These studies suggest that SAM:SMT is an attractive drug target for developing new chemotherapy for PcP.
Collapse
Affiliation(s)
- Edna S Kaneshiro
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio 45221, USA.
| |
Collapse
|
21
|
Cushion MT, Walzer PD, Collins MS, Rebholz S, Vanden Eynde JJ, Mayence A, Huang TL. Highly active anti-Pneumocystis carinii compounds in a library of novel piperazine-linked bisbenzamidines and related compounds. Antimicrob Agents Chemother 2004; 48:4209-16. [PMID: 15504843 PMCID: PMC525440 DOI: 10.1128/aac.48.11.4209-4216.2004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Trimethoprim-sulfamethoxazole and pentamidine isethionate have been used extensively for the prophylaxis and therapy of pneumonia caused by Pneumocystis jirovecii. Problems associated with toxicity and potential emerging resistance for both therapies necessitate the development of safe and effective analogs or new treatment strategies. In the present study, a library of 36 compounds was synthesized by using the pentamidine molecule as the parent compound modified by a 1,4-piperazinediyl moiety as the central linker to restrict conformation flexibility. The compounds were evaluated for anti-Pneumocystis carinii activity in a bioluminescent ATP-driven assay. Four of the compounds were highly active, with 50% inhibitory concentration (IC(50)) values of <0.01 microg/ml; four had very marked activity (IC(50) < 0.10 microg/ml); ten had marked activity (IC(50) < 1.0 microg/ml); nine had moderate activity (IC(50) < 10 microg/ml); one had slight activity (IC(50) = 34.1 microg/ml); and the remaining eight did not demonstrate activity in this assay system. The high level of activity was specifically associated with an alkyl chain length of five to six carbons attached to one of the nitrogens of the bisamidinium groups. None of the highly active compounds and only one of the very marked compounds exhibited any toxicity when evaluated in three mammalian cell lines. The strategy of substitution of 1,4-piperazine-linked bisbenzamidines produced compounds with the highest level of activity observed in the ATP assay and holds great promise for the development of efficacious anti-P. carinii therapy.
Collapse
Affiliation(s)
- Melanie T Cushion
- University of Cincinnati College of Medicine, Division of Infectious Diseases, 231 Albert Sabin Way, Cincinnati, OH 45267-0560, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Forsch RA, Queener SF, Rosowsky A. Preliminary in vitro studies on two potent, water-soluble trimethoprim analogues with exceptional species selectivity against dihydrofolate reductase from Pneumocystis carinii and Mycobacterium avium. Bioorg Med Chem Lett 2004; 14:1811-5. [PMID: 15026078 DOI: 10.1016/j.bmcl.2003.12.103] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2003] [Accepted: 12/04/2003] [Indexed: 11/22/2022]
Abstract
2,4-Diamino-5-[3',4'-dimethoxy-5'-(5-carboxy-1-pentynyl)]benzylpyrimidine (6) and 2,4-diamino-5-[3',4'-dimethoxy-5'-(4-carboxyphenylethynyl)benzylpyrimidine (7) were synthesized from 2,4-diamino-5-(5'-iodo-3',4'-dimethoxybenzyl)pyrimidine (9) via a Sonogashira reaction with appropriate acetylenic esters followed by saponification, and were tested as inhibitors of dihydrofolate reductase (DHFR) from Pneumocystis carinii (Pc), Toxoplasma gondii (Tg), Mycobacterium avium (Ma), and rat in comparison with the widely used antibacterial agent 2,4-diamino-5-(3',4',5'-trimethoxybenzyl)pyrimidine (trimethoprim, TMP). The selectivity index (SI) for each compound was calculated by dividing its 50% inhibitory concentration (IC(50)) against rat DHFR by its IC(50) against Pc, Tg, or Ma DHFR. The IC(50) of 6 against Pc DHFR was 1.0 nM, with an SI of 5000. Compound 7 had an IC(50) of 8.2 nM against Ma DHFR, with an SI of 11000. By comparison, the IC(50) of TMP was 12000 nM against Pc, 300 nM against Ma, and 180000 against rat DHFR. The potency and selectivity values of 6 and 7 were not as high against Tg as they were against Pc or Ma DHFR, but nonetheless exceeded those of TMP. Because of the outstanding selectivity of 6 against Pc and of 7 against Ma DHFR, these novel analogues may be viewed as promising leads for further structure-activity optimization.
