1
|
Morelli T, Freeman A, Staples KJ, Wilkinson TMA. Hidden in plain sight: the impact of human rhinovirus infection in adults. Respir Res 2025; 26:120. [PMID: 40155903 PMCID: PMC11954259 DOI: 10.1186/s12931-025-03178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 03/02/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Human rhinovirus (HRV), a non-enveloped RNA virus, was first identified more than 70 years ago. It is highly infectious and easily transmitted through aerosols and direct contact. The advent of multiplex PCR has enhanced the detection of a diverse range of respiratory viruses, and HRV consistently ranks among the most prevalent respiratory pathogens globally. Circulation occurs throughout the year, with peak incidence in autumn and spring in temperate climates. Remarkably, during the SARS-CoV-2 pandemic, HRV transmission persisted, demonstrating its resistance to stringent public health measures aimed at curbing viral transmission. MAIN BODY HRV is characterised by its extensive genetic diversity, comprising three species and more than 170 genotypes. This diversity and substantial number of concurrently circulating strains allows HRVs to frequently escape the adaptive immune system and poses formidable challenges for the development of effective vaccines and antiviral therapies. There is currently a lack of specific treatments. Historically, HRV has been associated with self-limiting upper respiratory infection. However, there is now extensive evidence highlighting its significant role in severe lower respiratory disease in adults, including exacerbations of chronic airway diseases, such as asthma and chronic obstructive pulmonary disease (COPD), as well as pneumonia. These severe manifestations can occur even in immunocompetent individuals, broadening the clinical impact of this ubiquitous virus. Consequently, the burden of rhinovirus infections extends across various healthcare settings, from primary care to general hospital wards and intensive care units. The impact of HRV in adults, in terms of morbidity and healthcare utilisation, rivals that of the other major respiratory viruses, including influenza and respiratory syncytial virus. Recognition of this substantial burden underscores the critical need for novel treatment strategies and effective management protocols to mitigate the impact of HRV infections on public health. CONCLUSION This review examines the epidemiology, clinical manifestations, and risk factors associated with severe HRV infection in adults. By drawing on contemporary literature, we aim to provide a comprehensive overview of the virus's significant health implications. Understanding the scope of this impact is essential for developing new, targeted interventions and improving patient outcomes in the face of this persistent and adaptable pathogen.
Collapse
Affiliation(s)
- Tommaso Morelli
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK.
| | - Anna Freeman
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Karl J Staples
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Tom M A Wilkinson
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| |
Collapse
|
2
|
Roux H, Touret F, Rathelot P, Vanelle P, Roche M. From the "One-Molecule, One-Target, One-Disease" Concept towards Looking for Multi-Target Therapeutics for Treating Non-Polio Enterovirus (NPEV) Infections. Pharmaceuticals (Basel) 2024; 17:1218. [PMID: 39338380 PMCID: PMC11434921 DOI: 10.3390/ph17091218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Non-polio enteroviruses (NPEVs), namely coxsackieviruses (CV), echoviruses (E), enteroviruses (EV), and rhinoviruses (RV), are responsible for a wide variety of illnesses. Some infections can progress to life-threatening conditions in children or immunocompromised patients. To date, no treatments have been approved. Several molecules have been evaluated through clinical trials without success. To overcome these failures, the multi-target directed ligand (MTDL) strategy could be applied to tackle enterovirus infections. This work analyzes registered clinical trials involving antiviral drugs to highlight the best candidates and develops filters to apply to a selection for MTDL synthesis. We explicitly stated the methods used to answer the question: which solution can fight NPEVs effectively? We note the originality and relevance of this proposal in relation to the state of the art in the enterovirus-inhibitors field. Several combinations are possible to broaden the antiviral spectrum and potency. We discuss data related to the virus and data related to each LEAD compound identified so far. Overall, this study proposes a perspective on different strategies to overcome issues identified in clinical trials and evaluate the "MTDL" potential to improve the efficacy of drugs, broaden the antiviral targets, possibly reduce the adverse effects, drug design costs and limit the selection of drug-resistant virus variants.
Collapse
Affiliation(s)
- Hugo Roux
- Aix-Marseille Université, CNRS, ICR UMR_7273, LPCR, Faculté de Pharmacie, 13005 Marseille, France; (H.R.); (P.R.)
| | - Franck Touret
- Unité des Virus Émergents (UVE: Aix-Marseille Université, Università di Corsica, IRD 190, Inserm 1207, IRBA), 13005 Marseille, France;
| | - Pascal Rathelot
- Aix-Marseille Université, CNRS, ICR UMR_7273, LPCR, Faculté de Pharmacie, 13005 Marseille, France; (H.R.); (P.R.)
| | - Patrice Vanelle
- Aix-Marseille Université, CNRS, ICR UMR_7273, LPCR, Faculté de Pharmacie, 13005 Marseille, France; (H.R.); (P.R.)
| | - Manon Roche
- Aix-Marseille Université, CNRS, ICR UMR_7273, LPCR, Faculté de Pharmacie, 13005 Marseille, France; (H.R.); (P.R.)
| |
Collapse
|
3
|
Lim TYM, Jaladanki CK, Wong YH, Yogarajah T, Fan H, Chu JJH. Tanomastat exerts multi-targeted inhibitory effects on viral capsid dissociation and RNA replication in human enteroviruses. EBioMedicine 2024; 107:105277. [PMID: 39226680 PMCID: PMC11419895 DOI: 10.1016/j.ebiom.2024.105277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/23/2024] [Accepted: 07/28/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Global cyclical outbreaks of human enterovirus infections has positioned human enterovirus A71 (EV-A71) as a neurotropic virus of clinical importance. However, there remains a scarcity of internationally approved antivirals and vaccines. METHODS In pursuit of repurposing drugs for combating human enteroviruses, we employed a comprehensive pharmacophore- and molecular docking-based virtual screen targeting EV-A71 capsid protein VP1-4, 3C protease, and 3D polymerase proteins. Among 15 shortlisted ligand candidates, we dissected the inhibitory mechanism of Tanomastat in cell-based studies and evaluated its in vivo efficacy in an EV-A71-infected murine model. FINDINGS We demonstrated that Tanomastat exerts dose-dependent inhibition on EV-A71 replication, with comparable efficacy profiles in enterovirus species A, B, C, and D in vitro. Time-course studies suggested that Tanomastat predominantly disrupts early process(es) of the EV-A71 replication cycle. Mechanistically, live virus particle tracking and docking predictions revealed that Tanomastat specifically impedes viral capsid dissociation, potentially via VP1 hydrophobic pocket binding. Bypassing its inhibition on entry stages, we utilized EV-A71 replication-competent, 3Dpol replication-defective, and bicistronic IRES reporter replicons to show that Tanomastat also inhibits viral RNA replication, but not viral IRES translation. We further showed that orally administered Tanomastat achieved 85% protective therapeutic effect and alleviated clinical symptoms in EV-A71-infected neonatal mice. INTERPRETATION Our study establishes Tanomastat as a broad-spectrum anti-enterovirus candidate with promising pre-clinical efficacy, warranting further testing for potential therapeutic application. FUNDING MOE Tier 2 grants (MOE-T2EP30221-0005, R571-000-068-592, R571-000-076-515, R571-000-074-733) and A∗STARBiomedical Research Council (BMRC).
Collapse
Affiliation(s)
- Therese Yien May Lim
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chaitanya K Jaladanki
- Bioinformatics Institute, Agency for Science, Technology and Research (A∗STAR), 30 Biopolis Street, Matrix #07-01, 138671, Singapore
| | - Yi Hao Wong
- NUSMed Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, 117599, Singapore
| | - Thinesshwary Yogarajah
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore.
| | - Hao Fan
- Bioinformatics Institute, Agency for Science, Technology and Research (A∗STAR), 30 Biopolis Street, Matrix #07-01, 138671, Singapore; Synthetic Biology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, 117597, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, 117596, Singapore; Duke-NUS Medical School, 8 College Rd, 169857, Singapore.
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUSMed Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, 117599, Singapore; Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos #06-05, 138673, Singapore.
| |
Collapse
|
4
|
Ianevski A, Frøysa IT, Lysvand H, Calitz C, Smura T, Schjelderup Nilsen HJ, Høyer E, Afset JE, Sridhar A, Wolthers KC, Zusinaite E, Tenson T, Kurg R, Oksenych V, Galabov AS, Stoyanova A, Bjørås M, Kainov DE. The combination of pleconaril, rupintrivir, and remdesivir efficiently inhibits enterovirus infections in vitro, delaying the development of drug-resistant virus variants. Antiviral Res 2024; 224:105842. [PMID: 38417531 DOI: 10.1016/j.antiviral.2024.105842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/10/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Enteroviruses are a significant global health concern, causing a spectrum of diseases from the common cold to more severe conditions like hand-foot-and-mouth disease, meningitis, myocarditis, pancreatitis, and poliomyelitis. Current treatment options for these infections are limited, underscoring the urgent need for effective therapeutic strategies. To find better treatment option we analyzed toxicity and efficacy of 12 known broad-spectrum anti-enterovirals both individually and in combinations against different enteroviruses in vitro. We identified several novel, synergistic two-drug and three-drug combinations that demonstrated significant inhibition of enterovirus infections in vitro. Specifically, the triple-drug combination of pleconaril, rupintrivir, and remdesivir exhibited remarkable efficacy against echovirus (EV) 1, EV6, EV11, and coxsackievirus (CV) B5, in human lung epithelial A549 cells. This combination surpassed the effectiveness of single-agent or dual-drug treatments, as evidenced by its ability to protect A549 cells from EV1-induced cytotoxicity across seven passages. Additionally, this triple-drug cocktail showed potent antiviral activity against EV-A71 in human intestinal organoids. Thus, our findings highlight the therapeutic potential of the pleconaril-rupintrivir-remdesivir combination as a broad-spectrum treatment option against a range of enterovirus infections. The study also paves the way towards development of strategic antiviral drug combinations with virus family coverage and high-resistance barriers.
