1
|
Zheng YQ, Li QG, Latge JP, Tang XK, Najwa AO, Pan KS, Yang SX, Cao CW. Potential risk of cross-resistance to voriconazole in HIV/AIDS patients with Talaromyces marneffei infection and the mechanisms of the cross-resistance. J Antimicrob Chemother 2025; 80:976-979. [PMID: 39871610 DOI: 10.1093/jac/dkaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 01/07/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND The use of fluconazole for long-term oral candidiasis treatment in HIV/AIDS patients can potentially affect the clearance rate and antifungal efficacy of voriconazole against Talaromyces marneffei infection. We isolated two T. marneffei strains that were both resistant to fluconazole and voriconazole. To investigate the mechanism underlying the induction of the cross-resistance in T. marneffei. METHODS Fluconazole-resistant strains were induced in vitro. The target enzyme 14-α sterol demethylase Cyp51B was sequenced, and drug efflux pump expression was determined by RT-qPCR in all strains. RESULTS The sensitivity of fluconazole-induced resistant strains to fluconazole was greater than 128 mg/L, and this resistance was stably inherited after fluconazole pressure was removed. MICs of voriconazole for resistant strains were 4∼16 times greater than FRR (0.25-1 versus 0.06 mg/L). Two mutation hotspots in Cyp51B were detected: G441D and G441V. The AtrF, Mdr1 and Pmfcz genes were significantly overexpressed in the vast majority of the fluconazole-resistant strains (P < 0.05). CONCLUSIONS The growth of T. marneffei in the presence of fluconazole could induce voriconazole resistance in vitro. The main cause of this cross-resistance in T. marneffei appears to be related to a mutation in Cyp51B at G441 and overexpression of the efflux pumps AtrF, Mdr1 and Pmfcz.
Collapse
Affiliation(s)
- Yan-Qing Zheng
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Infectious Disease Research Laboratory, The Fourth People's Hospital of Nanning, Nanning, Guangxi, China
- Guangxi Scientific and Technological Innovation Cooperation Base of Mycosis Prevention and Control, Guangxi Key Laboratory of AIDS Prevention and Treatment, Nanning, Guangxi, China
| | - Qiang-Guo Li
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Dermatology and Venereology, The Second People's Hospital of Beihai, Guangxi, China
| | - Jean-Paul Latge
- Institute of Molecular Biology and Biotechnology, University of Crete, Crete, Greece
| | - Xi-Ke Tang
- Infectious Disease Research Laboratory, The Fourth People's Hospital of Nanning, Nanning, Guangxi, China
| | - Al-Odaini Najwa
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Kai-Su Pan
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Scientific and Technological Innovation Cooperation Base of Mycosis Prevention and Control, Guangxi Key Laboratory of AIDS Prevention and Treatment, Nanning, Guangxi, China
| | - Shi-Xiong Yang
- Infectious Disease Research Laboratory, The Fourth People's Hospital of Nanning, Nanning, Guangxi, China
| | - Cun-Wei Cao
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Scientific and Technological Innovation Cooperation Base of Mycosis Prevention and Control, Guangxi Key Laboratory of AIDS Prevention and Treatment, Nanning, Guangxi, China
| |
Collapse
|
2
|
Zhang H, Zhou Y, Yang H, Tao X, Chen Y, Dong F, Sun Y. In vitro interactions of berbamine hydrochloride and azoles against Aspergillus fumigatus. Microbiol Spectr 2025; 13:e0318424. [PMID: 40162754 PMCID: PMC12054048 DOI: 10.1128/spectrum.03184-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/26/2025] [Indexed: 04/02/2025] Open
Abstract
The growing resistance of Aspergillus to azoles poses a significant challenge in treating invasive fungal infections. This study aimed to investigate the synergistic effect of berbamine hydrochloride (BBM) combined with azoles in treating Aspergillus fumigatus and explore the role of efflux pump inhibition in this synergy. The efficacy of combining BBM with itraconazole (ITC), voriconazole (VOR), and posaconazole (POS) was tested against 69 A. fumigatus strains that had been identified using the M38-A3 broth microdilution method. quantitative reverse transcription PCR (RT-qPCR) was used to measure gene expression related to synergy, while flow cytometry was employed to assess mitochondrial reactive oxygen species (ROS) levels, and Rhodamine 6G exocytosis assays were performed to quantify efflux pump activity. BBM alone showed no significant antifungal activity. BBM combined with POS exhibited synergy against 66 strains (95.7%), while two clinical isolates (Af05/Af08) and one defective strain (Δcdr1B) showed no synergy. Synergy with ITC was observed in three strains (4.3%), but not with VOR. In the non-synergistic Af05 and Af08 strains, the expression of the cdr1B gene was significantly lower compared to wild-type (WT) strains. ROS levels increased significantly in WT with POS and BBM combination therapy, but not in the defective strains. Glucose uptake was also reduced in the POS-BBM combination. BBM enhances azole sensitivity in A. fumigatus primarily by inhibiting the cdr1B-mediated efflux pump, supported by reduced Rhodamine 6G exocytosis and synergy loss in cdr1B-deficient strains. ROS accumulation and metabolic disruption may further contribute to this synergy. Targeting efflux pumps with BBM provides a novel strategy to combat azole resistance. IMPORTANCE The combination of berbamine hydrochloride and posaconazole effectively enhances azole sensitivity in Aspergillus fumigatus by reducing efflux pump activity and increasing reactive oxygen species levels. The findings offer a promising strategy to combat azole resistance in invasive fungal infections.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Dermatology, Jingzhou Hospital Affiliated to Yangtze University, Hubei Provincial Clinical Research Center for Diagnosis and Therapeutics of Pathogenic Fungal Infection, Jingzhou, Hubei Province, China
| | - Yizheng Zhou
- Department of Clinical Laboratory, Jingzhou Hospital Affiliated to Yangtze University, Hubei Provincial Clinical Research Center for Diagnosis and Therapeutics of Pathogenic Fungal Infection, Jingzhou, Hubei Province, China
| | - Hanmo Yang
- Department of Clinical Medical, Yangtze University, Jingzhou, Hubei, China
| | - Xinyi Tao
- Department of Clinical Medical, Yangtze University, Jingzhou, Hubei, China
| | - Yinping Chen
- Department of Dermatology, Jingzhou Hospital Affiliated to Yangtze University, Hubei Provincial Clinical Research Center for Diagnosis and Therapeutics of Pathogenic Fungal Infection, Jingzhou, Hubei Province, China
| | - Fuqiang Dong
- Department of Clinical Medical, People’s Hospital of Naidong District, Shannan, China
| | - Yi Sun
- Department of Dermatology, Jingzhou Hospital Affiliated to Yangtze University, Hubei Provincial Clinical Research Center for Diagnosis and Therapeutics of Pathogenic Fungal Infection, Jingzhou, Hubei Province, China
| |
Collapse
|
3
|
Sanseverino I, Scaccabarozzi D, Sanz MC, Teixeira M, Sabino R, Prigitano A, Porcel-Rodríguez E, Marinov D, Gómez L, Lahm A, Romanò L, Lettieri T. Activity of Azole and Non-Azole Substances Against Aspergillus fumigatus in Clinical and Environmental Samples to Address Antimicrobial Resistance. Int J Mol Sci 2025; 26:1033. [PMID: 39940801 PMCID: PMC11816432 DOI: 10.3390/ijms26031033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/13/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Aspergillus fumigatus is a common fungus which has gained attention due to its resistance to azole compounds, substances used in both medical and agricultural settings. One of the genetic alterations responsible for this resistance is the mutation TR34/L98H in the cyp51A gene. The aim of this study was to understand the impact of azoles and non-azoles on Aspergillus fumigatus. By examining clinical samples, soil samples, and compost material, this research aims to provide insights into the susceptibility of these strains to antifungal substances. To deepen our understanding of the factors potentially involved in antifungal resistance, we combined in vitro studies of sixteen compounds against Aspergillus fumigatus with results from the sequencing of the cyp51 gene. We observed that compounds generally displayed a similar pattern activity against wild-type Aspergillus fumigatus. Non-azoles, except Pyrisoxazole and Amisulbrom, did not show any activity against Aspergillus fumigatus, while azole compounds displayed differential activity against the fungus, except for Tetraconazole. For the mutant strains, a generally similar activity was observed in both clinical and environmental samples, likely due to the same mutation in all the isolates. The implications of these findings may be relevant for better understanding the relationship between Aspergillus fumigatus and its ability to develop resistance to antifungal substances.
Collapse
Affiliation(s)
- Isabella Sanseverino
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027 Ispra, Italy; (I.S.); (D.S.); (M.C.S.); (M.T.); (E.P.-R.); (L.G.)
| | - Diletta Scaccabarozzi
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027 Ispra, Italy; (I.S.); (D.S.); (M.C.S.); (M.T.); (E.P.-R.); (L.G.)
| | - Marcos Cuesta Sanz
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027 Ispra, Italy; (I.S.); (D.S.); (M.C.S.); (M.T.); (E.P.-R.); (L.G.)
| | - Miguel Teixeira
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027 Ispra, Italy; (I.S.); (D.S.); (M.C.S.); (M.T.); (E.P.-R.); (L.G.)
| | - Raquel Sabino
- Faculdade de Farmácia, University of Lisbon, 1649-003 Lisbon, Portugal;
- Instituto de Saúde Ambiental, Faculdade de Medicina, University of Lisbon, 1649-028 Lisbon, Portugal
- Laboratório Associado TERRA, Laboratório para o Uso Sustentável da Terra e dos Serviços dos Ecossistemas, Instituto Superior de Agronomia, 1349-017 Lisbon, Portugal
| | - Anna Prigitano
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milano, Italy; (A.P.); (L.R.)
| | - Elena Porcel-Rodríguez
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027 Ispra, Italy; (I.S.); (D.S.); (M.C.S.); (M.T.); (E.P.-R.); (L.G.)
| | - Dimitar Marinov
- Advanced and Reliable Information Systems (ARHS) Developments S.A., 4370 Belvaux, Luxembourg;
| | - Livia Gómez
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027 Ispra, Italy; (I.S.); (D.S.); (M.C.S.); (M.T.); (E.P.-R.); (L.G.)
| | - Armin Lahm
- Bioinformatics Project Support, Piazza Santa Maria Liberatrice 18, 00153 Roma, Italy;
| | - Luisa Romanò
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milano, Italy; (A.P.); (L.R.)
| | - Teresa Lettieri
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027 Ispra, Italy; (I.S.); (D.S.); (M.C.S.); (M.T.); (E.P.-R.); (L.G.)
| |
Collapse
|
4
|
Jacobs S, Boccarella G, van den Berg P, Van Dijck P, Carolus H. Unlocking the potential of experimental evolution to study drug resistance in pathogenic fungi. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:48. [PMID: 39843963 PMCID: PMC11721431 DOI: 10.1038/s44259-024-00064-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/15/2024] [Indexed: 01/24/2025]
Abstract
Exploring the dynamics and molecular mechanisms of antimicrobial drug resistance provides critical insights for developing effective strategies to combat it. This review highlights the potential of experimental evolution methods to study resistance in pathogenic fungi, drawing on insights from bacteriology and innovative approaches in mycology. We emphasize the versatility of experimental evolution in replicating clinical and environmental scenarios and propose that incorporating evolutionary modelling can enhance our understanding of antifungal resistance evolution. We advocate for a broader application of experimental evolution in medical mycology to improve our still limited understanding of drug resistance in fungi.