Collapse
Affiliation(s)
- Ronald A Forsch
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
23
|
Vanden Eynde JJ, Mayence A, Huang TL, Collins MS, Rebholz S, Walzer PD, Cushion MT. Novel bisbenzamidines as potential drug candidates for the treatment of Pneumocystis carinii pneumonia. Bioorg Med Chem Lett 2004; 14:4545-8. [PMID: 15357989 DOI: 10.1016/j.bmcl.2004.06.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Revised: 06/10/2004] [Accepted: 06/10/2004] [Indexed: 10/26/2022]
Abstract
A series of pentamidine congeners has been synthesized and screened for their in vitro activity against Pneumocystis carinii. Among the tested compounds, bisbenzamidines linked by a flexible pentanediamide or hexanediamide chain (7 and 9) emerged as exceptionally potent agents that were more effective and less toxic than pentamidine in the assays described in this study.
Collapse
Affiliation(s)
- Jean Jacques Vanden Eynde
- Xavier University of Louisiana, College of Pharmacy, Division of Basic Pharmaceutical Sciences, 1 Drexel Drive, New Orleans 70125, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Zhang J, Zhu J, Imrich A, Cushion M, Kinane TB, Koziel H. Pneumocystis activates human alveolar macrophage NF-kappaB signaling through mannose receptors. Infect Immun 2004; 72:3147-60. [PMID: 15155616 PMCID: PMC415687 DOI: 10.1128/iai.72.6.3147-3160.2004] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alveolar macrophages (AM) represent important effector cells in the innate immune response to the AIDS-related pathogen Pneumocystis, but the early AM host defense signaling events are poorly defined. Using AM from healthy individuals, we showed in the present study that Pneumocystis organisms stimulate AM NF-kappaB p50 and p65 nuclear translocation in a time-dependent and multiplicity-of-infection-dependent manner as determined by electrophoretic mobility shift assay and immunofluorescence microscopy and that NF-kappaB nuclear translocation is associated with I-kappaB phosphorylation. Importantly, competitive inhibition of mannose receptor and targeted short interfering RNA-mediated gene suppression of mannose receptor mRNA and protein is associated with complete elimination of NF-kappaB nuclear translocation in response to Pneumocystis. Furthermore, human immunodeficiency virus (HIV) infection of AM (as a model human disease state of reduced AM mannose receptor expression and function) inhibits Pneumocystis-mediated NF-kappaB nuclear translocation and is associated with reduced I-kappaB phosphorylation and reduced interleukin-8 (IL-8) release. In contrast, NF-kappaB nuclear translocation and IL-8 release in response to lipopolysaccharide are intact in AM from both healthy and HIV-infected individuals, indicating that the observed impairment is not a global disturbance of the NF-kappaB pathway. Thus, in addition to phagocytic and endocytic effector functions, the present study identifies mannose receptors as pattern recognition receptors capable of NF-kappaB activation in response to infectious non-self challenge. AM mannose receptor-mediated NF-kappaB activation may represent an important mechanism of the host cell response to Pneumocystis, and altered NF-kappaB activation in the context of HIV infection may impair a critical innate immune signaling response and may contribute to pathogenesis of opportunistic lung infections.
Collapse
Affiliation(s)
- Jianmin Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
25
|
Mayence A, Vanden Eynde JJ, Krogstad FM, Krogstad DJ, Cushion MT, Huang TL. Parallel Solution-Phase Synthesis of Conformationally Restricted Congeners of Pentamidine and Evaluation of Their Antiplasmodial Activities. J Med Chem 2004; 47:2700-5. [PMID: 15115412 DOI: 10.1021/jm030545e] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Conformationally restricted bisbenzamidines and related congeners have been synthesized and evaluated for activity against two Plasmodium falciparum strains. The most active compounds, bisbenzamidines linked by a 1,4-piperazinediyl core, had IC(50) values between 3 and 18 nM against both chloroquine-susceptible and -resistant parasites and IC(50) values for cytotoxicity greater than 5 microM, using the A549 human lung epithelial cell line. DNA binding affinity, as estimated by DeltaT(m), did not correlate with either antiparasite effects or cytotoxicity. Each of the active bisbenzamidines interfered with the formation of hemozoin in cell-free systems.
