1
|
Hareza DA, Bergman Y, Jacobs E, Lu J, Hanson ND, Conzemius R, Cosgrove SE, Harris AD, Simner PJ, Tamma PD. Molecular epidemiology of β-lactamases in ceftriaxone-resistant Enterobacterales bloodstream infections in the mid-Atlantic United States. Antimicrob Agents Chemother 2025; 69:e0125824. [PMID: 39868794 PMCID: PMC11881560 DOI: 10.1128/aac.01258-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/20/2024] [Indexed: 01/28/2025] Open
Abstract
Ceftriaxone-resistant Enterobacterales remain a public health threat; contemporary data investigating their molecular epidemiology are limited. Five hundred consecutive ceftriaxone-resistant (MIC ≥ 4 µg/mL) Enterobacterales bloodstream isolates were collected between 2018 and 2022 from three Maryland hospitals. Broth microdilution confirmed antibiotic susceptibilities. Whole-genome sequencing identified extended-spectrum β-lactamase (ESBL) and ampC genes both in bacterial chromosomes (c-ampC) and on plasmids (p-ampC). Mutations in promoter or attenuator regions of the Escherichia coli c-ampC gene (i.e., blaEC gene) with the potential to result in ampC derepression were investigated. The presence of ESBL or ampC genes was confirmed in 497 (99.4%) isolates. Two hundred seventy-nine (55.8%) isolates had both ESBL and ampC genes. ESBL families were identified among 398 (80%) patients: blaCTX-M (n = 370), blaSHV (n = 17), blaOXY (n = 14), and blaVEB (n = 5). Ceftriaxone-resistant Enterobacterales species carrying ESBL genes included the following: E. coli (67%), Klebsiella pneumoniae (24%), Klebsiella oxytoca (4%), Proteus mirabilis (2%), Enterobacter cloacae complex (2%), Klebsiella aerogenes (1%), Providencia stuartii (<1%), and Serratia marcescens (<1%). c-ampC genes were identified in 374 (75%) of the 500 isolates. Only 7% of E. coli isolates with mutations in the promoter or attenuator region of the c-ampC gene exhibited resistance to cefoxitin, a proxy for increased AmpC production. Two p-ampC genes were confirmed in 25 (5%) of the 500 isolates: blaCMY-59 (72%) and blaDHA-1 (28%; confined to E. coli [92%] and K. pneumoniae [8%]). Until comprehensive β-lactamase molecular testing is available, the species-specific prevalence of ESBL and ampC genes in ceftriaxone-resistant Enterobacterales should be considered to promote effective albeit judicious antibiotic prescribing. Mutations in promoter or attenuator regions of the E. coli c-ampC gene do not appear to contribute significantly to increased AmpC production in this species.
Collapse
Affiliation(s)
- Dariusz A. Hareza
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yehudit Bergman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Emily Jacobs
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jennifer Lu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nancy D. Hanson
- Department of Microbiology and Immunology, Creighton School of Medicine, Omaha, Nebraska, USA
| | | | - Sara E. Cosgrove
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anthony D. Harris
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Patricia J. Simner
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Pranita D. Tamma
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Teichmann L, Wenne M, Luitwieler S, Dugar G, Bengtsson-Palme J, ter Kuile B. Genetic adaptation to amoxicillin in Escherichia coli: The limited role of dinB and katE. PLoS One 2025; 20:e0312223. [PMID: 39970152 PMCID: PMC11838884 DOI: 10.1371/journal.pone.0312223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/27/2024] [Indexed: 02/21/2025] Open
Abstract
Bacteria can quickly adapt to sub-lethal concentrations of antibiotics. Several stress and DNA repair genes contribute to this adaptation process. However, the pathways leading to adaptation by acquisition of de novo mutations remain poorly understood. This study explored the roles of DNA polymerase IV (dinB) and catalase HP2 (katE) in E. coli's adaptation to amoxicillin. These genes are thought to play essential roles in beta-lactam resistance-dinB in increasing mutation rates and katE in managing oxidative stress. By comparing the adaptation rates, transcriptomic profiles, and genetic changes of wild-type and knockout strains, we aimed to clarify the contributions of these genes to beta-lactam resistance. While all strains exhibited similar adaptation rates and mutations in the frdD gene and ampC operon, several unique mutations were acquired in the ΔkatE and ΔdinB strains. Overall, this study distinguishes the contributions of general stress-related genes on the one hand, and dinB, and katE on the other hand, in development of beta-lactam resistance.
Collapse
Affiliation(s)
- Lisa Teichmann
- Swammerdam Institute of Life Sciences, Molecular Biology and Microbial Food Safety, University of Amsterdam, Amsterdam, The Netherlands
| | - Marcus Wenne
- Department of Life Sciences, Division of Systems and Synthetic Biology, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe) in Gothenburg, Gothenburg, Sweden
| | - Sam Luitwieler
- Swammerdam Institute of Life Sciences, Molecular Biology and Microbial Food Safety, University of Amsterdam, Amsterdam, The Netherlands
| | - Gaurav Dugar
- Swammerdam Institute of Life Sciences, Molecular Biology and Microbial Food Safety, University of Amsterdam, Amsterdam, The Netherlands
| | - Johan Bengtsson-Palme
- Department of Life Sciences, Division of Systems and Synthetic Biology, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe) in Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Benno ter Kuile
- Swammerdam Institute of Life Sciences, Molecular Biology and Microbial Food Safety, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Bush NG, Diez-Santos I, Sankara Krishna P, Clavijo B, Maxwell A. Insights into antibiotic resistance promoted by quinolone exposure. Antimicrob Agents Chemother 2025; 69:e0099724. [PMID: 39589140 PMCID: PMC11784200 DOI: 10.1128/aac.00997-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/23/2024] [Indexed: 11/27/2024] Open
Abstract
Quinolone-induced antibiotic resistance (QIAR) refers to the phenomenon by which bacteria exposed to sublethal levels of quinolones acquire resistance to non-quinolone antibiotics. We have explored this in Escherichia coli MG1655 using a variety of compounds and bacteria carrying a quinolone-resistance mutation in gyrase, mutations affecting the SOS response, and mutations in error-prone polymerases. The nature of the antibiotic-resistance mutations was determined by whole-genome sequencing. Exposure to low levels of most quinolones tested led to mutations conferring resistance to chloramphenicol, ampicillin, kanamycin, and tetracycline. The mutations included point mutations and deletions and could mostly be correlated with the resistance phenotype. QIAR depended upon DNA gyrase and involved the SOS response but was not dependent on error-prone polymerases. Only moxifloxacin, among the quinolones tested, did not display a significant QIAR effect. We speculate that the lack of QIAR with moxifloxacin may be attributable to it acting via a different mechanism. In addition to the concerns about antimicrobial resistance to quinolones and other compounds, QIAR presents an additional challenge in relation to the usage of quinolone antibacterials.
Collapse
Affiliation(s)
- Natassja G. Bush
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia School of Biological Sciences, Norwich, United Kingdom
| | - Isabel Diez-Santos
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia School of Biological Sciences, Norwich, United Kingdom
| | - Pilla Sankara Krishna
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Bernardo Clavijo
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Anthony Maxwell
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
4
|
Pal A, Ghosh D, Thakur P, Nagpal P, Irulappan M, Maruthan K, Mukherjee S, Patil N, Dutta T, Veeraraghavan B, Vivekanandan P. Clinically relevant mutations in regulatory regions of metabolic genes facilitate early adaptation to ciprofloxacin in Escherichia coli. Nucleic Acids Res 2024; 52:10385-10399. [PMID: 39180403 PMCID: PMC11417348 DOI: 10.1093/nar/gkae719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024] Open
Abstract
The genomic landscape associated with early adaptation to ciprofloxacin is poorly understood. Although the interplay between core metabolism and antimicrobial resistance is being increasingly recognized, mutations in metabolic genes and their biological role remain elusive. Here, we exposed Escherichia coli to increasing gradients of ciprofloxacin with intermittent transfer-bottlenecking and identified mutations in three non-canonical targets linked to metabolism including a deletion (tRNA-ArgΔ414-bp) and point mutations in the regulatory regions of argI (ARG box) and narU. Our findings suggest that these mutations modulate arginine and carbohydrate metabolism, facilitate anaerobiosis and increased ATP production during ciprofloxacin stress. Furthermore, mutations in the regulatory regions of argI and narU were detected in over 70% of sequences from clinical E. coli isolates and were overrepresented among ciprofloxacin-resistant isolates. In sum, we have identified clinically relevant mutations in the regulatory regions of metabolic genes as a central theme that drives physiological changes necessary for adaptation to ciprofloxacin stress.
Collapse
Affiliation(s)
- Arijit Pal
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Department of Zoology, Raiganj Surendranath Mahavidyalaya, Sudarshanpur, Raiganj, Uttar Dinajpur, West Bengal733134, India
| | - Dipannita Ghosh
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Pratyusha Thakur
- RNA Biology Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Priya Nagpal
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Madhumathi Irulappan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Karthik Maruthan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Sanket Mukherjee
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Nikita G Patil
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Amity Institute of Virology and Immunology, Amity University, Noida, Uttar Pradesh, India
| | - Tanmay Dutta
- RNA Biology Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Perumal Vivekanandan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
5
|
Gross R, Yelin I, Lázár V, Datta MS, Kishony R. Beta-lactamase dependent and independent evolutionary paths to high-level ampicillin resistance. Nat Commun 2024; 15:5383. [PMID: 38918379 PMCID: PMC11199616 DOI: 10.1038/s41467-024-49621-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
The incidence of beta-lactam resistance among clinical isolates is a major health concern. A key method to study the emergence of antibiotic resistance is adaptive laboratory evolution. However, in the case of the beta-lactam ampicillin, bacteria evolved in laboratory settings do not recapitulate clinical-like resistance levels, hindering efforts to identify major evolutionary paths and their dependency on genetic background. Here, we used the Microbial Evolution and Growth Arena (MEGA) plate to select ampicillin-resistant Escherichia coli mutants with varying degrees of resistance. Whole-genome sequencing of resistant isolates revealed that ampicillin resistance was acquired via a combination of single-point mutations and amplification of the gene encoding beta-lactamase AmpC. However, blocking AmpC-mediated resistance revealed latent adaptive pathways: strains deleted for ampC were able to adapt through combinations of changes in genes involved in multidrug resistance encoding efflux pumps, transcriptional regulators, and porins. Our results reveal that combinations of distinct genetic mutations, accessible at large population sizes, can drive high-level resistance to ampicillin even independently of beta-lactamases.