Collapse
Affiliation(s)
- Aleksandr Ianevski
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
| | - Irene Trøen Frøysa
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
| | - Hilde Lysvand
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
| | - Carlemi Calitz
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Teemu Smura
- Department of Virology, University of Helsinki, 00014 Helsinki, Finland; HUS Diagnostic Center, Clinical Microbiology, Helsinki University Hospital, University of Helsinki, 00029 Helsinki, Finland
| | | | - Erling Høyer
- Department of Medical Microbiology, Clinic for Laboratory Medicine, St. Olavs Hospital, 7028 Trondheim, Norway
| | - Jan Egil Afset
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway; Department of Medical Microbiology, Clinic for Laboratory Medicine, St. Olavs Hospital, 7028 Trondheim, Norway
| | - Adithya Sridhar
- OrganoVIR Labs, Dept of Pediatric Infectious Diseases, Emma Children's Hospital, Amsterdam University Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Katja C Wolthers
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Eva Zusinaite
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Tanel Tenson
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Reet Kurg
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Angel S Galabov
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Adelina Stoyanova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway; Department of Microbiology, Oslo University Hospital and University of Oslo, 0372 Oslo, Norway
| | - Denis E Kainov
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway; Institute for Molecular Medicine Finland, University of Helsinki, 00014, Helsinki, Finland.
| |
Collapse
|
5
|
Song JH, Mun SH, Yang H, Kwon YS, Kim SR, Song MY, Ham Y, Choi HJ, Baek WJ, Cho S, Ko HJ. Antiviral Mechanisms of Saucerneol from Saururus chinensis against Enterovirus A71, Coxsackievirus A16, and Coxsackievirus B3: Role of Mitochondrial ROS and the STING/TKB-1/IRF3 Pathway. Viruses 2023; 16:16. [PMID: 38275951 PMCID: PMC10821076 DOI: 10.3390/v16010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Enterovirus A71 (EV71), coxsackievirus A16 (CVA16), and coxsackievirus B3 (CVB3) are pathogenic members of the Picornaviridae family that cause a range of diseases, including severe central nervous system complications, myocarditis, and pancreatitis. Despite the considerable public health impact of these viruses, no approved antiviral treatments are currently available. In the present study, we confirmed the potential of saucerneol, a compound derived from Saururus chinensis, as an antiviral agent against EV71, CVA16, and CVB3. In the in vivo model, saucerneol effectively suppressed CVB3 replication in the pancreas and alleviated virus-induced pancreatitis. The antiviral activity of saucerneol is associated with increased mitochondrial ROS (mROS) production. In vitro inhibition of mROS generation diminishes the antiviral efficacy of saucerneol. Moreover, saucerneol treatment enhanced the phosphorylation of STING, TBK-1, and IRF3 in EV71- and CVA16-infected cells, indicating that its antiviral effects were mediated through the STING/TBK-1/IRF3 antiviral pathway, which was activated by increased mROS production. Saucerneol is a promising natural antiviral agent against EV71, CVA16, and CVB3 and has potential against virus-induced pancreatitis and myocarditis. Further studies are required to assess its safety and efficacy, which is essential for the development of effective antiviral strategies against these viruses.
Collapse
Affiliation(s)
- Jae-Hyoung Song
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; (J.-H.S.); (S.-H.M.); (H.Y.); (M.-y.S.)
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seo-Hyeon Mun
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; (J.-H.S.); (S.-H.M.); (H.Y.); (M.-y.S.)
| | - Heejung Yang
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; (J.-H.S.); (S.-H.M.); (H.Y.); (M.-y.S.)
| | - Yong Soo Kwon
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; (J.-H.S.); (S.-H.M.); (H.Y.); (M.-y.S.)
| | - Seong-Ryeol Kim
- Division of Acute Viral Diseases, Centers for Emerging Virus Research, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Republic of Korea;
| | - Min-young Song
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; (J.-H.S.); (S.-H.M.); (H.Y.); (M.-y.S.)
| | - Youngwook Ham
- Nucleic Acid Therapeutics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea;
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (KUST), Daejeon 34113, Republic of Korea
| | - Hwa-Jung Choi
- Department of Beauty Art, Youngsan University, 142 Bansong Beltway, Busan 48015, Republic of Korea; (H.-J.C.); (W.-J.B.)
| | - Won-Jin Baek
- Department of Beauty Art, Youngsan University, 142 Bansong Beltway, Busan 48015, Republic of Korea; (H.-J.C.); (W.-J.B.)
| | - Sungchan Cho
- Nucleic Acid Therapeutics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea;
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (KUST), Daejeon 34113, Republic of Korea
| | - Hyun-Jeong Ko
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; (J.-H.S.); (S.-H.M.); (H.Y.); (M.-y.S.)
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
6
|
Lane TR, Fu J, Sherry B, Tarbet B, Hurst BL, Riabova O, Kazakova E, Egorova A, Clarke P, Leser JS, Frost J, Rudy M, Tyler KL, Klose T, Volobueva AS, Belyaevskaya SV, Zarubaev VV, Kuhn RJ, Makarov V, Ekins S. Efficacy of an isoxazole-3-carboxamide analog of pleconaril in mouse models of Enterovirus-D68 and Coxsackie B5. Antiviral Res 2023; 216:105654. [PMID: 37327878 PMCID: PMC10527014 DOI: 10.1016/j.antiviral.2023.105654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
Enteroviruses (EV) cause a number of life-threatening infectious diseases. EV-D68 is known to cause respiratory illness in children that can lead to acute flaccid myelitis. Coxsackievirus B5 (CVB5) is commonly associated with hand-foot-mouth disease. There is no antiviral treatment available for either. We have developed an isoxazole-3-carboxamide analog of pleconaril (11526092) which displayed potent inhibition of EV-D68 (IC50 58 nM) as well as other enteroviruses including the pleconaril-resistant Coxsackievirus B3-Woodruff (IC50 6-20 nM) and CVB5 (EC50 1 nM). Cryo-electron microscopy structures of EV-D68 in complex with 11526092 and pleconaril demonstrate destabilization of the EV-D68 MO strain VP1 loop, and a strain-dependent effect. A mouse respiratory model of EV-D68 infection, showed 3-log decreased viremia, favorable cytokine response, as well as statistically significant 1-log reduction in lung titer reduction at day 5 after treatment with 11526092. An acute flaccid myelitis neurological infection model did not show efficacy. 11526092 was tested in a mouse model of CVB5 infection and showed a 4-log TCID50 reduction in the pancreas. In summary, 11526092 represents a potent in vitro inhibitor of EV with in vivo efficacy in EV-D68 and CVB5 animal models suggesting it is worthy of further evaluation as a potential broad-spectrum antiviral therapeutic against EV.
Collapse
Affiliation(s)
- Thomas R Lane
- Collaborations Pharmaceuticals Inc., Raleigh, NC, USA
| | - Jianing Fu
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Barbara Sherry
- Department of Molecular Biomedical Sciences, North Carolina State University, College of Veterinary Medicine, Raleigh, NC, USA
| | - Bart Tarbet
- Institute for Antiviral Research, Utah State University, Logan, UT, USA; Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Brett L Hurst
- Institute for Antiviral Research, Utah State University, Logan, UT, USA; Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Olga Riabova
- Research Center of Biotechnology RAS, 33-1 Leninsky prospect, 119071, Moscow, Russia
| | - Elena Kazakova
- Research Center of Biotechnology RAS, 33-1 Leninsky prospect, 119071, Moscow, Russia
| | - Anna Egorova
- Research Center of Biotechnology RAS, 33-1 Leninsky prospect, 119071, Moscow, Russia
| | - Penny Clarke
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - J Smith Leser
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joshua Frost
- Department of Immunology and Microbiology, Infectious Disease, Medicine and Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Kenneth L Tyler
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Veterans Affairs, Aurora, CO, USA
| | - Thomas Klose
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | | | | | - Vladimir V Zarubaev
- Saint Petersburg Pasteur Institute, 14 Mira Street, 197101, Saint Petersburg, Russia
| | - Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Vadim Makarov
- Research Center of Biotechnology RAS, 33-1 Leninsky prospect, 119071, Moscow, Russia
| | - Sean Ekins
- Collaborations Pharmaceuticals Inc., Raleigh, NC, USA.
| |
Collapse
|
7
|
Harada N, Nakashima Y, Sakaida M, Mukai D, Makuuchi Y, Kuno M, Takakuwa T, Okamura H, Nishimoto M, Koh H, Ohsawa M, Hino M, Nakamae H. Rhinovirus/enterovirus identification by electron microscopy in lower respiratory tract infection in a patient with relapsed myelodysplastic syndrome after allogeneic hematopoietic cell transplantation and donor lymphocyte infusion. Transpl Immunol 2023; 77:101792. [PMID: 36682572 DOI: 10.1016/j.trim.2023.101792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
Donor lymphocyte infusion (DLI) is a curable treatment option, inducing a graft-versus-tumor effect in patients with relapsed hematological malignancies after allogeneic hematopoietic cell transplantation (allo-HCT). However, not only graft-versus-host disease but also pulmonary complications are problematic adverse events after DLI. Although viral infections can be associated with pulmonary complications after DLI, the mechanism underlying these complications remains unclear. Detecting the causative virus infections after pulmonary complications following DLI is challenging, as invasive examinations, such as bronchoalveolar lavage and lung biopsies, are necessary. Family Picornaviridae, including Human-Rhinovirus (HRV) and Enterovirus (EnV), can induce fatal lower respiratory tract infection (LRTI) in recipients who undergo allo-HCT, which can be underdiagnosed. We encountered a 62-year-old man with relapsed myelodysplastic syndrome 20 days after a second HLA-haplo-identical allo-HCT and 4 DLI procedures who was later found to have HRV and EnV LRTI by postmortem electron microscopy. Despite high-dose immunosuppression, severe hypoxemia did not improve, and he succumbed to respiratory failure. Immunosuppressive therapy for idiopathic pneumonia syndrome after allo-HCT may be effective, but its efficacy for acute respiratory failure after DLI is controversial. Our case indicated that the control of viral replication should be prioritized over that of inflammation in HRV and EnV LRTI after DLI.
Collapse
Affiliation(s)
- Naonori Harada
- Hematology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan; Department of Hematology, Fuchu Hospital, Osaka, Japan.
| | - Yasuhiro Nakashima
- Hematology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Miho Sakaida
- Department of Diagnostic Pathology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan; Department of Pathology, Osaka City General Hospital, Japan
| | - Daiki Mukai
- Hematology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan; Department of Hematology, Fuchu Hospital, Osaka, Japan
| | - Yosuke Makuuchi
- Hematology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Masatomo Kuno
- Hematology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Teruhito Takakuwa
- Hematology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Hiroshi Okamura
- Hematology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Mitsutaka Nishimoto
- Hematology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Hideo Koh
- Hematology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Masahiko Ohsawa
- Department of Diagnostic Pathology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Masayuki Hino
- Hematology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Hirohisa Nakamae
- Hematology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
8
|
Ljubin-Sternak S, Meštrović T. Rhinovirus—A True Respiratory Threat or a Common Inconvenience of Childhood? Viruses 2023; 15:v15040825. [PMID: 37112805 PMCID: PMC10144685 DOI: 10.3390/v15040825] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
A decade-long neglect of rhinovirus as an important agent of disease in humans was primarily due to the fact that they were seen as less virulent and capable of causing only mild respiratory infections such as common cold. However, with an advent of molecular diagnostic methods, an increasing number of reports placed them among the pathogens found in the lower respiratory tract and recognized them as important risk factors for asthma-related pathology in childhood. As the spread of rhinovirus was not severely affected by the implementation of social distancing and other measures during the coronavirus disease 2019 (COVID-19) pandemic, its putative pathogenic role has become even more evident in recent years. By concentrating on children as the most vulnerable group, in this narrative review we first present classification and main traits of rhinovirus, followed by epidemiology and clinical presentation, risk factors for severe forms of the disease, long-term complications and the pathogenesis of asthma, as well as a snapshot of treatment trials and studies. Recent evidence suggests that the rhinovirus is a significant contributor to respiratory illness in both high-risk and low-risk populations of children.