Collapse
Affiliation(s)
- Annie Mayence
- College of Pharmacy, Division of Basic Pharmaceutical Sciences, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, Louisiana 70125, USA
| | | | | | | | | | | |
Collapse
|
26
|
Collins MS, Bansil S, Cushion MT. Expression profiling of the responses of Pneumocystis carinii to drug treatment using DNA macroarrays. J Eukaryot Microbiol 2004; 50 Suppl:605-6. [PMID: 14736179 DOI: 10.1111/j.1550-7408.2003.tb00646.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Zhou W, Nguyen TTM, Collins MS, Cushion MT, Nes WD. Evidence for multiple sterol methyl transferase pathways in Pneumocystis carinii. Lipids 2002; 37:1177-86. [PMID: 12617472 DOI: 10.1007/s11745-002-1018-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The sterol composition of Pneumocystis carinii, an opportunistic pathogen responsible for life-threatening pneumonia in immunocompromised patients, was determined. Our purpose was to identify pathway-specific enzymes to impair using sterol biosynthesis inhibitors. Prior to this study, cholesterol 15 (ca. 80% of total sterols), lanosterol 1, and several phytosterols common to plants (sitosterol 31, 24alpha-ethyl and campesterol, 24alpha-methyl 30) were demonstrated in the fungus. In this investigation, we isolated all the previous sterols and many new compounds from P. carinii by culturing the microorganism in steroid-immunosuppressed rats. Thirty-one sterols were identified from the fungus (total sterol = 100 fg/cell), and seven sterols were identified from rat chow. Unusual sterols in the fungus not present in the diet included, 24(28)-methylenelanosterol 2; 24(28)E-ethylidene lanosterol 3; 24(28)Z-ethylidene lanosterol 4; 24beta-ethyllanosta-25(27)-dienol 5; 24beta-ethylcholest-7-enol 6; 24beta-ethylcholesterol 7; 24beta,-ethylcholesta-5,25(27)-dienol 8; 24-methyllanosta-7-enol 9; 24-methyldesmosterol 10; 24(28)-methylenecholest-7-enol 11; 24beta-methylcholest-7-enol 12; and 24beta-methylcholesterol 13. The structural relationships of the 24-alkyl groups in the sterol side chain were demonstrated chromatographically relative to authentic specimens, by MS and high-resolution 1H NMR. The hypothetical order of these compounds poses multiple phytosterol pathways that diverge from a common intermediate to generate 24beta-methyl sterols: route 1, 1 --> 2 --> 11 --> 12 --> 13; route 2, 1 --> 2 --> 9 --> 10 --> 13; or 24beta-ethyl sterols: route 3, 1 --> 2 --> 4 --> 6 --> 7; route 4, 1 --> 2 --> 5 --> 8 --> 7. Formation of 3 is considered to form an interrupted sterol pathway. Taken together, operation of distinct sterol methyl transferase (SMT) pathways that generate 24beta-alkyl sterols in P. carinii with no counterpart in human biochemistry suggests a close taxonomic affinity with fungi and provides a basis for mechanism-based inactivation of SMT enzyme to treat Pneumocystis pneumonia.
Collapse
Affiliation(s)
- Wenxu Zhou
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA
| | | | | | | | | |
Collapse
|
28
|
Collins MS, Cushion MT. Standardization of an in vitro drug screening assay by use of cryopreserved and characterized Pneumocystis carinii populations. J Eukaryot Microbiol 2002; Suppl:178S-179S. [PMID: 11906052 DOI: 10.1111/j.1550-7408.2001.tb00509.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M S Collins
- Department of Internal Medicine, University of Cincinnati College of Medicine, OH 45267, USA
| | | |
Collapse
|
29
|
van Dross RT, Sanders MM. Molecular characterization of recombinant Pneumocystis carinii topoisomerase I: differential interactions with human topoisomerase I poisons and pentamidine. Antimicrob Agents Chemother 2002; 46:2145-54. [PMID: 12069967 PMCID: PMC127280 DOI: 10.1128/aac.46.7.2145-2154.2002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2002] [Accepted: 04/10/2002] [Indexed: 11/20/2022] Open
Abstract
The Pneumocystis carinii topoisomerase I-encoding gene has been cloned and sequenced, and the expressed enzyme interactions with several classes of topoisomerase I poisons have been characterized. The P. carinii topoisomerase I protein contains 763 amino acids and has a molecular mass of ca. 90 kDa. The expressed enzyme relaxes supercoiled DNA to completion and has no Mg2+ requirement. Cleavage assays reveal that both the human and P. carinii enzymes form covalent complexes in the presence of camptothecin, Hoechst 33342, and the terbenzimidazole QS-II-48. As with the human enzyme, no cleavage is stimulated in the presence of 4',6'-diamidino-2-phenylindole (DAPI) or berenil. A yeast cytotoxicity assay shows that P. carinii topoisomerase I is also a cytotoxic target for the mixed intercalative plus minor-groove binding drug nogalamycin. In contrast to the human enzyme, P. carinii topoisomerase I is resistant to both nitidine and potent protoberberine human topoisomerase I poisons. The differences in the sensitivities of P. carinii and human topoisomerase I to various topoisomerase I poisons support the use of the fungal enzyme as a molecular target for drug development. Additionally, we have characterized the interaction of pentamidine with P. carinii topoisomerase I. We show, by catalytic inhibition, cleavage, and yeast cytotoxicity assays, that pentamidine does not target topoisomerase I.
