1
|
Cheng Y, Lu L, Hu C, Xue B, Wang X, Zhang W, Wang T, Shen X, Sun X, Wang J, Yuan Q. A bacterial platform for the production of 4-hydroxyphenylacetic acid and its derivatives. BIORESOURCE TECHNOLOGY 2025; 422:132240. [PMID: 39965711 DOI: 10.1016/j.biortech.2025.132240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/08/2025] [Accepted: 02/14/2025] [Indexed: 02/20/2025]
Abstract
4-Hydroxyphenylacetic acid (4-HPAA) and its derivatives, such as homoprotocatechuic acid (3,4-DHBA), homovanillic acid (HVA), and homoisovanillic acid (IHVA), are valuable phenolic acids that exhibit antioxidant, antibacterial and anti-inflammatory properties. They have diverse uses in pharmaceutical, pesticide, and cosmetic industries. Despite their significant importance, microbial production of these chemicals faces challenges such as limited titer or the incomplete understanding of their biosynthetic pathways in microorganisms. In this work, we developed a platform Escherichia coli strain that capable of efficiently producing 4-HPAA by systematical engineering of its biosynthetic pathway. The best engineered strain produced 31.95 g/L of 4-HPAA with a carbon yield of 0.27 g/g glucose, which is the highest titer reported so far. Then, this microbial platform was extended to biosynthesize 3,4-DHBA, HVA and IHVA, by screening hydroxylases and methyltransferases. This led to the de novo production of 3.15 g/L 3,4-DHBA, 102.36 mg/L HVA and 356.74 mg/L IHVA. This work establishes an efficient chassis for producing 4-HPAA and provides a microbial platform for generating its derivatives.
Collapse
Affiliation(s)
- Yiyuan Cheng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Liangyu Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chenyu Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bingqing Xue
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaolei Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wen Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tong Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaolin Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
2
|
Yan C, Tao Y, Fan J, Dai J, Li S, Huang Q, Zhou R. Generation and characterization of two acid-resistant macrocin O-methyltransferase variants with a higher enzyme activity at 30 °C from Streptomyces fradiae. Comput Struct Biotechnol J 2024; 23:3232-3240. [PMID: 39257526 PMCID: PMC11384511 DOI: 10.1016/j.csbj.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/07/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024] Open
Abstract
Tylosin is an important macrolide antibiotic produced by Streptomyces fradiae. In the biosynthesis of tylosin, macrocin O-methyltransferase TylF catalyzes the conversion of the side-product tylosin C (macrocin) to the primary component tylosin A (C/A conversion). This conversion is the rate-limiting step in the biosynthesis of tylosin, and affects the quality of the end product. To find a high activity and environment-adapted TylF enzyme, a TylF variant pool has been constructed via protein evolution approach in our previous study (Fan et al., 2023 [41]). In this study, the TylF variants with higher C/A conversion rates were expressed in E. coli and purified. The variants TylFY139F, TylFQ138H, F232Y and TylFT36S, V54A were shown to have a higher C/A conversion rate at 30 °C than that of TylF at 38 °C. Moreover, they had a greater acid resistance and showed more adaptable to the pH change during fermentation. Further protein structural and substrate-binding affinity analyses revealed that the T36S, V54A, Q138H, Y139F, and F232Y mutations enlarged the volume of the substrate-binding pocket, thereby increasing the affinity of enzyme variants for their substrates of SAM and macrocin, and decreasing the inhibition of SAH. Three of the TylF variants were overexpressed in the industrial tylosin-producing S. fradiae strain, and the recombinant strains showed the highest C/A conversion at 30 °C without heating up to 38 °C during the last 24 h of fermentation. This is of great energy-saving significance for tylosin industrial production.
Collapse
Affiliation(s)
- Chaoyue Yan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yujun Tao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingyan Fan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Jun Dai
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The HZAU-HVSEN Institute, Wuhan 430060, China
| | - Shuo Li
- The HZAU-HVSEN Institute, Wuhan 430060, China
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease (Ministry of Science & Technology of China), Wuhan 430070, China
- The Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease (Ministry of Science & Technology of China), Wuhan 430070, China
- The Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
- The HZAU-HVSEN Institute, Wuhan 430060, China
| |
Collapse
|
3
|
Grandi E, Feyza Özgen F, Schmidt S, Poelarends GJ. Enzymatic Oxy- and Amino-Functionalization in Biocatalytic Cascade Synthesis: Recent Advances and Future Perspectives. Angew Chem Int Ed Engl 2023; 62:e202309012. [PMID: 37639631 DOI: 10.1002/anie.202309012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
Biocatalytic cascades are a powerful tool for building complex molecules containing oxygen and nitrogen functionalities. Moreover, the combination of multiple enzymes in one pot offers the possibility to minimize downstream processing and waste production. In this review, we illustrate various recent efforts in the development of multi-step syntheses involving C-O and C-N bond-forming enzymes to produce high value-added compounds, such as pharmaceuticals and polymer precursors. Both in vitro and in vivo examples are discussed, revealing the respective advantages and drawbacks. The use of engineered enzymes to boost the cascades outcome is also addressed and current co-substrate and cofactor recycling strategies are presented, highlighting the importance of atom economy. Finally, tools to overcome current challenges for multi-enzymatic oxy- and amino-functionalization reactions are discussed, including flow systems with immobilized biocatalysts and cascades in confined nanomaterials.
Collapse
Affiliation(s)
- Eleonora Grandi
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Fatma Feyza Özgen
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Sandy Schmidt
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Gerrit J Poelarends
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
4
|
Abstract
The ability to site-selectively modify equivalent functional groups in a molecule has the potential to streamline syntheses and increase product yields by lowering step counts. Enzymes catalyze site-selective transformations throughout primary and secondary metabolism, but leveraging this capability for non-native substrates and reactions requires a detailed understanding of the potential and limitations of enzyme catalysis and how these bounds can be extended by protein engineering. In this review, we discuss representative examples of site-selective enzyme catalysis involving functional group manipulation and C-H bond functionalization. We include illustrative examples of native catalysis, but our focus is on cases involving non-native substrates and reactions often using engineered enzymes. We then discuss the use of these enzymes for chemoenzymatic transformations and target-oriented synthesis and conclude with a survey of tools and techniques that could expand the scope of non-native site-selective enzyme catalysis.
Collapse
Affiliation(s)
- Dibyendu Mondal
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Harrison M Snodgrass
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Christian A Gomez
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jared C Lewis
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
5
|
Yue X, Sheng D, Zhuo L, Li YZ. Genetic manipulation and tools in myxobacteria for the exploitation of secondary metabolism. ENGINEERING MICROBIOLOGY 2023; 3:100075. [PMID: 39629250 PMCID: PMC11610982 DOI: 10.1016/j.engmic.2023.100075] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 12/07/2024]
Abstract
Myxobacteria are famous for their capacity for social behavior and natural product biosynthesis. The unique sociality of myxobacteria is not only an intriguing scientific topic but also the main limiting factor for their manipulation. After more than half a century of research, a series of genetic techniques for myxobacteria have been developed, rendering these mysterious bacteria manipulable. Here, we review the advances in genetic manipulation of myxobacteria, with a particular focus on the exploitation of secondary metabolism. We emphasize the necessity and urgency of constructing the myxobacterial chassis for synthetic biology research and the exploitation of untapped secondary metabolism.