Collapse
|
9
|
Wang LC, Tsai HP, Chen SH, Wang SM. Therapeutics for fulminant hepatitis caused by enteroviruses in neonates. Front Pharmacol 2022; 13:1014823. [PMID: 36339581 PMCID: PMC9630557 DOI: 10.3389/fphar.2022.1014823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/04/2022] [Indexed: 01/01/2025] Open
Abstract
Neonatal infection with nonpolio enteroviruses (EVs) causes nonspecific febrile illnesses and even life-threatening multiorgan failure. Hepatitis, which often results in hepatic necrosis followed by disseminated intravascular coagulopathy, is one of the most severe and frequent fatal neonatal EV infection complications. Coxsackievirus B (CVB) 1-5 and many echoviruses have been most commonly identified. Neonatal EV infection treatment has usually involved initial supportive care. Studies for CVB and echovirus infection treatments were developed for more than thirty years. Intravenous immunoglobulin and pleconaril therapy was performed in some clinical trials. Additionally, other studies demonstrated antiviral and/or anti-inflammatory pathogenesis mechanisms of neonatal EV hepatitis in in vitro or in vivo models. These treatments represented promising options for the clinical practice of neonatal EV hepatitis. However, further investigation is needed to elucidate the whole therapeutic potential and safety problems.
Collapse
Affiliation(s)
- Li-Chiu Wang
- School of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Huey-Pin Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shun-Hua Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Min Wang
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
10
|
Ng KT, Ng LJ, Oong XY, Chook JB, Chan KG, Takebe Y, Kamarulzaman A, Tee KK. Application of a VP4/VP2-inferred transmission clusters in estimating the impact of interventions on rhinovirus transmission. Virol J 2022; 19:36. [PMID: 35246187 PMCID: PMC8894564 DOI: 10.1186/s12985-022-01762-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite the clinical burden attributable to rhinovirus (RV) infections, the RV transmission dynamics and the impact of interventions on viral transmission remain elusive. METHODS A total of 3,935 nasopharyngeal specimens were examined, from which the VP4/VP2 gene was sequenced and genotyped. RV transmission clusters were reconstructed using the genetic threshold of 0.005 substitutions/site, estimated from the global VP4/VP2 sequences. A transmission cluster is characterized by the presence of at least two individuals (represent by nodes), whose viral sequences are genetically linked (represent by undirected edges) at the estimated genetic distance threshold supported by bootstrap value of ≥ 90%. To assess the impact of facemask, pleconaril and social distancing on RV transmission clusters, trials were simulated for interventions with varying efficacy and were evaluated based on the reduction in the number of infected patients (nodes) and the reduction in the number of nodes-connecting edges. The putative impact of intervention strategies on RV transmission clusters was evaluated through 10,000 simulations. RESULTS A substantial clustering of 168 RV transmission clusters of varying sizes were observed. This suggests that RV disease burden observed in the population was largely due to multiple sub-epidemics, predominantly driven by RV-A, followed by RV-C and -B. No misclassification of RV species and types were observed, suggesting the specificity and sensitivity of the analysis. Through 10,000 simulations, it was shown that social distancing may be effective in decelerating RV transmission, by removing more than 95% of nodes and edges within the RV transmission clusters. However, facemask removed less than 8% and 66% of nodes and edges, respectively, conferring moderate advantage in limiting RV transmission. CONCLUSION Here, we presented a network-based approach of which the degree of RV spread that fuel disease transmission in the region was mapped for the first time. The utilization of RV transmission clusters in assessing the putative impact of interventions on disease transmission at the population level was demonstrated.
Collapse
Affiliation(s)
- Kim Tien Ng
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, Singapore
| | - Liang Jie Ng
- Faculty of Information Science and Technology, Multimedia University, Melaka, Malaysia
| | - Xiang Yong Oong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jack Bee Chook
- School of Medical and Life Sciences, Sunway University, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Kok Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Yutaka Takebe
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,AIDS Research Center, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan
| | - Adeeba Kamarulzaman
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kok Keng Tee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. .,School of Medical and Life Sciences, Sunway University, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
11
|
Esneau C, Duff AC, Bartlett NW. Understanding Rhinovirus Circulation and Impact on Illness. Viruses 2022; 14:141. [PMID: 35062345 PMCID: PMC8778310 DOI: 10.3390/v14010141] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 01/27/2023] Open
Abstract
Rhinoviruses (RVs) have been reported as one of the main viral causes for severe respiratory illnesses that may require hospitalization, competing with the burden of other respiratory viruses such as influenza and RSV in terms of severity, economic cost, and resource utilization. With three species and 169 subtypes, RV presents the greatest diversity within the Enterovirus genus, and despite the efforts of the research community to identify clinically relevant subtypes to target therapeutic strategies, the role of species and subtype in the clinical outcomes of RV infection remains unclear. This review aims to collect and organize data relevant to RV illness in order to find patterns and links with species and/or subtype, with a specific focus on species and subtype diversity in clinical studies typing of respiratory samples.
Collapse
Affiliation(s)
| | | | - Nathan W. Bartlett
- Hunter Medical Research Institute, College of Health Medicine and Wellbeing, University of Newcastle, New Lambton Heights, NSW 2305, Australia; (C.E.); (A.C.D.)
| |
Collapse
|
12
|
Lanko K, Sun L, Froeyen M, Leyssen P, Delang L, Mirabelli C, Neyts J. Comparative analysis of the molecular mechanism of resistance to vapendavir across a panel of picornavirus species. Antiviral Res 2021; 195:105177. [PMID: 34517053 PMCID: PMC8593553 DOI: 10.1016/j.antiviral.2021.105177] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 11/25/2022]
Abstract
Vapendavir is a rhino/enterovirus inhibitor that targets a hydrophobic pocket in the viral capsid preventing the virus from entering the cell. We set out to study and compare the molecular mechanisms of resistance to vapendavir among clinically relevant Picornavirus species. To this end in vitro resistance selection of drug-resistant isolates was applied in rhinovirus 2 and 14, enterovirus-D68 and Poliovirus 1 Sabin. Mutations in the drug-binding pocket in VP1 (C199R/Y in hRV14; I194F in PV1; M252L and A156T in EV-D68), typical for this class of compounds, were identified. Interestingly, we also observed mutations located outside the pocket (K167E in EV-D68 and G149C in hRV2) that contribute to the resistant phenotype. Remarkably, the G149C substitution rendered the replication of human rhinovirus 2 dependent on the presence of vapendavir. Our data suggest that the binding of vapendavir to the capsid of the G149C isolate may be required to stabilize the viral particle and to allow efficient dissemination of the virus. We observed the dependency of the G149C isolate on other compounds of this class, suggesting that this phenotype is common for capsid binders. In addition the VP1 region containing the G149C substitution has not been associated with antiviral resistance before. Our results demonstrate that the phenotype and genotype of clinically relevant vapendavir-resistant picornavirus species is more complex than generally believed.
Collapse
Affiliation(s)
- Kristina Lanko
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000, Leuven, Belgium
| | - Liang Sun
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000, Leuven, Belgium
| | - Mathy Froeyen
- KU Leuven - University of Leuven, Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Laboratory of Medicinal Chemistry, B-3000, Leuven, Belgium
| | - Pieter Leyssen
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000, Leuven, Belgium
| | - Leen Delang
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000, Leuven, Belgium
| | | | - Johan Neyts
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000, Leuven, Belgium.
| |
Collapse
|
13
|
James SA, Yam WK. Sub-structure-based screening and molecular docking studies of potential enteroviruses inhibitors. Comput Biol Chem 2021; 92:107499. [PMID: 33932782 DOI: 10.1016/j.compbiolchem.2021.107499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/21/2021] [Indexed: 11/15/2022]
Abstract
Rhinoviruses (RV), especially Human rhinovirus (HRVs) have been accepted as the most common cause for upper respiratory tract infections (URTIs). Pleconaril, a broad spectrum anti-rhinoviral compound, has been used as a drug of choice for URTIs for over a decade. Unfortunately, for various complications associated with this drug, it was rejected, and a replacement is highly desirable. In silico screening and prediction methods such as sub-structure search and molecular docking have been widely used to identify alternative compounds. In our study, we have utilised sub-structure search to narrow down our quest in finding relevant chemical compounds. Molecular docking studies were then used to study their binding interaction at the molecular level. Interestingly, we have identified 3 residues that is worth further investigation in upcoming molecular dynamics simulation systems of their contribution in stable interaction.
Collapse
Affiliation(s)
- Stephen Among James
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Selangor Darul Ehsan, Malaysia; Department of Biochemistry, Faculty of Science, Kaduna State University, 800211, Kaduna, Nigeria.
| | - Wai Keat Yam
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
14
|
Identification of a conserved virion-stabilizing network inside the interprotomer pocket of enteroviruses. Commun Biol 2021; 4:250. [PMID: 33637854 PMCID: PMC7910612 DOI: 10.1038/s42003-021-01779-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023] Open
Abstract
Enteroviruses pose a persistent and widespread threat to human physical health, with no specific treatments available. Small molecule capsid binders have the potential to be developed as antivirals that prevent virus attachment and entry into host cells. To aid with broad-range drug development, we report here structures of coxsackieviruses B3 and B4 bound to different interprotomer-targeting capsid binders using single-particle cryo-EM. The EM density maps are beyond 3 Å resolution, providing detailed information about interactions in the ligand-binding pocket. Comparative analysis revealed the residues that form a conserved virion-stabilizing network at the interprotomer site, and showed the small molecule properties that allow anchoring in the pocket to inhibit virus disassembly.
Collapse
|
15
|
Anasir MI, Zarif F, Poh CL. Antivirals blocking entry of enteroviruses and therapeutic potential. J Biomed Sci 2021; 28:10. [PMID: 33451326 PMCID: PMC7811253 DOI: 10.1186/s12929-021-00708-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/08/2021] [Indexed: 01/26/2023] Open
Abstract
Viruses from the genus Enterovirus (EV) of the Picornaviridae family are known to cause diseases such as hand foot and mouth disease (HFMD), respiratory diseases, encephalitis and myocarditis. The capsid of EV is an attractive target for the development of direct-acting small molecules that can interfere with viral entry. Some of the capsid binders have been evaluated in clinical trials but the majority have failed due to insufficient efficacy or unacceptable off-target effects. Furthermore, most of the capsid binders exhibited a low barrier to resistance. Alternatively, host-targeting inhibitors such as peptides derived from the capsid of EV that can recognize cellular receptors have been identified. However, the majority of these peptides displayed low anti-EV potency (µM range) as compared to the potency of small molecule compounds (nM range). Nonetheless, the development of anti-EV peptides is warranted as they may complement the small-molecules in a drug combination strategy to treat EVs. Lastly, structure-based approach to design antiviral peptides should be utilized to unearth potent anti-EV peptides.