Collapse
Affiliation(s)
- Rukiyah T van Dross
- Department of Pharmacology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
30
|
De Lucca AJ, Bland JM, Vigo CB, Cushion M, Selitrennikoff CP, Peter J, Walsh TJ. CAY-I, a fungicidal saponin from Capsicum sp. fruit. Med Mycol 2002; 40:131-7. [PMID: 12058725 DOI: 10.1080/mmy.40.2.131.137] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Saponins are steroidal or terpenoid-based glycosides with surface active properties. A steroidal saponin, CAY-1, with a molecular weight of 1243.35 Da, was isolated and purified to homogeneity from commercially available dry, ground fruit of Capsicum frutescens. CAY-1 was shown to be a potent fungicide for the germinating conidia of Aspergillus flavus, A. fumigatus, A. parasiticus and A. niger with species-dependent LD90 values between 3 and 20 microM. Activity against some Aspergillus species was affected by the test medium used. In vitro assays, CAY-1 was effective against Pneumocystis carinii (IC50): 9.5 microM) and Candida albicans (IC90: 6.2 microM). CAY-1 had no effect on the viability of the nongerminating conidia of the two filamentous fungi, P. carinii and C. albicans, nor on the conidial type of Fusarium oxysporum. It was ineffective against the bacteria Enterobacter agglomerans, Bacillus subtilis, Escherichia coli and Staphylococcus aureus. CAY-1 was not cytotoxic to A 549 lung carcinoma cells or HeLa cells at effective fungicidal concentrations. The results indicate that CAY-1 is an effective fungicide for Aspergillus species, C. albicans and P. carinii at concentrations below the threshold for mammalian cell toxicity.
Collapse
Affiliation(s)
- A J De Lucca
- Southern Regional Research Center, Agricultural Research Service, US Department of Agriculture, New Orleans, LA 70124, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Walzer PD, Ashbaugh A. Use of terbinafine in mouse and rat models of Pneumocystis carinii pneumonia. Antimicrob Agents Chemother 2002; 46:514-6. [PMID: 11796365 PMCID: PMC127063 DOI: 10.1128/aac.46.2.514-516.2002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Terbinafine, an allylamine used to treat onychomycosis, has been reported to be active against rat Pneumocystis carinii in vitro and in vivo. By contrast, our in vitro data showed that the 50% inhibitory concentration of terbinafine against rat P. carinii is 3.7 microg/ml, a level that cannot be clinically achieved in serum. In the present study, terbinafine administered orally at doses of 20 to 400 mg/kg/day and 50 to 250 mg/kg/day was ineffective therapy for mouse and rat models of pneumocystosis, respectively. These results emphasize the complexities of P. carinii drug testing and the need for caution before considering studies in humans.
Collapse
Affiliation(s)
- Peter D Walzer
- Research Service, Veterans Affairs Medical Center, Cincinnati, Ohio 45220, USA.
| | | |
Collapse
|
32
|
Basselin-Eiweida M, Kaneshiro ES. Detection of two distinct transporter systems for 2-deoxyglucose uptake by the opportunistic pathogen Pneumocystis carinii. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1515:177-88. [PMID: 11718673 DOI: 10.1016/s0005-2736(01)00412-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Since the opportunistic pathogen Pneumocystis carinii grows only slowly in vitro, the mechanism of glucose uptake was investigated to better understand how the organism transports nutrients. Using the non-metabolizable analogue 2-deoxyglucose, two uptake systems were detected with Q(10) values of 2.12 and 2.09, respectively. One had a high affinity (K(m)=67.5 microM) and the other a low affinity (K(m)=5.99 mM) for 2-deoxyglucose uptake. Glucose or deoxyglucose phosphate products from transported radiolabeled substrates were not detected during the incubation times used in this study. Both systems were inhibited by mannose, galactose, fructose, galactosamine, glucosamine, and glucose but not by allose, 5-thioglucose, xylose, glucose 6-phosphate and glucuronic acid. Salicylhydroxamate, KCN, iodoacetate, and 2,4-dinitrophenol inhibited the high-affinity transporter, suggesting it required ATP. Ouabain, monensin, carbonyl cyanide m-chlorophenylhydrazone, and N,N'-dicyclohexylcarbodiimide also inhibited deoxyglucose uptake, as did the replacement of Na(+) in the incubation medium with choline, indicating requirements for Na(+) and H(+). The high-affinity system was also inhibited by the protein synthesis inhibitors cycloheximide and chloramphenicol. In contrast, the low-affinity system transported deoxyglucose by facilitated diffusion mechanisms. Unlike the human erythrocyte glucose transporter GLUT1, the P. carinii transporters recognized fructose and galactose and were relatively insensitive to cytochalasin B, suggesting that the P. carinii glucose transporters may be good drug targets.