Collapse
Affiliation(s)
- Rotem Gross
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Idan Yelin
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Viktória Lázár
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
- HCEMM-BRC Pharmacodynamic Drug Interaction Research Group, Szeged, Hungary
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Manoshi Sen Datta
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
- The California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
| | - Roy Kishony
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
- Faculty of Computer Science, Technion-Israel Institute of Technology, Haifa, Israel.
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
6
|
Matsumoto Y, Lee K, Akasaka R, Honjo H, Koizumi M, Sato T, Kubomura A, Ishijima N, Akeda Y, Ohnishi M, Iyoda S. Increased resistance against tellurite is conferred by a mutation in the promoter region of uncommon tellurite resistance gene tehB in the ter-negative Shiga toxin-producing Escherichia coli O157:H7. Appl Environ Microbiol 2024; 90:e0228323. [PMID: 38757978 PMCID: PMC11218618 DOI: 10.1128/aem.02283-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
Resistance to potassium tellurite (PT) is an important indicator in isolating Shiga toxin-producing Escherichia coli (STEC) O157:H7 and other major STEC serogroups. Common resistance determinant genes are encoded in the ter gene cluster. We found an O157:H7 isolate that does not harbor ter but is resistant to PT. One nonsynonymous mutation was found in another PT resistance gene, tehA, through whole-genome sequence analyses. To elucidate the contribution of this mutation to PT resistance, complementation of tehA and the related gene tehB in isogenic strains and quantitative RT‒PCR were performed. The results indicated that the point mutation not only changed an amino acid of tehA, but also was positioned on a putative internal promoter of tehB and increased PT resistance by elevating tehB mRNA expression. Meanwhile, the amino acid change in tehA had negligible impact on the PT resistance. Comprehensive screening revealed that 2.3% of O157:H7 isolates in Japan did not harbor the ter gene cluster, but the same mutation in tehA was not found. These results suggested that PT resistance in E. coli can be enhanced through one mutational event even in ter-negative strains. IMPORTANCE Selective agents are important for isolating Shiga toxin-producing Escherichia coli (STEC) because the undesirable growth of microflora should be inhibited. Potassium tellurite (PT) is a common selective agent for major STEC serotypes. In this study, we found a novel variant of PT resistance genes, tehAB, in STEC O157:H7. Molecular experiments clearly showed that one point mutation in a predicted internal promoter region of tehB upregulated the expression of the gene and consequently led to increased resistance to PT. Because tehAB genes are ubiquitous across E. coli, these results provide universal insight into PT resistance in this species.
Collapse
Affiliation(s)
| | - Kenichi Lee
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ryuya Akasaka
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
- Tokyo College of Biotechnology, Tokyo, Japan
| | - Hayato Honjo
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
- Tokyo College of Biotechnology, Tokyo, Japan
| | | | - Toshio Sato
- Japan Microbiological Laboratory Co. Ltd., Miyagi, Japan
| | - Akiko Kubomura
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Nozomi Ishijima
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yukihiro Akeda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sunao Iyoda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
7
|
Deforet F, Jehanne Q, Bénéjat L, Aptel J, Prat R, Desbiolles C, Ducournau A, Jauvain M, Bonnet R, Vandenesch F, Lemoine J, Lehours P. Combined genomic-proteomic approach in the identification of Campylobacter coli amoxicillin-clavulanic acid resistance mechanism in clinical isolates. Front Microbiol 2023; 14:1285236. [PMID: 38029165 PMCID: PMC10666280 DOI: 10.3389/fmicb.2023.1285236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Aminopenicillins resistance among Campylobacter jejuni and Campylobacter coli strains is associated with a single mutation in the promoting region of a chromosomal beta-lactamase blaOXA61, allowing its expression. Clavulanic acid is used to restore aminopenicillins activity in case of blaOXA61 expression and has also an inherent antimicrobial activity over Campylobacter spp. Resistance to amoxicillin-clavulanic acid is therefore extremely rare among these species: only 0.1% of all Campylobacter spp. analyzed in the French National Reference Center these last years (2017-2022). Material and methods Whole genome sequencing with bioinformatic resistance identification combined with mass spectrometry (MS) was used to identify amoxicillin-acid clavulanic resistance mechanism in Campylobacters. Results A G57T mutation in blaOXA61 promoting region was identified in all C. jejuni and C. coli ampicillin resistant isolates and no mutation in ampicillin susceptible isolates. Interestingly, three C. coli resistant to both ampicillin and amoxicillin-clavulanic acid displayed a supplemental deletion in the promoting region of blaOXA61 beta-lactamase, at position A69. Using MS, a significant difference in the expression of BlaOXA61 was observed between these three isolates and amoxicillin-clavulanic acid susceptible C. coli. Conclusion A combined genomics/proteomics approach allowed here to identify a rare putative resistance mechanism associated with amoxicillin-clavulanic acid resistance for C. coli.
Collapse
Affiliation(s)
- Francis Deforet
- Institut des Sciences Analytiques, Université Claude Bernard Lyon 1, Lyon, France
| | - Quentin Jehanne
- Bacteriology Department, CHU de Bordeaux, National Reference Center for Campylobacters and Helicobacters, Bordeaux, France
| | - Lucie Bénéjat
- Bacteriology Department, CHU de Bordeaux, National Reference Center for Campylobacters and Helicobacters, Bordeaux, France
| | - Johanna Aptel
- Bacteriology Department, CHU de Bordeaux, National Reference Center for Campylobacters and Helicobacters, Bordeaux, France
| | - Roxane Prat
- Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Chloé Desbiolles
- Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Astrid Ducournau
- Bacteriology Department, CHU de Bordeaux, National Reference Center for Campylobacters and Helicobacters, Bordeaux, France
| | - Marine Jauvain
- Bacteriology Department, CHU de Bordeaux, National Reference Center for Campylobacters and Helicobacters, Bordeaux, France
- Bordeaux Institute of Oncology, BRIC U1312, INSERM, Université de Bordeaux, Bordeaux, France
| | - Richard Bonnet
- Laboratoire Associé CNR de la Résistance aux Antibiotiques, CHU de Clermont-Ferrand, Clermont-Ferrand, France
| | | | - Jérôme Lemoine
- Institut des Sciences Analytiques, Université Claude Bernard Lyon 1, Lyon, France
| | - Philippe Lehours
- Bacteriology Department, CHU de Bordeaux, National Reference Center for Campylobacters and Helicobacters, Bordeaux, France
- Bordeaux Institute of Oncology, BRIC U1312, INSERM, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
8
|
Ottilie S, Luth MR, Hellemann E, Goldgof GM, Vigil E, Kumar P, Cheung AL, Song M, Godinez-Macias KP, Carolino K, Yang J, Lopez G, Abraham M, Tarsio M, LeBlanc E, Whitesell L, Schenken J, Gunawan F, Patel R, Smith J, Love MS, Williams RM, McNamara CW, Gerwick WH, Ideker T, Suzuki Y, Wirth DF, Lukens AK, Kane PM, Cowen LE, Durrant JD, Winzeler EA. Adaptive laboratory evolution in S. cerevisiae highlights role of transcription factors in fungal xenobiotic resistance. Commun Biol 2022; 5:128. [PMID: 35149760 PMCID: PMC8837787 DOI: 10.1038/s42003-022-03076-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 01/21/2022] [Indexed: 12/24/2022] Open
Abstract
In vitro evolution and whole genome analysis were used to comprehensively identify the genetic determinants of chemical resistance in Saccharomyces cerevisiae. Sequence analysis identified many genes contributing to the resistance phenotype as well as numerous amino acids in potential targets that may play a role in compound binding. Our work shows that compound-target pairs can be conserved across multiple species. The set of 25 most frequently mutated genes was enriched for transcription factors, and for almost 25 percent of the compounds, resistance was mediated by one of 100 independently derived, gain-of-function SNVs found in a 170 amino acid domain in the two Zn2C6 transcription factors YRR1 and YRM1 (p < 1 × 10−100). This remarkable enrichment for transcription factors as drug resistance genes highlights their important role in the evolution of antifungal xenobiotic resistance and underscores the challenge to develop antifungal treatments that maintain potency. Ottilie et al. employ an experimental evolution approach to investigate the role of transcription factors in yeast chemical resistance. Most emergent mutations in resistant strains were enriched in transcription factor coding genes, highlighting their importance in drug resistance.