Collapse
Affiliation(s)
- Mohd Ishtiaq Anasir
- Centre for Virus and Vaccine Research, Sunway University, 5, Jalan Universiti, 47500, Bandar Sunway, Selangor, Malaysia
| | - Faisal Zarif
- Centre for Virus and Vaccine Research, Sunway University, 5, Jalan Universiti, 47500, Bandar Sunway, Selangor, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, Sunway University, 5, Jalan Universiti, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
16
|
Ortega H, Nickle D, Carter L. Rhinovirus and asthma: Challenges and opportunities. Rev Med Virol 2020; 31:e2193. [PMID: 33217098 PMCID: PMC8365703 DOI: 10.1002/rmv.2193] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022]
Abstract
Human rhinoviruses (RVs) are the primary aetiological agent of the common cold. Generally, the associated infection is mild and self‐limiting, but may also be associated with bronchiolitis in infants, pneumonia in the immunocompromised and exacerbation in patients with pulmonary conditions such as asthma or chronic obstructive pulmonary disease. Viral infection accounts for as many as two thirds of asthma exacerbations in children and more than half in adults. Allergy and asthma are major risk factors for more frequent and severe RV‐related illnesses. The prevalence of RV‐induced wheezing will likely continue to increase given that asthma affects a significant proportion of the population, with allergic asthma accounting for the majority. Several new respiratory viruses and their subgroups have been discovered, with various degrees of relevance. This review will focus on RV infection in the context of the epidemiologic evidence, genetic variability, pathobiology, clinical studies in the context of asthma, differences with other viruses including COVID‐19 and current treatment interventions.
Collapse
|
17
|
Abstract
Enterovirus D68 (EV-D68) is an RNA virus that causes respiratory illnesses mainly in children. In severe cases, it can lead to neurological complications such as acute flaccid myelitis (AFM). EV-D68 belongs to the enterovirus genera of the Picornaviridae family, which also includes many other significant human pathogens such as poliovirus, enterovirus A71, and rhinovirus. There are currently no vaccines or antivirals against EV-D68. In this review, we present the current understanding of the link between EV-D68 and AFM, the mechanism of viral replication, and recent progress in developing EV-D68 antivirals by targeting various viral proteins and host factors that are essential for viral replication. The future directions of EV-D68 antiviral drug discovery and the criteria for drugs to reach clinical trials are also discussed.
Collapse
Affiliation(s)
- Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, USA, 85721
| | - Rami Musharrafieh
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, USA, 85721
| | - Madeleine Zheng
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, USA, 85721
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, USA, 85721
| |
Collapse
|
18
|
Soumajit S, Tamil Selvan RP, Bhanuprakash V. In vitro antiviral efficacy of pleconaril and ribavirin on foot-and-mouth disease virus replication. Virusdisease 2019; 30:562-570. [PMID: 31890754 PMCID: PMC6917675 DOI: 10.1007/s13337-019-00559-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 11/26/2019] [Indexed: 10/25/2022] Open
Abstract
Antiviral therapy is a promising strategy to control acute viral infections. FMDV causes an acute infection and the vaccination provides a protective immunity 7 days post immunization. If the infection is uncontained, then it affects the entire herd. In such circumstances, if antiviral drug is administered the infection can be checked in a herd. Ribavirin is known to cure persistently infected BHK21 cells with FMD virus. However, there have been no systematic studies on antiviral activity of ribavirin against FMDV at different time points with the application of ELISA, PCR or real-time PCR. Pleconaril is known to inhibit enteroviruses and rhinoviruses but has not been explored on FMDV. Hence, the present study evaluates the in vitro antiviral efficacy of pleconaril and ribavirin on FMDV replication. The maximum non-toxic concentrations (MNTC) of pleconaril and ribavirin for BHK21 cells respectively were 7.81 μg/50 μL and 15.62 μg/50 μL. Thus, drug concentrations below MNTC were tested for their antiviral activity against serial tenfold diluted FMDV O, A and Asia 1 serotypes. Pleconaril did not inhibit FMDV serotype O replication at 7.5 μg/50 μL based on CPE inhibition assay and this was further confirmed using sandwich ELISA, PCR/real-time PCR. On the other hand, ribavirin at 15.62 μg/50 μL inhibited the in vitro replication of FMDV O, A and Asia 1 and the inhibition was confirmed by serotype specific sandwich ELISA, PCR and real-time PCR assays. The inhibition was directly proportional to the concentration of ribavirin. Therefore, ribavirin could be explored for its in vivo efficacy as a potential therapeutic in the prevention of early spread of FMDV infection in a herd.
Collapse
Affiliation(s)
- Sarkar Soumajit
- FMD Vaccine Quality Control Laboratory, ICAR-Indian Veterinary Research Institute, HA Farm (P.O), Hebbal, Bangalore, Karnataka 560 024 India
| | - Ramasamy Periyasamy Tamil Selvan
- FMD Vaccine Quality Control Laboratory, ICAR-Indian Veterinary Research Institute, HA Farm (P.O), Hebbal, Bangalore, Karnataka 560 024 India
| | - Veerakyathappa Bhanuprakash
- FMD Vaccine Quality Control Laboratory, ICAR-Indian Veterinary Research Institute, HA Farm (P.O), Hebbal, Bangalore, Karnataka 560 024 India
| |
Collapse
|
19
|
Egorova A, Ekins S, Schmidtke M, Makarov V. Back to the future: Advances in development of broad-spectrum capsid-binding inhibitors of enteroviruses. Eur J Med Chem 2019; 178:606-622. [PMID: 31226653 PMCID: PMC8194503 DOI: 10.1016/j.ejmech.2019.06.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 01/16/2023]
Abstract
The hydrophobic pocket within viral capsid protein 1 is a target to combat the rhino- and enteroviruses (RV and EV) using small molecules. The highly conserved amino acids lining this pocket enable the development of antivirals with broad-spectrum of activity against numerous RVs and EVs. Inhibitor binding blocks: the attachment of the virion to the host cell membrane, viral uncoating, and/or production of infectious virus particles. Syntheses and biological studies of the most well-known antipicornaviral capsid binders have been reviewed and we propose next steps in this research.
Collapse
Affiliation(s)
- Anna Egorova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prospekt 33-2, Moscow, 119071, Russia
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC27606, USA
| | - Michaela Schmidtke
- Jena University Hospital, Department of Medical Microbiology, Section Experimental Virology, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Vadim Makarov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prospekt 33-2, Moscow, 119071, Russia.
| |
Collapse
|
20
|
Cryo-EM structure of pleconaril-resistant rhinovirus-B5 complexed to the antiviral OBR-5-340 reveals unexpected binding site. Proc Natl Acad Sci U S A 2019; 116:19109-19115. [PMID: 31462495 DOI: 10.1073/pnas.1904732116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Viral inhibitors, such as pleconaril and vapendavir, target conserved regions in the capsids of rhinoviruses (RVs) and enteroviruses (EVs) by binding to a hydrophobic pocket in viral capsid protein 1 (VP1). In resistant RVs and EVs, bulky residues in this pocket prevent their binding. However, recently developed pyrazolopyrimidines inhibit pleconaril-resistant RVs and EVs, and computational modeling has suggested that they also bind to the hydrophobic pocket in VP1. We studied the mechanism of inhibition of pleconaril-resistant RVs using RV-B5 (1 of the 7 naturally pleconaril-resistant rhinoviruses) and OBR-5-340, a bioavailable pyrazolopyrimidine with proven in vivo activity, and determined the 3D-structure of the protein-ligand complex to 3.6 Å with cryoelectron microscopy. Our data indicate that, similar to other capsid binders, OBR-5-340 induces thermostability and inhibits viral adsorption and uncoating. However, we found that OBR-5-340 attaches closer to the entrance of the pocket than most other capsid binders, whose viral complexes have been studied so far, showing only marginal overlaps of the attachment sites. Comparing the experimentally determined 3D structure with the control, RV-B5 incubated with solvent only and determined to 3.2 Å, revealed no gross conformational changes upon OBR-5-340 binding. The pocket of the naturally OBR-5-340-resistant RV-A89 likewise incubated with OBR-5-340 and solved to 2.9 Å was empty. Pyrazolopyrimidines have a rigid molecular scaffold and may thus be less affected by a loss of entropy upon binding. They interact with less-conserved regions than known capsid binders. Overall, pyrazolopyrimidines could be more suitable for the development of new, broadly active inhibitors.
Collapse
|
21
|
Impact of Rhinovirus Infections in Children. Viruses 2019; 11:v11060521. [PMID: 31195744 PMCID: PMC6632063 DOI: 10.3390/v11060521] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/22/2019] [Accepted: 06/04/2019] [Indexed: 12/16/2022] Open
Abstract
Rhinovirus (RV) is an RNA virus that causes more than 50% of upper respiratory tract infections in humans worldwide. Together with Respiratory Syncytial Virus, RV is one of the leading causes of viral bronchiolitis in infants and the most common virus associated with wheezing in children aged between one and two years. Because of its tremendous genetic diversity (>150 serotypes), the recurrence of RV infections each year is quite typical. Furthermore, because of its broad clinical spectrum, the clinical variability as well as the pathogenesis of RV infection are nowadays the subjects of an in-depth examination and have been the subject of several studies in the literature. In fact, the virus is responsible for direct cell cytotoxicity in only a small way, and it is now clearer than ever that it may act indirectly by triggering the release of active mediators by structural and inflammatory airway cells, causing the onset and/or the acute exacerbation of asthmatic events in predisposed children. In the present review, we aim to summarize the RV infection's epidemiology, pathogenetic hypotheses, and available treatment options as well as its correlation with respiratory morbidity and mortality in the pediatric population.
Collapse
|
22
|
Abstract
Human rhinovirus is responsible for causing 50% of common cold infections in infants and adults. It belongs to the picornavirus family of nonenveloped positive-strand RNA viruses. The RNA synthesis of rhinovirus is carried out by RNA-dependent RNA polymerase, also known as 3DPol. It catalyzes the synthesis of negative-strand RNA using a positive-strand template. The structure of the enzyme consists of three domains: palm, fingers, and thumb domains and Mg2+ in the active site. These conserved structural features of the enzyme help in catalyzing phosphodiester bond formation between the two consecutive nucleotide units complimentary to the template RNA using a VPg primer. Owing to the presence of over 100 serotypes of the enzyme, designing specific inhibitors targeting the polymerase is a challenging task and until now no clinically approved antirhino viral drug is reported. In this review, we have given detailed information about the structure and function of the enzyme and also discussed some of the inhibitors and their in vivo activity against 3DPol.