Collapse
Affiliation(s)
- M Basselin-Eiweida
- Department of Biological Sciences, University of Cincinnati, ML 0006, Cincinnati, OH 45221, USA
| | | |
Collapse
|
33
|
Walzer PD, Ashbaugh A, Collins M, Cushion MT. In vitro and in vivo effects of quinupristin-dalfopristin against Pneumocystis carinii. Antimicrob Agents Chemother 2001; 45:3234-7. [PMID: 11600389 PMCID: PMC90815 DOI: 10.1128/aac.45.11.3234-3237.2001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Quinupristin-dalfopristin (Q-D), which is active against bacteria and Toxoplasma gondii, was examined for its activity against Pneumocystis carinii. After 72 h of incubation with rat P. carinii in an ATP cytotoxicity assay, the 50% inhibitory concentration of Q-D was 10.6 microg/ml, a level that can be achieved in serum with high-dose administration. Q-D administered intraperitoneally at doses of 50 to 200 mg per kg of body weight per day in the treatment and 100 mg/kg/day three times per week in the prophylaxis of pneumocystosis in immunosuppressed mice reduced the organism burden up to 15- and 302-fold, respectively. We conclude that Q-D has activity against P. carinii in vitro and in vivo.
Collapse
Affiliation(s)
- P D Walzer
- Research Service, Veterans Affairs Medical Center, Cincinnati, Ohio 45220, USA.
| | | | | | | |
Collapse
|
34
|
Kaneshiro ES. Are cytochrome b gene mutations the only cause of atovaquone resistance in Pneumocystis? Drug Resist Updat 2001; 4:322-9. [PMID: 11991686 DOI: 10.1054/drup.2001.0221] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
There is evidence that exposure of the opportunistic pathogen Pneumocystis to atovaquone enhances the development of resistance to the drug. Atovaquone is a structural analog of ubiquinone, which binds to the mitochondrial cytochrome bc(1) complex and inhibits electron transport. Like the parasites Plasmodium and Toxoplasma, atovaquone resistance can result from mutations in the cytochrome b gene of Pneumocystis. However, atovaquone resistance cannot be explained by cytochrome b gene mutations in all cases. The discovery that atovaquone also inhibits biosynthesis of ubiquinone in P. carinii may unfold other mechanisms by which drug resistance develops.
Collapse
Affiliation(s)
- E S Kaneshiro
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA.
| |
Collapse
|
35
|
Mathé G. The failure of HAART to cure the HIV-1/AIDS complex. Suggestions to add integrase inhibitors as complementary virostatics, and to replace their continuous long combination applications by short sequences differing by drug rotations. Biomed Pharmacother 2001; 55:295-300. [PMID: 11478579 DOI: 10.1016/s0753-3322(01)00074-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
While the intensive virostatic combinations applied according to the conventional models (such as HAART), based only on the attacks of two HIV-1 targets, retrotranscriptase and protease, and applied in a long and continuous fashion, a) are notably toxic, b) do not correct completely the abnormal immunologic parameters, and c) are followed by particularly severe and poorly sensitive relapses in case of discontinuation, we propose to the 'AIDS treatment headquarters' to include in their failing strategy the two original features which we have included in the treatment of a cohort of a dozen patients, treatment applied at all but one AIDS stage. We attack one more HIV-1 target than the conventional protocols do, by adding inhibitors of integrase; we apply the combinations of virostatics, comprising inhibitors of the three targets, in short sequences (of 3 weeks), between which the analogues are changed inside each series. The first patient of the cohort started his treatment 8.5 years ago, and the entries of the others into it have been at random and not randomized. All patients are alive today and in excellent condition.
Collapse
|
36
|
Basselin M, Qiu YH, Lipscomb KJ, Kaneshiro ES. Uptake of the neutral amino acids glutamine, leucine, and serine by Pneumocystis carinii. Arch Biochem Biophys 2001; 391:90-8. [PMID: 11414689 DOI: 10.1006/abbi.2001.2389] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Experiments to elucidate the mechanism by which Pneumocystis carinii transports glutamine, leucine, and serine were performed in this study. Uptake of all three radiolabeled amino acids exhibited first-order, saturation kinetics as extracellular substrate concentrations were increased, thus ruling out simple diffusion and indicating carrier-mediated transport. Kinetic analyses of amino acid uptake and the results of competitive inhibition experiments suggested that leucine, serine, and glutamine were taken up via a common transporter system. The uptake of serine was examined in greater detail to characterize the nature of the carrier. Serine uptake was not affected by N, N'-dicyclohexylcarbodiimide, carbonyl cyanide m-chlorophenyl hydrazone, ouabain, gramicidin, valinomycin, sodium azide, salicylhydroxamine acid (SHAM), iodoacetate, iodoacetate plus SHAM, KCN, and azide. Thus serine uptake did not require sodium or energy from ATP, an electrochemical proton gradient or a membrane potential across the cell surface (i.e., proton-motive force). Serine uptake was dependent on glucose in the extracellular compartment. In the presence of glucose, serine uptake was inhibited by chloramphenicol but not cycloheximide. The results from these experiments are most consistent with facilitated diffusion as the mechanism. After 30 min of incubation, most of the radioactivity was in the cellular soluble fraction. In most cases, incorporation into the extractable total lipids and the remaining particulate cellular components were detectable after this incubation period.