Collapse
Affiliation(s)
- Xinjing Yue
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Duohong Sheng
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Li Zhuo
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
6
|
Wu K, Moore JA, Miller MD, Chen Y, Lee C, Xu W, Peng Z, Duan Q, Phillips GN, Uribe RA, Xiao H. Expanding the eukaryotic genetic code with a biosynthesized 21st amino acid. Protein Sci 2022; 31:e4443. [PMID: 36173166 PMCID: PMC9601876 DOI: 10.1002/pro.4443] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 01/31/2023]
Abstract
Genetic code expansion technology allows for the use of noncanonical amino acids (ncAAs) to create semisynthetic organisms for both biochemical and biomedical applications. However, exogenous feeding of chemically synthesized ncAAs at high concentrations is required to compensate for the inefficient cellular uptake and incorporation of these components into proteins, especially in the case of eukaryotic cells and multicellular organisms. To generate organisms capable of autonomously biosynthesizing an ncAA and incorporating it into proteins, we have engineered a metabolic pathway for the synthesis of O-methyltyrosine (OMeY). Specifically, we endowed organisms with a marformycins biosynthetic pathway-derived methyltransferase that efficiently converts tyrosine to OMeY in the presence of the co-factor S-adenosylmethionine. The resulting cells can produce and site-specifically incorporate OMeY into proteins at much higher levels than cells exogenously fed OMeY. To understand the structural basis for the substrate selectivity of the transferase, we solved the X-ray crystal structures of the ligand-free and tyrosine-bound enzymes. Most importantly, we have extended this OMeY biosynthetic system to both mammalian cells and the zebrafish model to enhance the utility of genetic code expansion. The creation of autonomous eukaryotes using a 21st amino acid will make genetic code expansion technology more applicable to multicellular organisms, providing valuable vertebrate models for biological and biomedical research.
Collapse
Affiliation(s)
- Kuan‐Lin Wu
- Department of ChemistryRice UniversityHoustonTexasUSA
| | - Joshua A. Moore
- Department of BiosciencesRice UniversityHoustonTexasUSA
- Biochemistry and Cell Biology ProgramRice UniversityHoustonTexasUSA
| | | | - Yuda Chen
- Department of ChemistryRice UniversityHoustonTexasUSA
| | - Catherine Lee
- Department of ChemistryRice UniversityHoustonTexasUSA
| | - Weijun Xu
- Department of BiosciencesRice UniversityHoustonTexasUSA
| | - Zane Peng
- Department of ChemistryRice UniversityHoustonTexasUSA
| | - Qinghui Duan
- Department of ChemistryRice UniversityHoustonTexasUSA
| | - George N. Phillips
- Department of ChemistryRice UniversityHoustonTexasUSA
- Department of BiosciencesRice UniversityHoustonTexasUSA
| | - Rosa A. Uribe
- Department of BiosciencesRice UniversityHoustonTexasUSA
- Biochemistry and Cell Biology ProgramRice UniversityHoustonTexasUSA
| | - Han Xiao
- Department of ChemistryRice UniversityHoustonTexasUSA
- Department of BiosciencesRice UniversityHoustonTexasUSA
- Department of BioengineeringRice UniversityHoustonTexasUSA
| |
Collapse
|
7
|
Abdelraheem E, Thair B, Varela RF, Jockmann E, Popadić D, Hailes HC, Ward JM, Iribarren AM, Lewkowicz ES, Andexer JN, Hagedoorn P, Hanefeld U. Methyltransferases: Functions and Applications. Chembiochem 2022; 23:e202200212. [PMID: 35691829 PMCID: PMC9539859 DOI: 10.1002/cbic.202200212] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/10/2022] [Indexed: 11/25/2022]
Abstract
In this review the current state-of-the-art of S-adenosylmethionine (SAM)-dependent methyltransferases and SAM are evaluated. Their structural classification and diversity is introduced and key mechanistic aspects presented which are then detailed further. Then, catalytic SAM as a target for drugs, and approaches to utilise SAM as a cofactor in synthesis are introduced with different supply and regeneration approaches evaluated. The use of SAM analogues are also described. Finally O-, N-, C- and S-MTs, their synthetic applications and potential for compound diversification is given.
Collapse
Affiliation(s)
- Eman Abdelraheem
- BiocatalysisDepartment of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelft (TheNetherlands
| | - Benjamin Thair
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Romina Fernández Varela
- Laboratorio de Biotransformaciones y Química de Ácidos NucleicosUniversidad Nacional de QuilmesRoque S. Peña 352B1876BXDBernalArgentina
| | - Emely Jockmann
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstr. 2579104FreiburgGermany
| | - Désirée Popadić
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstr. 2579104FreiburgGermany
| | - Helen C. Hailes
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - John M. Ward
- Department of Biochemical EngineeringBernard Katz BuildingUniversity College LondonLondonWC1E 6BTUK
| | - Adolfo M. Iribarren
- Laboratorio de Biotransformaciones y Química de Ácidos NucleicosUniversidad Nacional de QuilmesRoque S. Peña 352B1876BXDBernalArgentina
| | - Elizabeth S. Lewkowicz
- Laboratorio de Biotransformaciones y Química de Ácidos NucleicosUniversidad Nacional de QuilmesRoque S. Peña 352B1876BXDBernalArgentina
| | - Jennifer N. Andexer
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstr. 2579104FreiburgGermany
| | - Peter‐Leon Hagedoorn
- BiocatalysisDepartment of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelft (TheNetherlands
| | - Ulf Hanefeld
- BiocatalysisDepartment of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelft (TheNetherlands
| |
Collapse
|
8
|
Simon‐Baram H, Roth S, Niedermayer C, Huber P, Speck M, Diener J, Richter M, Bershtein S. A High-Throughput Continuous Spectroscopic Assay to Measure the Activity of Natural Product Methyltransferases. Chembiochem 2022; 23:e202200162. [PMID: 35785511 PMCID: PMC9542197 DOI: 10.1002/cbic.202200162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/01/2022] [Indexed: 11/28/2022]
Abstract
Natural product methyltransferases (NPMTs) represent an emerging class of enzymes that can be of great use for the structural and functional diversification of bioactive compounds, such as the strategic modification of C-, N-, O- and S-moieties. To assess the activity and the substrate scope of the ever-expanding repertoire of NPMTs, a simple, fast, and robust assay is needed. Here, we report a continuous spectroscopic assay, in which S-adenosyl-L-methionine-dependent methylation is linked to NADH oxidation through the coupled activities of S-adenosyl-L-homocysteine (SAH) deaminase and glutamate dehydrogenase. The assay is highly suitable for a high-throughput evaluation of small molecule methylation and for determining the catalytic parameters of NPMTs under conditions that remove the potent inhibition by SAH. Through the modular design, the assay can be extended to match the needs of different aspects of methyltransferase cascade reactions and respective applications.
Collapse
Affiliation(s)
- Hadas Simon‐Baram
- Department of Life SciencesBen-Gurion University of the NegevBen-Gurion blvd 18410501Beer-ShevaIsrael
| | - Steffen Roth
- Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Branch BioCatSchulgasse 11a94315StraubingGermany
| | - Christina Niedermayer
- Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Branch BioCatSchulgasse 11a94315StraubingGermany
| | - Patricia Huber
- Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Branch BioCatSchulgasse 11a94315StraubingGermany
| | - Melanie Speck
- Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Branch BioCatSchulgasse 11a94315StraubingGermany
| | - Julia Diener
- Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Branch BioCatSchulgasse 11a94315StraubingGermany
| | - Michael Richter
- Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Branch BioCatSchulgasse 11a94315StraubingGermany
| | - Shimon Bershtein
- Department of Life SciencesBen-Gurion University of the NegevBen-Gurion blvd 18410501Beer-ShevaIsrael
| |
Collapse
|
9
|
Galman JL, Parmeggiani F, Seibt L, Birmingham WR, Turner NJ. One-Pot Biocatalytic In Vivo Methylation-Hydroamination of Bioderived Lignin Monomers to Generate a Key Precursor to L-DOPA. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202112855. [PMID: 38505118 PMCID: PMC10947412 DOI: 10.1002/ange.202112855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 11/09/2022]
Abstract
Electron-rich phenolic substrates can be derived from the depolymerisation of lignin feedstocks. Direct biotransformations of the hydroxycinnamic acid monomers obtained can be exploited to produce high-value chemicals, such as α-amino acids, however the reaction is often hampered by the chemical autooxidation in alkaline or harsh reaction media. Regioselective O-methyltransferases (OMTs) are ubiquitous enzymes in natural secondary metabolic pathways utilising an expensive co-substrate S-adenosyl-l-methionine (SAM) as the methylating reagent altering the physicochemical properties of the hydroxycinnamic acids. In this study, we engineered an OMT to accept a variety of electron-rich phenolic substrates, modified a commercial E. coli strain BL21 (DE3) to regenerate SAM in vivo, and combined it with an engineered ammonia lyase to partake in a one-pot, two whole cell enzyme cascade to produce the l-DOPA precursor l-veratrylglycine from lignin-derived ferulic acid.
