1
|
Wang H, Zhao X, Li D, Meng L, Liu S, Zhang Y, Huo L. Marine Metagenome Mining Reveals Lanthipeptides Colwesin A-C, Exhibiting Novel Ring Topology and Anti-inflammatory Activity. ACS Synth Biol 2025; 14:1014-1020. [PMID: 40172478 DOI: 10.1021/acssynbio.5c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Marine natural products are promising sources for drug discovery due to their unique structures and diverse biological activities. The establishment of the Global Marine Microbiome Genome Catalogue (GOMC) has significantly expanded the repository of natural products derived from marine-associated bacteria. In this study, we identified the Class I lanthipeptide biosynthetic gene cluster col from Colwellia_A sp. based on the GOMC database. Through heterologous expression in Escherichia coli and subsequent structural analysis, we characterized three novel lanthipeptides, colwesins A-C, which possess unique cyclic structures characterized by an exceptionally large number of thioether rings. To the best of our knowledge, colwesin C is the first lanthipeptide simultaneously containing locked, nonoverlapped, and nested ring topologies. These findings highlight the robust ring-forming capacity of Class I lanthipeptide synthetases. Colwesins A-C were found to exhibit anti-inflammatory activity in lipopolysaccharide-induced mouse macrophage RAW264.7 cell lines without detectable cytotoxicity. Overall, our results broaden our understanding of the structural diversity of marine-derived lanthipeptides.
Collapse
Affiliation(s)
- Huimei Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xing Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | | | | | | | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Liujie Huo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
2
|
Raeisi H, Leeflang J, Hasan S, Woods SL. Bioengineered Probiotics for Clostridioides difficile Infection: An Overview of the Challenges and Potential for This New Treatment Approach. Probiotics Antimicrob Proteins 2025; 17:763-780. [PMID: 39531149 DOI: 10.1007/s12602-024-10398-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
The rapid increase in microbial antibiotic resistance in Clostridioides difficile (C. difficile) strains and the formation of hypervirulent strains have been associated with a global increase in the incidence of C. difficile infection (CDI) and subsequently, an increase in the rate of recurrence. These consequences have led to an urgent need to develop new and promising alternative strategies to control this pathogen. Engineered probiotics are exciting new bacterial strains produced by editing the genome of the original probiotics. Recently, engineered probiotics have been used to develop delivery vehicles for vaccines, diagnostics, and therapeutics. Recent studies have demonstrated engineered probiotics may potentially be an effective approach to control or treat CDI. This review provides a brief overview of the considerations for engineered probiotics for medicinal use, with a focus on recent preclinical research using engineered probiotics to prevent or treat CDI. We also address the challenges faced in the production of engineered strains and how they may be overcome in the application of these agents to meet patient needs in the future.
Collapse
Affiliation(s)
- Hamideh Raeisi
- Gastroenterology and Liver Diseases Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Julia Leeflang
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Sadia Hasan
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Susan L Woods
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| |
Collapse
|
3
|
Singh B, Kumar N, Yadav A, Rohan, Bhandari K. Harnessing the Power of Bacteriocins: A Comprehensive Review on Sources, Mechanisms, and Applications in Food Preservation and Safety. Curr Microbiol 2025; 82:174. [PMID: 40053112 DOI: 10.1007/s00284-025-04155-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/24/2025] [Indexed: 03/20/2025]
Abstract
The Sustainable Development Goals (SDGs) emphasize the importance of food safety, prolonged shelf life, and reduced food waste, all of which rely on effective food preservation methods. Bacteriocins, natural antimicrobial substances produced by lactic acid bacteria (LAB), have potential applications in food preservation. This review highlights the role of LAB-derived bacteriocins in preserving food. Bacteriocins are highly effective against foodborne infections because they target cell membranes, break down enzymes, and interfere with cellular activities. The following study used molecular docking to understand the interaction of bacteriocins and their mode of action. With their natural origin and specific action, bacteriocins offer a promising strategy for preventing foodborne diseases and extending shelf life without impacting sensory characteristics. However, challenges such as stable manufacturing, regulatory hurdles, and cost effectiveness hinder the wide adoption of bacteriocins. Nevertheless, LAB-derived bacteriocins offer a safe and efficient approach to improving food preservation, enhancing food safety, and reducing reliance on artificial preservatives. Moreover, immobilized bacteriocins have the potential to be integrated into antimicrobial packaging films, providing a targeted way to reduce the risk of foodborne pathogen contamination and improve food safety. Exploring novel bacteriocins presents exciting opportunities for advancing food preservation and safety. The present study also highlights recent advancements in food preservation through bacteriocins.