Collapse
Affiliation(s)
- Sabine Ottilie
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Madeline R Luth
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Erich Hellemann
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA, 15260, USA
| | - Gregory M Goldgof
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Eddy Vigil
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Prianka Kumar
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Andrea L Cheung
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Miranda Song
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Karla P Godinez-Macias
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Krypton Carolino
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Jennifer Yang
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Gisel Lopez
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Matthew Abraham
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Maureen Tarsio
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, NY, 13210, USA
| | - Emmanuelle LeBlanc
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Jake Schenken
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Felicia Gunawan
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Reysha Patel
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Joshua Smith
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Melissa S Love
- Calibr, a division of The Scripps Research Institutes, La Jolla, CA, 92037, USA
| | - Roy M Williams
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA.,Aspen Neuroscience, San Diego, CA, 92121, USA
| | - Case W McNamara
- Calibr, a division of The Scripps Research Institutes, La Jolla, CA, 92037, USA
| | - William H Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, La Jolla, CA, 92037, USA
| | - Trey Ideker
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Yo Suzuki
- Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute, La Jolla, CA, 92037, USA
| | - Dyann F Wirth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA, 02142, USA
| | - Amanda K Lukens
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA, 02142, USA
| | - Patricia M Kane
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, NY, 13210, USA
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Jacob D Durrant
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA, 15260, USA
| | - Elizabeth A Winzeler
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA.
| |
Collapse
|
9
|
El Shamy AA, Zakaria Z, Tolba MM, Salah Eldin N, Rabea AT, Tawfick MM, Nasser HA. AmpC β-Lactamase Variable Expression in Common Multidrug-Resistant Nosocomial Bacterial Pathogens from a Tertiary Hospital in Cairo, Egypt. Int J Microbiol 2021; 2021:6633888. [PMID: 33854549 PMCID: PMC8021464 DOI: 10.1155/2021/6633888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/18/2021] [Accepted: 03/16/2021] [Indexed: 12/26/2022] Open
Abstract
The emergence of AmpC (pAmpC) β-lactamases conferring resistance to the third-generation cephalosporins has become a major clinical concern worldwide. In this study, we aimed to evaluate the expression of AmpC β-lactamase encoding gene among the pathogenic Gram-positive and Gram-negative resistant bacteria screened from clinical samples of Egyptian patients enrolled into El-Qasr El-Ainy Tertiary Hospital in Cairo, Egypt. A total of 153 bacterial isolates of the species Pseudomonas aeruginosa, Klebsiella pneumoniae, and Enterococcus faecium were isolated from patients diagnosed with urinary tract infection (UTI), respiratory tract infection (RTI), and wound infections. The total number of E. faecium isolates was 53, comprising 29 urine isolates, 5 sputum isolates, and 19 wound swab isolates, whereas the total number of P. aeruginosa isolates was 49, comprising 27 urine isolates, 7 sputum isolates, and 15 wound swab isolates, and that of the K. pneumoniae isolates was 51, comprising 20 urine isolates, 25 sputum isolates, and 6 wound swab isolates. Our results indicated that there is no significant difference in the expression of AmpC β-lactamase gene among the tested bacterial species with respect to the type of infection and/or clinical specimen. However, the expression patterns of AmpC β-lactamase gene markedly differed according to the antibacterial resistance characteristics of the tested isolates.
Collapse
Affiliation(s)
- Aliaa Ali El Shamy
- Microbiology and Immunology Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Zainab Zakaria
- Biomedical Research Lab, Research and Development Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Mahmoud M. Tolba
- Pharmaceutical Division, Ministry of Health and Population, Faiyum, Egypt
| | - Nermeen Salah Eldin
- Microbiology and Immunology Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Al-Taher Rabea
- Biomedical Research Lab, Research and Development Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Mahmoud M. Tawfick
- Microbiology and Immunology Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
- Microbiology and Immunology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Hebatallah A. Nasser
- Microbiology and Immunology Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| |
Collapse
|
10
|
Xu T, Gong Y, Su X, Zhu P, Dai J, Xu J, Ma B. Phenome-Genome Profiling of Single Bacterial Cell by Raman-Activated Gravity-Driven Encapsulation and Sequencing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001172. [PMID: 32519499 DOI: 10.1002/smll.202001172] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/01/2020] [Indexed: 06/11/2023]
Abstract
The small size and low DNA amount of bacterial cells have hindered establishing phenome-genome links in a precisely indexed, one-cell-per-reaction manner. Here, Raman-Activated Gravity-driven single-cell Encapsulation and Sequencing (RAGE-Seq) is presented, where individual cells are phenotypically screened via single-cell Raman spectra (SCRS) in an aquatic, vitality-preserving environment, then the cell with targeted SCRS is precisely packaged in a picoliter microdroplet and readily exported in a precisely indexed, "one-cell-one-tube" manner. Such integration of microdroplet encapsulation to Raman-activated sorting ensures high-coverage one-cell genome sequencing or cultivation that is directly linked to metabolic phenotype. For clinical Escherichia coli isolates, genome assemblies derived from precisely one cell via RAGE-Seq consistently reach >95% coverage. Moreover, directly from a urine sample of urogenital tract infection, metabolic-activity-based antimicrobial susceptibility phenotypes and genome sequence of 99.5% coverage are obtained simultaneously from precisely one cell. This single-cell global mutation map corroborates resistance phenotype and genotype, and unveils epidemiological features with high specificity and sensitivity. The ability to profile and correlate bacterial metabolic phenome and high-quality genome sequences at one-cell resolution suggests broad application of RAGE-Seq.
Collapse
Affiliation(s)
- Teng Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanhai Gong
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266071, China
| | - Xiaolu Su
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266071, China
| | - Pengfei Zhu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266071, China
| | - Jing Dai
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266071, China
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266071, China
| | - Bo Ma
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266071, China
| |
Collapse
|
11
|
Böhm ME, Razavi M, Flach CF, Larsson DGJ. A Novel, Integron-Regulated, Class C β-Lactamase. Antibiotics (Basel) 2020; 9:antibiotics9030123. [PMID: 32183280 PMCID: PMC7148499 DOI: 10.3390/antibiotics9030123] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/26/2022] Open
Abstract
AmpC-type β-lactamases severely impair treatment of many bacterial infections, due to their broad spectrum (they hydrolyze virtually all β-lactams, except fourth-generation cephalosporins and carbapenems) and the increasing incidence of plasmid-mediated versions. The original chromosomal AmpCs are often tightly regulated, and their expression is induced in response to exposure to β-lactams. Regulation of mobile ampC expression is in many cases less controlled, giving rise to constitutively resistant strains with increased potential for development or acquisition of additional resistances. We present here the identification of two integron-encoded ampC genes, blaIDC-1 and blaIDC-2 (integron-derived cephalosporinase), with less than 85% amino acid sequence identity to any previously annotated AmpC. While their resistance pattern identifies them as class C β-lactamases, their low isoelectric point (pI) values make differentiation from other β-lactamases by isoelectric focusing impossible. To the best of our knowledge, this is the first evidence of an ampC gene cassette within a class 1 integron, providing a mobile context with profound potential for transfer and spread into clinics. It also allows bacteria to adapt expression levels, and thus reduce fitness costs, e.g., by cassette-reshuffling. Analyses of public metagenomes, including sewage metagenomes, show that the discovered ampCs are primarily found in Asian countries.
Collapse
Affiliation(s)
- Maria-Elisabeth Böhm
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden; (M.-E.B.); (M.R.); (C.-F.F.)
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Mohammad Razavi
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden; (M.-E.B.); (M.R.); (C.-F.F.)
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Carl-Fredrik Flach
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden; (M.-E.B.); (M.R.); (C.-F.F.)
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - D. G. Joakim Larsson
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden; (M.-E.B.); (M.R.); (C.-F.F.)
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
- Correspondence:
| |
Collapse
|
12
|
Sadeghi M. Molecular Characterization of Multidrug-Resistant Escherichia coli Isolates in Azerbaijan Hospitals. Microb Drug Resist 2019; 25:1287-1296. [PMID: 31216231 DOI: 10.1089/mdr.2019.0006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aims: The emergence and clonal occurrence of multidrug-resistant (MDR) Escherichia coli isolates are increasing worldwide. In this study, phenotypic and genotypic characteristics of MDR E. coli isolates overexpressing efflux pump were investigated in medical centers of Azerbaijan. Two hundred nineteen consecutive and nonduplicated isolates of E. coli were collected and screened, and confirmed for extended-spectrum β-lactamase, AmpC, and carbapenemase activities and respective genes. MDR isolates were selected and subjected to efflux pump overexpression assay. Cefoxitin-nonsusceptible isolates were subjected to mutational analysis of promoter region of chromosomal ampC gene. MDR isolates with overexpressed efflux were analyzed for acrR and marR mutations and assigned to multilocus sequence typing. Results: Eighty (36.5%) isolates had MDR pattern, among which 16 (20%) isolates were positive for overexpressed efflux. Ninety-eight of 99 suspected isolates were positive for any β-lactamase genes, particularly CTX-M groups 1 and 9. Ten out of 33 cefoxitin-nonsusceptible isolates had mutations in promoter region of chromosomal AmpC gene, including -32T→A (n = 5), -42C→T, and -18G→A (n = 3) and -13TT and GT insertion (n = 2). Detected mutations in efflux regulatory genes include G103S and Y137H (n = 15), K62R (n = 8), S3N (n = 3), and A53E (n = 1) in marR and L109 (n = 2) and L190 (n = 1) frameshift mutations and T12M, T213I, N214T, I113V, and H115Y point mutations (n = 5) in acrR. Conclusions: Overexpressing efflux pump isolates belonging to sequence type (ST)131 and ST73 clones are emerging in Azerbaijan hospitals. Clonal occurrence of MDR E. coli is an alarming situation in Azerbaijan hospitals.