Collapse
Affiliation(s)
- James L. Galman
- Department of ChemistryUniversity of ManchesterManchester Institute of Biotechnology131 Princess StreetM1 7DNManchesterUK
- FabricNano184–192 Drummond StreetNW1 3HPLondonUK
| | - Fabio Parmeggiani
- Department of ChemistryUniversity of ManchesterManchester Institute of Biotechnology131 Princess StreetM1 7DNManchesterUK
- Department of ChemistryMaterials and Chemical Engineering “G. Natta”Politecnico di MilanoPiazza Leonardo Da Vinci 3220131MilanoItaly
| | - Lisa Seibt
- Department of ChemistryUniversity of ManchesterManchester Institute of Biotechnology131 Princess StreetM1 7DNManchesterUK
| | - William R. Birmingham
- Department of ChemistryUniversity of ManchesterManchester Institute of Biotechnology131 Princess StreetM1 7DNManchesterUK
| | - Nicholas J. Turner
- Department of ChemistryUniversity of ManchesterManchester Institute of Biotechnology131 Princess StreetM1 7DNManchesterUK
| |
Collapse
|
10
|
Galman JL, Parmeggiani F, Seibt L, Birmingham WR, Turner NJ. One-Pot Biocatalytic In Vivo Methylation-Hydroamination of Bioderived Lignin Monomers to Generate a Key Precursor to L-DOPA. Angew Chem Int Ed Engl 2021; 61:e202112855. [PMID: 34882925 PMCID: PMC9304299 DOI: 10.1002/anie.202112855] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 11/11/2022]
Abstract
Electron‐rich phenolic substrates can be derived from the depolymerisation of lignin feedstocks. Direct biotransformations of the hydroxycinnamic acid monomers obtained can be exploited to produce high‐value chemicals, such as α‐amino acids, however the reaction is often hampered by the chemical autooxidation in alkaline or harsh reaction media. Regioselective O‐methyltransferases (OMTs) are ubiquitous enzymes in natural secondary metabolic pathways utilising an expensive co‐substrate S‐adenosyl‐l‐methionine (SAM) as the methylating reagent altering the physicochemical properties of the hydroxycinnamic acids. In this study, we engineered an OMT to accept a variety of electron‐rich phenolic substrates, modified a commercial E. coli strain BL21 (DE3) to regenerate SAM in vivo, and combined it with an engineered ammonia lyase to partake in a one‐pot, two whole cell enzyme cascade to produce the l‐DOPA precursor l‐veratrylglycine from lignin‐derived ferulic acid.
Collapse
Affiliation(s)
| | - Fabio Parmeggiani
- Politecnico di Milano, Chemistry, Materials and Chemical Engineering "Giulio Natta", ITALY
| | - Lisa Seibt
- The University of Manchester, School of Chemistry, UNITED KINGDOM
| | | | - Nicholas John Turner
- University of Manchester, Chemistry, Manchester Institute of Biotechnology, 131 Princess Street, M1 7DN, Manchester, UNITED KINGDOM
| |
Collapse
|
11
|
Roddan R, Subrizi F, Broomfield J, Ward JM, Keep NH, Hailes HC. Chemoenzymatic Cascades toward Methylated Tetrahydroprotoberberine and Protoberberine Alkaloids. Org Lett 2021; 23:6342-6347. [PMID: 34355910 DOI: 10.1021/acs.orglett.1c02110] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tetrahydroprotoberberine and protoberberine alkaloids are a group of biologically active natural products with complex molecular scaffolds. Isolation from plants is challenging and stereoselective synthetic routes, particularly of methylated compounds are limited, reducing the potential use of these compounds. In this work, we describe chemoenzymatic cascades toward various 13-methyl-tetrahydroprotoberberbine scaffolds using a stereoselective Pictet-Spenglerase, regioselective catechol O-methyltransferases and selective chemical Pictet-Spengler reactions. All reactions could be performed sequentially, without the workup or purification of any synthetic intermediates. Moreover, the naturally occurring alkaloids have the (+)-configuration and importantly here, a strategy to the (-)-isomers was developed. A methyl group at C-8 was also introduced with some stereocontrol, influenced by the stereochemistry at C-13. Furthermore, a single step reaction was found to convert tetrahydroprotoberberine alkaloids into the analogous protoberberine scaffold, avoiding the use of harsh oxidizing conditions or a selective oxidase. This work provides facile, selective routes toward novel analogues of bioactive alkaloids.
Collapse
Affiliation(s)
- Rebecca Roddan
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, U.K.,Department of Chemistry, Christopher Ingold Building, University College London, London WC1H 0AJ, U.K
| | - Fabiana Subrizi
- Department of Chemistry, Christopher Ingold Building, University College London, London WC1H 0AJ, U.K
| | - Joseph Broomfield
- Department of Chemistry, Christopher Ingold Building, University College London, London WC1H 0AJ, U.K
| | - John M Ward
- Department of Biochemical Engineering, Bernard Katz Building, University College London, London WC1E 6BT, U.K
| | - Nicholas H Keep
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, U.K
| | - Helen C Hailes
- Department of Chemistry, Christopher Ingold Building, University College London, London WC1H 0AJ, U.K
| |
Collapse
|
12
|
Rapid in vitro prototyping of O-methyltransferases for pathway applications in Escherichia coli. Cell Chem Biol 2021; 28:876-886.e4. [PMID: 33957079 DOI: 10.1016/j.chembiol.2021.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/20/2021] [Accepted: 04/16/2021] [Indexed: 11/22/2022]
Abstract
O-Methyltransferases are ubiquitous enzymes involved in biosynthetic pathways for secondary metabolites such as bacterial antibiotics, human catecholamine neurotransmitters, and plant phenylpropanoids. While thousands of putative O-methyltransferases are found in sequence databases, few examples are functionally characterized. From a pathway engineering perspective, however, it is crucial to know the substrate and product ranges of the respective enzymes to fully exploit their catalytic power. In this study, we developed an in vitro prototyping workflow that allowed us to screen ∼30 enzymes against five substrates in 3 days with high reproducibility. We combined in vitro transcription/translation of the genes of interest with a microliter-scale enzymatic assay in 96-well plates. The substrate conversion was indirectly measured by quantifying the consumption of the S-adenosyl-L-methionine co-factor by time-resolved fluorescence resonance energy transfer rather than time-consuming product analysis by chromatography. This workflow allowed us to rapidly prototype thus far uncharacterized O-methyltransferases for future use as biocatalysts.