Collapse
Affiliation(s)
- M Basselin
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | | | | | | |
Collapse
|
37
|
Basselin M, Lipscomb KJ, Qiu YH, Kaneshiro ES. Transport of aspartic acid, arginine, and tyrosine by the opportunistic protist Pneumocystis carinii. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1511:349-59. [PMID: 11286978 DOI: 10.1016/s0005-2736(01)00293-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In order to improve culture media and to discover potential drug targets, uptake of an acidic, a basic, and an aromatic amino acid were investigated. Current culture systems, axenic or co-cultivation with mammalian cells, do not provide either the quantity or quality of cells needed for biochemical studies of this organism. Insight into nutrient acquisition can be expected to lead to improved culture media and improved culture growth. Aspartic acid uptake was directly related to substrate concentration, Q(10) was 1.10 at pH 7.4. Hence the organism acquired this acidic amino acid by simple diffusion. Uptake of the basic amino acid arginine and the aromatic amino acid tyrosine exhibited saturation kinetics consistent with carrier-mediated mechanisms. Kinetic parameters indicated two carriers (K(m)=22.8+/-2.5 microM and K(m)=3.6+/-0.3 mM) for arginine and a single carrier for tyrosine (K(m)=284+/-23 microM). The effects of other L-amino acids showed that the tyrosine carrier was distinct from the arginine carriers. Tyrosine and arginine transport were independent of sodium and potassium ions, and did not appear to require energy from ATP or a proton motive force. Thus facilitated diffusion was identified as the mechanism of uptake. After 30 min of incubation, these amino acids were incorporated into total lipids and the sedimentable material following lipid extraction; more than 90% was in the cellular soluble fraction.
Collapse
Affiliation(s)
- M Basselin
- Department of Biological Sciences, University of Cincinnati, 45221, Cincinnati, OH, USA
| | | | | | | |
Collapse
|
38
|
Cushion MT, Orr S, Keely SP, Stringer JR. Time between inoculations and karyotype forms of Pneumocystis carinii f. sp. Carinii influence outcome of experimental coinfections in rats. Infect Immun 2001; 69:97-107. [PMID: 11119494 PMCID: PMC97860 DOI: 10.1128/iai.69.1.97-107.2001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2000] [Accepted: 09/27/2000] [Indexed: 11/20/2022] Open
Abstract
The prevalence of Pneumocystis carinii pneumonia (PCP) in humans caused by more than a single genotype has been reported to range from 10 to 67%, depending on the method used for detection (3, 19). Most coinfections were associated with primary rather than recurrent disease. To better understand the factors influencing the development of coinfections, the time periods between inoculations and the genotype of the infecting organisms were evaluated in the chronically immunosuppressed-inoculated rat model of PCP. P. carinii f. sp. carinii infecting rats differentiated by karyotypic profiles exhibit the same low level of genetic divergence manifested by organisms infecting humans. P. carinii f. sp. carinii karyotype forms 1, 2, and 6 were inoculated into immunosuppressed rats, individually and in dual combinations, spaced 0, 10, and 20 days apart. Infections comprised of both organism forms resulted from admixtures inoculated at the same time. In contrast, coinfections did not develop in most rats, where a 10- or 20-day gap was inserted between inoculations; only the first organism form inoculated was detected by pulsed-field gel electrophoresis in the resultant infection. Organism burdens were reduced with combinations of forms 1 and 2 spaced 20 days apart but not in rats inoculated with forms 1 and 6. A role for the host response in the elimination of the second population and in reduction of the organism burden was suggested by the lack of direct killing of forms 1 and 2 in an in vitro ATP assay, by reduction of the burden by autoclaved organisms, and by the specific reactions of forms 1 and 2 but not forms 1 and 6. These studies showed that the time between inoculations was critical in establishing coinfections and P. carinii f. sp. carinii karyotype profiles were associated with differences in biological responses. This model provides a useful method for the study of P. carinii coinfections and their transmission in humans.