Collapse
|
23
|
Lee JS, Kim SR, Song JH, Lee YP, Ko HJ. Anti-Human Rhinovirus 1B Activity of Dexamethasone viaGCR-Dependent Autophagy Activation. Osong Public Health Res Perspect 2018; 9:334-339. [PMID: 30584497 PMCID: PMC6296803 DOI: 10.24171/j.phrp.2018.9.6.07] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objectives Human rhinoviruses (HRVs) are the major cause of the common cold. Currently there is no registered, clinically effective, antiviral chemotherapeutic agent to treat diseases caused by HRVs. In this study, the antiviral activity of dexamethasone (DEX) against HRV1B was examined. Methods The anti–HRV1B activity of DEX was assessed by sulforhodamine B assay in HeLa cells, and by RT-PCR in the lungs of HRV1B-infected mice. Histological evaluation of HRV1B-infected lungs was performed and a histological score was given. Anti-HRV1B activity of DEX via the glucocorticoid receptor (GCR)-dependent autophagy activation was assessed by blocking with chloroquine diphosphate salt or bafilomycin A1 treatment. Results In HRV1B-infected HeLa cells, treatment with DEX in a dose-dependent manner, resulted in a cell viability of > 70% indicating that HRV1B viral replication was reduced by DEX treatment. HRV1B infected mice treated with DEX, had evidence of reduced inflammation and a moderate histological score. DEX treatment showed antiviral activity against HRV1B via GCR-dependent autophagy activation. Conclusion This study demonstrated that DEX treatment showed anti-HRV1B activity via GCR-dependent autophagy activation in HeLa cells and HRV1B infected mice. Further investigation assessing the development of topical formulations may enable the development of improved DEX effectiveness.
Collapse
Affiliation(s)
- Jae-Sug Lee
- Department of Beauty Science, Kwangju Women's University, Gwangju, Korea
| | - Seong-Ryeol Kim
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, Korea
| | - Jae-Hyoung Song
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, Korea
| | - Yong-Pyo Lee
- Division of Viral Diseases, Center for Laboratory Control and Infectious Diseases, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
24
|
Abstract
Sepsis in children is typically presumed to be bacterial in origin until proven otherwise, but frequently bacterial cultures ultimately return negative. Although viruses may be important causative agents of culture-negative sepsis worldwide, the incidence, disease burden and mortality of viral-induced sepsis is poorly elucidated. Consideration of viral sepsis is critical as its recognition carries implications on appropriate use of antibacterial agents, infection control measures, and, in some cases, specific, time-sensitive antiviral therapies. This review outlines our current understanding of viral sepsis in children and addresses its epidemiology and pathophysiology, including pathogen-host interaction during active infection. Clinical manifestation, diagnostic testing, and management options unique to viral infections will be outlined.
Collapse
Affiliation(s)
- Neha Gupta
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Robert Richter
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Stephen Robert
- Division of Pediatric Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Michele Kong
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
25
|
Casanova V, Sousa FH, Stevens C, Barlow PG. Antiviral therapeutic approaches for human rhinovirus infections. Future Virol 2018; 13:505-518. [PMID: 30245735 PMCID: PMC6136076 DOI: 10.2217/fvl-2018-0016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/20/2018] [Indexed: 12/14/2022]
Abstract
Human rhinoviruses are the primary etiological agent of the common cold. This infection can be mild and self-limiting in immunocompetent hosts, but can be associated with bronchiolitis in infants, pneumonia in the immunosuppressed and exacerbations of pre-existing pulmonary conditions such as asthma or chronic obstructive pulmonary disease. Many of these conditions can place significant economic costs upon healthcare infrastructure. There is currently no licensed vaccine for rhinovirus, as the large variety of rhinovirus serotypes has posed significant challenges for research. In this review, we discuss current knowledge around antiviral drugs and small molecule inhibitors of rhinovirus infection, as well as antiviral host defense peptides as exciting prospects to approach the development of novel therapeutics which target human rhinovirus.
Collapse
Affiliation(s)
- Victor Casanova
- School of Applied Sciences, Edinburgh Napier University, Edinburgh EH11 4BN, Scotland
| | - Filipa H Sousa
- School of Applied Sciences, Edinburgh Napier University, Edinburgh EH11 4BN, Scotland
| | - Craig Stevens
- School of Applied Sciences, Edinburgh Napier University, Edinburgh EH11 4BN, Scotland
| | - Peter G Barlow
- School of Applied Sciences, Edinburgh Napier University, Edinburgh EH11 4BN, Scotland
| |
Collapse
|
26
|
Abstract
Rhinoviruses (RV) are ubiquitous respiratory tract pathogens. They affect both the upper and lower respiratory tract and cause colds but have also been associated with wheezing, asthma exacerbations and pneumonia. New blood transcription profiling techniques of the host immune response are becoming available to characterise the pathogenesis of RV in humans. This review will outline the clinical impact of RVs in children.
Collapse
Affiliation(s)
- Simon B Drysdale
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Level 2, Children's Hospital, Oxford OX3 9DU, UK.
| | - Asuncion Mejias
- Division of Pediatric Infectious Diseases and Centre for Vaccines and Immunity, Nationwide Children's Hospital, USA and The Ohio State University, USA.
| | - Octavio Ramilo
- Division of Pediatric Infectious Diseases and Centre for Vaccines and Immunity, Nationwide Children's Hospital, USA and The Ohio State University, USA.
| |
Collapse
|
27
|
Choi HJ. In Vitro Antiviral Activity of Sakuranetin against Human Rhinovirus 3. Osong Public Health Res Perspect 2017; 8:415-420. [PMID: 29354400 PMCID: PMC5749483 DOI: 10.24171/j.phrp.2017.8.6.09] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 09/22/2017] [Accepted: 10/09/2017] [Indexed: 12/19/2022] Open
Abstract
Objectives Rhinoviruses (RVs) cause common cold and are associated with exacerbation of chronic inflammatory respiratory diseases. Until now, no clinically effective antiviral chemotherapeutic agents to treat diseases caused by human rhinoviruses (HRVs) have been reported. We assessed the anti-HRV3 activity of sakuranetin isolated from Sorbus commixta Hedl. in human epithelioid carcinoma cervix (HeLa) cells, to evaluate its anti-rhinoviral potential in the clinical setting. Methods Antiviral activity and cytotoxicity as well as the effect of sakuranetin on HRV3-induced cytopathic effects (CPEs) were evaluated using the sulforhodamine B (SRB) method using CPE reduction. The morphology of HRV3-infected cells was studied using a light microscope. Results Sakuranetin actively inhibited HRV3 replication and exhibited antiviral activity of more than 67% without cytotoxicity in HeLa cells, at 100 μg/mL. Ribavirin showed anti-HRV3 activity similar to that of sakuranetin. Treatment of HRV-infected HeLa cells with sakuranetin visibly reduced CPEs. Conclusion The inhibition of HRV production by sakuranetin is mainly due to its general antioxidant activity through inhibition of viral adsorption. Therefore, the antiviral activity of sakuranetin should be further investigated to elucidate its mode of action and prevent HRV3-mediated diseases in pathological conditions.
Collapse
Affiliation(s)
- Hwa-Jung Choi
- Department of Beauty Science, Kwangju Women's University, Gwangju, Korea
| |
Collapse
|
28
|
Mirabelli C, Scheers E, Neyts J. Novel therapeutic approaches to simultaneously target rhinovirus infection and asthma/COPD pathogenesis. F1000Res 2017; 6:1860. [PMID: 29123648 PMCID: PMC5657016 DOI: 10.12688/f1000research.11978.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/21/2017] [Indexed: 01/24/2023] Open
Abstract
Rhinoviruses are exclusive respiratory pathogens and the etiological agents of the common cold. These viruses are increasingly reported to cause exacerbations of asthma and chronic obstructive pulmonary disease (COPD). Here, we review the role of rhinovirus infections in the pathogenesis of asthma and COPD and we discuss the current and potential future treatments. We propose that, in order to prevent exacerbations, the design of novel therapeutics should focus on directly acting antivirals but also include the design of drugs that simultaneously inhibit viral replication and alleviate symptoms of asthma and COPD.
Collapse
Affiliation(s)
- Carmen Mirabelli
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
| | - Els Scheers
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
| | - Johan Neyts
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
| |
Collapse
|
29
|
El Kfoury KA, Romond MB, Scuotto A, Alidjinou EK, Dabboussi F, Hamze M, Engelmann I, Sane F, Hober D. Bifidobacteria-derived lipoproteins inhibit infection with coxsackievirus B4 in vitro. Int J Antimicrob Agents 2017; 50:177-185. [PMID: 28595938 DOI: 10.1016/j.ijantimicag.2017.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 02/07/2017] [Accepted: 03/11/2017] [Indexed: 10/19/2022]
Abstract
The aim of the present study was to investigate the potential of bifidobacteria in protecting cells from coxsackievirus B4 (CV-B4) infection. Bifidobacterial screening identified two of five strains that protected human epithelial type 2 (HEp-2) cell viability when bifidobacteria were incubated with viral particles prior to inoculation. In contrast, no effect was shown by incubating HEp-2 cells with bifidobacteria prior to CV-B4 inoculation. Cell wall lipoprotein aggregates (LpAs) secreted by the selected strains were assayed for their antiviral activity. The two LpAs exhibited antiviral activity when they were incubated with viral particles prior to inoculation of HEp-2 cells. Recombinant LpA-derived protein exhibited identical antiviral activity. To identify the peptide sequences interacting with the virus particles, LpA proteins were aligned with the peptide sequences of the north canyon rim and puff footprint onto coxsackievirus and adenovirus receptor (CAR). The in silico molecular docking study using CV-B3 as template showed low-energy binding, indicating a stable system for the selected peptides and consequently a likely binding interaction with CV-B. Bifidobacterium longum and Bifidobacterium breve peptides homologous to the viral north rim footprint onto CAR sequence formed hydrogen bonds with several viral residues in the north rim of the canyon, which were already predicted as interacting with CAR. In conclusion, proteins from bifidobacterial LpAs can inhibit infection with CV-B4, likely through binding to the capsid amino acids that interact with CAR.