Collapse
|
13
|
Lee SH, Kim B, Kim KJ. Crystal Structure and Regiospecificity of Catechol O-Methyltransferase from Niastella koreensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2531-2538. [PMID: 33596655 DOI: 10.1021/acs.jafc.0c07621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Catechol O-methyltransferase (COMT) is an enzyme that transfers a methyl group to the catechol-derivative substrates using S-adenosyl-l-methionine (SAM) and Mg2+. We report the biochemical and structural analysis of COMT from Niastella koreensis (NkCOMT). NkCOMT showed the highest activity with Mg2+, although the enzyme also showed a significant level of activity with Cu2+ and Zn2+. NkCOMT structures complexed with SAH and Mg2+ elucidated how the enzyme stabilized the cosubstrate and the metal ion and revealed that the region near the SAM binding site undergoes conformational changes upon the binding of the cosubstrate and the metal ion. We also identified the catechol binding pocket of the enzyme and explained a broad substrate specificity of the bacterial enzyme and its ability to accommodate the catechol derivatives. In addition, we developed the NkCOMTE211R and NkCOMTE211K variants that showed both enhanced activities and regiospecificity for the production of the para-forms. Our study provides a structural basis for regiospecificity of NkCOMT, which is related with the conformational change upon binding of SAM and Mg2+.
Collapse
Affiliation(s)
- Seul Hoo Lee
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
- KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Bongsang Kim
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
- KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyung-Jin Kim
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
- KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
14
|
Sun Q, Huang M, Wei Y. Diversity of the reaction mechanisms of SAM-dependent enzymes. Acta Pharm Sin B 2021; 11:632-650. [PMID: 33777672 PMCID: PMC7982431 DOI: 10.1016/j.apsb.2020.08.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/30/2020] [Accepted: 08/08/2020] [Indexed: 02/08/2023] Open
Abstract
S-adenosylmethionine (SAM) is ubiquitous in living organisms and is of great significance in metabolism as a cofactor of various enzymes. Methyltransferases (MTases), a major group of SAM-dependent enzymes, catalyze methyl transfer from SAM to C, O, N, and S atoms in small-molecule secondary metabolites and macromolecules, including proteins and nucleic acids. MTases have long been a hot topic in biomedical research because of their crucial role in epigenetic regulation of macromolecules and biosynthesis of natural products with prolific pharmacological moieties. However, another group of SAM-dependent enzymes, sharing similar core domains with MTases, can catalyze nonmethylation reactions and have multiple functions. Herein, we mainly describe the nonmethylation reactions of SAM-dependent enzymes in biosynthesis. First, we compare the structural and mechanistic similarities and distinctions between SAM-dependent MTases and the non-methylating SAM-dependent enzymes. Second, we summarize the reactions catalyzed by these enzymes and explore the mechanisms. Finally, we discuss the structural conservation and catalytical diversity of class I-like non-methylating SAM-dependent enzymes and propose a possibility in enzymes evolution, suggesting future perspectives for enzyme-mediated chemistry and biotechnology, which will help the development of new methods for drug synthesis.
Collapse
|
15
|
Roddan R, Sula A, Méndez-Sánchez D, Subrizi F, Lichman BR, Broomfield J, Richter M, Andexer JN, Ward JM, Keep NH, Hailes HC. Single step syntheses of (1S)-aryl-tetrahydroisoquinolines by norcoclaurine synthases. Commun Chem 2020; 3:170. [PMID: 36703392 PMCID: PMC9814250 DOI: 10.1038/s42004-020-00416-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/14/2020] [Indexed: 01/29/2023] Open
Abstract
The 1-aryl-tetrahydroisoquinoline (1-aryl-THIQ) moiety is found in many biologically active molecules. Single enantiomer chemical syntheses are challenging and although some biocatalytic routes have been reported, the substrate scope is limited to certain structural motifs. The enzyme norcoclaurine synthase (NCS), involved in plant alkaloid biosynthesis, has been shown to perform stereoselective Pictet-Spengler reactions between dopamine and several carbonyl substrates. Here, benzaldehydes are explored as substrates and found to be accepted by both wild-type and mutant constructs of NCS. In particular, the variant M97V gives a range of (1 S)-aryl-THIQs in high yields (48-99%) and e.e.s (79-95%). A co-crystallised structure of the M97V variant with an active site reaction intermediate analogue is also obtained with the ligand in a pre-cyclisation conformation, consistent with (1 S)-THIQs formation. Selected THIQs are then used with catechol O-methyltransferases with exceptional regioselectivity. This work demonstrates valuable biocatalytic approaches to a range of (1 S)-THIQs.
Collapse
Affiliation(s)
- Rebecca Roddan
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London, WC1E 7HX, UK
- Department of Chemistry, Christopher Ingold Building, University College London, London, WC1H 0AJ, UK
| | - Altin Sula
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London, WC1E 7HX, UK
| | - Daniel Méndez-Sánchez
- Department of Chemistry, Christopher Ingold Building, University College London, London, WC1H 0AJ, UK
| | - Fabiana Subrizi
- Department of Chemistry, Christopher Ingold Building, University College London, London, WC1H 0AJ, UK
| | - Benjamin R Lichman
- Department of Biochemical Engineering, Bernard Katz Building, University College London, London, WC1E 6BT, UK
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Joseph Broomfield
- Department of Chemistry, Christopher Ingold Building, University College London, London, WC1H 0AJ, UK
| | - Michael Richter
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Schulgasse 11a, 94315, Straubing, Germany
| | - Jennifer N Andexer
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - John M Ward
- Department of Biochemical Engineering, Bernard Katz Building, University College London, London, WC1E 6BT, UK.
| | - Nicholas H Keep
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London, WC1E 7HX, UK.
| | - Helen C Hailes
- Department of Chemistry, Christopher Ingold Building, University College London, London, WC1H 0AJ, UK.
| |
Collapse
|
16
|
Kunjapur AM, Prather KLJ. Development of a Vanillate Biosensor for the Vanillin Biosynthesis Pathway in E. coli. ACS Synth Biol 2019; 8:1958-1967. [PMID: 31461264 DOI: 10.1021/acssynbio.9b00071] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The engineered de novo vanillin biosynthesis pathway constructed in Escherichia coli is industrially relevant but limited by the reaction catalyzed by catechol O-methyltransferase, which is intended to catalyze the conversion of protocatechuate to vanillate. To identify alternative O-methyltransferases, we constructed a vanillate sensor based on the Caulobacter crescentus VanR-VanO system. Using an E. coli promoter library, we achieved greater than 14-fold dynamic range in our best rationally constructed sensor. We found that this construct and an evolved variant demonstrate remarkable substrate selectivity, exhibiting no detectable response to the regioisomer byproduct isovanillate and minimal response to structurally similar pathway intermediates. We then harnessed the evolved biosensor to conduct rapid bioprospecting of natural catechol O-methyltransferases and identified three previously uncharacterized but active O-methyltransferases. Collectively, these efforts enrich our knowledge of how biosensing can aid metabolic engineering and constitute the foundation for future improvements in vanillin pathway productivity.
Collapse
Affiliation(s)
- Aditya M. Kunjapur
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Kristala L. J. Prather
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
17
|
Tang Q, Bornscheuer UT, Pavlidis IV. Specific Residues Expand the Substrate Scope and Enhance the Regioselectivity of a Plant
O
‐Methyltransferase. ChemCatChem 2019. [DOI: 10.1002/cctc.201900606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Qingyun Tang
- Dept. of Biotechnology and Enzyme CatalysisInstitute of BiochemistryUniversity of Greifswald Felix-Hausdorff-Straße 4 17487 Greifswald Germany
| | - Uwe T. Bornscheuer
- Dept. of Biotechnology and Enzyme CatalysisInstitute of BiochemistryUniversity of Greifswald Felix-Hausdorff-Straße 4 17487 Greifswald Germany
| | - Ioannis V. Pavlidis
- Dept. of ChemistryUniversity of Crete Voutes University Campus 70013 Heraklion Greece
| |
Collapse
|
18
|
Santa Maria KC, Chan AN, O'Neill EM, Li B. Targeted Rediscovery and Biosynthesis of the Farnesyl-Transferase Inhibitor Pepticinnamin E. Chembiochem 2019; 20:1387-1393. [PMID: 30694017 PMCID: PMC6750724 DOI: 10.1002/cbic.201900025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Indexed: 11/08/2022]
Abstract
The natural product pepticinnamin E potently inhibits protein farnesyl transferases and has potential applications in treating cancer and malaria. Pepticinnamin E contains a rare N-terminal cinnamoyl moiety as well as several nonproteinogenic amino acids, including the unusual 2-chloro-3-hydroxy-4-methoxy-N-methyl-L-phenylalanine. The biosynthesis of pepticinnamin E has remained uncharacterized because its original producing strain is no longer available. Here we identified a gene cluster (pcm) for this natural product in a new producer, Actinobacteria bacterium OK006, by means of a targeted rediscovery strategy. We demonstrated that the pcm cluster is responsible for the biosynthesis of pepticinnamin E, a nonribosomal peptide/polyketide hybrid. We also characterized a key O-methyltransferase that modifies 3,4-dihydroxy-l-phenylalanine. Our work has identified the gene cluster for pepticinnamins for the first time and sets the stage for elucidating the unique chemistry required for biosynthesis.