Collapse
Affiliation(s)
- Mohammadreza Sadeghi
- Department of Clinical Microbiology, Maku Branch, Islamic Azad University, Maku, Iran
| |
Collapse
|
13
|
Hoeksema M, Jonker MJ, Brul S, Ter Kuile BH. Effects of a previously selected antibiotic resistance on mutations acquired during development of a second resistance in Escherichia coli. BMC Genomics 2019; 20:284. [PMID: 30975082 PMCID: PMC6458618 DOI: 10.1186/s12864-019-5648-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/27/2019] [Indexed: 12/19/2022] Open
Abstract
Background The effect of mutations conferring antibiotic resistance can depend on the genetic background. To determine if a previously de novo acquired antibiotic resistance influences the adaptation to a second antibiotic, antibiotic resistance was selected for by exposure to stepwise increasing sublethal levels of amoxicillin, enrofloxacin, kanamycin, or tetracycline. E. coli populations adapted to either a single or two antibiotics sequentially were characterized using whole genome population sequencing and MIC measurements. Results In a wild-type background, adaptation to any of the antibiotics resulted in the appearance of well-known mutations, as well as a number of mutated genes not known to be associated with antibiotic resistance. Development of a second resistance in a strain with an earlier acquired resistance to a different antibiotic did not always result in the appearance of all mutations associated with resistance in a wild-type background. In general, a more varied set of mutations was acquired during secondary adaptation. The ability of E. coli to maintain the first resistance during this process depended on the combination of antibiotics used. The maintenance of mutations associated with resistance to the first antibiotic did not always predict the residual MIC for that compound. Conclusions In general, the data presented here indicate that adaptation to each antibiotic is unique and independent. The mutational trajectories available in already resistant cells appear more varied than in wild-type cells, indicating that the genetic background of E. coli influences resistance development. The observed mutations cannot always fully explain the resistance pattern observed, indicating a crucial role for adaptation on the gene expression level in de novo acquisition of antibiotic resistance.
Collapse
Affiliation(s)
- Marloes Hoeksema
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Martijs J Jonker
- RNA Biology & Applied Bioinformatics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Stanley Brul
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Benno H Ter Kuile
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands. .,Netherlands Food and Consumer Product Safety Authority, Office for Risk Assessment, Utrecht, The Netherlands.
| |
Collapse
|
14
|
Singh T, Singh PK, Das S, Wani S, Jawed A, Dar SA. Transcriptome analysis of beta-lactamase genes in diarrheagenic Escherichia coli. Sci Rep 2019; 9:3626. [PMID: 30842518 PMCID: PMC6403342 DOI: 10.1038/s41598-019-40279-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 02/13/2019] [Indexed: 01/20/2023] Open
Abstract
Beta (β)-lactamases are the most important agents that confer drug resistance among gram-negative bacteria. Continuous mutations in β-lactamases make them remarkably diverse. We carried out the transcriptome analysis of 10 β-lactamase genes of Extended-Spectrum β-lactamases (ESBL), Metallo β-lactamases (MBL), and AmpC β-lactamases (ABL) in drug-resistant and sensitive diarrheagenic E. coli (DEC) isolates obtained from children up to 5 years of age. Out of the 10 β-lactamase genes, four belonged to ESBL (TEM, SHV, CTX, and OXA); three to MBL (NDM-1, IMP, and VIM); and three to ABL (ACT, DHA and CMY) class of genes. The different categories of DEC were estimated for β-lactamases production using a set of conventional phenotypic tests, followed by detection of their messenger RNA (mRNA) expression. The study revealed a direct correlation between mRNA expression of these genes and the presence of antibiotic resistance; also corroborated by mutation analysis of the AmpC promoter region. All the 10 β-lactamase genes showed a significant increase in their expression levels in resistant isolates, compared to those of the sensitive isolates, indicating their possible role in the disease pathogenesis. Increase in mRNA expression of β-lactamase genes, and thereby virulence, may be due to multifactorial parameters causing phenotypic as well as genotypic changes. Our study highlights the necessity of instantaneous detection of β-lactamase gene expression to curb the overwhelming threat posed by emergence of drug resistance amongst the commensal E. coli strains in children from developing countries for larger public health interest.
Collapse
Affiliation(s)
- Taru Singh
- Department of Microbiology, University College of Medical Sciences (University of Delhi) & GTB Hospital, Delhi, India
| | - Praveen Kumar Singh
- Department of Microbiology, University College of Medical Sciences (University of Delhi) & GTB Hospital, Delhi, India
| | - Shukla Das
- Department of Microbiology, University College of Medical Sciences (University of Delhi) & GTB Hospital, Delhi, India.
| | - Sayim Wani
- Department of Minimal Access and Bariatric Surgery, Fortis Flt. Rajan Dhall Hospital, New Delhi, India
| | - Arshad Jawed
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Sajad Ahmad Dar
- Department of Microbiology, University College of Medical Sciences (University of Delhi) & GTB Hospital, Delhi, India.,Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
15
|
Baishya S, Kangsa Banik S, Das Talukdar A, Anbarasu A, Bhattacharjee A, Dutta Choudhury M. Full title: Identification of potential drug targets against carbapenem resistant Enterobacteriaceae (CRE) strains using in silico gene network analysis. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2018.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
16
|
Hoeksema M, Jonker MJ, Bel K, Brul S, Ter Kuile BH. Genome rearrangements in Escherichia coli during de novo acquisition of resistance to a single antibiotic or two antibiotics successively. BMC Genomics 2018; 19:973. [PMID: 30591014 PMCID: PMC6307192 DOI: 10.1186/s12864-018-5353-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/07/2018] [Indexed: 11/25/2022] Open
Abstract
Background The ability of bacteria to acquire resistance to antibiotics relies to a large extent on their capacity for genome modification. Prokaryotic genomes are highly plastic and can utilize horizontal gene transfer, point mutations, and gene deletions or amplifications to realize genome expansion and rearrangements. The contribution of point mutations to de novo acquisition of antibiotic resistance is well-established. In this study, the internal genome rearrangement of Escherichia coli during to de novo acquisition of antibiotic resistance was investigated using whole-genome sequencing. Results Cells were made resistant to one of the four antibiotics and subsequently to one of the three remaining. This way the initial genetic rearrangements could be documented together with the effects of an altered genetic background on subsequent development of resistance. A DNA fragment including ampC was amplified by a factor sometimes exceeding 100 as a result of exposure to amoxicillin. Excision of prophage e14 was observed in many samples with a double exposure history, but not in cells exposed to a single antibiotic, indicating that the activation of the SOS stress response alone, normally the trigger for excision, was not sufficient to cause excision of prophage e14. Partial deletion of clpS and clpA occurred in strains exposed to enrofloxacin and tetracycline. Other deletions were observed in some strains, but not in replicates with the exact same exposure history. Various insertion sequence transpositions correlated with exposure to specific antibiotics. Conclusions Many of the genome rearrangements have not been reported before to occur during resistance development. The observed correlation between genome rearrangements and specific antibiotic pressure, as well as their presence in independent replicates indicates that these events do not occur randomly. Taken together, the observed genome rearrangements illustrate the plasticity of the E. coli genome when exposed to antibiotic stress. Electronic supplementary material The online version of this article (10.1186/s12864-018-5353-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marloes Hoeksema
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Martijs J Jonker
- RNA Biology & Applied Bioinformatics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Keshia Bel
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Stanley Brul
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Benno H Ter Kuile
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands. .,Netherlands Food and Consumer Product Safety Authority, Office for Risk Assessment, Utrecht, The Netherlands.
| |
Collapse
|
17
|
Occurrence of risk factors and antimicrobial resistance due to genes encoding extended–spectrum β-lactamase (ESBL) – and/or AmpC β-lactamase–producing Escherichia coli isolated from the hospitalised patients. Biologia (Bratisl) 2018. [DOI: 10.2478/s11756-018-00167-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
den Drijver E, Verweij JJ, Verhulst C, Oome S, Soer J, Willemsen I, Schrauwen EJA, Kluytmans—van den Bergh MFQ, Kluytmans JAJW. Decline in AmpC β-lactamase-producing Escherichia coli in a Dutch teaching hospital (2013-2016). PLoS One 2018; 13:e0204864. [PMID: 30273375 PMCID: PMC6166941 DOI: 10.1371/journal.pone.0204864] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/14/2018] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE The objective of this study is to determine the prevalence of rectal carriage of plasmid- and chromosome-encoded AmpC β-lactamase-producing Escherichia coli and Klebsiella spp. in patients in a Dutch teaching hospital between 2013 and 2016. METHODS Between 2013 and 2016, hospital-wide yearly prevalence surveys were performed to determine the prevalence of AmpC β-lactamase-producing E. coli and Klebsiella spp. rectal carriage. Rectal swabs were taken and cultured using an enrichment broth and selective agar plates. All E. coli and Klebsiella spp. isolates were screened for production of AmpC β-lactamase using phenotypic confirmation tests and for the presence of plasmid-encoded AmpC (pAmpC) genes. E. coli isolates were screened for chromosome-encoded AmpC (cAmpC) promoter/attenuator alterations. RESULTS Fifty (2.4%) of 2,126 evaluable patients were identified as rectal carrier of AmpC β-lactamase-producing E. coli. No carriage of AmpC β-lactamase producing Klebsiella spp. was found. Nineteen (0.9%) patients harboured isolates with pAmpC genes and 30 (1,4%) patients harboured isolates with cAmpC promoter/attenuator alterations associated with AmpC β-lactamase overproduction. For one isolate, no pAmpC genes or cAmpC promotor/attenuator alterations could be identified. During the study period, a statistically significant decline in the prevalence of rectal carriage with E. coli with cAmpC promotor/attenuator alterations was found (p = 0.012). The prevalence of pAmpC remained stable over the years. CONCLUSIONS The prevalence of rectal carriage of AmpC-producing E. coli and Klebsiella spp. in patients in Dutch hospitals is low and a declining trend was observed for E. coli with cAmpC promotor/attenuator alterations.