Collapse
Affiliation(s)
- Stef Jacobs
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Giorgio Boccarella
- Evolutionary Modelling Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Pieter van den Berg
- Evolutionary Modelling Group, Department of Biology, KU Leuven, Leuven, Belgium
- Evolutionary Modelling Group, Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
- KU Leuven One Health Institute, KU Leuven, Leuven, Belgium
| | - Hans Carolus
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
5
|
Gong X, Zhang H, Cheng W, He Z, Ma T, Chen T, Sun Y. Aspergillus fumigatus ctf1-a novel zinc finger transcription factor involved in azole resistance. Mycology 2024; 16:266-279. [PMID: 40083420 PMCID: PMC11899207 DOI: 10.1080/21501203.2024.2342521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/08/2024] [Indexed: 03/16/2025] Open
Abstract
Elucidating the mechanisms underlying antifungal resistance in Aspergillus fumigatus, discovering new antifungal targets, and developing drugs to inhibit resistance are the key approaches to treating A. fumigatus infections. Here, we investigated the function of ctf1 (AFUA_1G03800), a gene encoding a C6 transcription factor. Homologous recombination replacement technology was employed to construct ctf1-knockout and revertant strains. Fungal morphological observations revealed that the growth of the knockout strain was slower, showing fewer conidia. The minimum inhibitory concentration of triazoles was determined by performing the E-test and by using the micro-liquid-based dilution method. The results indicated that ctf1 deletion decreased the susceptibility of A. fumigatus to voriconazole by 2-fold. The decreased antifungal sensitivity of Δctf1 can be attributed to the increased ergosterol content and the overexpression of mdr1, mdr2, and mdr4. Thus, our results on the function of ctf1 contribute to the elucidation of the mechanisms underlying A. fumigatus resistance and the factors associated with A. fumigatus virulence.
Collapse
Affiliation(s)
- Xiao Gong
- Department of Dermatology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Heng Zhang
- Department of Dermatology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Wenxu Cheng
- Department of Otolaryngology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Zhangxuan He
- Medical School, Yangtze University, Jingzhou, China
| | - Tianyan Ma
- Medical School, Yangtze University, Jingzhou, China
| | - Tian Chen
- Medical School, Yangtze University, Jingzhou, China
| | - Yi Sun
- Department of Dermatology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| |
Collapse
|
6
|
Hawkins NJ. Assessing the predictability of fungicide resistance evolution through in vitro selection. JOURNAL OF PLANT DISEASES AND PROTECTION : SCIENTIFIC JOURNAL OF THE GERMAN PHYTOMEDICAL SOCIETY (DPG) 2024; 131:1257-1264. [PMID: 38947557 PMCID: PMC11213724 DOI: 10.1007/s41348-024-00906-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/05/2024] [Indexed: 07/02/2024]
Abstract
Plant pathogens are highly adaptable, and have evolved to overcome control measures including multiple classes of fungicides. More effective management requires a thorough understanding of the evolutionary drivers leading to resistance. Experimental evolution can be used to investigate evolutionary processes over a compressed timescale. For fungicide resistance, applications include predicting resistance ahead of its emergence in the field, testing potential outcomes under multiple different fungicide usage scenarios or comparing resistance management strategies. This review considers different experimental approaches to in vitro selection, and their suitability for addressing different questions relating to fungicide resistance. When aiming to predict the evolution of new variants, mutational supply is especially important. When assessing the relative fitness of different variants under fungicide selection, growth conditions such as temperature may affect the results as well as fungicide choice and dose. Other considerations include population size, transfer interval, competition between genotypes and pathogen reproductive mode. However, resistance evolution in field populations has proven to be less repeatable for some fungicide classes than others. Therefore, even with optimal experimental design, in some cases the most accurate prediction from experimental evolution may be that the exact evolutionary trajectory of resistance will be unpredictable.
Collapse
|
7
|
Thakur R, Shishodia SK, Sharma A, Chauhan A, Kaur S, Shankar J. Accelerating the understanding of Aspergillus terreus: Epidemiology, physiology, immunology and advances. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100220. [PMID: 38303967 PMCID: PMC10831165 DOI: 10.1016/j.crmicr.2024.100220] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
Aspergillus species encompass a variety of infections, ranging from invasive aspergillosis to allergic conditions, contingent upon the immune status of the host. In this spectrum, Aspergillus terreus stands out due to its emergence as a notable pathogen and its intrinsic resistance to amphotericin-B. The significance of Aspergillus-associated infections has witnessed a marked increase in the past few decades, particularly with the increasing number of immunocompromised individuals. The exploration of epidemiology, morphological transitions, immunopathology, and novel treatment approaches such as new antifungal drugs (PC945, olorofim) and combinational therapy using antifungal drugs and phytochemicals (Phytochemicals: quercetin, shikonin, artemisinin), also using immunotherapies to modulate immune response has resulted in better outcomes. Furthermore, in the context COVID-19 era and its aftermath, fungal infections have emerged as a substantial challenge for both immunocompromised and immunocompetent individuals. This is attributed to the use of immune-suppressing therapies during COVID-19 infections and the increase in transplant cases. Consequently, this review aims to provide an updated overview encompassing the epidemiology, germination events, immunopathology, and novel drug treatment strategies against Aspergillus terreus-associated infections.
Collapse
Affiliation(s)
- Raman Thakur
- Department of Medical Laboratory Science, Lovely Professional University, Jalandhar, Punjab, India
| | | | - Ananya Sharma
- Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat Solan, Himachal Pradesh, India
| | - Arjun Chauhan
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura, Uttar Pradesh, India
| | - Sumanpreet Kaur
- Department of Medical Laboratory Science, Lovely Professional University, Jalandhar, Punjab, India
| | - Jata Shankar
- Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat Solan, Himachal Pradesh, India
| |
Collapse
|
8
|
Zhu G, Chen S, Zhang Y, Lu L. Mitochondrial Membrane-Associated Protein Mba1 Confers Antifungal Resistance by Affecting the Production of Reactive Oxygen Species in Aspergillus fumigatus. Antimicrob Agents Chemother 2023; 67:e0022523. [PMID: 37428039 PMCID: PMC10433838 DOI: 10.1128/aac.00225-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Azole resistance in the human fungal pathogen Aspergillus fumigatus is becoming a major threat to global health. To date, mutations in the azole target-encoding cyp51A gene have been implicated in conferring azole resistance, but a steady increase in the number of A. fumigatus isolates with azole resistance resulting from non-cyp51A mutations has been recognized. Previous studies have revealed that some isolates with non-cyp51A mutation-induced azole resistance are related to mitochondrial dysfunction. However, knowledge of the molecular mechanism underlying the involvement of non-cyp51A mutations is limited. In this study, using next-generation sequencing, we found that nine independent azole-resistant isolates without cyp51A mutations had normal mitochondrial membrane potential. Among these isolates, a mutation in a mitochondrial ribosome-binding protein, Mba1, conferred multidrug resistance to azoles, terbinafine, and amphotericin B but not caspofungin. Molecular characterization verified that the TIM44 domain of Mba1 was crucial for drug resistance and that the N terminus of Mba1 played a major role in growth. Deletion of mba1 had no effect on Cyp51A expression but decreased the fungal cellular reactive oxygen species (ROS) content, which contributed to mba1-mediated drug resistance. The findings in this study suggest that some non-cyp51A proteins drive drug resistance mechanisms that result from reduced ROS production induced by antifungals.
Collapse
Affiliation(s)
- Guoxing Zhu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shu Chen
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yuanwei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
9
|
Tan J, Zhang H, Sun Y, Gao L. Afu-Emi1 Contributes to Stress Adaptation and Voriconazole Susceptibility in Aspergillus fumigatus. Microbiol Spectr 2023; 11:e0095623. [PMID: 37039674 PMCID: PMC10269808 DOI: 10.1128/spectrum.00956-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 04/12/2023] Open
Abstract
Invasive aspergillosis (IA) is the second most common invasive fungal disease and is associated with high mortality rates. Aspergillus fumigatus is the predominant causal agent of this life-threatening infection. Triazoles are still the cornerstone of antifungal treatment, and voriconazole remains the first-line choice. However, voriconazole resistance has been increasingly reported, which results in significantly higher mortality rates for IA and is particularly problematic. In the present study, we report the identification and functional study of a protein with previously unknown function that is encoded by the gene designated Afu-emi1 (AFUA_1G07360). High-throughput gene replacement technology was applied to construct the knockout ΔAfu-emi1 strain and a revertant strain. The MICs for azoles, including posaconazole, itraconazole, and voriconazole, were evaluated via the broth microdilution method and E-tests, which revealed that disruption of Afu-emi1 resulted in 4-fold increased susceptibility to voriconazole. Colony growth in the presence of oxidants, namely, H2O2 and menadione, and osmotic pressure-altering agents, namely, NaCl and d-sorbitol, was measured. The Afu-emi1 mutant strain exhibited a significant growth defect under oxidative and osmotic stress. The reactive oxygen species (ROS) production levels with or without voriconazole pretreatment were determined, and the Afu-emi1 mutant strain exhibited significantly lower ROS production levels. The effects of Afu-emi1 disruption on voriconazole susceptibility, growth under stress, and ROS production were restored in the revertant strain. In addition, the expression of cyp51A, AfuMDR2, AfuMDR3, AfuMDR4, and cdr1b in the ΔAfu-emi1 strain was significantly reduced. In conclusion, deletion of the gene Afu-emi1 resulted in increased voriconazole susceptibility, attenuated ability for oxidative and osmotic stress adaptation, decreased ROS production, and downregulation of cyp51A, AfuMDR2, AfuMDR3, AfuMDR4, and cdr1b expression, suggesting that Afu-Emi1 is an important regulator of stress adaptation and cyp51A and efflux pump expression in this medically important fungus. IMPORTANCE Voriconazole is the first-line choice for IA, a life-threatening disease. Therefore, voriconazole resistance has become particularly problematic. Disruption of Afu-emi1 resulted in increased susceptibility to voriconazole, a significant growth defect under oxidative and osmotic stress, and downregulation of target enzyme Cyp51A and efflux pump expression, suggesting that Afu-Emi1 is an important regulator of stress adaptation and cyp51A and efflux pump expression in this medically important fungus. Targeting Afu-Emi1 might help to enhance azole therapeutic efficacy and impede azole resistance.
Collapse
Affiliation(s)
- Jufang Tan
- Department of Neonatology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei Province, China
| | - Heng Zhang
- Department of Surgery, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei Province, China
| | - Yi Sun
- Department of Dermatology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei Province, China
| | - Lujuan Gao
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Dermatology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian Province, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, Fujian Province, China
| |
Collapse
|
10
|
Osset-Trénor P, Pascual-Ahuir A, Proft M. Fungal Drug Response and Antimicrobial Resistance. J Fungi (Basel) 2023; 9:jof9050565. [PMID: 37233275 DOI: 10.3390/jof9050565] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/27/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Antifungal resistance is a growing concern as it poses a significant threat to public health. Fungal infections are a significant cause of morbidity and mortality, especially in immunocompromised individuals. The limited number of antifungal agents and the emergence of resistance have led to a critical need to understand the mechanisms of antifungal drug resistance. This review provides an overview of the importance of antifungal resistance, the classes of antifungal agents, and their mode of action. It highlights the molecular mechanisms of antifungal drug resistance, including alterations in drug modification, activation, and availability. In addition, the review discusses the response to drugs via the regulation of multidrug efflux systems and antifungal drug-target interactions. We emphasize the importance of understanding the molecular mechanisms of antifungal drug resistance to develop effective strategies to combat the emergence of resistance and highlight the need for continued research to identify new targets for antifungal drug development and explore alternative therapeutic options to overcome resistance. Overall, an understanding of antifungal drug resistance and its mechanisms will be indispensable for the field of antifungal drug development and clinical management of fungal infections.