Collapse
Affiliation(s)
- Khalil Antoine El Kfoury
- Université de Lille, CHU Lille, Laboratoire de Virologie EA3610, Lille F-59000, France; Université Libanaise, Laboratoire de Microbiologie Santé et Environnement, Ecole Doctorale des Sciences et Technologie, Faculté de Santé Publique, Tripoli, Lebanon
| | | | - Angelo Scuotto
- Bifinove, 99 rue Jardin des Plantes, Lille 59000, France
| | | | - Fouad Dabboussi
- Université Libanaise, Laboratoire de Microbiologie Santé et Environnement, Ecole Doctorale des Sciences et Technologie, Faculté de Santé Publique, Tripoli, Lebanon
| | - Monzer Hamze
- Université Libanaise, Laboratoire de Microbiologie Santé et Environnement, Ecole Doctorale des Sciences et Technologie, Faculté de Santé Publique, Tripoli, Lebanon
| | - Ilka Engelmann
- Université de Lille, CHU Lille, Laboratoire de Virologie EA3610, Lille F-59000, France
| | - Famara Sane
- Université de Lille, CHU Lille, Laboratoire de Virologie EA3610, Lille F-59000, France
| | - Didier Hober
- Université de Lille, CHU Lille, Laboratoire de Virologie EA3610, Lille F-59000, France.
| |
Collapse
|
30
|
Collett MS, Hincks JR, Benschop K, Duizer E, van der Avoort H, Rhoden E, Liu H, Oberste MS, McKinlay MA, Hartford M. Antiviral Activity of Pocapavir in a Randomized, Blinded, Placebo-Controlled Human Oral Poliovirus Vaccine Challenge Model. J Infect Dis 2017; 215:335-343. [PMID: 27932608 PMCID: PMC5393058 DOI: 10.1093/infdis/jiw542] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/10/2016] [Indexed: 01/08/2023] Open
Abstract
Background. Immunodeficient individuals who excrete vaccine-derived polioviruses threaten polio eradication. Antivirals address this threat. Methods. In a randomized, blinded, placebo-controlled study, adults were challenged with monovalent oral poliovirus type 1 vaccine (mOPV1) and subsequently treated with capsid inhibitor pocapavir or placebo. The time to virus negativity in stool was determined. Results. A total of 144 participants were enrolled; 98% became infected upon OPV challenge. Pocapavir-treated subjects (n = 93) cleared virus a median duration of 10 days after challenge, compared with 13 days for placebo recipients (n = 48; P = .0019). Fifty-two of 93 pocapavir-treated subjects (56%) cleared virus in 2–18 days with no evidence of drug resistance, while 41 of 93 (44%) treated subjects experienced infection with resistant virus while in the isolation facility, 3 (3%) of whom were infected at baseline, before treatment initiation. Resistant virus was also observed in 5 placebo recipients (10%). Excluding those with resistant virus, the median time to virus negativity was 5.5 days in pocapavir recipients, compared with 13 days in placebo recipients (P < .0001). There were no serious adverse events and no withdrawals from the study. Conclusions. Treatment with pocapavir was safe and significantly accelerated virus clearance. Emergence of resistant virus and transmission of virus were seen in the context of a clinical isolation facility. Clinical Trials Registration. EudraCT 2011-004804-38.
Collapse
Affiliation(s)
| | | | - Kimberley Benschop
- Center for Infectious Diseases Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands; and
| | - Erwin Duizer
- Center for Infectious Diseases Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands; and
| | - Harrie van der Avoort
- Center for Infectious Diseases Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands; and
| | - Eric Rhoden
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, and
| | - Hongmei Liu
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, and
| | - M Steven Oberste
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, and
| | | | - Marianne Hartford
- Clinical Trial Center, Sahlgrenska University Hospital, Göteborg, Sweden
| |
Collapse
|
31
|
Bauer L, Lyoo H, van der Schaar HM, Strating JR, van Kuppeveld FJ. Direct-acting antivirals and host-targeting strategies to combat enterovirus infections. Curr Opin Virol 2017; 24:1-8. [PMID: 28411509 PMCID: PMC7172203 DOI: 10.1016/j.coviro.2017.03.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/02/2017] [Accepted: 03/17/2017] [Indexed: 12/20/2022]
Abstract
Enteroviruses cause many human diseases, yet no antiviral drugs are available. Capsids and viral enzymes are promising targets for direct-acting antiviral therapy. Fundamental research has unveiled host factors for broad-spectrum drug development. Drug repurposing screens have yielded new promising enterovirus inhibitors.
Enteroviruses (e.g., poliovirus, enterovirus-A71, coxsackievirus, enterovirus-D68, rhinovirus) include many human pathogens causative of various mild and more severe diseases, especially in young children. Unfortunately, antiviral drugs to treat enterovirus infections have not been approved yet. Over the past decades, several direct-acting inhibitors have been developed, including capsid binders, which block virus entry, and inhibitors of viral enzymes required for genome replication. Capsid binders and protease inhibitors have been clinically evaluated, but failed due to limited efficacy or toxicity issues. As an alternative approach, host-targeting inhibitors with potential broad-spectrum activity have been identified. Furthermore, drug repurposing screens have recently uncovered promising new inhibitors with disparate viral and host targets. Together, these findings raise hope for the development of (broad-range) anti-enteroviral drugs.
Collapse
Affiliation(s)
- Lisa Bauer
- Department of Infectious Diseases & Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Heyrhyoung Lyoo
- Department of Infectious Diseases & Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Hilde M van der Schaar
- Department of Infectious Diseases & Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jeroen Rpm Strating
- Department of Infectious Diseases & Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Frank Jm van Kuppeveld
- Department of Infectious Diseases & Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
32
|
Conti C, Proietti Monaco L, Desideri N. 3-Phenylalkyl-2 H -chromenes and -chromans as novel rhinovirus infection inhibitors. Bioorg Med Chem 2017; 25:2074-2083. [DOI: 10.1016/j.bmc.2017.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 02/02/2017] [Accepted: 02/07/2017] [Indexed: 11/15/2022]
|
33
|
Shahani L, Ariza-Heredia EJ, Chemaly RF. Antiviral therapy for respiratory viral infections in immunocompromised patients. Expert Rev Anti Infect Ther 2017; 15:401-415. [PMID: 28067078 PMCID: PMC7103713 DOI: 10.1080/14787210.2017.1279970] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/05/2017] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Respiratory viruses (influenza, parainfluenza, respiratory syncytial virus, coronavirus, human metapneumovirus, and rhinovirus) represent the most common causes of respiratory viral infections in immunocompromised patients. Also, these infections may be more severe in immunocompromised patients than in the general population. Early diagnosis and treatment of viral infections continue to be of paramount importance in immunocompromised patients; because once viral replication and invasive infections are evident, prognosis can be grave. Areas covered: The purpose of this review is to provide an overview of the main antiviral agents used for the treatment of respiratory viral infections in immunocompromised patients and review of the new agents in the pipeline. Expert commentary: Over the past decade, important diagnostic advances, specifically, the use of rapid molecular testing has helped close the gap between clinical scenarios and pathogen identification and enhanced early diagnosis of viral infections and understanding of the role of prolonged shedding and viral loads. Advancements in novel antiviral therapeutics with high resistance thresholds and effective immunization for preventable infections in immunocompromised patients are needed.
Collapse
Affiliation(s)
- Lokesh Shahani
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ella J. Ariza-Heredia
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roy F. Chemaly
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
34
|
Guibas GV, Papadopoulos NG. Viral Upper Respiratory Tract Infections. VIRAL INFECTIONS IN CHILDREN, VOLUME II 2017. [PMCID: PMC7121526 DOI: 10.1007/978-3-319-54093-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The upper respiratory system is one of the most common sites of infection for adults, but even more so for children. Several viruses, from variable families, cause upper respiratory infections which, although generally underestimated due to their typically self-limiting nature, underlie enormous healthcare resource utilization and financial burden. Such, otherwise “benign” infections, can have very significant sequelae both in the form of bringing about local complications but also inducing asthma attacks, thus greatly increasing morbidity. Their enormous prevalence also indicates that rigorous research should be undertaken in order to tackle them, in both the prevention and treatment field.
Collapse
|
35
|
Powell K, Thomas E, Cockerill G. Antiviral Drugs for Acute Infections. COMPREHENSIVE MEDICINAL CHEMISTRY III 2017. [PMCID: PMC7149606 DOI: 10.1016/b978-0-12-409547-2.12408-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2022]
|
36
|
Abstract
Rapidly evolving viruses are a major threat to human health. Such viruses are often highly pathogenic (e.g., influenza virus, HIV, Ebola virus) and routinely circumvent therapeutic intervention through mutational escape. Error-prone genome replication generates heterogeneous viral populations that rapidly adapt to new selection pressures, leading to resistance that emerges with treatment. However, population heterogeneity bears a cost: when multiple viral variants replicate within a cell, they can potentially interfere with each other, lowering viral fitness. This genetic interference can be exploited for antiviral strategies, either by taking advantage of a virus’s inherent genetic diversity or through generating de novo interference by engineering a competing genome. Here, we discuss two such antiviral strategies, dominant drug targeting and therapeutic interfering particles. Both strategies harness the power of genetic interference to surmount two particularly vexing obstacles—the evolution of drug resistance and targeting therapy to high-risk populations—both of which impede treatment in resource-poor settings.
Collapse
|
37
|
Dignan FL, Clark A, Aitken C, Gilleece M, Jayakar V, Krishnamurthy P, Pagliuca A, Potter MN, Shaw B, Skinner R, Turner A, Wynn RF, Coyle P. BCSH/BSBMT/UK clinical virology network guideline: diagnosis and management of common respiratory viral infections in patients undergoing treatment for haematological malignancies or stem cell transplantation. Br J Haematol 2016; 173:380-93. [PMID: 27060988 PMCID: PMC7161808 DOI: 10.1111/bjh.14027] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 12/30/2015] [Accepted: 01/03/2016] [Indexed: 12/21/2022]
Abstract
A joint working group established by the Haemato-oncology subgroup of the British Committee for Standards in Haematology, the British Society for Bone Marrow Transplantation and the UK Clinical Virology Network has reviewed the available literature and made recommendations for the diagnosis and management of respiratory viral infections in patients with haematological malignancies or those undergoing haematopoietic stem cell transplantation. This guideline includes recommendations for the diagnosis, prevention and treatment of respiratory viral infections in adults and children. The suggestions and recommendations are primarily intended for physicians practising in the United Kingdom.