Collapse
Affiliation(s)
- Evert den Drijver
- Laboratory for Microbiology and Infection Control, Amphia Hospital, Breda, The Netherlands
- Laboratory for Medical Microbiology and Immunology, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
- * E-mail:
| | - Jaco J. Verweij
- Laboratory for Medical Microbiology and Immunology, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
| | - Carlo Verhulst
- Laboratory for Microbiology and Infection Control, Amphia Hospital, Breda, The Netherlands
| | - Stijn Oome
- Laboratory for Microbiology and Infection Control, Amphia Hospital, Breda, The Netherlands
- Avans Academy for Technology of Health & Environment, AVANS University of Applied Sciences, Breda, The Netherlands
| | - Joke Soer
- Laboratory for Microbiology and Infection Control, Amphia Hospital, Breda, The Netherlands
- Avans Academy for Technology of Health & Environment, AVANS University of Applied Sciences, Breda, The Netherlands
| | - Ina Willemsen
- Laboratory for Microbiology and Infection Control, Amphia Hospital, Breda, The Netherlands
| | - Eefje J. A. Schrauwen
- Laboratory for Microbiology and Infection Control, Amphia Hospital, Breda, The Netherlands
- Avans Academy for Technology of Health & Environment, AVANS University of Applied Sciences, Breda, The Netherlands
| | - Marjolein F. Q. Kluytmans—van den Bergh
- Laboratory for Microbiology and Infection Control, Amphia Hospital, Breda, The Netherlands
- Amphia Academy Infectious Disease Foundation, Amphia Hospital, Breda, The Netherlands
- Julius Center for Health Sciences and Primary Care, UMC Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jan A. J. W. Kluytmans
- Laboratory for Microbiology and Infection Control, Amphia Hospital, Breda, The Netherlands
- Laboratory for Medical Microbiology and Immunology, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
- Julius Center for Health Sciences and Primary Care, UMC Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
19
|
Influence of Reactive Oxygen Species on De Novo Acquisition of Resistance to Bactericidal Antibiotics. Antimicrob Agents Chemother 2018; 62:AAC.02354-17. [PMID: 29581120 DOI: 10.1128/aac.02354-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/22/2018] [Indexed: 12/16/2022] Open
Abstract
The radical-based theory proposes that three major classes of bactericidal antibiotics, i.e., β-lactams, quinolones, and aminoglycosides, have in common the downstream formation of lethal levels of reactive oxygen species (ROS) as part of the killing mechanism. If bactericidal antibiotics exhibit a common mechanism, then it is to be expected that the acquisition of resistance against these drugs would have some shared traits as well. Indeed, cells made resistant to one bactericidal antibiotic more rapidly became resistant to another. This effect was absent after induced resistance to a bacteriostatic drug. De novo acquisition of resistance to one bactericidal antibiotic provided partial protection to killing by bactericidal antibiotics from a different class. This protective effect was observed in short-term experiments. No protective effect was detected during 24-h exposures, suggesting that cross-resistance did not occur. In the wild-type strain, exposure to bactericidal antibiotics increased intracellular ROS levels. This increase in ROS levels was not observed when strains resistant to these drugs were exposed to the same concentrations. These results indicate that de novo acquisition of resistance to the bactericidal drugs tested involves a common cellular response that provides protection against ROS accumulation upon exposure to this type of antibiotics. A central mechanism or at least a few common elements within the separate mechanisms possibly play a role during the acquisition of antibiotic resistance.
Collapse
|
20
|
Detection and epidemiology of plasmid-mediated AmpC β-lactamase producing Escherichia coli in two Irish tertiary care hospitals. J Glob Antimicrob Resist 2016; 3:242-246. [PMID: 27842867 DOI: 10.1016/j.jgar.2015.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 05/01/2015] [Accepted: 06/10/2015] [Indexed: 11/24/2022] Open
Abstract
This study determined the prevalence and distribution of plasmid-mediated AmpC (pAmpC) β-lactamases in Irish Escherichia coli isolates. Clinical E. coli isolates (n=95) that were intermediate or resistant to cefoxitin and/or flagged by VITEK® 2 as potential AmpC-producers underwent confirmation using a MASTDISCS™ ESBL and AmpC Detection Kit. Multiplex PCR capable of detecting family-specific plasmid ampC genes was performed to detect the presence of these genes. Five PCR-negative isolates were selected for promoter analysis. PFGE and MLST were performed on E. coli isolates that harboured a plasmid ampC gene to determine their clonal relatedness. Plasmid ampC genes were detected in 19% (18/95) of phenotypic AmpC producing E. coli isolates. The CIT group was the most common plasmid family type (n=14); DHA (n=3) and ACC (n=1) groups were also detected. Promoter analysis showed that four isolates had multiple point mutations and one had a 1 bp insertion in the -10 box. PFGE demonstrated a polyclonal pattern for E. coli isolates. Furthermore, with the exception of two isolates with an identical sequence type (ST720), MLST analysis revealed that these isolates were not clonally related. This study revealed that there was a marked prevalence of pAmpC E. coli among phenotypic AmpC producing E. coli isolates but no evidence of cross-transmission of a single strain. Establishing the prevalence and clonality of these organisms is important in order to implement evidence-based infection control measures that reduce the spread of pAmpC β-lactamase resistance in the hospital environment.
Collapse
|
21
|
Mocktar C, Govinden U, Sturm AW, Essack S. Complexity and diversity of betβ-lactamase expression in inhibitor-resistant Escherichia coli from public hospitals in KwaZulu-Natal, South Africa. ACTA ACUST UNITED AC 2015. [DOI: 10.1080/10158782.2009.11441359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- C Mocktar
- School of Pharmacy and Pharmacology, Faculty of Health Sciences, University of KwaZulu-Natal, Durban
| | - U Govinden
- School of Pharmacy and Pharmacology, Faculty of Health Sciences, University of KwaZulu-Natal, Durban
| | - A W Sturm
- Department of Medical Microbiology, Nelson R Mandela Medical School, University of KwaZulu-Natal
| | - S Essack
- School of Pharmacy and Pharmacology, Faculty of Health Sciences, University of KwaZulu-Natal, Durban
| |
Collapse
|
22
|
Lewis JA, Moore PCL, Arnold DL, Lawrance LM. Chromosomal ampC mutations in cefpodoxime-resistant, ESBL-negative uropathogenic Escherichia coli. Br J Biomed Sci 2015; 72:7-11. [PMID: 25906485 DOI: 10.1080/09674845.2015.11666789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AmpC β-lactamase is an enzyme commonly produced by Escherichia coli that causes resistance to cephalosporins and penicillins. Enzyme production is controlled by the strength of the promoter encoded by the chromosomal ampC gene, with the level of production affected by the presence of certain mutations in this region. This study sets out to determine the prevalence of ampC promoter mutations present in a group of uropathogenic E. coli strains. A total of 50 clinical strains of E. coli were collected from urine samples between June 2011 and November 2011. Strains were investigated for the presence of mutations in the chromosomal ampC promoter region by amplification and sequencing of a 271 bp product. The presence of ampC-carrying plasmids derived from other species was also determined, to exclude these from further analysis. ampC-carrying plasmids were found in 10 of the 50 strains, all of which were of the CIT-type. Analysis of the chromosomal ampC promoter region in the 40 remaining strains showed mutations at 16 different positions, with 18 different genotype patterns detected overall. The most common ampC chromosomal mutation, present in 25 of 40 strains, was a T --> A transition at position -32. This mutation has been shown by others to increase enzyme production by up to 46-fold. Altogether, three separate mutations (-32, -42 and -13ins) were present in 90% of the 40 non-plasmid strains, indicating a strong association with the resistance observed. It appears, therefore, that the majority of AmpC-mediated resistance in E. coli can be accounted for by just three point mutations in the chromosome.
Collapse
|
23
|
Folster J, Pecic G, Stroika S, Rickert R, Whichard J. Changing plasmid types responsible for extended-spectrum cephalosporin resistance in Escherichia coli O157:H7 in the USA, 1996–2009. J Glob Antimicrob Resist 2014; 2:87-91. [DOI: 10.1016/j.jgar.2014.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 07/22/2013] [Accepted: 01/10/2014] [Indexed: 10/25/2022] Open
|
24
|
Folster JP, Pecic G, Stroika S, Rickert R, Whichard J. Changing plasmid types responsible for extended spectrum cephalosporin resistance in Escherichia coli O157:H7 in the United States, 1996-2009. J Glob Antimicrob Resist 2014; 2:87-91. [PMID: 26478858 PMCID: PMC4608858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023] Open
Abstract
Escherichia coli O157 is a major cause of foodborne illness. Plasmids are genetic elements that mobilize antimicrobial resistance determinants including blaCMY β-lactamases that confer resistance to extended-spectrum cephalosporins (ESC). ESCs are important for treating a variety of infections. IncA/C plasmids are found among diverse sources, including cattle, the principal source of E. coli O157 infections in humans. IncI1 plasmids are common among E. coli and Salmonella from poultry and other avian sources. To broaden our understanding of reservoirs of blaCMY, we determined the types of plasmids carrying blaCMY among E. coli O157. From 1996 to 2009, 3742 E. coli O157 isolates were tested. Eleven (0.29%) were ceftriaxone resistant and had a blaCMY-2-containing plasmid. All four isolates submitted before 2001 and a single 2001 isolate had blaCMY encoded on IncA/C plasmids, while all five isolates submitted after 2001 and a single 2001 isolate had blaCMY carried on IncI1 plasmids. The IncI1 plasmids were ST2, ST20, and ST23. We conclude that cephalosporin resistance among E. coli O157:H7 is due to plasmid-encoded blaCMY genes and that plasmid types appear to have shifted from IncA/C to IncI1. This shift suggests either a change in plasmid type among animal reservoirs or that the organism has expanded into avian reservoirs. More analysis of human, retail meat, and food animal isolates is necessary to broaden our understanding of the antimicrobial resistance determinants of ESC resistance among E. coli O157.