Collapse
Affiliation(s)
- Paloma Osset-Trénor
- Department of Biotechnology, Instituto de Biología Molecular y Celular de Plantas IBMCP, Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Amparo Pascual-Ahuir
- Department of Biotechnology, Instituto de Biología Molecular y Celular de Plantas IBMCP, Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Markus Proft
- Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia IBV-CSIC, Consejo Superior de Investigaciones Científicas CSIC, 46010 Valencia, Spain
| |
Collapse
|
11
|
Sen P, Gupta L, Vijay M, Vermani Sarin M, Shankar J, Hameed S, Vijayaraghavan P. 4-Allyl-2-methoxyphenol modulates the expression of genes involved in efflux pump, biofilm formation and sterol biosynthesis in azole resistant Aspergillus fumigatus. Front Cell Infect Microbiol 2023; 13:1103957. [PMID: 36816579 PMCID: PMC9929553 DOI: 10.3389/fcimb.2023.1103957] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/06/2023] [Indexed: 02/04/2023] Open
Abstract
Introduction Antifungal therapy for aspergillosis is becoming problematic because of the toxicity of currently available drugs, biofilm formation on host surface, and increasing prevalence of azole resistance in Aspergillus fumigatus. Plants are rich source of bioactive molecules and antimicrobial activity of aromatic bioactive compounds draws attention because of its promising biological properties. The present study elucidated the antibiofilm activity of 4-allyl-2-methoxyphenol (eugenol) against azole-resistant environmental A. fumigatus isolates. Methods Soil samples were collected from agricultural fields across India; azole-resistant A. fumigatus (ARAF) were isolated followed by their molecular identification. Antibiofilm activity of eugenol was calculated via tetrazolium based-MTT assay. The expression of the multidrug efflux pumps genes MDR1, MDR4, transporters of the MFS gene, erg11A gene encoding 14α demethylase, and transcription regulatory genes, MedA, SomA and SrbA, involved in biofilm formation of A. fumigatus were calculated by quantitative real time PCR. Results Out of 89 A. fumigatus isolates, 10 were identified as azole resistant. Eugenol exhibited antibiofilm activity against ARAF isolates, ranging from 312 to 500 µg/mL. Confocal laser scanning microscopy analysis revealed absence of extracellular matrix of ARAF biofilm after eugenol treatment. The gene expression indicated significantly low expression of efflux pumps genes MDR1, MDR4, erg11A and MedA in eugenol treated ARAF isolates when compared with untreated isolates. Conclusions Our results demonstrate that eugenol effects the expression of efflux pump and biofilm associated genes as well as inhibits biofilm formation in azole resistant isolates of A. fumigatus.
Collapse
Affiliation(s)
- Pooja Sen
- Anti-mycotic Drug Susceptibility Laboratory, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Lovely Gupta
- Anti-mycotic Drug Susceptibility Laboratory, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Mukund Vijay
- Anti-mycotic Drug Susceptibility Laboratory, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Maansi Vermani Sarin
- Anti-mycotic Drug Susceptibility Laboratory, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Jata Shankar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar), India
| | - Pooja Vijayaraghavan
- Anti-mycotic Drug Susceptibility Laboratory, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India,*Correspondence: Pooja Vijayaraghavan,
| |
Collapse
|
12
|
Zhai P, Ma Y, Du W, Lu L. The metal chaperone protein MtmA plays important roles in antifungal drug susceptibility in Aspergillus fumigatus. Front Microbiol 2022; 13:1062282. [DOI: 10.3389/fmicb.2022.1062282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022] Open
Abstract
Drug-resistant fungal infections are emerging as an important clinical problem. In general, antifungal resistance results from increased target expression or mutations within the target protein sequence. However, the molecular mechanisms of non-drug target mutations of antifungal resistance in fungal pathogens remain to be explored. Previous studies indicated that the metal chaperone protein Mtm1 is required for mitochondrial Sod2 activation and responses to oxidative stress in yeast and in the fungal pathogen Aspergillus fumigatus, but there is no report of MtmA-related antifungal resistance. In this study, we found that repressed expression of MtmA (only 10% expression) using a conditional promoter resulted in significantly enhanced itraconazole resistance, which was not the result of highly expressed drug targets Erg11A and Erg11B. Furthermore, we demonstrated that repressed expression of MtmA results in upregulation of a series of multidrug resistance-associated transport genes, which may cause multidrug resistance. Further mechanistic studies revealed that inhibition of MtmA expression led to abnormal activation of the calcium signaling system and prompted persistent nucleation of the calcium signaling transcription factor CrzA. Our findings suggest that the metal chaperone protein MtmA is able to negatively regulate fungal resistance via affecting calcium signaling pathway.
Collapse
|
13
|
Handelman M, Osherov N. Experimental and in-host evolution of triazole resistance in human pathogenic fungi. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:957577. [PMID: 37746192 PMCID: PMC10512370 DOI: 10.3389/ffunb.2022.957577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/19/2022] [Indexed: 09/26/2023]
Abstract
The leading fungal pathogens causing systemic infections in humans are Candida spp., Aspergillus fumigatus, and Cryptococcus neoformans. The major class of antifungals used to treat such infections are the triazoles, which target the cytochrome P450 lanosterol 14-α-demethylase, encoded by the ERG11 (yeasts)/cyp51A (molds) genes, catalyzing a key step in the ergosterol biosynthetic pathway. Triazole resistance in clinical fungi is a rising concern worldwide, causing increasing mortality in immunocompromised patients. This review describes the use of serial clinical isolates and in-vitro evolution toward understanding the mechanisms of triazole resistance. We outline, compare, and discuss how these approaches have helped identify the evolutionary pathways taken by pathogenic fungi to acquire triazole resistance. While they all share a core mechanism (mutation and overexpression of ERG11/cyp51A and efflux transporters), their timing and mechanism differs: Candida and Cryptococcus spp. exhibit resistance-conferring aneuploidies and copy number variants not seen in A. fumigatus. Candida spp. have a proclivity to develop resistance by undergoing mutations in transcription factors (TAC1, MRR1, PDR5) that increase the expression of efflux transporters. A. fumigatus is especially prone to accumulate resistance mutations in cyp51A early during the evolution of resistance. Recently, examination of serial clinical isolates and experimental lab-evolved triazole-resistant strains using modern omics and gene editing tools has begun to realize the full potential of these approaches. As a result, triazole-resistance mechanisms can now be analyzed at increasingly finer resolutions. This newfound knowledge will be instrumental in formulating new molecular approaches to fight the rapidly emerging epidemic of antifungal resistant fungi.
Collapse
Affiliation(s)
| | - Nir Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
14
|
Vermeulen P, Gruez A, Babin AL, Frippiat JP, Machouart M, Debourgogne A. CYP51 Mutations in the Fusarium solani Species Complex: First Clue to Understand the Low Susceptibility to Azoles of the Genus Fusarium. J Fungi (Basel) 2022; 8:jof8050533. [PMID: 35628788 PMCID: PMC9148147 DOI: 10.3390/jof8050533] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 02/05/2023] Open
Abstract
Members of Fusarium solani species complex (FSSC) are cosmopolitan filamentous fungi responsible for invasive fungal infections in immunocompromised patients. Despite the treatment recommendations, many strains show reduced sensitivity to voriconazole. The objective of this work was to investigate the potential relationship between azole susceptibility and mutations in CYP51 protein sequences. Minimal inhibitory concentrations (MICs) for azole antifungals have been determined using the CLSI (Clinical and Laboratory Standards Institute) microdilution method on a panel of clinical and environmental strains. CYP51A, CYP51B and CYP51C genes for each strain have been sequenced using the Sanger method. Amino acid substitutions described in multiple azole-resistant Aspergillus fumigatus (mtrAf) strains have been sought and compared with other Fusarium complexes’ strains. Our results show that FSSC exhibit point mutations similar to those described in mtrAf. Protein sequence alignments of CYP51A, CYP51B and CYP51C have highlighted different profiles based on sequence similarity. A link between voriconazole MICs and protein sequences was observed, suggesting that these mutations could be an explanation for the intrinsic azole resistance in the genus Fusarium. Thus, this innovative approach provided clues to understand low azole susceptibility in FSSC and may contribute to improving the treatment of FSSC infection.
Collapse
Affiliation(s)
- Pierre Vermeulen
- Laboratoire Stress Immunité Pathogènes, UR 7300, Faculté de Médecine, Université de Lorraine, 9 Avenue de la Forêt de Haye, F-54500 Vandœuvre-lès-Nancy, France; (P.V.); (A.-L.B.); (J.-P.F.); (M.M.)
- Service de Microbiologie, CHRU de Nancy, Hôpitaux de Brabois, 11 Allée du Morvan, F-54511 Vandœuvre-lès-Nancy, France
| | - Arnaud Gruez
- IMoPA, CNRS, Université de Lorraine, F-54000 Nancy, France;
| | - Anne-Lyse Babin
- Laboratoire Stress Immunité Pathogènes, UR 7300, Faculté de Médecine, Université de Lorraine, 9 Avenue de la Forêt de Haye, F-54500 Vandœuvre-lès-Nancy, France; (P.V.); (A.-L.B.); (J.-P.F.); (M.M.)
| | - Jean-Pol Frippiat
- Laboratoire Stress Immunité Pathogènes, UR 7300, Faculté de Médecine, Université de Lorraine, 9 Avenue de la Forêt de Haye, F-54500 Vandœuvre-lès-Nancy, France; (P.V.); (A.-L.B.); (J.-P.F.); (M.M.)
| | - Marie Machouart
- Laboratoire Stress Immunité Pathogènes, UR 7300, Faculté de Médecine, Université de Lorraine, 9 Avenue de la Forêt de Haye, F-54500 Vandœuvre-lès-Nancy, France; (P.V.); (A.-L.B.); (J.-P.F.); (M.M.)
- Service de Microbiologie, CHRU de Nancy, Hôpitaux de Brabois, 11 Allée du Morvan, F-54511 Vandœuvre-lès-Nancy, France
| | - Anne Debourgogne
- Laboratoire Stress Immunité Pathogènes, UR 7300, Faculté de Médecine, Université de Lorraine, 9 Avenue de la Forêt de Haye, F-54500 Vandœuvre-lès-Nancy, France; (P.V.); (A.-L.B.); (J.-P.F.); (M.M.)
- Service de Microbiologie, CHRU de Nancy, Hôpitaux de Brabois, 11 Allée du Morvan, F-54511 Vandœuvre-lès-Nancy, France
- Correspondence: ; Tel.: +33-(0)3-83-15-43-96
| |
Collapse
|
15
|
Buil JB, Oliver JD, Law D, Baltussen T, Zoll J, Hokken MWJ, Tehupeiory-Kooreman M, Melchers WJG, Birch M, Verweij PE. Resistance profiling of Aspergillus fumigatus to olorofim indicates absence of intrinsic resistance and unveils the molecular mechanisms of acquired olorofim resistance. Emerg Microbes Infect 2022; 11:703-714. [PMID: 35109772 PMCID: PMC8890541 DOI: 10.1080/22221751.2022.2034485] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Olorofim (F901318) is a new antifungal currently under clinical development that shows both in vitro and in vivo activity against a number of filamentous fungi including Aspergillus fumigatus. In this study, we screened A. fumigatus isolates for intrinsic olorofim-resistant A. fumigatus and evaluated the ability of A. fumigatus to acquire an olorofim-resistant phenotype. No intrinsic resistance was found in 975 clinical A. fumigatus isolates. However, we found that isolates with increased olorofim MICs (> 8 mg/L) could be selected using a high number of conidia and olorofim exposure under laboratory conditions. Assessment of the frequency of acquired olorofim resistance development of A. fumigatus was shown to be higher than for voriconazole but lower than for itraconazole. Sequencing the PyrE gene of isogenic isolates with olorofim MICs of >8 mg/L identified various amino acid substitutions with a hotspot at locus G119. Olorofim was shown to have reduced affinity to mutated target protein dihydroorotate dehydrogenase (DHODH) and the effect of these mutations was proven by introducing the mutations directly in A. fumigatus. We then investigated whether G119 mutations were associated with a fitness cost in A. fumigatus. These experiments showed a small but significant reduction in growth rate for strains with a G119V substitution, while strains with a G119C substitution did not exhibit a reduction in growth rate. These in vitro findings were confirmed in an in vivo pathogenicity model.