Collapse
Affiliation(s)
- Kevin C Santa Maria
- Department of Chemistry, University of North Carolina at Chapel Hill, CB#3290, Chapel Hill, NC, 27514, USA
| | - Andrew N Chan
- Department of Chemistry, University of North Carolina at Chapel Hill, CB#3290, Chapel Hill, NC, 27514, USA
| | - Erinn M O'Neill
- Department of Chemistry, University of North Carolina at Chapel Hill, CB#3290, Chapel Hill, NC, 27514, USA
| | - Bo Li
- Department of Chemistry, University of North Carolina at Chapel Hill, CB#3290, Chapel Hill, NC, 27514, USA
| |
Collapse
|
19
|
Lee S, Kang J, Kim J. Structural and biochemical characterization of Rv0187, an O-methyltransferase from Mycobacterium tuberculosis. Sci Rep 2019; 9:8059. [PMID: 31147608 PMCID: PMC6543040 DOI: 10.1038/s41598-019-44592-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/20/2019] [Indexed: 01/05/2023] Open
Abstract
Catechol O-methyltransferase (COMT) is widely distributed in nature and installs a methyl group onto one of the vicinal hydroxyl groups of a catechol derivative. Enzymes belonging to this family require two cofactors for methyl transfer: S-adenosyl-l-methionine as a methyl donor and a divalent metal cation for regiospecific binding and activation of a substrate. We have determined two high-resolution crystal structures of Rv0187, one of three COMT paralogs from Mycobacterium tuberculosis, in the presence and absence of cofactors. The cofactor-bound structure clearly locates strontium ions and S-adenosyl-l-homocysteine in the active site, and together with the complementary structure of the ligand-free form, it suggests conformational dynamics induced by the binding of cofactors. Examination of in vitro activities revealed promiscuous substrate specificity and relaxed regioselectivity against various catechol-like compounds. Unexpectedly, mutation of the proposed catalytic lysine residue did not abolish activity but altered the overall landscape of regiospecific methylation.
Collapse
Affiliation(s)
- Sanghyun Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jihoon Kang
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jungwook Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
20
|
Tanifuji R, Koketsu K, Takakura M, Asano R, Minami A, Oikawa H, Oguri H. Chemo-enzymatic Total Syntheses of Jorunnamycin A, Saframycin A, and N-Fmoc Saframycin Y3. J Am Chem Soc 2018; 140:10705-10709. [DOI: 10.1021/jacs.8b07161] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Ryo Tanifuji
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Kento Koketsu
- Division of Chemistry, Graduate School of Science, Hokkaido University, North 10 West 8, Sapporo 060-0810, Japan
| | - Michiko Takakura
- Division of Chemistry, Graduate School of Science, Hokkaido University, North 10 West 8, Sapporo 060-0810, Japan
| | - Ryutaro Asano
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Atsushi Minami
- Division of Chemistry, Graduate School of Science, Hokkaido University, North 10 West 8, Sapporo 060-0810, Japan
| | - Hideaki Oikawa
- Division of Chemistry, Graduate School of Science, Hokkaido University, North 10 West 8, Sapporo 060-0810, Japan
| | - Hiroki Oguri
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
21
|
Khan RA. Natural products chemistry: The emerging trends and prospective goals. Saudi Pharm J 2018; 26:739-753. [PMID: 29991919 PMCID: PMC6036106 DOI: 10.1016/j.jsps.2018.02.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 02/05/2018] [Indexed: 01/01/2023] Open
Abstract
The role and contributions of natural products chemistry in advancements of the physical and biological sciences, its interdisciplinary domains, and emerging of new avenues by providing novel applications, constructive inputs, thrust, comprehensive understanding, broad perspective, and a new vision for future is outlined. The developmental prospects in bio-medical, health, nutrition, and other interrelated sciences along with some of the emerging trends in the subject area are also discussed as part of the current review of the basic and core developments, innovation in techniques, advances in methodology, and possible applications with their effects on the sciences in general and natural products chemistry in particular. The overview of the progress and ongoing developments in broader areas of the natural products chemistry discipline, its role and concurrent economic and scientific implications, contemporary objectives, future prospects as well as impending goals are also outlined. A look at the natural products chemistry in providing scientific progress in various disciplines is deliberated upon.
Collapse
Affiliation(s)
- Riaz A. Khan
- Department of Medicinal Chemistry, Qassim University, Qassim 51452, Saudi Arabia
- Manav Rachna International University, National Capital Region, Faridabad, HR 121 004, India
| |
Collapse
|
22
|
Yan Q, Shaw N, Qian L, Jiang D. Crystal structure of Rv1220c, a SAM-dependent O-methyltransferase from Mycobacterium tuberculosis. Acta Crystallogr F Struct Biol Commun 2017; 73:315-320. [PMID: 28580918 PMCID: PMC5458387 DOI: 10.1107/s2053230x17006057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 04/21/2017] [Indexed: 11/11/2022] Open
Abstract
Rv1220c from Mycobacterium tuberculosis is annotated as an O-methyltransferase (MtbOMT). Currently, no structural information is available for this protein. Here, the crystal structure of MtbOMT refined to 2.0 Å resolution is described. The structure reveals the presence of a methyltransferase fold and shows clear electron density for one molecule of S-adenosylmethionine (SAM), which was apparently bound by the protein during its production in Escherichia coli. Although the overall structure of MtbOMT resembles the structures of O-methyltransferases from Cornybacterium glutamicum, Coxiella burnetti and Alfa alfa, differences are observed in the residues that make up the active site. Notably, substitution of Asp by His164 seems to abrogate metal binding by MtbOMT. A putative catalytic His-Asp pair located in the vicinity of SAM is absolutely conserved in MtbOMT homologues from all species of Mycobacterium, suggesting a conserved function for this protein.