Collapse
Affiliation(s)
- M T Cushion
- Department of Internal Medicine, Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0560, USA.
| | | | | | | |
Collapse
|
39
|
Cirioni O, Giacometti A, Barchiesi F, Scalise G. Inhibition of growth of Pneumocystis carinii by lactoferrins alone and in combination with pyrimethamine, clarithromycin and minocycline. J Antimicrob Chemother 2000; 46:577-82. [PMID: 11020255 DOI: 10.1093/jac/46.4.577] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The in vitro activity of lactoferrins alone and in combination with clarithromycin, minocycline and pyrimethamine was investigated against three clinical isolates of Pneumocystis carinii. Susceptibility was tested by inoculating isolates on to cell monolayers and determining the parasite count after 72 h incubation at 37 degrees C. The culture medium was supplemented with serial dilutions of each agent. At 20 mg/L, bovine lactoferrin, the most active agent, suppressed the growth of cystic and trophic forms by >60%. Human lactoferrin, at the same concentration, suppressed the growth of cystic and trophic forms by >50%. Lactoferrins at 20 mg/L combined with clarithromycin 4 mg/L had high anti-P. carinii activity, with a >90% decrease in cystic and trophic form counts. Our study suggests that lactoferrins may inhibit P. carinii growth in vitro and act synergically with other clinically used compounds. These findings lend experimental support to the use of iron-chelating agents in the therapy of pneumocystis infections.
Collapse
Affiliation(s)
- O Cirioni
- Institute of Infectious Diseases and Public Health, University of Ancona, Italy.
| | | | | | | |
Collapse
|
40
|
Kaneshiro ES, Collins MS, Cushion MT. Inhibitors of sterol biosynthesis and amphotericin B reduce the viability of pneumocystis carinii f. sp. carinii. Antimicrob Agents Chemother 2000; 44:1630-8. [PMID: 10817720 PMCID: PMC89924 DOI: 10.1128/aac.44.6.1630-1638.2000] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Pneumocystis carinii synthesizes sterols with a double bond at C-7 of the sterol nucleus and an alkyl group with one or two carbons at C-24 of the side chain. Also, some human-derived Pneumocystis carinii f. sp. hominis strains contain lanosterol derivatives with an alkyl group at C-24. These unique sterols have not been found in other pathogens of mammalian lungs. Thus, P. carinii may have important differences in its susceptibility to drugs known to block reactions in ergosterol biosynthesis in other fungi. In the present study, inhibitors of 3-hydroxy-3-methyglutaryl coenzyme A reductase, squalene synthase, squalene epoxidase, squalene epoxide-lanosterol cyclase, lanosterol demethylase, Delta(8) to Delta(7) isomerase, and S-adenosylmethionine:sterol methyltransferase were tested for their effects on P. carinii viability as determined by quantitation of cellular ATP levels in a population of organisms. Compounds within each category varied in inhibitory effect; the most effective included drugs targeted at squalene synthase, squalene epoxide-lanosterol cyclase, and Delta(8) to Delta(7) isomerase. Some drugs that are potent against ergosterol-synthesizing fungi had little effect against P. carinii, suggesting that substrates and/or enzymes in P. carinii sterol biosynthetic reactions are distinct. Amphotericin B is ineffective in clearing P. carinii infections at clinical doses; however, this drug apparently binds to sterols and causes permeability changes in P. carinii membranes, since it reduced cellular ATP levels in a dose-dependent fashion.
Collapse
Affiliation(s)
- E S Kaneshiro
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio 45221, USA.
| | | | | |
Collapse
|
41
|
Cushion MT, Collins M, Hazra B, Kaneshiro ES. Effects of atovaquone and diospyrin-based drugs on the cellular ATP of Pneumocystis carinii f. sp. carinii. Antimicrob Agents Chemother 2000; 44:713-9. [PMID: 10681344 PMCID: PMC89752 DOI: 10.1128/aac.44.3.713-719.2000] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Atovaquone (also called Mepron, or 566C80) is a napthoquinone used for the treatment of infections caused by pathogens such as Plasmodium spp. and Pneumocystis carinii. The mechanism of action against the malarial parasite is the inhibition of dihydroorotate dehydrogenase (DHOD), a consequence of blocking electron transport by the drug. As an analog of ubiquinone (coenzyme Q [CoQ]), atovaquone irreversibly binds to the mitochondrial cytochrome bc(1) complex; thus, electrons are not able to pass from dehydrogenase enzymes via CoQ to cytochrome c. Since DHOD is a critical enzyme in pyrimidine biosynthesis, and because the parasite cannot scavenge host pyrimidines, the drug is lethal to the organism. Oxygen consumption in P. carinii is inhibited by the drug; thus, electron transport has also been identified as the drug target in P. carinii. However, unlike Plasmodium DHOD, P. carinii DHOD is inhibited only at high atovaquone concentrations, suggesting that the organism may salvage host pyrimidines and that atovaquone exerts its primary effects on ATP biosynthesis. In the present study, the effect of atovaquone on ATP levels in P. carinii was measured directly from 1 to 6 h and then after 24, 48, and 72 h of exposure. The average 50% inhibitory concentration after 24 to 72 h of exposure was 1.5 microgram/ml (4.2 microM). The kinetics of ATP depletion were in contrast to those of another family of naphthoquinone compounds, diospyrin and two of its derivatives. Whereas atovaquone reduced ATP levels within 1 h of exposure, the diospyrins required at least 48 h. After 72 h, the diospyrins were able to decrease ATP levels of P. carinii at nanomolar concentrations. These data indicate that although naphthoquinones inhibit the electron transport chain, the molecular targets in a given organism are likely to be distinct among members of this class of compounds.