Collapse
Affiliation(s)
- Jochem B Buil
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
| | | | - Derek Law
- F2G Ltd, Lankro Way, Manchester, United Kingdom
| | - Tim Baltussen
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan Zoll
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
| | - Margriet W J Hokken
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marlou Tehupeiory-Kooreman
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
| | - Willem J G Melchers
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
| | - Mike Birch
- F2G Ltd, Lankro Way, Manchester, United Kingdom
| | - Paul E Verweij
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
| |
Collapse
|
16
|
Jain N, Jansone I, Obidenova T, Sīmanis R, Meisters J, Straupmane D, Reinis A. Epidemiological Characterization of Clinical Fungal Isolates from Pauls Stradinš Clinical University Hospital, Latvia: A 4-Year Surveillance Report. Life (Basel) 2021; 11:1002. [PMID: 34685374 PMCID: PMC8537438 DOI: 10.3390/life11101002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Nosocomial fungal infections are an emerging global public health threat that requires urgent attention and proper management. With the limited availability of treatment options, it has become necessary to understand the emerging epidemiological trends, mechanisms, and risk factors. However, very limited surveillance reports are available in the Latvian and broader European context. We therefore conducted a retrospective analysis of laboratory data (2017-2020) from Pauls Stradinš Clinical University Hospital (PSCUH), Riga, Latvia, which is one of the largest public multispecialty hospitals in Latvia. A total of 2278 fungal isolates were analyzed during the study period, with Candida spp. comprising 95% of the isolates, followed by Aspergillus spp. and Geotrichum spp. Amongst the Candida spp., C. albicans and C. glabrata made up about 75% of the isolates. The Department of Lung Diseases and Thoracic Surgery had the highest caseload followed by Intensive Care Department. Majority of the fungal isolates were collected from the bronchoalveolar lavage (37%), followed by urine (19%) and sputum (18%) samples. A total of 34 cases of candidemia were noted during the study period with C. albicans being the most common candidemia pathogen. Proper surveillance of emerging epidemiological trends serve as the most reliable and powerful cornerstone towards tackling this emerging threat.
Collapse
Affiliation(s)
- Nityanand Jain
- Department of Biology and Microbiology, Faculty of Medicine, Riga Stradiņš University, Dzirciema Street 16, LV-1007 Riga, Latvia;
| | - Inese Jansone
- Joint Laboratory, Pauls Stradiņš Clinical University Hospital, LV-1002 Riga, Latvia; (I.J.); (T.O.); (J.M.); (D.S.)
| | - Tatjana Obidenova
- Joint Laboratory, Pauls Stradiņš Clinical University Hospital, LV-1002 Riga, Latvia; (I.J.); (T.O.); (J.M.); (D.S.)
| | - Raimonds Sīmanis
- Department of Infectology, Faculty of Medicine, Riga Stradiņš University, Dzirciema Street 16, LV-1007 Riga, Latvia;
| | - Jānis Meisters
- Joint Laboratory, Pauls Stradiņš Clinical University Hospital, LV-1002 Riga, Latvia; (I.J.); (T.O.); (J.M.); (D.S.)
| | - Dagnija Straupmane
- Joint Laboratory, Pauls Stradiņš Clinical University Hospital, LV-1002 Riga, Latvia; (I.J.); (T.O.); (J.M.); (D.S.)
| | - Aigars Reinis
- Department of Biology and Microbiology, Faculty of Medicine, Riga Stradiņš University, Dzirciema Street 16, LV-1007 Riga, Latvia;
- Joint Laboratory, Pauls Stradiņš Clinical University Hospital, LV-1002 Riga, Latvia; (I.J.); (T.O.); (J.M.); (D.S.)
| |
Collapse
|
17
|
dos Santos RAC, Mead ME, Steenwyk JL, Rivero-Menéndez O, Alastruey-Izquierdo A, Goldman GH, Rokas A. Examining Signatures of Natural Selection in Antifungal Resistance Genes Across Aspergillus Fungi. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:723051. [PMID: 37744093 PMCID: PMC10512362 DOI: 10.3389/ffunb.2021.723051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/16/2021] [Indexed: 09/26/2023]
Abstract
Certain Aspergillus fungi cause aspergillosis, a set of diseases that typically affect immunocompromised individuals. Most cases of aspergillosis are caused by Aspergillus fumigatus, which infects millions of people annually. Some closely related so-called cryptic species, such as Aspergillus lentulus, can also cause aspergillosis, albeit at lower frequencies, and they are also clinically relevant. Few antifungal drugs are currently available for treating aspergillosis and there is increasing worldwide concern about the presence of antifungal drug resistance in Aspergillus species. Furthermore, isolates from both A. fumigatus and other Aspergillus pathogens exhibit substantial heterogeneity in their antifungal drug resistance profiles. To gain insights into the evolution of antifungal drug resistance genes in Aspergillus, we investigated signatures of positive selection in 41 genes known to be involved in drug resistance across 42 susceptible and resistant isolates from 12 Aspergillus section Fumigati species. Using codon-based site models of sequence evolution, we identified ten genes that contain 43 sites with signatures of ancient positive selection across our set of species. None of the sites that have experienced positive selection overlap with sites previously reported to be involved in drug resistance. These results identify sites that likely experienced ancient positive selection in Aspergillus genes involved in resistance to antifungal drugs and suggest that historical selective pressures on these genes likely differ from any current selective pressures imposed by antifungal drugs.
Collapse
Affiliation(s)
- Renato Augusto Corrêa dos Santos
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Matthew E. Mead
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Olga Rivero-Menéndez
- Medical Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Alastruey-Izquierdo
- Medical Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Gustavo Henrique Goldman
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
18
|
Arastehfar A, Carvalho A, Houbraken J, Lombardi L, Garcia-Rubio R, Jenks J, Rivero-Menendez O, Aljohani R, Jacobsen I, Berman J, Osherov N, Hedayati M, Ilkit M, Armstrong-James D, Gabaldón T, Meletiadis J, Kostrzewa M, Pan W, Lass-Flörl C, Perlin D, Hoenigl M. Aspergillus fumigatus and aspergillosis: From basics to clinics. Stud Mycol 2021; 100:100115. [PMID: 34035866 PMCID: PMC8131930 DOI: 10.1016/j.simyco.2021.100115] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The airborne fungus Aspergillus fumigatus poses a serious health threat to humans by causing numerous invasive infections and a notable mortality in humans, especially in immunocompromised patients. Mould-active azoles are the frontline therapeutics employed to treat aspergillosis. The global emergence of azole-resistant A. fumigatus isolates in clinic and environment, however, notoriously limits the therapeutic options of mould-active antifungals and potentially can be attributed to a mortality rate reaching up to 100 %. Although specific mutations in CYP 51A are the main cause of azole resistance, there is a new wave of azole-resistant isolates with wild-type CYP 51A genotype challenging the efficacy of the current diagnostic tools. Therefore, applications of whole-genome sequencing are increasingly gaining popularity to overcome such challenges. Prominent echinocandin tolerance, as well as liver and kidney toxicity posed by amphotericin B, necessitate a continuous quest for novel antifungal drugs to combat emerging azole-resistant A. fumigatus isolates. Animal models and the tools used for genetic engineering require further refinement to facilitate a better understanding about the resistance mechanisms, virulence, and immune reactions orchestrated against A. fumigatus. This review paper comprehensively discusses the current clinical challenges caused by A. fumigatus and provides insights on how to address them.
Collapse
Affiliation(s)
- A. Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - A. Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - L. Lombardi
- UCD Conway Institute and School of Medicine, University College Dublin, Dublin 4, Ireland
| | - R. Garcia-Rubio
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - J.D. Jenks
- Department of Medicine, University of California San Diego, San Diego, CA, 92103, USA
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, CA, 92093, USA
| | - O. Rivero-Menendez
- Medical Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, 28222, Spain
| | - R. Aljohani
- Department of Infectious Diseases, Imperial College London, London, UK
| | - I.D. Jacobsen
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena, Germany
- Institute for Microbiology, Friedrich Schiller University, Jena, Germany
| | - J. Berman
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena, Germany
| | - N. Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, 69978, Israel
| | - M.T. Hedayati
- Invasive Fungi Research Center/Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - M. Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, Çukurova University, 01330, Adana, Turkey
| | | | - T. Gabaldón
- Life Sciences Programme, Supercomputing Center (BSC-CNS), Jordi Girona, Barcelona, 08034, Spain
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - J. Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - W. Pan
- Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - C. Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - D.S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - M. Hoenigl
- Department of Medicine, University of California San Diego, San Diego, CA, 92103, USA
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, 8036, Graz, Austria
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| |
Collapse
|
19
|
Identification of Novel Mutations Contributing to Azole Tolerance of Aspergillus fumigatus through In Vitro Exposure to Tebuconazole. Antimicrob Agents Chemother 2021; 65:e0265720. [PMID: 34125587 DOI: 10.1128/aac.02657-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Azole resistance of Aspergillus fumigatus is a global problem. The major resistance mechanism is through cytochrome P450 14-α sterol demethylase Cyp51A alterations such as a mutation(s) in the gene and the acquisition of a tandem repeat in the promoter. Although other azole tolerance and resistance mechanisms, such as the hmg1 (a 3-hydroxy-3-methylglutaryl coenzyme-A reductase gene) mutation, are known, few reports have described studies elucidating non-Cyp51A resistance mechanisms. This study explored genes contributing to azole tolerance in A. fumigatus by in vitro mutant selection with tebuconazole, an azole fungicide. After three rounds of selection, we obtained four isolates with low susceptibility to tebuconazole. These isolates also showed low susceptibility to itraconazole and voriconazole. Comparison of the genome sequences of the isolates obtained and the parental strain revealed a nonsynonymous mutation in MfsD, a major facilitator superfamily protein (Afu1g11820; R337L mutation [a change of R to L at position 337]), in all isolates. Furthermore, nonsynonymous mutations in AgcA, a mitochondrial inner membrane aspartate/glutamate transporter (Afu7g05220; E535Stop mutation), UbcD, a ubiquitin-conjugating enzyme E2 (Afu3g06030; T98K mutation), AbcJ, an ABC transporter (Afu3g12220; G297E mutation), and RttA, a putative protein responsible for tebuconazole tolerance (Afu7g04740; A83T mutation), were found in at least one isolate. Disruption of the agcA gene led to decreased susceptibility to azoles. Reconstruction of the A83T point mutation in RttA led to decreased susceptibility to azoles. Reversion of the T98K mutation in UbcD to the wild type led to decreased susceptibility to azoles. These results suggest that these mutations contribute to lowered susceptibility to medical azoles and agricultural azole fungicides.
Collapse
|
20
|
Archer M, Xu J. Current Practices for Reference Gene Selection in RT-qPCR of Aspergillus: Outlook and Recommendations for the Future. Genes (Basel) 2021; 12:genes12070960. [PMID: 34202507 PMCID: PMC8307107 DOI: 10.3390/genes12070960] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022] Open
Abstract
Aspergillus is a genus of filamentous fungi with vast geographic and ecological distributions. Species within this genus are clinically, agriculturally and biotechnologically relevant, leading to increasing interest in elucidating gene expression dynamics of key metabolic and physiological processes. Reverse-transcription quantitative Polymerase Chain Reaction (RT-qPCR) is a sensitive and specific method of quantifying gene expression. A crucial step for comparing RT-qPCR results between strains and experimental conditions is normalisation to experimentally validated reference gene(s). In this review, we provide a critical analysis of current reference gene selection and validation practices for RT-qPCR gene expression analyses of Aspergillus. Of 90 primary research articles obtained through our PubMed query, 17 experimentally validated the reference gene(s) used. Twenty reference genes were used across the 90 studies, with beta-tubulin being the most used reference gene, followed by actin, 18S rRNA and glyceraldehyde 3-phosphate dehydrogenase. Sixteen of the 90 studies used multiple reference genes for normalisation. Failing to experimentally validate the stability of reference genes can lead to conflicting results, as was the case for four studies. Overall, our review highlights the need to experimentally validate reference genes in RT-qPCR studies of Aspergillus.