Collapse
Affiliation(s)
- Qiaoling Yan
- College of Life Science, Nankai University, Weijin Road, Nankai District, Tianjin City 300071, People’s Republic of China
| | - Neil Shaw
- College of Life Science, Nankai University, Weijin Road, Nankai District, Tianjin City 300071, People’s Republic of China
| | - Lanfang Qian
- College of Life Science, Nankai University, Weijin Road, Nankai District, Tianjin City 300071, People’s Republic of China
| | - Dunquan Jiang
- College of Life Science, Nankai University, Weijin Road, Nankai District, Tianjin City 300071, People’s Republic of China
| |
Collapse
|
23
|
Mordhorst S, Siegrist J, Müller M, Richter M, Andexer JN. Catalytic Alkylation Using a CyclicS-Adenosylmethionine Regeneration System. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611038] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Silja Mordhorst
- Institute of Pharmaceutical Sciences; University of Freiburg; Albertstrasse 25 79104 Freiburg Germany
| | - Jutta Siegrist
- Institute of Pharmaceutical Sciences; University of Freiburg; Albertstrasse 25 79104 Freiburg Germany
| | - Michael Müller
- Institute of Pharmaceutical Sciences; University of Freiburg; Albertstrasse 25 79104 Freiburg Germany
| | - Michael Richter
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB; Bio, Electro and Chemocatalysis BioCat; Straubing branch; Schulgasse 11a 94315 Straubing Germany
| | - Jennifer N. Andexer
- Institute of Pharmaceutical Sciences; University of Freiburg; Albertstrasse 25 79104 Freiburg Germany
| |
Collapse
|
24
|
Mordhorst S, Siegrist J, Müller M, Richter M, Andexer JN. Catalytic Alkylation Using a CyclicS-Adenosylmethionine Regeneration System. Angew Chem Int Ed Engl 2017; 56:4037-4041. [DOI: 10.1002/anie.201611038] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Indexed: 01/28/2023]
Affiliation(s)
- Silja Mordhorst
- Institute of Pharmaceutical Sciences; University of Freiburg; Albertstrasse 25 79104 Freiburg Germany
| | - Jutta Siegrist
- Institute of Pharmaceutical Sciences; University of Freiburg; Albertstrasse 25 79104 Freiburg Germany
| | - Michael Müller
- Institute of Pharmaceutical Sciences; University of Freiburg; Albertstrasse 25 79104 Freiburg Germany
| | - Michael Richter
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB; Bio, Electro and Chemocatalysis BioCat; Straubing branch; Schulgasse 11a 94315 Straubing Germany
| | - Jennifer N. Andexer
- Institute of Pharmaceutical Sciences; University of Freiburg; Albertstrasse 25 79104 Freiburg Germany
| |
Collapse
|
25
|
Siegrist J, Netzer J, Mordhorst S, Karst L, Gerhardt S, Einsle O, Richter M, Andexer JN. Functional and structural characterisation of a bacterialO-methyltransferase and factors determining regioselectivity. FEBS Lett 2017; 591:312-321. [DOI: 10.1002/1873-3468.12530] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/24/2016] [Accepted: 12/12/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Jutta Siegrist
- Institute of Pharmaceutical Sciences; Albert-Ludwigs-University Freiburg; Germany
| | - Julia Netzer
- Institute of Biochemistry; Albert-Ludwigs-University Freiburg; Germany
| | - Silja Mordhorst
- Institute of Pharmaceutical Sciences; Albert-Ludwigs-University Freiburg; Germany
| | - Lukas Karst
- Institute of Pharmaceutical Sciences; Albert-Ludwigs-University Freiburg; Germany
| | - Stefan Gerhardt
- Institute of Biochemistry; Albert-Ludwigs-University Freiburg; Germany
| | - Oliver Einsle
- Institute of Biochemistry; Albert-Ludwigs-University Freiburg; Germany
- BIOSS Centre for Biological Signalling Studies; Freiburg Germany
| | - Michael Richter
- Bio-, Electro- and Chemocatalysis BioCat, Straubing Branch; Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB; Straubing Germany
| | - Jennifer N. Andexer
- Institute of Pharmaceutical Sciences; Albert-Ludwigs-University Freiburg; Germany
| |
Collapse
|
26
|
Kishimoto S, Sato M, Tsunematsu Y, Watanabe K. Evaluation of Biosynthetic Pathway and Engineered Biosynthesis of Alkaloids. Molecules 2016; 21:E1078. [PMID: 27548127 PMCID: PMC6274189 DOI: 10.3390/molecules21081078] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/15/2016] [Accepted: 08/15/2016] [Indexed: 01/13/2023] Open
Abstract
Varieties of alkaloids are known to be produced by various organisms, including bacteria, fungi and plants, as secondary metabolites that exhibit useful bioactivities. However, understanding of how those metabolites are biosynthesized still remains limited, because most of these compounds are isolated from plants and at a trace level of production. In this review, we focus on recent efforts in identifying the genes responsible for the biosynthesis of those nitrogen-containing natural products and elucidating the mechanisms involved in the biosynthetic processes. The alkaloids discussed in this review are ditryptophenaline (dimeric diketopiperazine alkaloid), saframycin (tetrahydroisoquinoline alkaloid), strictosidine (monoterpene indole alkaloid), ergotamine (ergot alkaloid) and opiates (benzylisoquinoline and morphinan alkaloid). This review also discusses the engineered biosynthesis of these compounds, primarily through heterologous reconstitution of target biosynthetic pathways in suitable hosts, such as Escherichia coli, Saccharomyces cerevisiae and Aspergillus nidulans. Those heterologous biosynthetic systems can be used to confirm the functions of the isolated genes, economically scale up the production of the alkaloids for commercial distributions and engineer the biosynthetic pathways to produce valuable analogs of the alkaloids. In particular, extensive involvement of oxidation reactions catalyzed by oxidoreductases, such as cytochrome P450s, during the secondary metabolite biosynthesis is discussed in details.
Collapse
Affiliation(s)
- Shinji Kishimoto
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan.
| | - Michio Sato
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan.
| | - Yuta Tsunematsu
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan.
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan.
| |
Collapse
|
27
|
Marcoleta AE, Berríos-Pastén C, Nuñez G, Monasterio O, Lagos R. Klebsiella pneumoniae Asparagine tDNAs Are Integration Hotspots for Different Genomic Islands Encoding Microcin E492 Production Determinants and Other Putative Virulence Factors Present in Hypervirulent Strains. Front Microbiol 2016; 7:849. [PMID: 27375573 PMCID: PMC4891358 DOI: 10.3389/fmicb.2016.00849] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/23/2016] [Indexed: 01/09/2023] Open
Abstract
Due to the developing of multi-resistant and invasive hypervirulent strains, Klebsiella pneumoniae has become one of the most urgent bacterial pathogen threats in the last years. Genomic comparison of a growing number of sequenced isolates has allowed the identification of putative virulence factors, proposed to be acquirable mainly through horizontal gene transfer. In particular, those related with synthesizing the antibacterial peptide microcin E492 (MccE492) and salmochelin siderophores were found to be highly prevalent among hypervirulent strains. The determinants for the production of both molecules were first reported as part of a 13-kbp segment of K. pneumoniae RYC492 chromosome, and were cloned and characterized in E. coli. However, the genomic context of this segment in K. pneumoniae remained uncharacterized. In this work, we provided experimental and bioinformatics evidence indicating that the MccE492 cluster is part of a highly conserved 23-kbp genomic island (GI) named GIE492, that was integrated in a specific asparagine-tRNA gene (asn-tDNA) and was found in a high proportion of isolates from liver abscesses sampled around the world. This element resulted to be unstable and its excision frequency increased after treating bacteria with mitomycin C and upon the overexpression of the island-encoded integrase. Besides the MccE492 genetic cluster, it invariably included an integrase-coding gene, at least seven protein-coding genes of unknown function, and a putative transfer origin that possibly allows this GI to be mobilized through conjugation. In addition, we analyzed the asn-tDNA loci of all the available K. pneumoniae assembled chromosomes to evaluate them as GI-integration sites. Remarkably, 73% of the strains harbored at least one GI integrated in one of the four asn-tDNA present in this species, confirming them as integration hotspots. Each of these tDNAs was occupied with different frequencies, although they were 100% identical. Also, we identified a total of 47 asn-tDNA-associated GIs that were classified into 12 groups of homology differing in theencoded functionalities but sharing with GIE492 a conserved recombination module and potentially its mobility features. Most of these GIs encoded factors with proven or potential role in pathogenesis, constituting a major reservoir of virulence factors in this species.