Collapse
Affiliation(s)
- Fiona L Dignan
- Department of Haematology, Central Manchester NHS Foundation Trust, Manchester, UK
| | - Andrew Clark
- Bone Marrow Transplant Unit, Beatson Oncology Centre, Gartnavel Hospital, Glasgow, UK
| | - Celia Aitken
- West of Scotland Specialist Virology Centre, Glasgow Royal Infirmary, Glasgow, UK
| | - Maria Gilleece
- Department of Haematology, Leeds Teaching Hospitals Trust, Leeds, UK
| | - Vishal Jayakar
- Department of Haematology, Kingston Hospital NHS Trust, Kingston upon Thames, London, UK
| | | | - Antonio Pagliuca
- Department of Haematological Medicine, King's College Hospital, London, UK
| | - Michael N Potter
- Section of Haemato-oncology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Bronwen Shaw
- Section of Haemato-oncology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Roderick Skinner
- Department of Paediatric and Adolescent Haematology/Oncology, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - Andrew Turner
- Department of Virology, Central Manchester NHS Foundation Trust, Manchester, UK
| | - Robert F Wynn
- Royal Manchester Children's Hospital, Manchester, UK
| | - Peter Coyle
- Regional Virus Laboratory, Department of Microbiology, Belfast Health and Social Care Trust, Belfast, UK
| |
Collapse
|
38
|
Abzug MJ, Michaels MG, Wald E, Jacobs RF, Romero JR, Sánchez PJ, Wilson G, Krogstad P, Storch GA, Lawrence R, Shelton M, Palmer A, Robinson J, Dennehy P, Sood SK, Cloud G, Jester P, Acosta EP, Whitley R, Kimberlin D. A Randomized, Double-Blind, Placebo-Controlled Trial of Pleconaril for the Treatment of Neonates With Enterovirus Sepsis. J Pediatric Infect Dis Soc 2016; 5:53-62. [PMID: 26407253 PMCID: PMC4765488 DOI: 10.1093/jpids/piv015] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/24/2015] [Indexed: 11/13/2022]
Abstract
BACKGROUND Neonatal enterovirus sepsis has high mortality. Antiviral therapy is not available. METHODS Neonates with suspected enterovirus sepsis (hepatitis, coagulopathy, and/or myocarditis) with onset at ≤15 days of life were randomized 2:1 to receive oral pleconaril or placebo for 7 days. Serial virologic (oropharynx, rectum, urine, serum), clinical, pharmacokinetic, and safety evaluations were performed. RESULTS Sixty-one subjects were enrolled (43 treatment, 18 placebo), of whom 43 were confirmed enterovirus infected (31 treatment, 12 placebo). There was no difference in day 5 oropharyngeal culture positivity (primary endpoint; 0% in both groups). However, enterovirus-infected subjects in the treatment group became culture negative from all anatomic sites combined faster than placebo group subjects (median 4.0 versus 7.0 days, P = .08), and fewer subjects in the treatment group remained polymerase chain reaction (PCR)-positive from the oropharynx when last sampled (23% versus 58%, P = .02; median, 14.0 days). By intent to treat, 10/43 (23%) subjects in the treatment group and 8/18 (44%) in the placebo group died (P = .02 for 2-month survival difference); among enterovirus-confirmed subjects, 7/31 (23%) in the treatment group died versus 5/12 (42%) in the placebo group (P = .26). All pleconaril recipients attained concentrations greater than the IC90 after the first study day, but 38% were less than the IC90 during the first day of treatment. One subject in the treatment group and three in the placebo group had treatment-related adverse events. CONCLUSIONS Shorter times to culture and PCR negativity and greater survival among pleconaril recipients support potential efficacy and warrant further evaluation.
Collapse
Affiliation(s)
- Mark J. Abzug
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora
| | - Marian G. Michaels
- Children's Hospital, Pittsburgh of University of Pittsburgh Medical Center
| | | | | | - José R. Romero
- University of Nebraska School of Medicine, Omaha, and University of Arkansas for Medical Sciences, Little Rock
| | - Pablo J. Sánchez
- University of Texas Southwestern, Dallas, and Nationwide Children's Hospital—The Ohio State University, Columbus
| | | | | | | | | | | | - April Palmer
- University of Mississippi Medical Center, Jackson
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Thibaut HJ, Lacroix C, De Palma AM, Franco D, Decramer M, Neyts J. Toward antiviral therapy/prophylaxis for rhinovirus-induced exacerbations of chronic obstructive pulmonary disease: challenges, opportunities, and strategies. Rev Med Virol 2016; 26:21-33. [PMID: 26388447 PMCID: PMC7169185 DOI: 10.1002/rmv.1856] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 12/17/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a life-threatening lung illness characterized by persistent and progressive airflow limitation. Exacerbations of COPD contribute to the severity of this pathology and accelerate disease progression. To date, pharmacological treatment of both stable COPD patients and patients experiencing exacerbations is mainly symptomatic with bronchodilators and steroids as the mainstay of therapy. Bacteria trigger such exacerbations in a number of cases; hence, antibiotics might be included in the treatment as well. Several respiratory viruses are frequently detected in sputum from patients during COPD exacerbations. These include influenza viruses, respiratory syncytial virus, and, most often, rhinoviruses. In this review, we discuss the potential use of an anti-rhinovirus drug for the treatment and prophylaxis of rhinovirus-induced COPD exacerbations and the path forward toward the development and use of such a drug. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Hendrik Jan Thibaut
- Laboratory for Virology and Experimental Chemotherapy, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Céline Lacroix
- Laboratory for Virology and Experimental Chemotherapy, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Armando M De Palma
- Laboratory for Virology and Experimental Chemotherapy, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - David Franco
- Laboratory for Virology and Experimental Chemotherapy, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Mark Decramer
- Respiratory Division, University Hospital, University of Leuven, Leuven, Belgium
| | - Johan Neyts
- Laboratory for Virology and Experimental Chemotherapy, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| |
Collapse
|
40
|
Ljungman P, Snydman D, Boeckh M. Rhinovirus, Coronavirus, Enterovirus, and Bocavirus After Hematopoietic Cell Transplantation or Solid Organ Transplantation. TRANSPLANT INFECTIONS 2016. [PMCID: PMC7123292 DOI: 10.1007/978-3-319-28797-3_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Respiratory viral infections represent a significant cause of morbidity and mortality in immunocompromised hosts. Newer molecular detection assays have allowed for the characterization of several respiratory viruses not previously recognized as having significant clinical impact in the immunocompromised population. Human rhinoviruses are the most common respiratory viruses detected in the upper respiratory tract of hematopoietic cell transplant and lung transplant recipients, and evidence on the impact on clinical outcomes is mounting. Other respiratory viruses including enteroviruses (EVs), coronaviruses (CoVs), and bocavirus may also contribute to pulmonary disease; however, data is limited in the immunocompromised population. Further studies are needed to define the epidemiology, risk factors, and clinical outcomes of these infections; this data will help inform decisions regarding development of antiviral therapy and infection prevention strategies.
Collapse
Affiliation(s)
- Per Ljungman
- Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - David Snydman
- Tufts University School of Medicine Tufts Medical Center, Boston, Massachusetts USA
| | - Michael Boeckh
- University of Washington Fred Hutchinson Cancer Research Center, Seattle, Washington USA
| |
Collapse
|
41
|
Kelly JT, De Colibus L, Elliott L, Fry EE, Stuart DI, Rowlands DJ, Stonehouse NJ. Potent antiviral agents fail to elicit genetically-stable resistance mutations in either enterovirus 71 or Coxsackievirus A16. Antiviral Res 2015; 124:77-82. [PMID: 26522770 PMCID: PMC4678291 DOI: 10.1016/j.antiviral.2015.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 09/16/2015] [Accepted: 10/05/2015] [Indexed: 01/28/2023]
Abstract
Enterovirus 71 (EV71) and Coxsackievirus A16 (CVA16) are the two major causative agents of hand, foot and mouth disease (HFMD), for which there are currently no licenced treatments. Here, the acquisition of resistance towards two novel capsid-binding compounds, NLD and ALD, was studied and compared to the analogous compound GPP3. During serial passage, EV71 rapidly became resistant to each compound and mutations at residues I113 and V123 in VP1 were identified. A mutation at residue 113 was also identified in CVA16 after passage with GPP3. The mutations were associated with reduced thermostability and were rapidly lost in the absence of inhibitors. In silico modelling suggested that the mutations prevented the compounds from binding the VP1 pocket in the capsid. Although both viruses developed resistance to these potent pocket-binding compounds, the acquired mutations were associated with large fitness costs and reverted to WT phenotype and sequence rapidly in the absence of inhibitors. The most effective inhibitor, NLD, had a very large selectivity index, showing interesting pharmacological properties as a novel anti-EV71 agent.
Collapse
Affiliation(s)
- James T Kelly
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Luigi De Colibus
- Division of Structural Biology, University of Oxford, Oxford, UK
| | - Lauren Elliott
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Elizabeth E Fry
- Division of Structural Biology, University of Oxford, Oxford, UK
| | - David I Stuart
- Division of Structural Biology, University of Oxford, Oxford, UK; Diamond Light Source, Didcot, UK
| | - David J Rowlands
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK.
| | | |
Collapse
|
42
|
van der Linden L, Wolthers KC, van Kuppeveld FJM. Replication and Inhibitors of Enteroviruses and Parechoviruses. Viruses 2015; 7:4529-62. [PMID: 26266417 PMCID: PMC4576193 DOI: 10.3390/v7082832] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 08/03/2015] [Indexed: 01/11/2023] Open
Abstract
The Enterovirus (EV) and Parechovirus genera of the picornavirus family include many important human pathogens, including poliovirus, rhinovirus, EV-A71, EV-D68, and human parechoviruses (HPeV). They cause a wide variety of diseases, ranging from a simple common cold to life-threatening diseases such as encephalitis and myocarditis. At the moment, no antiviral therapy is available against these viruses and it is not feasible to develop vaccines against all EVs and HPeVs due to the great number of serotypes. Therefore, a lot of effort is being invested in the development of antiviral drugs. Both viral proteins and host proteins essential for virus replication can be used as targets for virus inhibitors. As such, a good understanding of the complex process of virus replication is pivotal in the design of antiviral strategies goes hand in hand with a good understanding of the complex process of virus replication. In this review, we will give an overview of the current state of knowledge of EV and HPeV replication and how this can be inhibited by small-molecule inhibitors.
Collapse
Affiliation(s)
- Lonneke van der Linden
- Laboratory of Clinical Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands.
| | - Katja C Wolthers
- Laboratory of Clinical Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands.
| | - Frank J M van Kuppeveld
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, Utrecht 3584 CL, The Netherlands.
| |
Collapse
|
43
|
Benschop KSM, van der Avoort HGAM, Duizer E, Koopmans MPG. Antivirals against enteroviruses: a critical review from a public-health perspective. Antivir Ther 2015; 20:121-30. [PMID: 25643052 DOI: 10.3851/imp2939] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2014] [Indexed: 10/24/2022]
Abstract
The enteroviruses (EVs) of the Picornaviridae family are the most common viral pathogens known. Most EV infections are mild and self-limiting but manifestations can be severe in children and immunodeficient individuals. Antiviral development is actively pursued to benefit these high-risk patients and, given the alarming problem of antimicrobial drug resistance, antiviral drug resistance is a public-health concern. Picornavirus antivirals can be used off-label or as part of outbreak control measures. They may be used in the final stages of poliovirus eradication and to mitigate EV-A71 outbreaks. We review the potential emergence of drug-resistant strains and their impact on EV transmission and endemic circulation. We include non-picornavirus antivirals that inhibit EV replication, for example, ribavirin, a treatment for infection with HCV, and amantadine, a treatment for influenza A. They may have spurred resistance emergence in HCV or influenza A patients who are unknowingly coinfected with EV. The public-health challenge is always to find a balance between individual benefit and the long-term health of the larger population.