Collapse
Affiliation(s)
| | - Jianping Xu
- Correspondence: ; Tel.: +1-905-525-9140 (ext. 27934); Fax: +1-905-522-6066
| |
Collapse
|
21
|
Mead ME, Steenwyk JL, Silva LP, de Castro PA, Saeed N, Hillmann F, Goldman GH, Rokas A. An evolutionary genomic approach reveals both conserved and species-specific genetic elements related to human disease in closely related Aspergillus fungi. Genetics 2021; 218:6263860. [PMID: 33944921 DOI: 10.1093/genetics/iyab066] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/20/2021] [Indexed: 11/12/2022] Open
Abstract
Aspergillosis is an important opportunistic human disease caused by filamentous fungi in the genus Aspergillus. Roughly 70% of infections are caused by Aspergillus fumigatus, with the rest stemming from approximately a dozen other Aspergillus species. Several of these pathogens are closely related to A. fumigatus and belong in the same taxonomic section, section Fumigati. Pathogenic species are frequently most closely related to nonpathogenic ones, suggesting Aspergillus pathogenicity evolved multiple times independently. To understand the repeated evolution of Aspergillus pathogenicity, we performed comparative genomic analyses on 18 strains from 13 species, including 8 species in section Fumigati, which aimed to identify genes, both ones previously connected to virulence as well as ones never before implicated, whose evolution differs between pathogens and nonpathogens. We found that most genes were present in all species, including approximately half of those previously connected to virulence, but a few genes were section- or species-specific. Evolutionary rate analyses identified over 1700 genes whose evolutionary rate differed between pathogens and nonpathogens and dozens of genes whose rates differed between specific pathogens and the rest of the taxa. Functional testing of deletion mutants of 17 transcription factor-encoding genes whose evolution differed between pathogens and nonpathogens identified eight genes that affect either fungal survival in a model of phagocytic killing, host survival in an animal model of fungal disease, or both. These results suggest that the evolution of pathogenicity in Aspergillus involved both conserved and species-specific genetic elements, illustrating how an evolutionary genomic approach informs the study of fungal disease.
Collapse
Affiliation(s)
- Matthew E Mead
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Jacob L Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Lilian P Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Patrícia A de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Nauman Saeed
- Junior Research Group Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Falk Hillmann
- Junior Research Group Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
22
|
Chen M, Zhong G, Wang S, Zhu J, Tang L, Li L. tpo3 and dur3, Aspergillus fumigatus Plasma Membrane Regulators of Polyamines, Regulate Polyamine Homeostasis and Susceptibility to Itraconazole. Front Microbiol 2021; 11:563139. [PMID: 33391196 PMCID: PMC7772357 DOI: 10.3389/fmicb.2020.563139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/25/2020] [Indexed: 11/13/2022] Open
Abstract
Aspergillus fumigatus is a well-known opportunistic pathogen that causes invasive aspergillosis (IA) infections, which have high mortality rates in immunosuppressed individuals. Long-term antifungal drug azole use in clinical treatment and agriculture results in loss of efficacy or drug resistance. Drug resistance is related to cellular metabolites and the corresponding gene transcription. In this study, through untargeted metabolomics and transcriptomics under itraconazole (ITC) treatment, we identified two plasma membrane-localized polyamine regulators tpo3 and dur3, which were important for polyamine homeostasis and susceptibility to ITC in A. fumigatus. In the absence of tpo3 and/or dur3, the levels of cytoplasmic polyamines had a moderate increase, which enhanced the tolerance of A. fumigatus to ITC. In comparison, overexpression of tpo3 or dur3 induced a drastic increase in polyamines, which increased the sensitivity of A. fumigatus to ITC. Further analysis revealed that polyamines concentration-dependently affected the susceptibility of A. fumigatus to ITC by scavenging reactive oxygen species (ROS) at a moderate concentration and promoting the production of ROS at a high concentration rather than regulating drug transport. Moreover, inhibition of polyamine biosynthesis reduced the intracellular polyamine content, resulted in accumulation of ROS and enhanced the antifungal activity of ITC. Interestingly, A. fumigatus produces much lower levels of ROS under voriconazole (VOC) treatment than under ITC-treatment. Accordingly, our study established the link among the polyamine regulators tpo3 and dur3, polyamine homeostasis, ROS content, and ITC susceptibility in A. fumigatus.
Collapse
Affiliation(s)
- Mingcong Chen
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Guowei Zhong
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Sha Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou Central Hospital, Huzhou University, Huzhou, China
| | - Jun Zhu
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lei Tang
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lei Li
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
23
|
Garcia-Ceron D, Bleackley MR, Anderson MA. Fungal Extracellular Vesicles in Pathophysiology. Subcell Biochem 2021; 97:151-177. [PMID: 33779917 DOI: 10.1007/978-3-030-67171-6_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Fungal pathogens are a concern in medicine and agriculture that has been exacerbated by the emergence of antifungal-resistant varieties that severely threaten human and animal health, as well as food security. This had led to the search for new and sustainable treatments for fungal diseases. Innovative solutions require a deeper understanding of the interactions between fungal pathogens and their hosts, and the key determinants of fungal virulence. Recently, a link has emerged between the release of extracellular vesicles (EVs) and fungal virulence that may contribute to finding new methods for fungal control. Fungal EVs carry pigments, carbohydrates, protein, nucleic acids and other macromolecules with similar functions as those found in EVs from other organisms, however certain fungal features, such as the fungal cell wall, impact EV release and cargo. Fungal EVs modulate immune responses in the host, have a role in cell-cell communication and transport molecules that function in virulence. Understanding the function of fungal EVs will expand our knowledge of host-pathogen interactions and may provide new and specific targets for antifungal drugs and agrichemicals.
Collapse
|
24
|
Aspergillosis, Avian Species and the One Health Perspective: The Possible Importance of Birds in Azole Resistance. Microorganisms 2020; 8:microorganisms8122037. [PMID: 33352774 PMCID: PMC7767009 DOI: 10.3390/microorganisms8122037] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 12/30/2022] Open
Abstract
The One Health context considers health based on three pillars: humans, animals, and environment. This approach is a strong ally in the surveillance of infectious diseases and in the development of prevention strategies. Aspergillus spp. are fungi that fit substantially in this context, in view of their ubiquity, as well as their importance as plant pathogens, and potentially fatal pathogens for, particularly, humans and avian species. In addition, the emergence of azole resistance, mainly in Aspergillus fumigatus sensu stricto, and the proven role of fungicides widely used on crops, reinforces the need for a multidisciplinary approach to this problem. Avian species are involved in short and long distance travel between different types of landscapes, such as agricultural fields, natural environments and urban environments. Thus, birds can play an important role in the dispersion of Aspergillus, and of special concern, azole-resistant strains. In addition, some bird species are particularly susceptible to aspergillosis. Therefore, avian aspergillosis could be considered as an environmental health indicator. In this review, aspergillosis in humans and birds will be discussed, with focus on the presence of Aspergillus in the environment. We will relate these issues with the emergence of azole resistance on Aspergillus. These topics will be therefore considered and reviewed from the “One Health” perspective.
Collapse
|
25
|
Wang F, Yao S, Cao D, Ju C, Yu S, Xu S, Fang H, Yu Y. Increased triazole-resistance and cyp51A mutations in Aspergillus fumigatus after selection with a combination of the triazole fungicides difenoconazole and propiconazole. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123200. [PMID: 32593937 DOI: 10.1016/j.jhazmat.2020.123200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Triazole-resistance in Aspergillus fumigatus is widespread. We evaluated whether triazole-resistance in A. fumigatus and its related cyp51A mutations, induced by a combination of the triazole fungicides difenoconazole and propiconazole, differs from resistance induced by the individual fungicides. Both difenoconazole and propiconazole can induce triazole-resistance in A. fumigatus. Resistance is much easier induced by formulated fungicides or a combination of these two fungicides compared with standard fungicides or individual fungicides, respectively. Six different mutations (G138S, G138D, H147Y, I246M, M263I and D430N) were identified in the induced resistant strains. The H147Y, I246M and M263I mutations were associated with triazole-resistance. This implies that the application of a combination of difenoconazole and propiconazole may result in higher triazole-resistance in A. fumigatus and more mutations in the cyp51A gene.
Collapse
Affiliation(s)
- Feiyan Wang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Shijie Yao
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Duantao Cao
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Chao Ju
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Sumei Yu
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Shiji Xu
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Hua Fang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yunlong Yu
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
26
|
Fernandes CM, Poeta MD. Fungal sphingolipids: role in the regulation of virulence and potential as targets for future antifungal therapies. Expert Rev Anti Infect Ther 2020; 18:1083-1092. [PMID: 32673125 PMCID: PMC7657966 DOI: 10.1080/14787210.2020.1792288] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The antifungal therapy currently available includes three major classes of drugs: polyenes, azoles and echinocandins. However, the clinical use of these compounds faces several challenges: while polyenes are toxic to the host, antifungal resistance to azoles and echinocandins has been reported. AREAS COVERED Fungal sphingolipids (SL) play a pivotal role in growth, morphogenesis and virulence. In addition, fungi possess unique enzymes involved in SL synthesis, leading to the production of lipids which are absent or differ structurally from the mammalian counterparts. In this review, we address the enzymatic reactions involved in the SL synthesis and their relevance to the fungal pathogenesis, highlighting their potential as targets for novel drugs and the inhibitors described so far. EXPERT OPINION The pharmacological inhibition of fungal serine palmitoyltransferase depends on the development of specific drugs, as myriocin also targets the mammalian enzyme. Inhibitors of ceramide synthase might constitute potent antifungals, by depleting the pool of complex SL and leading to the accumulation of the toxic intermediates. Acylhydrazones and aureobasidin A, which inhibit GlcCer and IPC synthesis, are not toxic to the host and effectively treat invasive mycoses, emerging as promising new classes of antifungal drugs.
Collapse
Affiliation(s)
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, NY, USA
- Division of Infectious Diseases, School of Medicine, Stony Brook University, NY, USA
- Veterans Administration Medical Center, Northport, NY, USA
| |
Collapse
|
27
|
Wassano NS, Leite AB, Reichert-Lima F, Schreiber AZ, Moretti NS, Damasio A. Lysine acetylation as drug target in fungi: an underexplored potential in Aspergillus spp. Braz J Microbiol 2020; 51:673-683. [PMID: 32170592 DOI: 10.1007/s42770-020-00253-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 02/28/2020] [Indexed: 12/18/2022] Open
Abstract
In recent years, the intensification of the use of immunosuppressive therapies has increased the incidence of invasive infections caused by opportunistic fungi. Considering that, the spread of azole resistance and amphotericin B (AmB) inefficiency against some clinical and environmental isolates has been described. Thus, to avoid a global problem when controlling fungal infections and critical failures in medicine, and food security, new approaches for drug target identification and for the development of new treatments that are more effective against pathogenic fungi are desired. Recent studies indicate that protein acetylation is present in hundreds of proteins of different cellular compartments and is involved in several biological processes, i.e., metabolism, translation, gene expression regulation, and oxidative stress response, from prokaryotes and eukaryotes, including fungi, demonstrating that lysine acetylation plays an important role in essential mechanisms. Lysine acetyltransferases (KATs) and lysine deacetylases (KDACs), the two enzyme families responsible for regulating protein acetylation levels, have been explored as drug targets for the treatment of several human diseases and infections. Aspergilli have on average 8 KAT genes and 11 KDAC genes in their genomes. This review aims to summarize the available knowledge about Aspergillus spp. azole resistance mechanisms and the role of lysine acetylation in the control of biological processes in fungi. We also want to discuss the lysine acetylation as a potential target for fungal infection treatment and drug target discovery.
Collapse
Affiliation(s)
- Natália Sayuri Wassano
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Ariely Barbosa Leite
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Franqueline Reichert-Lima
- Department of Clinical Pathology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Angelica Zaninelli Schreiber
- Department of Clinical Pathology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Nilmar S Moretti
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil.
| | - André Damasio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.