Collapse
Affiliation(s)
- Andrés E Marcoleta
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile Santiago, Chile
| | - Camilo Berríos-Pastén
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile Santiago, Chile
| | - Gonzalo Nuñez
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile Santiago, Chile
| | - Octavio Monasterio
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile Santiago, Chile
| | - Rosalba Lagos
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile Santiago, Chile
| |
Collapse
|
28
|
Siegrist J, Aschwanden S, Mordhorst S, Thöny-Meyer L, Richter M, Andexer JN. Regiocomplementary O-Methylation of Catechols by Using Three-Enzyme Cascades. Chembiochem 2015; 16:2576-9. [PMID: 26437744 DOI: 10.1002/cbic.201500410] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Indexed: 11/10/2022]
Abstract
S-Adenosylmethionine (SAM)-dependent enzymes have great potential for selective alkylation processes. In this study we investigated the regiocomplementary O-methylation of catechols. Enzymatic methylation is often hampered by the need for a stoichiometric supply of SAM and the inhibitory effect of the SAM-derived byproduct on most methyltransferases. To counteract these issues we set up an enzyme cascade. Firstly, SAM was generated from l-methionine and ATP by use of an archaeal methionine adenosyltransferase. Secondly, 4-O-methylation of the substrates dopamine and dihydrocaffeic acid was achieved by use of SafC from the saframycin biosynthesis pathway in 40-70 % yield and high selectivity. The regiocomplementary 3-O-methylation was catalysed by catechol O-methyltransferase from rat. Thirdly, the beneficial influence of a nucleosidase on the overall conversion was demonstrated. The results of this study are important milestones on the pathway to catalytic SAM-dependent alkylation processes.
Collapse
Affiliation(s)
- Jutta Siegrist
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Simon Aschwanden
- Laboratory for Biointerfaces, Empa. Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Silja Mordhorst
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Linda Thöny-Meyer
- Laboratory for Biointerfaces, Empa. Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland.,AVSV, Blarerstrasse 2, 9001, St. Gallen, Switzerland
| | - Michael Richter
- Laboratory for Biointerfaces, Empa. Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland. .,Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Branch BioCat, Schulgasse 11a, 94315, Straubing, Germany.
| | - Jennifer N Andexer
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany.
| |
Collapse
|
29
|
Lin Z, Torres JP, Ammon MA, Marett L, Teichert RW, Reilly CA, Kwan JC, Hughen RW, Flores M, Tianero MD, Peraud O, Cox JE, Light AR, Villaraza AJL, Haygood MG, Concepcion GP, Olivera BM, Schmidt EW. A bacterial source for mollusk pyrone polyketides. ACTA ACUST UNITED AC 2013; 20:73-81. [PMID: 23352141 DOI: 10.1016/j.chembiol.2012.10.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 10/11/2012] [Accepted: 10/24/2012] [Indexed: 12/29/2022]
Abstract
In the oceans, secondary metabolites often protect otherwise poorly defended invertebrates, such as shell-less mollusks, from predation. The origins of these metabolites are largely unknown, but many of them are thought to be made by symbiotic bacteria. In contrast, mollusks with thick shells and toxic venoms are thought to lack these secondary metabolites because of reduced defensive needs. Here, we show that heavily defended cone snails also occasionally contain abundant secondary metabolites, γ-pyrones known as nocapyrones, which are synthesized by symbiotic bacteria. The bacteria, Nocardiopsis alba CR167, are related to widespread actinomycetes that we propose to be casual symbionts of invertebrates on land and in the sea. The natural roles of nocapyrones are unknown, but they are active in neurological assays, revealing that mollusks with external shells are an overlooked source of secondary metabolite diversity.
Collapse
Affiliation(s)
- Zhenjian Lin
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Struck AW, Thompson ML, Wong LS, Micklefield J. S-Adenosyl-Methionine-Dependent Methyltransferases: Highly Versatile Enzymes in Biocatalysis, Biosynthesis and Other Biotechnological Applications. Chembiochem 2012. [DOI: 10.1002/cbic.201200556] [Citation(s) in RCA: 250] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Rath CM, Janto B, Earl J, Ahmed A, Hu FZ, Hiller L, Dahlgren M, Kreft R, Yu F, Wolff JJ, Kweon HK, Christiansen MA, Håkansson K, Williams RM, Ehrlich GD, Sherman DH. Meta-omic characterization of the marine invertebrate microbial consortium that produces the chemotherapeutic natural product ET-743. ACS Chem Biol 2011; 6:1244-56. [PMID: 21875091 DOI: 10.1021/cb200244t] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In many macroorganisms, the ultimate source of potent biologically active natural products has remained elusive due to an inability to identify and culture the producing symbiotic microorganisms. As a model system for developing a meta-omic approach to identify and characterize natural product pathways from invertebrate-derived microbial consortia, we chose to investigate the ET-743 (Yondelis) biosynthetic pathway. This molecule is an approved anticancer agent obtained in low abundance (10(-4)-10(-5) % w/w) from the tunicate Ecteinascidia turbinata and is generated in suitable quantities for clinical use by a lengthy semisynthetic process. On the basis of structural similarities to three bacterial secondary metabolites, we hypothesized that ET-743 is the product of a marine bacterial symbiont. Using metagenomic sequencing of total DNA from the tunicate/microbial consortium, we targeted and assembled a 35 kb contig containing 25 genes that comprise the core of the NRPS biosynthetic pathway for this valuable anticancer agent. Rigorous sequence analysis based on codon usage of two large unlinked contigs suggests that Candidatus Endoecteinascidia frumentensis produces the ET-743 metabolite. Subsequent metaproteomic analysis confirmed expression of three key biosynthetic proteins. Moreover, the predicted activity of an enzyme for assembly of the tetrahydroisoquinoline core of ET-743 was verified in vitro. This work provides a foundation for direct production of the drug and new analogues through metabolic engineering. We expect that the interdisciplinary approach described is applicable to diverse host-symbiont systems that generate valuable natural products for drug discovery and development.
Collapse
Affiliation(s)
| | - Benjamin Janto
- Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
| | - Josh Earl
- Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
| | - Azad Ahmed
- Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
| | - Fen Z. Hu
- Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
- Department of Microbiology and Immunology, Drexel University College of Medicine, Allegheny Campus, Pittsburgh, Pennsylvania 15212, United States
- Department of Otolaryngology, Head and Neck Surgery, Drexel University College of Medicine, Allegheny Campus, Pittsburgh, Pennsylvania 15212, United States
| | - Luisa Hiller
- Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
| | - Meg Dahlgren
- Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
| | - Rachael Kreft
- Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
| | | | - Jeremy J. Wolff
- Bruker Daltonics, Billerica, Massachusetts 01821, United States
| | | | | | | | - Robert M. Williams
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
| | - Garth D. Ehrlich
- Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
- Department of Microbiology and Immunology, Drexel University College of Medicine, Allegheny Campus, Pittsburgh, Pennsylvania 15212, United States
- Department of Otolaryngology, Head and Neck Surgery, Drexel University College of Medicine, Allegheny Campus, Pittsburgh, Pennsylvania 15212, United States
| | | |
Collapse
|
33
|
Eudes A, Baidoo EEK, Yang F, Burd H, Hadi MZ, Collins FW, Keasling JD, Loqué D. Production of tranilast [N-(3′,4′-dimethoxycinnamoyl)-anthranilic acid] and its analogs in yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2010; 89:989-1000. [DOI: 10.1007/s00253-010-2939-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 10/06/2010] [Accepted: 10/07/2010] [Indexed: 10/18/2022]
|
34
|
McAlpine JB. Advances in the understanding and use of the genomic base of microbial secondary metabolite biosynthesis for the discovery of new natural products. JOURNAL OF NATURAL PRODUCTS 2009; 72:566-572. [PMID: 19199817 DOI: 10.1021/np800742z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Over the past decade major changes have occurred in the access to genome sequences that encode the enzymes responsible for the biosynthesis of secondary metabolites, knowledge of how those sequences translate into the final structure of the metabolite, and the ability to alter the sequence to obtain predicted products via both homologous and heterologous expression. Novel genera have been discovered leading to new chemotypes, but more surprisingly several instances have been uncovered where the apparently general rules of modular translation have not applied. Several new biosynthetic pathways have been unearthed, and our general knowledge grows rapidly. This review aims to highlight some of the more striking discoveries and advances of the decade.