Collapse
Affiliation(s)
- M T Cushion
- Department of Internal Medicine, University of Cincinnati College of Medicine, and Veterans Affairs Medical Center, Ohio, USA.
| | | | | | | |
Collapse
|
42
|
Cirioni O, Giacometti A, Barchiesi F, Fortuna M, Scalise G. In-vitro activity of rifabutin and albendazole singly and in combination with other clinically used antimicrobial agents against Pneumocystis carinii. J Antimicrob Chemother 1999; 44:653-9. [PMID: 10552982 DOI: 10.1093/jac/44.5.653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The in-vitro activity of rifabutin and albendazole alone and in combination with clarithromycin, etoposide, minocycline and pyrimethamine was investigated against four clinical isolates of Pneumocystis carinii. The susceptibility tests were performed by inoculation of the isolates on to cell monolayers and by determining the parasite count after 72 h incubation at 37 degrees C. The culture medium was supplemented with serial dilutions of each agent. Albendazole tested alone was more active than rifabutin. Albendazole suppressed the growth of cysts and trophozoites by >50% at 4 mg/L. Rifabutin, at the same concentration, produced about 40% reduction in the mean cyst and trophozoite counts. Albendazole (4 mg/L) combined with etoposide 4 mg/L showed the highest anti-P. carinii activity, with a decrease of 86.3% and 90.1% in cyst and trophozoite counts, respectively. The greatest synergic interaction was detected when rifabutin (4 mg/L) was combined with clarithromycin (4 mg/L). Our study suggests that clinically used antimicrobial agents may be effective in inhibiting P. carinii growth in vitro and that, above all, some of these agents possess a positive interaction upon combination with other clinically used compounds. These findings may be useful in the establishment of a prophylaxis regimen for multiple opportunistic pathogens.
Collapse
Affiliation(s)
- O Cirioni
- Institute of Infectious Diseases and Public Health, University of Ancona, Italy.
| | | | | | | | | |
Collapse
|
43
|
Merali S, Frevert U, Williams JH, Chin K, Bryan R, Clarkson AB. Continuous axenic cultivation of Pneumocystis carinii. Proc Natl Acad Sci U S A 1999; 96:2402-7. [PMID: 10051654 PMCID: PMC26796 DOI: 10.1073/pnas.96.5.2402] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Continuous axenic culture of Pneumocystis carinii has been achieved. A culture vessel is used that allows for frequent medium exchange without disturbance of organisms that grow attached to a collagen-coated porous membrane. The growth medium is based on Minimal Essential Medium with Earle's salt supplemented with S-adenosyl-L-methionine, putrescine, ferric pyrophosphate, N-acetyl glucosamine, putrescine, p-aminobenzoic acid, L-cysteine and L-glutamine, and horse serum. Incubation is in room air at 31 degrees C. The pH of the medium begins at 8.8 and rises to approximately 9 as the cells grow. Doubling times calculated from growth curves obtained from cultures inoculated at moderate densities ranged from 35 to 65 hours. With a low-density inoculum, the doubling time is reduced to 19 hours. The morphology of cultured organisms in stained smears and in transmission electron micrographs is that of P. carinii, and P. carinii-specific mAbs label the cultured material. Cultured organisms are infective for immunosuppressed rats and can be stored frozen and used to reinitiate culture.
Collapse
Affiliation(s)
- S Merali
- Department of Medical and Molecular Parasitology, New York University School of Medicine, 341 East 25th Street, New York, New York, 10010, USA
| | | | | | | | | | | |
Collapse
|
44
|
Brun Pascaud M, Herreros E, Aliouat EM, Dei-Cas E. Evaluation of drug efficacy by using animal models or in vitro systems. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 1998; 22:173-9. [PMID: 9792077 DOI: 10.1111/j.1574-695x.1998.tb01203.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The efficacy of most therapeutic and prophylactic protocols against Pneumocystis carinii pneumonia used in human patients has been tested in animal models, especially in the corticosteroid-treated rat. The advantages and drawbacks of this model have been examined in brief in Chapter 1 of this section. More recently, the nude rat, intratracheally inoculated with Pneumocystis, was used to test new anti-microbian molecules for their anti-Pneumocystis activity. In vitro systems, co-cultures of Pneumocystis with feeder cells as well as axenic cultures, were also used many times for drug screening. In this paper, the most used in vivo or in vitro drug screening systems are described. Moreover, as immunocompromised individuals, AIDS patients, especially, are often infected simultaneously by several infectious agents, a recent co-infection model is described.
Collapse
|