- Experimental Medicine Research Cluster (EMRC), University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
28
|
van der Torre MH, Novak-Frazer L, Rautemaa-Richardson R. Detecting Azole-Antifungal Resistance in Aspergillus fumigatus by Pyrosequencing. J Fungi (Basel) 2020; 6:jof6010012. [PMID: 31936898 PMCID: PMC7151159 DOI: 10.3390/jof6010012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 12/12/2022] Open
Abstract
Guidelines on the diagnosis and management of Aspergillus disease recommend a multi-test approach including CT scans, culture, fungal biomarker tests, microscopy and fungal PCR. The first-line treatment of confirmed invasive aspergillosis (IA) consists of drugs in the azole family; however, the emergence of azole-resistant isolates has negatively impacted the management of IA. Failure to detect azole-resistance dramatically increases the mortality rates of azole-treated patients. Despite drug susceptibility tests not being routinely performed currently, we suggest including resistance testing whilst diagnosing Aspergillus disease. Multiple tools, including DNA sequencing, are available to screen for drug-resistant Aspergillus in clinical samples. This is particularly beneficial as a large proportion of IA samples are culture negative, consequently impeding susceptibility testing through conventional methods. Pyrosequencing is a promising in-house DNA sequencing method that can rapidly screen for genetic hotspots associated with antifungal resistance. Pyrosequencing outperforms other susceptibility testing methods due to its fast turnaround time, accurate detection of polymorphisms within critical genes, including simultaneous detection of wild type and mutated sequences, and—most importantly—it is not limited to specific genes nor fungal species. Here we review current diagnostic methods and highlight the potential of pyrosequencing to aid in a diagnosis complete with a resistance profile to improve clinical outcomes.
Collapse
Affiliation(s)
- Mireille H. van der Torre
- Mycology Reference Centre, Excellence Centre of Medical Mycology (ECMM), Manchester University NHS Foundation Trust-Wythenshawe Hospital, Manchester M23 9LT, UK; (M.H.v.d.T.); (L.N.-F.)
| | - Lilyann Novak-Frazer
- Mycology Reference Centre, Excellence Centre of Medical Mycology (ECMM), Manchester University NHS Foundation Trust-Wythenshawe Hospital, Manchester M23 9LT, UK; (M.H.v.d.T.); (L.N.-F.)
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, NIHR Manchester Biomedical Research Centre (BRC) at the Manchester Academic Health Science Centre, The University of Manchester, Manchester M23 9LT, UK
| | - Riina Rautemaa-Richardson
- Mycology Reference Centre, Excellence Centre of Medical Mycology (ECMM), Manchester University NHS Foundation Trust-Wythenshawe Hospital, Manchester M23 9LT, UK; (M.H.v.d.T.); (L.N.-F.)
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, NIHR Manchester Biomedical Research Centre (BRC) at the Manchester Academic Health Science Centre, The University of Manchester, Manchester M23 9LT, UK
- Department of Infectious Diseases, Manchester University NHS Foundation Trust-Wythenshawe Hospital, Manchester M23 9LT, UK
- Correspondence: ; Tel.: +44-161-291-5941
| |
Collapse
|
29
|
|
30
|
Azole resistance mechanisms in Aspergillus: update and recent advances. Int J Antimicrob Agents 2020; 55:105807. [DOI: 10.1016/j.ijantimicag.2019.09.011] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/05/2019] [Accepted: 09/15/2019] [Indexed: 12/11/2022]
|
31
|
Mitochondrial dysfunctions trigger the calcium signaling-dependent fungal multidrug resistance. Proc Natl Acad Sci U S A 2019; 117:1711-1721. [PMID: 31811023 DOI: 10.1073/pnas.1911560116] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Drug resistance in fungal pathogens has risen steadily over the past decades due to long-term azole therapy or triazole usage in agriculture. Modification of the drug target protein to prevent drug binding is a major recognized route to induce drug resistance. However, mechanisms for nondrug target-induced resistance remain only loosely defined. Here, we explore the molecular mechanisms of multidrug resistance resulted from an efficient adaptation strategy for survival in drug environments in the human pathogen Aspergillus fumigatus We show that mutants conferring multidrug resistance are linked with mitochondrial dysfunction induced by defects in heme A biosynthesis. Comparison of the gene expression profiles between the drug-resistant mutants and the parental wild-type strain shows that multidrug-resistant transporters, chitin synthases, and calcium-signaling-related genes are significantly up-regulated, while scavenging mitochondrial reactive oxygen species (ROS)-related genes are significantly down-regulated. The up-regulated-expression genes share consensus calcium-dependent serine threonine phosphatase-dependent response elements (the binding sites of calcium-signaling transcription factor CrzA). Accordingly, drug-resistant mutants show enhanced cytosolic Ca2+ transients and persistent nuclear localization of CrzA. In comparison, calcium chelators significantly restore drug susceptibility and increase azole efficacy either in laboratory-derived or in clinic-isolated A. fumigatus strains. Thus, the mitochondrial dysfunction as a fitness cost can trigger calcium signaling and, therefore, globally up-regulate a series of embedding calcineurin-dependent-response-element genes, leading to antifungal resistance. These findings illuminate how fitness cost affects drug resistance and suggest that disruption of calcium signaling might be a promising therapeutic strategy to fight against nondrug target-induced drug resistance.
Collapse
|
32
|
cyp51A Mutations, Extrolite Profiles, and Antifungal Susceptibility in Clinical and Environmental Isolates of the Aspergillus viridinutans Species Complex. Antimicrob Agents Chemother 2019; 63:AAC.00632-19. [PMID: 31451501 PMCID: PMC6811395 DOI: 10.1128/aac.00632-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023] Open
Abstract
The past decade has seen an increase in aspergillosis in humans and animals due to Aspergillus viridinutans species complex members. Azole resistance is common to these infections, carrying a poor prognosis. cyp51A gene mutations are the main cause of acquired azole resistance in Aspergillus fumigatus. This study aimed to determine if the azole-resistant phenotype in A. viridinutans complex members is associated with cyp51A mutations or extrolite profiles. The past decade has seen an increase in aspergillosis in humans and animals due to Aspergillus viridinutans species complex members. Azole resistance is common to these infections, carrying a poor prognosis. cyp51A gene mutations are the main cause of acquired azole resistance in Aspergillus fumigatus. This study aimed to determine if the azole-resistant phenotype in A. viridinutans complex members is associated with cyp51A mutations or extrolite profiles. The cyp51A gene of clinical and environmental isolates was amplified using novel primers, antifungal susceptibility was tested using the Clinical and Laboratory Standards Institute methodology, and extrolite profiling was performed using agar plug extraction. Very high azole MICs were detected in 84% of the isolates (31/37). The MICs of the newer antifungals luliconazole and olorofim (F901318) were low for all isolates. cyp51A sequences revealed 113 nonsynonymous mutations compared to the sequence of wild-type A. fumigatus. M172A/V and D255G, previously associated with A. fumigatus azole resistance, were common among all isolates but were not correlated with azole MICs. Two environmental isolates with nonsusceptibility to itraconazole and high MICs of voriconazole and isavuconazole harbored G138C, previously associated with azole-resistant A. fumigatus. Some novel mutations were identified only among isolates with high azole MICs. However, cyp51A homology modeling did not cause a significant protein structure change for these mutations. There was no correlation between extrolite patterns and susceptibility. For A. viridinutans complex isolates, cyp51A mutations and the extrolites that they produced were not major causes of antifungal resistance. Luliconazole and olorofim show promise for treating azole-resistant infections caused by these cryptic species.
Collapse
|
33
|
Song Y, Zhu P, Wu Y, Tan L, Wei W, Liu S, Huang Q, Chen J. Epsilon-poly-l-lysine decorated ordered mesoporous silica contributes to the synergistic antifungal effect and enhanced solubility of a lipophilic drug. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:231-240. [PMID: 30889695 DOI: 10.1016/j.msec.2019.01.077] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/21/2018] [Accepted: 01/18/2019] [Indexed: 11/18/2022]
Abstract
The emergence of drug-resistant fungal strains remains a severe threat for the public health, which prompts strict restrictions on the uses of antifungal drugs. However, the majority of lipophilic fungistatic agents are poorly water soluble with a low oral adsorption characteristic posing challenges for the precise prescriptions. In this study, a natural antimicrobial cationic peptide of epsilon-poly-l-lysine (EPL) decorated ordered mesoporous silica (SBA-15) was facilely prepared for the efficient loading of antifungal itraconazole (ITZ) drugs. The characterized mesoporous SBA-15/EPL/ITZ composite exhibited remarkable antifungal performance against Aspergillus fumigatus as a model mold, which was attributed to synergistic antifungal activities of ITZ and EPL in the mesopores. Moreover, the in vitro release behaviors of ITZ in the composite nanoexcipients both in simulated gastric fluid and fasted state simulated intestinal fluid were studied. The observed release kinetics of ITZ demonstrated a contributing role of SBA-15/EPL to enhance the solubility of ITZ and thereby may promote its flux across the gastrointestinal epithelium, which is beneficial for the absorption of drugs. Additionally, SBA-15/EPL/ITZ composites showed desirable biocompatibility toward mammalian red blood cells, human cervical cancer cells (Hela) and human embryonic kidney cells (HEK-293T). Furthermore, the pharmacokinetic profiles of obtained nano-formulations were assessed in rats, among which the improved adsorption of SBA-15/EPL/ITZ composites (AUC0-24h sum: 8381.7 nM·h) was identified compared with that of pure ITZ (525.1 nM·h) and the commercial drug of Sporanox (7516.6 nM·h). Collectively, the prepared SBA-15/EPL/ITZ provides an ecofriendly and integrated nanocomposite with enhanced solubility of lipophilic drugs to combat proliferations of infectious fungi.
Collapse
Affiliation(s)
- Yiyan Song
- School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ping Zhu
- School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yuan Wu
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Li Tan
- Jiangsu Institute for Food and Drug Control, Nanjing 210009, China
| | - Wei Wei
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Songqin Liu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Qing Huang
- Jiangsu Institute for Food and Drug Control, Nanjing 210009, China
| | - Jin Chen
- School of Public Health, Nanjing Medical University, Nanjing 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China.
| |
Collapse
|
34
|
Cui N, He Y, Yao S, Zhang H, Ren J, Fang H, Yu Y. Tebuconazole induces triazole-resistance in Aspergillus fumigatus in liquid medium and soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:1237-1243. [PMID: 30340269 DOI: 10.1016/j.scitotenv.2018.08.247] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/17/2018] [Accepted: 08/19/2018] [Indexed: 06/08/2023]
Abstract
Aspergillus fumigatus is the mainly leading cause of invasive aspergillosis associated with significant morbidity and mortality in immunocompromised patients. However, triazole resistance in A. fumigatus has increased dramatically throughout the world nowadays. The emergence of triazole resistance has aroused growing concern. This research was conducted to assess if the resistance in A. fumigatus and its associated mutations in the cpy51A gene could be induced during its exposure to tebuconazole in liquid medium and in soil. The results indicated that the resistance in A. fumigatus with mutations of TR46/Y121F/T289A could be induced by tebuconazole in liquid medium. Nine resistant strains without any mutation in cyp51A were isolated in soil treated with tebuconazole at levels of 0.5-5.0 mg kg-1 after incubation for 120 d. The two (HI-30 and HI-36) of the nine resistant isolates were caused by overexpression of AtrF, AfuMDR1, cyp51A and cyp51B and hereditary stability. This strongly implies that conventional application of tebuconazole for plant protection will cause resistance of A. fumigatus to triazole medicals in agricultural soils.