Collapse
Affiliation(s)
- James B McAlpine
- Thallion Pharmaceuticals Inc., 7150 Alexander-Fleming, Montreal H4S 2C8, Canada.
| |
Collapse
|
35
|
Abstract
Nonribosomal peptides are natural products typically of bacterial and fungal origin. These highly complex molecules display a broad spectrum of biological activities, and have been exploited for the development of immunosuppressant, antibiotic, anticancer, and other therapeutic agents. The nonribosomal peptides are assembled by nonribosomal peptide synthetase (NRPS) enzymes comprising repeating modules that are responsible for the sequential selection, activation, and condensation of precursor amino acids. In addition to this, fatty acids, alpha-keto acids and alpha-hydroxy acids, as well as polyketide derived units, can also be utilized by NRPS assembly lines. Final tailoring-steps, including glycosylation and prenylation, serve to further decorate the nonribosomal peptides produced. The wide range of experimental methods that are employed in the elucidation of nonribosomal peptide precursor biosynthesis will be discussed, with particularly emphasis on genomics based approaches which have become wide spread over the last 5 years.
Collapse
Affiliation(s)
- Barrie Wilkinson
- Biotica, Chesterford Research Park, Little Chesterford, Essex, United Kingdom
| | | |
Collapse
|
36
|
Kopycki JG, Stubbs MT, Brandt W, Hagemann M, Porzel A, Schmidt J, Schliemann W, Zenk MH, Vogt T. Functional and structural characterization of a cation-dependent O-methyltransferase from the cyanobacterium Synechocystis sp. strain PCC 6803. J Biol Chem 2008; 283:20888-96. [PMID: 18502765 PMCID: PMC3258943 DOI: 10.1074/jbc.m801943200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 05/22/2008] [Indexed: 11/06/2022] Open
Abstract
The coding sequence of the cyanobacterium Synechocystis sp. strain PCC 6803 slr0095 gene was cloned and functionally expressed in Escherichia coli. The corresponding enzyme was classified as a cation- and S-adenosyl-l-methionine-dependent O-methyltransferase (SynOMT), consistent with considerable amino acid sequence identities to eukaryotic O-methyltransferases (OMTs). The substrate specificity of SynOMT was similar with those of plant and mammalian CCoAOMT-like proteins accepting a variety of hydroxycinnamic acids and flavonoids as substrates. In contrast to the known mammalian and plant enzymes, which exclusively methylate the meta-hydroxyl position of aromatic di- and trihydroxy systems, Syn-OMT also methylates the para-position of hydroxycinnamic acids like 5-hydroxyferulic and 3,4,5-trihydroxycinnamic acid, resulting in the formation of novel compounds. The x-ray structure of SynOMT indicates that the active site allows for two alternative orientations of the hydroxylated substrates in comparison to the active sites of animal and plant enzymes, consistent with the observed preferred para-methylation and position promiscuity. Lys(3) close to the N terminus of the recombinant protein appears to play a key role in the activity of the enzyme. The possible implications of these results with respect to modifications of precursors of polymers like lignin are discussed.
Collapse
Affiliation(s)
- Jakub Grzegorz Kopycki
- Department of Physical Biotechnology,
Institute of Biochemistry and Biotechnology, Martin-Luther-University
Halle-Wittenberg, Halle (Saale) 06099, Germany, the Departments of
Bioorganic Chemistry and
Secondary Metabolism, Leibniz Institute of Plant
Biochemistry, Halle (Saale) 06120, Germany, the
Institute of Biological Sciences, University of
Rostock, Rostock 18051, Germany, and the Donald
Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Milton T. Stubbs
- Department of Physical Biotechnology,
Institute of Biochemistry and Biotechnology, Martin-Luther-University
Halle-Wittenberg, Halle (Saale) 06099, Germany, the Departments of
Bioorganic Chemistry and
Secondary Metabolism, Leibniz Institute of Plant
Biochemistry, Halle (Saale) 06120, Germany, the
Institute of Biological Sciences, University of
Rostock, Rostock 18051, Germany, and the Donald
Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Wolfgang Brandt
- Department of Physical Biotechnology,
Institute of Biochemistry and Biotechnology, Martin-Luther-University
Halle-Wittenberg, Halle (Saale) 06099, Germany, the Departments of
Bioorganic Chemistry and
Secondary Metabolism, Leibniz Institute of Plant
Biochemistry, Halle (Saale) 06120, Germany, the
Institute of Biological Sciences, University of
Rostock, Rostock 18051, Germany, and the Donald
Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Martin Hagemann
- Department of Physical Biotechnology,
Institute of Biochemistry and Biotechnology, Martin-Luther-University
Halle-Wittenberg, Halle (Saale) 06099, Germany, the Departments of
Bioorganic Chemistry and
Secondary Metabolism, Leibniz Institute of Plant
Biochemistry, Halle (Saale) 06120, Germany, the
Institute of Biological Sciences, University of
Rostock, Rostock 18051, Germany, and the Donald
Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Andrea Porzel
- Department of Physical Biotechnology,
Institute of Biochemistry and Biotechnology, Martin-Luther-University
Halle-Wittenberg, Halle (Saale) 06099, Germany, the Departments of
Bioorganic Chemistry and
Secondary Metabolism, Leibniz Institute of Plant
Biochemistry, Halle (Saale) 06120, Germany, the
Institute of Biological Sciences, University of
Rostock, Rostock 18051, Germany, and the Donald
Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Jürgen Schmidt
- Department of Physical Biotechnology,
Institute of Biochemistry and Biotechnology, Martin-Luther-University
Halle-Wittenberg, Halle (Saale) 06099, Germany, the Departments of
Bioorganic Chemistry and
Secondary Metabolism, Leibniz Institute of Plant
Biochemistry, Halle (Saale) 06120, Germany, the
Institute of Biological Sciences, University of
Rostock, Rostock 18051, Germany, and the Donald
Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Willibald Schliemann
- Department of Physical Biotechnology,
Institute of Biochemistry and Biotechnology, Martin-Luther-University
Halle-Wittenberg, Halle (Saale) 06099, Germany, the Departments of
Bioorganic Chemistry and
Secondary Metabolism, Leibniz Institute of Plant
Biochemistry, Halle (Saale) 06120, Germany, the
Institute of Biological Sciences, University of
Rostock, Rostock 18051, Germany, and the Donald
Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Meinhart H. Zenk
- Department of Physical Biotechnology,
Institute of Biochemistry and Biotechnology, Martin-Luther-University
Halle-Wittenberg, Halle (Saale) 06099, Germany, the Departments of
Bioorganic Chemistry and
Secondary Metabolism, Leibniz Institute of Plant
Biochemistry, Halle (Saale) 06120, Germany, the
Institute of Biological Sciences, University of
Rostock, Rostock 18051, Germany, and the Donald
Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Thomas Vogt
- Department of Physical Biotechnology,
Institute of Biochemistry and Biotechnology, Martin-Luther-University
Halle-Wittenberg, Halle (Saale) 06099, Germany, the Departments of
Bioorganic Chemistry and
Secondary Metabolism, Leibniz Institute of Plant
Biochemistry, Halle (Saale) 06120, Germany, the
Institute of Biological Sciences, University of
Rostock, Rostock 18051, Germany, and the Donald
Danforth Plant Science Center, St. Louis, Missouri 63132
| |
Collapse
|