Collapse
Affiliation(s)
- J. P. Folster
- CDC, Division of Foodborne, Waterborne and Environmental Diseases
- IHRC, Inc
| | - G. Pecic
- CDC, Division of Foodborne, Waterborne and Environmental Diseases
- IHRC, Inc
| | - S. Stroika
- CDC, Division of Foodborne, Waterborne and Environmental Diseases
| | - R. Rickert
- CDC, Division of Foodborne, Waterborne and Environmental Diseases
| | - J. Whichard
- CDC, Division of Foodborne, Waterborne and Environmental Diseases
| |
Collapse
|
25
|
Interaction between mutations and regulation of gene expression during development of de novo antibiotic resistance. Antimicrob Agents Chemother 2014; 58:4371-9. [PMID: 24841263 DOI: 10.1128/aac.02892-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bacteria can become resistant not only by horizontal gene transfer or other forms of exchange of genetic information but also by de novo by adaptation at the gene expression level and through DNA mutations. The interrelationship between changes in gene expression and DNA mutations during acquisition of resistance is not well documented. In addition, it is not known whether the DNA mutations leading to resistance always occur in the same order and whether the final result is always identical. The expression of >4,000 genes in Escherichia coli was compared upon adaptation to amoxicillin, tetracycline, and enrofloxacin. During adaptation, known resistance genes were sequenced for mutations that cause resistance. The order of mutations varied within two sets of strains adapted in parallel to amoxicillin and enrofloxacin, respectively, whereas the buildup of resistance was very similar. No specific mutations were related to the rather modest increase in tetracycline resistance. Ribosome-sensed induction and efflux pump activation initially protected the cell through induction of expression and allowed it to survive low levels of antibiotics. Subsequently, mutations were promoted by the stress-induced SOS response that stimulated modulation of genetic instability, and these mutations resulted in resistance to even higher antibiotic concentrations. The initial adaptation at the expression level enabled a subsequent trial and error search for the optimal mutations. The quantitative adjustment of cellular processes at different levels accelerated the acquisition of antibiotic resistance.
Collapse
|
26
|
Haenni M, Châtre P, Madec JY. Emergence of Escherichia coli producing extended-spectrum AmpC β-lactamases (ESAC) in animals. Front Microbiol 2014; 5:53. [PMID: 24592257 PMCID: PMC3924575 DOI: 10.3389/fmicb.2014.00053] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 01/27/2014] [Indexed: 11/13/2022] Open
Abstract
In both humans and animals, the spread of Extended-Spectrum β-Lactamases (ESBL)/AmpC producers has become a major issue, particularly due to the plasmidic dissemination of most of these genes. Besides, over-expression of the chromosomal ampC gene was largely reported in human and animal Enterobacteriaceae and, more recently, modifications within the coding region of the ampC gene [encoding Extended-spectrum AmpC β-lactamases (ESACs)] were shown to be responsible for an hydrolysis spectrum expanded to oxyiminocephalosporins in humans. In this study, among 6765 cattle E. coli isolates, 28 (0.37%) isolates harboring a reduced susceptibility to cefepime (MICs ranging from 0.5 to 12 μg/ml) were investigated as presumptive ESACs producers. Highly conserved mutations in the promoter/attenuator region were identified at positions -88, -82, -42, -18, -1, and +58. Using sequencing and cloning experiments, amino acid substitutions of the AmpC beta-lactamase were characterized at positions 287 (mostly S287N, but also S287C), 292 (A292V) and 296 (H296P), similarly to data reported in humans. Interestingly, those cattle ESAC-producing E. coli isolates predominantly belonged to the Clonal Complex (CC) 23, thus mirroring what has been described in humans. The driving forces for the selection of ESACs in animals are unknown, and their prevalence needs to be further investigated in the different animal sectors. Considering the over-representation of ESAC-producing E. coli belonging to CC23 in both humans and animals, exchanges of ESAC producers between the two populations may have occurred as well. To our best knowledge, this study is the first report of ESACs in animals worldwide, which should be considered an emerging mechanism contributing to the resistance to extended-spectrum cephalosporins in the animal population.
Collapse
Affiliation(s)
- Marisa Haenni
- Agence Nationale de Sécurité Sanitaire, Unité Antibiorésistance et Virulence Bactériennes Lyon, France
| | - Pierre Châtre
- Agence Nationale de Sécurité Sanitaire, Unité Antibiorésistance et Virulence Bactériennes Lyon, France
| | - Jean-Yves Madec
- Agence Nationale de Sécurité Sanitaire, Unité Antibiorésistance et Virulence Bactériennes Lyon, France
| |
Collapse
|
27
|
Shayan S, Bokaeian M, Shahraki S. Prevalence and molecular characterization of AmpC-producing clinical isolates of Escherichia coli from southeastern Iran. Microb Drug Resist 2013; 20:104-7. [PMID: 24224496 DOI: 10.1089/mdr.2013.0087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND AND OBJECTIVE AmpC in Escherichia coli is noninducible but is regulated by promoter and attenuator mechanisms and can be expressed at high levels as a result of a mutation. This study was undertaken to characterize the AmpC hyperproducing clinical isolates of E. coli. METHODS E. coli isolates recovered from three major hospitals in Zahedan, South Eastern Iran, were selected on the basis of resistance phenotype to the third-generation cephalosporins and cefoxitin. Phenyl boronic acid as an inhibitor and cefoxitin were used to confirm the overexpression of AmpC. The presence of genes encoding ACC, FOX, MOX, DHA, CIT, and EBC was detected using multiplex PCR. The existence of mutations in the regulatory region of the chromosomal ampC gene was assessed using PCR and sequencing. RESULTS Thirteen of 392 E. coli isolates were selected as high-level AmpC producers. Eleven of the 13 isolates contained the blaCMY-2 gene; 12 of the 13 AmpC hyperproducing strains harbored changes in the promoter/attenuator region, which could explain the increased expression of the chromosome-encoded AmpC enzyme. In 10 of the 13 strains, we found both chromosomal- and plasmid-mediated mechanisms responsible for AmpC production. INTERPRETATION AND CONCLUSIONS AmpC hyperproducing E. coli isolates exhibit significant resistance to cephalosporins. This work showed that strains hyperproducing chromosomal AmpC could be as frequent as strains with plasmid-mediated AmpC hyperproduction.
Collapse
Affiliation(s)
- Sara Shayan
- Department of Microbiology, School of Medicine, Zahedan University of Medical Sciences , Zahedan, Iran
| | | | | |
Collapse
|
28
|
Georgi C, Buerger J, Hillen W, Berens C. Promoter strength driving TetR determines the regulatory properties of Tet-controlled expression systems. PLoS One 2012; 7:e41620. [PMID: 22848546 PMCID: PMC3407185 DOI: 10.1371/journal.pone.0041620] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 06/22/2012] [Indexed: 12/15/2022] Open
Abstract
Bacteria frequently rely on transcription repressors and activators to alter gene expression patterns in response to changes in the surrounding environment. Tet repressor (TetR) is a paradigm transcription factor that senses the environmental state by binding small molecule effectors, the tetracyclines. However, recently isolated peptides that act as inducers of TetR after having been fused to the C-terminus of a carrier protein, suggest that TetR can also regulate gene expression in a signal-transduction pathway. For this shift in regulatory mechanism to be successful, induction of TetR must be sensitive enough to respond to an inducing protein expressed at its endogenous level. To determine this regulatory parameter, a synthetic Tet-regulated system was introduced into the human pathogen Salmonella enterica serovar Typhimurium and tested for inducibility by a peptide. Reporter gene expression was detected if the peptide-containing carrier protein Thioredoxin 1 was strongly overproduced, but not if it was expressed at a level similar to the physiological level of Thioredoxin 1. This was attributed to high steady-state amounts of TetR which was expressed by the promoter of the chloramphenicol acetyl transferase gene (P(cat)). Reducing P(cat) strength either by directed or by random mutagenesis of its -10 element concomitantly reduced the intracellular amounts of TetR. Sensitive and quantitative induction of TetR by an inducing peptide, when it was fused to Thioredoxin 1 at its native locus in the genome, was only obtained with weak P(cat) promoter variants containing GC-rich -10 elements. A second important observation was that reducing the TetR steady-state level did not impair repression. This permits flexible adjustment of an inducible system's sensitivity simply by altering the expression level of the transcription factor. These two new layers of expression control will improve the quality and, thus, the applicability of the Tet and other regulatory systems.
Collapse
Affiliation(s)
- Christiane Georgi
- Lehrstuhl für Mikrobiologie, Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Julia Buerger
- Lehrstuhl für Mikrobiologie, Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Wolfgang Hillen
- Lehrstuhl für Mikrobiologie, Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Berens
- Lehrstuhl für Mikrobiologie, Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
29
|
Molecular characterization of extended-spectrum-β-lactamase-producing and plasmid-mediated AmpC β-lactamase-producing Escherichia coli isolated from stray dogs in South Korea. Antimicrob Agents Chemother 2012; 56:2705-12. [PMID: 22354297 DOI: 10.1128/aac.05598-11] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A total of 47 extended-spectrum-cephalosporin-resistant Escherichia coli strains isolated from stray dogs in 2006 and 2007 in the Republic of Korea were investigated using molecular methods. Extended-spectrum β-lactamase (ESBL) and AmpC β-lactamase phenotypes were identified in 12 and 23 E. coli isolates, respectively. All 12 ESBL-producing isolates carried bla(CTX-M) genes. The most common CTX-M types were CTX-M-14 (n = 5) and CTX-M-24 (n = 3). Isolates producing CTX-M-3, CTX-M-55, CTX-M-27, and CTX-M-65 were also identified. Twenty-one of 23 AmpC β-lactamase-producing isolates were found to carry bla(CMY-2) genes. TEM-1 was associated with CTX-M and CMY-2 β-lactamases in 4 and 15 isolates, respectively. In addition to bla(TEM-1), two isolates carried bla(DHA-1), and one of them cocarried bla(CMY-2). Both CTX-M and CMY-2 genes were located on large (40 to 170 kb) conjugative plasmids that contained the insertion sequence ISEcp1 upstream of the bla genes. Only in the case of CTX-M genes was there an IS903 sequence downstream of the gene. The spread of ESBLs and AmpC β-lactamases occurred via both horizontal gene transfer, accounting for much of the CTX-M gene dissemination, and clonal spread, accounting for CMY-2 gene dissemination. The horizontal dissemination of bla(CTX-M) and bla(CMY-2) genes was mediated by IncF and IncI1-Iγ plasmids, respectively. The clonal spread of bla(CMY-2) was driven mainly by E. coli strains of virulent phylogroup D lineage ST648. To our knowledge, this is the first report of bla(DHA-1) in E. coli strains isolated from companion animals. This study also represents the first report of CMY-2 β-lactamase-producing E. coli isolates from dogs in the Republic of Korea.