Collapse
Affiliation(s)
- Kimberley S M Benschop
- Centre for Infectious Diseases Research, Diagnostics and Screening, National Institute for Public Health and the Environment, Bilthoven, the Netherlands.
| | | | | | | |
Collapse
|
44
|
Liu Y, Sheng J, Fokine A, Meng G, Shin WH, Long F, Kuhn RJ, Kihara D, Rossmann MG. Structure and inhibition of EV-D68, a virus that causes respiratory illness in children. Science 2015; 347:71-4. [PMID: 25554786 PMCID: PMC4307789 DOI: 10.1126/science.1261962] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Enterovirus D68 (EV-D68) is a member of Picornaviridae and is a causative agent of recent outbreaks of respiratory illness in children in the United States. We report here the crystal structures of EV-D68 and its complex with pleconaril, a capsid-binding compound that had been developed as an anti-rhinovirus drug. The hydrophobic drug-binding pocket in viral protein 1 contained density that is consistent with a fatty acid of about 10 carbon atoms. This density could be displaced by pleconaril. We also showed that pleconaril inhibits EV-D68 at a half-maximal effective concentration of 430 nanomolar and might, therefore, be a possible drug candidate to alleviate EV-D68 outbreaks.
Collapse
Affiliation(s)
- Yue Liu
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, 240 South Martin Jischke Drive, Purdue University, West Lafayette, IN 47907, USA
| | - Ju Sheng
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, 240 South Martin Jischke Drive, Purdue University, West Lafayette, IN 47907, USA
| | - Andrei Fokine
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, 240 South Martin Jischke Drive, Purdue University, West Lafayette, IN 47907, USA
| | - Geng Meng
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, 240 South Martin Jischke Drive, Purdue University, West Lafayette, IN 47907, USA
| | - Woong-Hee Shin
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, 240 South Martin Jischke Drive, Purdue University, West Lafayette, IN 47907, USA
| | - Feng Long
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, 240 South Martin Jischke Drive, Purdue University, West Lafayette, IN 47907, USA
| | - Richard J Kuhn
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, 240 South Martin Jischke Drive, Purdue University, West Lafayette, IN 47907, USA
| | - Daisuke Kihara
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, 240 South Martin Jischke Drive, Purdue University, West Lafayette, IN 47907, USA. Department of Computer Science, 305 North University Street, Purdue University, West Lafayette, IN 47907, USA
| | - Michael G Rossmann
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, 240 South Martin Jischke Drive, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
45
|
Miscellaneous Antiviral Agents (Interferons, Imiquimod, Pleconaril). MANDELL, DOUGLAS, AND BENNETT'S PRINCIPLES AND PRACTICE OF INFECTIOUS DISEASES 2015. [PMCID: PMC7151994 DOI: 10.1016/b978-1-4557-4801-3.00047-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Benschop KSM, Wildenbeest JG, Koen G, Minnaar RP, van Hemert FJ, Westerhuis BM, Pajkrt D, van den Broek PJ, Vossen ACTM, Wolthers KC. Genetic and antigenic structural characterization for resistance of echovirus 11 to pleconaril in an immunocompromised patient. J Gen Virol 2014; 96:571-579. [PMID: 25395595 DOI: 10.1099/vir.0.069773-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pleconaril is a capsid inhibitor used previously to treat enterovirus infections. A pleconaril-resistant echovirus 11 (E11) strain was identified before pleconaril treatment was given in an immunocompromised patient. The patient was also treated with intravenous Ig (IVIg) for a long period but remained unresponsive. The pleconaril-resistant strains could not be neutralized in vitro, confirming IVIg treatment failure. To identify the basis of pleconaril resistance, genetic and structural analyses were conducted. Analysis of a modelled viral capsid indicated conformational changes in the hydrophobic pocket that could prevent pleconaril docking. Substitutions (V117I, V119M and I188L) in the pleconaril-resistant viruses were found in the pocket region of VP1. Modelling suggested that V119M could confer resistance, most probably due to the protruding sulfate side chain of methionine. Although pleconaril resistance induced in vitro in a susceptible E11 clinical isolate was characterized by a different substitution (I183M), resistance was suggested to also result from a similar mechanism, i.e. due to a protruding sulfate side chain of methionine. Our results showed that resistant strains that arise in vivo display different markers from those identified in vitro and suggest that multiple factors may play a role in pleconaril resistance in patient strains. Based on IVIg treatment failure, we predict that one of these factors could be immune related. Thus, both IVIg and capsid inhibitors target the viral capsid and can induce mutations that can be cross-reactive, enabling escape from both IVIg and the drug. This could limit treatment options and should be investigated further.
Collapse
Affiliation(s)
- K S M Benschop
- Laboratory of Clinical Virology, Department of Medical Microbiology, Academic Medical Center, Amsterdam, The Netherlands
| | - J G Wildenbeest
- Department of Pediatric Infectious Diseases, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands.,Laboratory of Clinical Virology, Department of Medical Microbiology, Academic Medical Center, Amsterdam, The Netherlands
| | - G Koen
- Laboratory of Clinical Virology, Department of Medical Microbiology, Academic Medical Center, Amsterdam, The Netherlands
| | - R P Minnaar
- Laboratory of Clinical Virology, Department of Medical Microbiology, Academic Medical Center, Amsterdam, The Netherlands
| | - F J van Hemert
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, Amsterdam, The Netherlands
| | - B M Westerhuis
- Laboratory of Clinical Virology, Department of Medical Microbiology, Academic Medical Center, Amsterdam, The Netherlands
| | - D Pajkrt
- Department of Pediatric Infectious Diseases, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands
| | - P J van den Broek
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - A C T M Vossen
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - K C Wolthers
- Laboratory of Clinical Virology, Department of Medical Microbiology, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
47
|
McKinlay MA, Collett MS, Hincks JR, Oberste MS, Pallansch MA, Okayasu H, Sutter RW, Modlin JF, Dowdle WR. Progress in the Development of Poliovirus Antiviral Agents and Their Essential Role in Reducing Risks That Threaten Eradication. J Infect Dis 2014; 210 Suppl 1:S447-53. [DOI: 10.1093/infdis/jiu043] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
48
|
Oliver BGG, Robinson P, Peters M, Black J. Viral infections and asthma: an inflammatory interface? Eur Respir J 2014; 44:1666-81. [PMID: 25234802 DOI: 10.1183/09031936.00047714] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Asthma is a chronic inflammatory disease of the airways in which the majority of patients respond to treatment with corticosteroids and β₂-adrenoceptor agonists. Acute exacerbations of asthma substantially contribute to disease morbidity, mortality and healthcare costs, and are not restricted to patients who are not compliant with their treatment regimens. Given that respiratory viral infections are the principal cause of asthma exacerbations, this review article will explore the relationship between viral infections and asthma, and will put forward hypotheses as to why virus-induced exacerbations occur. Potential mechanisms that may explain why current therapeutics do not fully inhibit virus-induced exacerbations, for example, β₂-adrenergic desensitisation and corticosteroid insensitivity, are explored, as well as which aspects of virus-induced inflammation are likely to be attenuated by current therapy.
Collapse
Affiliation(s)
- Brian G G Oliver
- School of Medical and Molecular Biosciences, University of Technology Sydney, Sydney, Australia Woolcock Institute of Medical Research, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Paul Robinson
- Woolcock Institute of Medical Research, Sydney Medical School, The University of Sydney, Sydney, Australia Dept of Respiratory Medicine, The Children's Hospital at Westmead, Sydney, Australia The Children's Hospital at Westmead Clinical School, The University of Sydney, Sydney, Australia
| | - Mathew Peters
- Australian School of Advanced Medicine, Macquarie University, Sydney, Australia Dept of Thoracic Medicine, Concord General Hospital, Concord, Australia
| | - Judy Black
- Woolcock Institute of Medical Research, Sydney Medical School, The University of Sydney, Sydney, Australia
| |
Collapse
|
49
|
Hayden FG. Advances in antivirals for non-influenza respiratory virus infections. Influenza Other Respir Viruses 2014; 7 Suppl 3:36-43. [PMID: 24215380 PMCID: PMC6492651 DOI: 10.1111/irv.12173] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Progress in the development of antivirals for non‐influenza respiratory viruses has been slow with the result that many unmet medical needs and few approved agents currently exist. This commentary selectively reviews examples of where specific agents have provided promising clinical benefits in selected target populations and also considers potential therapeutics for emerging threats like the SARS and Middle East respiratory syndrome coronaviruses. Recent studies have provided encouraging results in treating respiratory syncytial virus infections in lung transplant recipients, serious parainfluenza virus and adenovirus infections in immunocompromised hosts, and rhinovirus colds in outpatient asthmatics. While additional studies are needed to confirm the efficacy and safety of the specific agents tested, these observations offer the opportunity to expand therapeutic studies to other patient populations.
Collapse
Affiliation(s)
- Frederick G Hayden
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
50
|
Multiple classes of antiviral agents exhibit in vitro activity against human rhinovirus type C. Antimicrob Agents Chemother 2013; 58:1546-55. [PMID: 24366736 DOI: 10.1128/aac.01746-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human rhinovirus type C (HRV-C) is a newly discovered enterovirus species frequently associated with exacerbation of asthma and other acute respiratory conditions. Until recently, HRV-C could not be propagated in vitro, hampering in-depth characterization of the virus replication cycle and preventing efficient testing of antiviral agents. Herein we describe several subgenomic RNA replicon systems and a cell culture infectious model for HRV-C that can be used for antiviral screening. The replicon constructs consist of genome sequences from HRVc15, HRVc11, HRVc24, and HRVc25 strains, with the P1 capsid region replaced by a Renilla luciferase coding sequence. Following transfection of the replicon RNA into HeLa cells, the constructs produced time-dependent increases in luciferase signal that can be inhibited in a dose-dependent manner by known inhibitors of HRV replication, including the 3C protease inhibitor rupintrivir, the nucleoside analog inhibitor MK-0608, and the phosphatidylinositol 4-kinase IIIβ (PI4K-IIIβ) kinase inhibitor PIK93. Furthermore, with the exception of pleconaril and pirodavir, the other tested classes of HRV inhibitors blocked the replication of full-length HRVc15 and HRVc11 in human airway epithelial cells (HAEs) that were differentiated in the air-liquid interface, exhibiting antiviral activities similar to those observed with HRV-16. In summary, this study is the first comprehensive profiling of multiple classes of antivirals against HRV-C, and the set of newly developed quantitative HRV-C antiviral assays represent indispensable tools for the identification and evaluation of novel panserotype HRV inhibitors.
Collapse
|