Collapse
Affiliation(s)
- Ning Cui
- Institute of Pesticide and Environmental Toxicology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yiwen He
- Institute of Pesticide and Environmental Toxicology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Shijie Yao
- Institute of Pesticide and Environmental Toxicology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hongchao Zhang
- Institute of Pesticide and Environmental Toxicology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jingbei Ren
- Institute of Pesticide and Environmental Toxicology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hua Fang
- Institute of Pesticide and Environmental Toxicology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yunlong Yu
- Institute of Pesticide and Environmental Toxicology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
35
|
Lackner M, Rambach G, Jukic E, Sartori B, Fritz J, Seger C, Hagleitner M, Speth C, Lass-Flörl C. Azole-resistant and -susceptible Aspergillus fumigatus isolates show comparable fitness and azole treatment outcome in immunocompetent mice. Med Mycol 2018; 56:703-710. [PMID: 29228287 DOI: 10.1093/mmy/myx109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/05/2017] [Indexed: 11/15/2022] Open
Abstract
No data are available on the in vivo impact of infections with in vitro azole-resistant Aspergillus fumigatus in immunocompetent hosts. Here, the aim was to investigate fungal fitness and treatment response in immunocompetent mice infected with A. fumigatus (parental strain [ps]) and isogenic mutants carrying either the mutation M220K or G54W (cyp51A). The efficacy of itraconazole (ITC) and posaconazole (PSC) was investigated in mice, intravenously challenged either with a single or a combination of ps and mutants (6 × 105 conidia/mouse). Organ fungal burden and clinical parameters were measured. In coinfection models, no fitness advantage was observed for the ps strain when compared to the mutants (M220K and G54W) independent of the presence or absence of azole-treatment. For G54W, M220K, and the ps, no statistically significant difference in ITC and PSC treatment was observed in respect to fungal kidney burden. However, clinical parameters suggest that in particular the azole-resistant strain carrying the mutation G54W caused a more severe disease than the ps strain. Mice infected with G54W showed a significant decline in body weight and lymphocyte counts, while spleen/body weight ratio and granulocyte counts were increased. In immunocompetent mice, in vitro azole-resistance did not translate into therapeutic failure by either ITC or PSC; the immune system appears to play the key role in clearing the infection.
Collapse
Affiliation(s)
- Michaela Lackner
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Günter Rambach
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Emina Jukic
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Bettina Sartori
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Josef Fritz
- Department for Medical Statistics, Informatics and Health Economics, Medical University of Innsbruck, Austria
| | - Christoph Seger
- Division of Mass Spectrometry and Chromatography, Institute of Medical and Chemical Laboratory Diagnostics (ZIMCL), University Hospital Innsbruck, Innsbruck, Austria
| | - Magdalena Hagleitner
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Cornelia Speth
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
36
|
Insight into the Significance of Aspergillus fumigatus cyp51A Polymorphisms. Antimicrob Agents Chemother 2018; 62:AAC.00241-18. [PMID: 29632011 DOI: 10.1128/aac.00241-18] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/31/2018] [Indexed: 11/20/2022] Open
Abstract
Triazole antifungal compounds are the first treatment choice for invasive aspergillosis. However, in the last decade the rate of azole resistance among Aspergillus fumigatus strains has increased notoriously. The main resistance mechanisms are well defined and mostly related to point mutations of the azole target, 14-α sterol demethylase (cyp51A), with or without tandem repeat integrations in the cyp51A promoter. Furthermore, different combinations of five Cyp51A mutations (F46Y, M172V, N248T, D255E, and E427K) have been reported worldwide in about 10% of all A. fumigatus isolates tested. The azole susceptibility profile of these strains shows elevated azole MICs, although on the basis of the azole susceptibility breakpoints, these strains are not considered azole resistant. The purpose of the study was to determine whether these cyp51A polymorphisms (single nucleotide polymorphisms [SNPs]) are responsible for the azole susceptibility profile and whether they are reflected in a poorer azole treatment response in vivo that could compromise patient treatment and outcome. A mutant with a cyp51A deletion was generated and became fully susceptible to all azoles tested. Also, three cyp51A gene constructions with different combinations of SNPs were generated and reintroduced into an azole-susceptible wild-type (WT) strain (the ΔakuBKU80 strain). The alternative model host Galleria mellonella was used to compare the virulence and voriconazole response of G. mellonella larvae infected with A. fumigatus strains with WT cyp51A or cyp51A with SNPs. All strains were pathogenic in G. mellonella larvae, although they did not respond similarly to voriconazole therapeutic doses. Finally, the full genomes of these strains were sequenced and analyzed in comparison with those of A. fumigatus WT strains, revealing that they belong to different strain clusters or lineages.
Collapse
|
37
|
Abstract
The fungal pathogens Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus have transitioned from a rare curiosity to a leading cause of human mortality. The management of infections caused by these organisms is intimately dependent on the efficacy of antifungal agents; however, fungi that are resistant to these treatments are regularly isolated in the clinic, impeding our ability to control infections. Given the significant impact fungal pathogens have on human health, it is imperative to understand the molecular mechanisms that govern antifungal drug resistance. This review describes our current knowledge of the mechanisms by which antifungal drug resistance evolves in experimental populations and clinical settings. We explore current antifungal treatment options and discuss promising strategies to impede the evolution of drug resistance. By tackling antifungal drug resistance as an evolutionary problem, there is potential to improve the utility of current treatments and accelerate the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada; , ,
| | - Tavia Caplan
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada; , ,
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada; , ,
| |
Collapse
|
38
|
Darabian S, Hashemi SJ, Khodavaisy S, Sharifynia S, Kord M, Akbari Dana M, Aala F, Rezaie S. Morphological changes and induction of antifungal resistance in Aspergillus fumigatus due to different CO2 levels. Curr Med Mycol 2018; 3:21-26. [PMID: 29707670 PMCID: PMC5914923 DOI: 10.29252/cmm.3.3.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Background and Purpose Aspergillosis is one of the most common opportunistic fungal infections in immunocompromised and neutropenic patients. Aspergillus fumigatus (A. fumigatus) is the most common causative agent of this infection. Due to variable CO2 concentrations that pathogens are exposed to during the infection process and to understand the role of CO2, we examined the effects of various CO2 concentrations as one of the environmental factors on morphological changes and induction of antifungal resistance in A. fumigatus. Materials and Methods A. fumigatus strains were cultured and incubated under 1%, 3%, 5%, and 12% CO2 atmospheres, each time for one, two, and four weeks. The control culture was maintained for one week without CO2 atmosphere. Morphological changes were investigated and antifungal susceptibility test was performed according to the recommendations of the Clinical and Laboratory Standards Institute (CLSI) M38-A2 document. The results of different CO2 atmospheres were compared with that of the control sample. Results We found that 1%, 3%, 5%, and 12% CO2 atmospheres were associated with morphological colony changes. Macroscopically, the colonies were shallow dark green, smooth, crisp to powdery with reduced growth; microscopic examination revealed the absence of conidiation. The induction of antifungal resistance in the susceptible strains to itraconazole, voriconazole, and amphotericin B increased after exposure to 12% CO2 atmosphere and four weeks of incubation. The MIC values for itraconazole, voriconazole, and amphotericin B were 16 g/ml, 1 g/ml, and 16 g/ml, respectively. These values for the control group were 0.125 g/ml, 0.125 g/ml, and 2 g/ml, respectively. Conclusion Exposure to different CO2 atmospheres induced morphological changes in A. fumigatus, it seems to increase the MIC values, as well. In parallel, resistance to both itraconazole and voriconazole was also observed.
Collapse
Affiliation(s)
- Sima Darabian
- Department of Medical Mycology and Parasitology, School of Public Health, International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed Jamal Hashemi
- Department of Medical Mycology and Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadegh Khodavaisy
- Department of Medical Mycology and Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Sharifynia
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Kord
- Department of Medical Mycology and Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Akbari Dana
- Department of Medical Mycology and Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Aala
- Department of Medical Mycology and Parasitology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Sassan Rezaie
- Department of Medical Mycology and Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Aspergillus fumigatus Afssn3-Afssn8 Pair Reverse Regulates Azole Resistance by Conferring Extracellular Polysaccharide, Sphingolipid Pathway Intermediates, and Efflux Pumps to Biofilm. Antimicrob Agents Chemother 2018; 62:AAC.01978-17. [PMID: 29311083 DOI: 10.1128/aac.01978-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 12/21/2017] [Indexed: 11/20/2022] Open
Abstract
Antifungal treatment is often ineffectual, partly because of biofilm formation. In this study, by using a combined forward and reverse genetic strategy, we identified that nucleus-localized AfSsn3 and its partner AfSsn8, which constitute a Cdk8-cyclin pair, are required for azole resistance in Aspergillus fumigatus Deletion of Afssn3 led to increased absorption and utilization of glucose and amino acids. Interestingly, absorption and utilization of glucose accelerated the extracellular polysaccharide formation, while utilization of the amino acids serine, threonine, and glycine increased sphingolipid pathway intermediate accumulation. In addition, the absence of Afssn3 induced the activity of the efflux pump proteins. These factors indicate the mature biofilm is responsible for the major mechanisms of A. fumigatus resistance to azoles in the ΔAfssn3 mutant. Collectively, the loss of Afssn3 led to two "barrier" layers between the intracellular and extracellular spaces, which consequently decreased drug penetration into the cell.
Collapse
|
40
|
The Influence of Genetic Stability on Aspergillus fumigatus Virulence and Azole Resistance. G3-GENES GENOMES GENETICS 2018; 8:265-278. [PMID: 29150592 PMCID: PMC5765354 DOI: 10.1534/g3.117.300265] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Genetic stability is extremely important for the survival of every living organism, and a very complex set of genes has evolved to cope with DNA repair upon DNA damage. Here, we investigated the Aspergillus fumigatus AtmA (Ataxia-telangiectasia mutated, ATM) and AtrA kinases, and how they impact virulence and the evolution of azole resistance. We demonstrated that A. fumigatus atmA and atrA null mutants are haploid and have a discrete chromosomal polymorphism. The ΔatmA and ΔatrA strains are sensitive to several DNA-damaging agents, but surprisingly both strains were more resistant than the wild-type strain to paraquat, menadione, and hydrogen peroxide. The atmA and atrA genes showed synthetic lethality emphasizing the cooperation between both enzymes and their consequent redundancy. The lack of atmA and atrA does not cause any significant virulence reduction in A. fumigatus in a neutropenic murine model of invasive pulmonary aspergillosis and in the invertebrate alternative model Galleria mellonela. Wild-type, ΔatmA, and ΔatrA populations that were previously transferred 10 times in minimal medium (MM) in the absence of voriconazole have not shown any significant changes in drug resistance acquisition. In contrast, ΔatmA and ΔatrA populations that similarly evolved in the presence of a subinhibitory concentration of voriconazole showed an ∼5–10-fold increase when compared to the original minimal inhibitory concentration (MIC) values. There are discrete alterations in the voriconazole target Cyp51A/Erg11A or cyp51/erg11 and/or Cdr1B efflux transporter overexpression that do not seem to be the main mechanisms to explain voriconazole resistance in these evolved populations. Taken together, these results suggest that genetic instability caused by ΔatmA and ΔatrA mutations can confer an adaptive advantage, mainly in the intensity of voriconazole resistance acquisition.
Collapse
|
41
|
Molecular Tools for the Detection and Deduction of Azole Antifungal Drug Resistance Phenotypes in Aspergillus Species. Clin Microbiol Rev 2017; 30:1065-1091. [PMID: 28903985 DOI: 10.1128/cmr.00095-16] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The incidence of azole resistance in Aspergillus species has increased over the past years, most importantly for Aspergillus fumigatus. This is partially attributable to the global spread of only a few resistance alleles through the environment. Secondary resistance is a significant clinical concern, as invasive aspergillosis with drug-susceptible strains is already difficult to treat, and exclusion of azole-based antifungals from prophylaxis or first-line treatment of invasive aspergillosis in high-risk patients would dramatically limit drug choices, thus increasing mortality rates for immunocompromised patients. Management options for invasive aspergillosis caused by azole-resistant A. fumigatus strains were recently reevaluated by an international expert panel, which concluded that drug resistance testing of cultured isolates is highly indicated when antifungal therapy is intended. In geographical regions with a high environmental prevalence of azole-resistant strains, initial therapy should be guided by such analyses. More environmental and clinical screening studies are therefore needed to generate the local epidemiologic data if such measures are to be implemented on a sound basis. Here we propose a first workflow for evaluating isolates from screening studies, and we compile the MIC values correlating with individual amino acid substitutions in the products of cyp51 genes for interpretation of DNA sequencing data, especially in the absence of cultured isolates.