Collapse
|
30
|
Bogaerts P, Rodriguez-Villalobos H, Bauraing C, Deplano A, Laurent C, Berhin C, Struelens M, Glupczynski Y. Molecular characterization of AmpC-producing Escherichia coli clinical isolates recovered at two Belgian hospitals. ACTA ACUST UNITED AC 2010; 58:78-83. [DOI: 10.1016/j.patbio.2009.07.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 07/23/2009] [Indexed: 10/20/2022]
|
31
|
Jørgensen RL, Nielsen JB, Friis-Møller A, Fjeldsøe-Nielsen H, Schønning K. Prevalence and molecular characterization of clinical isolates of Escherichia coli expressing an AmpC phenotype. J Antimicrob Chemother 2010; 65:460-4. [DOI: 10.1093/jac/dkp484] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
32
|
|
33
|
Yu W, Bing L, Zhenhua L. AmpC promoter and attenuator mutations affect function of three Escherichia coli strains. Curr Microbiol 2009; 59:244-7. [PMID: 19484300 DOI: 10.1007/s00284-009-9426-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2008] [Revised: 04/06/2009] [Accepted: 04/24/2009] [Indexed: 10/20/2022]
Abstract
To investigate the correlation between mutations in promoter, attenuator, and the AmpC enzyme overproduction in Escherichia coli. ampC Promoters from 4 Escherichia coli clinical isolates were cloned upstream to the chloramphenicol acetyltransferase (CAT) gene in pCAT3 reporter plasmid. Promoter strengths were measured by chloramphenicol MIC and gene sequencing was done on the cloned ampC promoter and attenuator. The strength of promoters from AmpC hyperproducers were 8- to 64-fold higher than those from a low-level AmpC producers. In one of the high-strength promoters, the mutations were located at positions -32, +22, +26, +32 (attenuator), -76, and +79. In another promoter, the mutations were located at positions -88, -82, -18, -1, and +58. In the third promoter, mutations were found at positions -1, +58, -80, -73, -28, and +82. Mutations in Escherichia coli promoter and attenuator sequences promoted Chloramphenicol MICs, which may be the primary causal mechanism for resistance to beta-lactams antibiotics.
Collapse
Affiliation(s)
- Wang Yu
- Emergency Department, Affiliated Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | | | | |
Collapse
|
34
|
Haldorsen B, Aasnaes B, Dahl KH, Hanssen AM, Simonsen GS, Walsh TR, Sundsfjord A, Lundblad EW. The AmpC phenotype in Norwegian clinical isolates of Escherichia coli is associated with an acquired ISEcp1-like ampC element or hyperproduction of the endogenous AmpC. J Antimicrob Chemother 2008; 62:694-702. [DOI: 10.1093/jac/dkn257] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
35
|
Mammeri H, Eb F, Berkani A, Nordmann P. Molecular characterization of AmpC-producing Escherichia coli clinical isolates recovered in a French hospital. J Antimicrob Chemother 2008; 61:498-503. [PMID: 18250231 DOI: 10.1093/jac/dkm538] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To characterize the AmpC-type beta-lactamases produced by Escherichia coli clinical isolates. METHODS E. coli isolates recovered in a French hospital in 2006 were selected on the basis of a resistance phenotype consistent with increased AmpC production. The presence of genes coding for plasmid-mediated cephalosporinases as well as the existence of mutations in the chromosome-borne ampC genes was studied by PCR and sequencing. Genes for chromosomal cephalosporinases were cloned and the conferred resistance patterns were analysed. The isolates were submitted to phylotyping and genotyping analysis. RESULTS Thirty-four out of 2800 E. coli isolates were selected. Sixteen isolates, which overexpressed their chromosomal wild-type cephalosporinases due to mutations into their promoter sequence, were susceptible to extended-spectrum cephalosporins (ECLs). Eighteen isolates, mostly of the commensal phylogenetic group A or B1, had reduced susceptibility to ECLs, due to the production of chromosomal extended-spectrum AmpC (ESAC) beta-lactamases, or plasmid-mediated cephalosporinases (CMY-2 and ACC-1), or to combined mechanisms of resistance. Sequence analysis showed that ESAC beta-lactamases had amino acid changes in the R2 binding site, among which was a novel structural change corresponding to the duplication of Ile-283 in the H-9 helix. All the E. coli clinical isolates were non-clonally related except for four CMY-2-producing strains. CONCLUSIONS This work sheds new light on the spread of ESAC beta-lactamases in E. coli. It showed that this emerging mechanism of resistance could be as frequent as plasmid-mediated cephalosporinases (0.21% and 0.28% of the E. coli isolates, respectively) and that a phenotypic approach is not able to identify these mechanisms of resistance.
Collapse
Affiliation(s)
- Hedi Mammeri
- Service de Bactériologie-Hygiène, Centre hospitalier universitaire d'Amiens, Hôpital Nord, Amiens, France
| | | | | | | |
Collapse
|
36
|
Tracz DM, Boyd DA, Hizon R, Bryce E, McGeer A, Ofner-Agostini M, Simor AE, Paton S, Mulvey MR. ampC gene expression in promoter mutants of cefoxitin-resistant Escherichia coli clinical isolates. FEMS Microbiol Lett 2007; 270:265-71. [PMID: 17326753 DOI: 10.1111/j.1574-6968.2007.00672.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Reverse transcriptase polymerase chain reaction was used to determine the amount of overexpression of the ampC gene in 52 cefoxitin-resistant Escherichia coli clinical isolates that had previously characterized mutations in their ampC promoter/attenuator regions. The results showed that mutations that create a consensus -35 box (TTGACA) are the most important factor in strengthening the ampC promoter, followed by base pair insertions that increase the distance between the -35 and -10 boxes to 17 or 18 bp. Mutations in the -10 box are of lesser importance and those in the attenuator region appear to have little effect on ampC expression. Three strains overexpress ampC due to the effect of insertion elements located in the ampC promoter regions. Further, the data show that there is no correlation between ampC overexpression and the minimum inhibition concentration of cefoxitin in clinical isolates. Overall, the data indicate that a combination of ampC promoter mutations and other strain-specific factors combine to contribute to the magnitude of cefoxitin resistance in E. coli.
Collapse
Affiliation(s)
- Dobryan M Tracz
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Corvec S, Caroff N, Cosano D, Dauvergne S, Drugeon H, Reynaud A. Increased resistance to beta-lactams in a Klebsiella pneumoniae strain: role of a deletion downstream of the Pribnow box in the blaSHV-1 promoter. Int J Antimicrob Agents 2006; 28:308-12. [PMID: 16956751 DOI: 10.1016/j.ijantimicag.2006.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 06/06/2006] [Accepted: 06/08/2006] [Indexed: 10/24/2022]
Abstract
Two hundred and five isolates of Klebsiella pneumoniae were collected from Nantes University Hospital in 2002. A new 30bp deletion was detected downstream of the -10 box of the SHV-1 promoter in a clinical K. pneumoniae isolate with a high amoxicillin/clavulanic acid minimum inhibitory concentration. Reverse transcription polymerase chain reaction revealed increased transcription of bla(SHV-1) mRNA. All conjugation mating assays failed. This new promoter was cloned upstream of the cat gene of the reporter plasmid pKK232-8 and compared with previously described bla(SHV-1) promoters. The deletion induced a 15-fold increase in promoter strength compared with the usual weak promoter. This study reports a new genetic event that increases bla(SHV-1) chromosomal gene expression, which may be of clinical relevance when associated with porin deficiency.
Collapse
Affiliation(s)
- Stéphane Corvec
- Laboratoire de Bactériologie-Virologie, Hygiène Hospitalière, CHU de Nantes, 9 quai Moncousu, 44093 Nantes Cedex 01, France.
| | | | | | | | | | | |
Collapse
|
38
|
Héritier C, Poirel L, Nordmann P. Cephalosporinase over-expression resulting from insertion of ISAba1 in Acinetobacter baumannii. Clin Microbiol Infect 2006; 12:123-30. [PMID: 16441449 DOI: 10.1111/j.1469-0691.2005.01320.x] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ISAba1-like sequences were identified immediately upstream of the bla(ampC) gene in ceftazidime-resistant Acinetobacter baumannii isolates, but were absent in ceftazidime-susceptible A. baumannii isolates. AmpC over-expression resulted from insertion of ISAba1-like sequences upstream of bla(ampC). ISAba1 provided strong promoter sequences, and it was demonstrated that the change in the ribosome binding site sequence resulting from insertion of ISAba1 did not influence expression of the bla(ampC) gene. Sequence analysis revealed that AmpC sequences of A. baumannii isolates were almost identical and that ISAba1 elements had a high percentage of identity.
Collapse
Affiliation(s)
- C Héritier
- Service de Bactériologie-Virologie, Hôpital de Bicêtre, Assistance Publique/Hôpitaux de Paris, Faculté de Médecine Paris-Sud, Université Paris XI, Le Kremlin-Bicêtre, France
| | | | | |
Collapse
|
39
|
Tracz DM, Boyd DA, Bryden L, Hizon R, Giercke S, Van Caeseele P, Mulvey MR. Increase in ampC promoter strength due to mutations and deletion of the attenuator in a clinical isolate of cefoxitin-resistant Escherichia coli as determined by RT–PCR. J Antimicrob Chemother 2005; 55:768-72. [PMID: 15761065 DOI: 10.1093/jac/dki074] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To characterize the mechanism of cefoxitin resistance in clinical isolate Escherichia coli N99-0001. METHODS Plasmid analysis, PCR for beta-lactamases, and sequencing of the ampC genes was carried out. An RT-PCR method was developed to determine relative ampC expression. RESULTS Analysis of the ampC promoter region of E. coli N99-0001 revealed a T-->A mutation at -32, a C-->A mutation at -11, an insertion of a T between -20 and -21, and a 28 bp deletion including the entire attenuator. RT-PCR showed that ampC was expressed 140-fold higher in E. coli N99-0001 than in E. coli ATCC 25922. CONCLUSIONS Cefoxitin resistance in E. coli N99-0001 was due to overexpression of ampC caused by an increase in promoter strength.
Collapse
Affiliation(s)
- Dobryan M Tracz
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington St, Winnipeg, Manitoba, Canada, R3E 3R2
| | | | | | | | | | | | | |
Collapse
|
40
|
Cases I, de Lorenzo V. Promoters in the environment: transcriptional regulation in its natural context. Nat Rev Microbiol 2005; 3:105-18. [PMID: 15685222 DOI: 10.1038/nrmicro1084] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transcriptional activation of many bacterial promoters in their natural environment is not a simple on/off decision. The expression of cognate genes is integrated in layers of iterative regulatory networks that ensure the performance not only of the whole cell, but also of the bacterial population, and even the microbial community, in a changing environment. Unlike in vitro systems, where transcription initiation can be recreated with a handful of essential components, in vivo, promoters must process various physicochemical and metabolic signals to determine their output. This helps to achieve optimal bacterial fitness in extremely competitive niches. Promoters therefore merge specific responses to distinct signals with inclusive reactions to more general environmental changes.
Collapse
Affiliation(s)
- Ildefonso Cases
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, 28049 Madrid, Spain
| | | |
Collapse
|
41
|
Mulvey MR, Bryce E, Boyd DA, Ofner-Agostini M, Land AM, Simor AE, Paton S. Molecular characterization of cefoxitin-resistant Escherichia coli from Canadian hospitals. Antimicrob Agents Chemother 2005; 49:358-65. [PMID: 15616316 PMCID: PMC538860 DOI: 10.1128/aac.49.1.358-365.2005] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A study designed to gain baseline information on strains of Escherichia coli displaying resistance to cefoxitin in Canada is described. A total of 29,323 E. coli isolates were screened at 12 participating hospital sites as part of an extended-spectrum beta-lactamase surveillance initiative. A total of 411 clinically significant, nonrepeat isolates displaying reduced susceptibilities to the NCCLS-recommended beta-lactams were submitted to a central laboratory over a 1-year period ending on 30 September 2000. Two hundred thirty-two isolates were identified as resistant to cefoxitin. All cefoxitin-resistant strains were subtyped by pulsed-field gel electrophoresis, and of these, 182 strains revealed a unique fingerprint and 1 strain was untypeable. PCR and sequence analysis of the ampC promoter region revealed 51 different promoter or attenuator variants and 14 wild-type promoters. Three promoter regions were interrupted by insertion elements, two contained IS10 elements, and one contained an IS911 variant. PCR and sequence analysis for the detection of acquired AmpC resistance (by the acquisition of ACT-1/MIR-1, CMY-2, or FOX) revealed that 25 strains contained CMY-2, including 7 of the strains found to have wild-type promoters. The considerable genetic variability in both the strain fingerprint and the promoter region suggests that AmpC-type resistance may emerge spontaneously by mutation of sensitive strains rather than by the spread of strains or plasmids in the hospital setting.
Collapse
Affiliation(s)
- Michael R Mulvey
- Nosocomial Infections, National Microbiology Laboratory, 1015 Arlington St., Winnipeg, Manitoba R3E 3R2, Canada.
| | | | | | | | | | | | | |
Collapse
|
42
|
Olesen I, Hasman H, Aarestrup FM. Prevalence of β-Lactamases among Ampicillin-ResistantEscherichia coliandSalmonellaIsolated from Food Animals in Denmark. Microb Drug Resist 2004; 10:334-40. [PMID: 15650379 DOI: 10.1089/mdr.2004.10.334] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The genetic background for beta-lactamase-mediated resistance to beta-lactam antibiotics was examined by PCR and sequencing in 160 ampicillin-resistant isolates (109 Escherichia coli and 51 Salmonella) obtained from healthy and diseased food animals in Denmark. Sequencing revealed three different variants of bla (TEM-1), of which bla (TEM-1b) was the most frequently detected (80 E. coli and 47 Salmonella), followed by bla (TEM-1a) (eight E. coli, one Salmonella) and bla (TEM-1c) (seven E. coli). A few isolates were found to express OXA, TEM-30, or PSE beta-lactamases. Mutations in the ampC promoter leading to increased production of the AmpC beta-lactamase were demonstrated in 11 cefoxitin-resistant or intermediate E. coli isolates. Nine of these isolates did not contain any bla (TEM) genes, whereas the remaining two did. No genes encoding SHV or extended-spectrum beta-lactamases were detected. Two new variants of bla (TEM) were detected, which have been designated bla (TEM-127) and bla (TEM-128). In TEM-127, amino acid 158 is substituted from His to Asn, whereas a substitution from Asp to Glu is seen at amino acid 157 in TEM-128. According to MIC determinations, these novel enzymes do not possess activity against extended-spectrum beta-lactams.
Collapse
Affiliation(s)
- Inger Olesen
- Danish Institute for Food and Veterinary Research, DK-1790 Copenhagen V, Denmark
| | | | | |
Collapse
|
43
|
|
44
|
Liebana E, Gibbs M, Clouting C, Barker L, Clifton-Hadley FA, Pleydell E, Abdalhamid B, Hanson ND, Martin L, Poppe C, Davies RH. Characterization of β-Lactamases Responsible for Resistance to Extended-Spectrum Cephalosporins inEscherichia coliandSalmonella entericaStrains from Food-Producing Animals in the United Kingdom. Microb Drug Resist 2004; 10:1-9. [PMID: 15140388 DOI: 10.1089/107662904323047745] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nine epidemiologically unrelated isolates [1 Salmonella Bredeney from turkeys, and 8 Escherichia coli [3 environmental isolates (2 from chickens, 1 from pigs), and 5 isolates from cattle with neonatal diarrhea]] were examined both pheno- and genotypically for extended-spectrum beta-lactam (ESBL) resistance. Resistance phenotypes (ampicillin, aztreonam, cefotaxime, cefpodoxime, ceftazidime, and ceftriaxone) suggested the presence of an ESBL enzyme, but cefoxitin MICs (>/= 32 mg/L) suggested the presence of an AmpC-like enzyme. Synergism experiments with benzo(b)thiophene-2-boronic acid (BZBTH2B) and isoelectric focusing (IEF) revealed the presence of an AmpC beta-lactamase with a pI >/= 9. amp C multiplex PCR, sequence, and Southern analyses indicated that only the Salmonella isolate had a plasmid-encoded AmpC beta-lactamase CMY-2 on a nonconjugative 60-MDa plasmid. PCR and sequence analysis of the E. coli ampC promoter identified mutations at positions -88(T), -82(G), -42(T), -18(A), -1(T) and +58(T) in all the isolates. In addition one strain had two extra-mutations at positions +23(A) and +49(G), and another strain had one extra-mutation at position +32(A). DNA fingerprinting revealed that all the E. coli isolates were different clones. It also showed that the U.K. Salmonella isolate was indistinguisable from a Canadian Salmonella isolate from turkeys; both had identical resistance phenotypes and produced CMY-2. This is the first report of a CMY-2 Salmonella isolate in the United Kingdom. These data imply that beta-lactam resistance in animal isolates can be generated de novo as evidenced by the E. coli strains, or in the case of the Salmonella strains be the result of intercontinental transmission due to an acquired resistance mechanism.
Collapse
Affiliation(s)
- Ernesto Liebana
- Veterinary Laboratories Agency, Department of Food and Environmental Safety, Defra, Addlestone KT151AT, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Corvec S, Caroff N, Espaze E, Marraillac J, Drugeon H, Reynaud A. Comparison of two RT-PCR methods for quantifying ampC specific transcripts in Escherichia coli strains. FEMS Microbiol Lett 2004; 228:187-91. [PMID: 14638423 DOI: 10.1016/s0378-1097(03)00757-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In Escherichia coli, beta-lactam resistance usually depends on beta-lactamase production. AmpC chromosomal cephalosporinase hyperproduction is generally due to mutations in the ampC gene promoter. In order to study ampC expression in E. coli clinical strains, we have compared two methods: conventional and real-time reverse transcription-polymerase chain reaction (RT-PCR). With both methods, ampC mRNA was found to be greatly increased in strains presenting -42 or -32 mutations in the ampC promoter, and moderately increased when a -11 mutation was present in the Pribnow box. Real-time RT-PCR represents a powerful tool combining amplification, fluorescent detection and analysis.
Collapse
Affiliation(s)
- Stéphane Corvec
- Laboratoire de Bactériologie-Virologie-Hygiène Hospitalière, Institut de Biologie des Hôpitaux de Nantes, 9 quai Moncousu, 44093 Nantes Cedex 01, France.
| | | | | | | | | | | |
Collapse
|