Collapse
|
42
|
Astvad K, Hare R, Arendrup M. Evaluation of the in vitro activity of isavuconazole and comparator voriconazole against 2635 contemporary clinical Candida and Aspergillus isolates. Clin Microbiol Infect 2017; 23:882-887. [DOI: 10.1016/j.cmi.2017.03.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/21/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
|
43
|
Li SX, Song YJ, Jiang L, Zhao YJ, Guo H, Li DM, Zhu KJ, Zhang H. Synergistic Effects of Tetrandrine with Posaconazole Against Aspergillus fumigatus. Microb Drug Resist 2017; 23:674-681. [PMID: 28080217 DOI: 10.1089/mdr.2016.0217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Shui-Xiu Li
- The First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China
- Institute of Mycology, Jinan University, Guangzhou, People's Republic of China
| | - Yan-Jun Song
- The First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China
- Institute of Mycology, Jinan University, Guangzhou, People's Republic of China
| | - Ling Jiang
- The First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China
- Institute of Mycology, Jinan University, Guangzhou, People's Republic of China
| | - Ya-Jing Zhao
- The First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China
- Institute of Mycology, Jinan University, Guangzhou, People's Republic of China
| | - Hui Guo
- The First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China
- Institute of Mycology, Jinan University, Guangzhou, People's Republic of China
| | - Dong-Mei Li
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, District of Columbia
| | - Kun-Ju Zhu
- The First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China
- Institute of Mycology, Jinan University, Guangzhou, People's Republic of China
| | - Hong Zhang
- The First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China
- Institute of Mycology, Jinan University, Guangzhou, People's Republic of China
| |
Collapse
|
44
|
Drug Sensitivity and Resistance Mechanism in Aspergillus Section Nigri Strains from Japan. Antimicrob Agents Chemother 2017; 61:AAC.02583-16. [PMID: 28607016 DOI: 10.1128/aac.02583-16] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/29/2017] [Indexed: 11/20/2022] Open
Abstract
Aspergillus niger and its related species, known as Aspergillus section Nigri, are ubiquitously distributed across the globe and are often isolated from clinical specimens. In Japan, Aspergillus section Nigri is second most often isolated from clinical specimens following Aspergillus fumigatus We determined the species of Aspergillus section Nigri isolated in Japan by DNA sequencing of partial β-tubulin genes and investigated drug susceptibility by the CLSI M38-A2 method. The collection contained 20 Aspergillus niger, 59 Aspergillus welwitschiae, and 39 Aspergillus tubingensis strains. Drug susceptibility testing revealed 30 to 55% of A. niger, 6.8 to 18.6% of A. welwitschiae, and 79.5 to 89.7% of A. tubingensis isolates to be less susceptible (so-called resistant) to itraconazole (ITC) and/or voriconazole (VRC) according to the epidemiologic cutoff values (ECVs) proposed for A. niger previously. MIC distributions of ITC or VRC showed no remarkable differences between clinical and environmental isolates. When the cyp51A sequences were compared between susceptible and resistant strains, 18 amino acid mutations were specific for resistant isolates of A. niger and A. tubingensis; however, none of them were confirmed to be associated with azole resistance. Three nonrelated A. welwitschiae isolates possessed a partial deletion in cyp51A, likely attributable to being more susceptible to azoles than other isolates. One of five ITC-resistant A. tubingensis isolates showed higher expression of cyp51A than did susceptible strains. Our results show that cyp51A point mutations may have no association with azole resistance but that in some cases the overexpression of cyp51A may lead to the azole resistance in these species.
Collapse
|
45
|
Abstract
Aspergillus species are ubiquitous fungal saprophytes found in diverse ecological niches worldwide. Among them, Aspergillus fumigatus is the most prevalent and is largely responsible for the increased incidence of invasive aspergillosis with high mortality rates in some immunocompromised hosts. Azoles are the first-line drugs in treating diseases caused by Aspergillus spp. However, increasing reports in A. fumigatus azole resistance, both in the clinical setting and in the environment, are threatening the effectiveness of clinical and agricultural azole drugs. The azole target is the 14-α sterol demethylase encoded by cyp51A gene and the main mechanisms of resistance involve the integration of tandem repeats in its promoter and/or single point mutations in this gene. In A. fumigatus, azole resistance can emerge in two different scenarios: a medical route in which azole resistance is generated during long periods of azole treatment in the clinical setting and a route of resistance derived from environmental origin due to extended use of demethylation inhibitors in agriculture. The understanding of A. fumigatus azole resistance development and its evolution is needed in order to prevent or minimize its impact. In this article, we review the current situation of azole resistance epidemiology and the predominant molecular mechanisms described based on the resistance acquisition routes. In addition, the clinical implications of A. fumigatus azole resistance and future research are discussed.
Collapse
|
46
|
Scorzoni L, de Paula E Silva ACA, Marcos CM, Assato PA, de Melo WCMA, de Oliveira HC, Costa-Orlandi CB, Mendes-Giannini MJS, Fusco-Almeida AM. Antifungal Therapy: New Advances in the Understanding and Treatment of Mycosis. Front Microbiol 2017; 8:36. [PMID: 28167935 PMCID: PMC5253656 DOI: 10.3389/fmicb.2017.00036] [Citation(s) in RCA: 265] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/06/2017] [Indexed: 01/08/2023] Open
Abstract
The high rates of morbidity and mortality caused by fungal infections are associated with the current limited antifungal arsenal and the high toxicity of the compounds. Additionally, identifying novel drug targets is challenging because there are many similarities between fungal and human cells. The most common antifungal targets include fungal RNA synthesis and cell wall and membrane components, though new antifungal targets are being investigated. Nonetheless, fungi have developed resistance mechanisms, such as overexpression of efflux pump proteins and biofilm formation, emphasizing the importance of understanding these mechanisms. To address these problems, different approaches to preventing and treating fungal diseases are described in this review, with a focus on the resistance mechanisms of fungi, with the goal of developing efficient strategies to overcoming and preventing resistance as well as new advances in antifungal therapy. Due to the limited antifungal arsenal, researchers have sought to improve treatment via different approaches, and the synergistic effect obtained by the combination of antifungals contributes to reducing toxicity and could be an alternative for treatment. Another important issue is the development of new formulations for antifungal agents, and interest in nanoparticles as new types of carriers of antifungal drugs has increased. In addition, modifications to the chemical structures of traditional antifungals have improved their activity and pharmacokinetic parameters. Moreover, a different approach to preventing and treating fungal diseases is immunotherapy, which involves different mechanisms, such as vaccines, activation of the immune response and inducing the production of host antimicrobial molecules. Finally, the use of a mini-host has been encouraging for in vivo testing because these animal models demonstrate a good correlation with the mammalian model; they also increase the speediness of as well as facilitate the preliminary testing of new antifungal agents. In general, many years are required from discovery of a new antifungal to clinical use. However, the development of new antifungal strategies will reduce the therapeutic time and/or increase the quality of life of patients.
Collapse
Affiliation(s)
- Liliana Scorzoni
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Ana C A de Paula E Silva
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Caroline M Marcos
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Patrícia A Assato
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Wanessa C M A de Melo
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Haroldo C de Oliveira
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Caroline B Costa-Orlandi
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Maria J S Mendes-Giannini
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Ana M Fusco-Almeida
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| |
Collapse
|
47
|
Hagiwara D, Watanabe A, Kamei K, Goldman GH. Epidemiological and Genomic Landscape of Azole Resistance Mechanisms in Aspergillus Fungi. Front Microbiol 2016; 7:1382. [PMID: 27708619 PMCID: PMC5030247 DOI: 10.3389/fmicb.2016.01382] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/22/2016] [Indexed: 11/13/2022] Open
Abstract
Invasive aspergillosis is a life-threatening mycosis caused by the pathogenic fungus Aspergillus. The predominant causal species is Aspergillus fumigatus, and azole drugs are the treatment of choice. Azole drugs approved for clinical use include itraconazole, voriconazole, posaconazole, and the recently added isavuconazole. However, epidemiological research has indicated that the prevalence of azole-resistant A. fumigatus isolates has increased significantly over the last decade. What is worse is that azole-resistant strains are likely to have emerged not only in response to long-term drug treatment but also because of exposure to azole fungicides in the environment. Resistance mechanisms include amino acid substitutions in the target Cyp51A protein, tandem repeat sequence insertions at the cyp51A promoter, and overexpression of the ABC transporter Cdr1B. Environmental azole-resistant strains harboring the association of a tandem repeat sequence and punctual mutation of the Cyp51A gene (TR34/L98H and TR46/Y121F/T289A) have become widely disseminated across the world within a short time period. The epidemiological data also suggests that the number of Aspergillus spp. other than A. fumigatus isolated has risen. Some non-fumigatus species intrinsically show low susceptibility to azole drugs, imposing the need for accurate identification, and drug susceptibility testing in most clinical cases. Currently, our knowledge of azole resistance mechanisms in non-fumigatus Aspergillus species such as A. flavus, A. niger, A. tubingensis, A. terreus, A. fischeri, A. lentulus, A. udagawae, and A. calidoustus is limited. In this review, we present recent advances in our understanding of azole resistance mechanisms particularly in A. fumigatus. We then provide an overview of the genome sequences of non-fumigatus species, focusing on the proteins related to azole resistance mechanisms.
Collapse
Affiliation(s)
| | - Akira Watanabe
- Medical Mycology Research Center, Chiba University Chiba, Japan
| | - Katsuhiko Kamei
- Medical Mycology Research Center, Chiba University Chiba, Japan
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo Ribeirão Preto, Brazil
| |
Collapse
|
48
|
Meneau I, Coste AT, Sanglard D. Identification ofAspergillus fumigatusmultidrug transporter genes and their potential involvement in antifungal resistance. Med Mycol 2016; 54:616-27. [DOI: 10.1093/mmy/myw005] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 01/13/2016] [Indexed: 01/11/2023] Open
|
49
|
Williams C, Rajendran R, Ramage G. Aspergillus Biofilms in Human Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 931:1-11. [PMID: 27271678 DOI: 10.1007/5584_2016_4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The biofilm phenotype of Aspergillus species is an important and accepted clinical entity. While industrially these biofilms have been used extensively in important biofermentations, their role in clinical infection is less well defined. A recent flurry of activity has demonstrated that these interesting filamentous moulds have the capacity to form biofilms both in vitro and in vivo, and through various investigations have shown that these are exquisitely resistant to antifungal therapies through a range of adaptive resistance mechanisms independent of defined genetic changes. This review will explore the clinical importance of these biofilms and provide contemporary information with respect to their clinical management.
Collapse
Affiliation(s)
- Craig Williams
- Institute of Healthcare Policy and Practice, University of West of Scotland, High St, Paisley, PA1 2BE, UK.
| | - Ranjith Rajendran
- Infection and Immunity Research Group, Glasgow Dental School and Hospital, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland
| | - Gordon Ramage
- Infection and Immunity Research Group, Glasgow Dental School and Hospital, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland
| |
Collapse
|
50
|
Albataineh MT, Kadosh D. Regulatory roles of phosphorylation in model and pathogenic fungi. Med Mycol 2015; 54:333-52. [PMID: 26705834 PMCID: PMC4818690 DOI: 10.1093/mmy/myv098] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 11/01/2015] [Indexed: 12/25/2022] Open
Abstract
Over the past 20 years, considerable advances have been made toward our understanding
of how post-translational modifications affect a wide variety of biological
processes, including morphology and virulence, in medically important fungi.
Phosphorylation stands out as a key molecular switch and regulatory modification that
plays a critical role in controlling these processes. In this article, we first
provide a comprehensive and up-to-date overview of the regulatory roles that both
Ser/Thr and non-Ser/Thr kinases and phosphatases play in model and pathogenic fungi.
Next, we discuss the impact of current global approaches that are being used to
define the complete set of phosphorylation targets (phosphoproteome) in medically
important fungi. Finally, we provide new insights and perspectives into the potential
use of key regulatory kinases and phosphatases as targets for the development of
novel and more effective antifungal strategies.
Collapse
Affiliation(s)
- Mohammad T Albataineh
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - David Kadosh
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| |
Collapse
|