Collapse
Affiliation(s)
- Bharmjeet Singh
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Nishant Kumar
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Aman Yadav
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Rohan
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Kriti Bhandari
- Department of Biotechnology, Delhi Technological University, New Delhi, India.
| |
Collapse
|
4
|
Wang C, Wambui J, Fernandez-Cantos MV, Jurt S, Broos J, Stephan R, Kuipers OP. Heterologous Expression and Characterization of Estercin A, a Class II Lanthipeptide Derived from Clostridium estertheticum CF016, with Antimicrobial Activity against Clinically Relevant Pathogens. JOURNAL OF NATURAL PRODUCTS 2025; 88:262-273. [PMID: 39814593 DOI: 10.1021/acs.jnatprod.4c00814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Recent genome mining work revealed that unexplored habitats exhibit great potential for discovering new nonribosomal peptides (NRPs) and ribosomally synthesized and post-translationally modified peptides (RiPPs). Lanthipeptides are a group of RiPPs exhibiting a variety of biological functions. They are characterized by the presence of the thioether-containing bis-amino acids lanthionine and/or methyllanthionine. In this study, we heterologously expressed and structurally characterized estercin A, an unprecedented class II lanthipeptide derived from Clostridium estertheticum CF016 in Escherichia coli. Comprising 27 amino acids, estercin A features three overlapping (methyl-)lanthionine rings, with a shorter C-terminal part compared to most reported class II lanthipeptides. Estercin A exhibited selective antimicrobial properties against methicillin-resistant Staphylococcus aureus, bowel infection-associated Clostridium perfringens and Clostridium tetani. The mode of action of estercin A was determined as binding to lipid II on the cell membrane. Estercin A exhibited stability across a range of pH values and temperatures and showed resistance to degradation by trypsin. Our findings highlight estercin A as a novel and stable antimicrobial peptide with significant potential in combating clinically relevant pathogens.
Collapse
Affiliation(s)
- Chenhui Wang
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747AG, The Netherlands
| | - Joseph Wambui
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich CH-8057, Switzerland
| | - Maria Victoria Fernandez-Cantos
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747AG, The Netherlands
| | - Simon Jurt
- Department of Chemistry, University of Zurich, Zurich CH-8057, Switzerland
| | - Jaap Broos
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747AG, The Netherlands
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich CH-8057, Switzerland
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747AG, The Netherlands
| |
Collapse
|
5
|
Sierra-Hernandez O, Saurith-Coronell O, Rodríguez-Macías J, Márquez E, Mora JR, Paz JL, Flores-Sumoza M, Mendoza-Mendoza A, Flores-Morales V, Marrero-Ponce Y, Barigye SJ, Martinez-Rios F. In Silico Identification of Potential Clovibactin-like Antibiotics Binding to Unique Cell Wall Precursors in Diverse Gram-Positive Bacterial Strains. Int J Mol Sci 2025; 26:1724. [PMID: 40004190 PMCID: PMC11855776 DOI: 10.3390/ijms26041724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
The rise in multidrug-resistant bacteria highlights the critical need for novel antibiotics. This study explores clovibactin-like compounds as potential therapeutic agents targeting lipid II, a crucial component in bacterial cell wall synthesis, using in silico techniques. A total of 2624 clovibactin analogs were sourced from the PubChem database and screened using ProTox 3.0 software based on their ADME-Tox properties, prioritizing candidates with favorable pharmacokinetic profiles and minimal toxicity. Molecular docking protocols were then employed to assess the binding interactions of the selected compounds with lipid II. Our analysis identified Compound 22 as a particularly promising candidate, exhibiting strong binding affinity, stable complex formation, and high selectivity for the target. Binding energy analysis, conducted via molecular dynamics simulations, revealed a highly negative value of -25.50 kcal/mol for Compound 22, surpassing that of clovibactin and underscoring its potential efficacy. In addition, Compound 22 was prioritized due to its exceptional binding affinity to lipid II and its favorable ADME-Tox properties, suggesting a lower likelihood of adverse effects. These characteristics position Compound 22 as a promising candidate for further pharmacological development. While our computational results are encouraging, experimental validation is essential to confirm the efficacy and safety of these compounds. This study not only advances our understanding of clovibactin analogs but also contributes to the ongoing efforts to combat antimicrobial resistance through innovative antibiotic development.
Collapse
Affiliation(s)
- Olimpo Sierra-Hernandez
- Departamento de Medicina, División Ciencias de la Salud, Universidad del Norte, Km 5, Vía Puerto Colombia, Puerto Colombia 081007, Colombia; (O.S.-H.); (O.S.-C.)
- Grupo de Investigaciones en Química y Biología, Departamento de Química y Biología, Facultad de Ciencias Básicas, Universidad del Norte, Carrera 51B, Km 5, Vía Puerto Colombia, Barranquilla 081007, Colombia
| | - Oscar Saurith-Coronell
- Departamento de Medicina, División Ciencias de la Salud, Universidad del Norte, Km 5, Vía Puerto Colombia, Puerto Colombia 081007, Colombia; (O.S.-H.); (O.S.-C.)
- Grupo de Investigaciones en Química y Biología, Departamento de Química y Biología, Facultad de Ciencias Básicas, Universidad del Norte, Carrera 51B, Km 5, Vía Puerto Colombia, Barranquilla 081007, Colombia
| | - Juan Rodríguez-Macías
- Facultad de Ciencias de la Salud, Exactas y Naturales, Universidad Libre, Barranquilla 080001, Colombia;
| | - Edgar Márquez
- Grupo de Investigaciones en Química y Biología, Departamento de Química y Biología, Facultad de Ciencias Básicas, Universidad del Norte, Carrera 51B, Km 5, Vía Puerto Colombia, Barranquilla 081007, Colombia
| | - José Ramón Mora
- Grupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Ingeniería Química, Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, Quito 170901, Ecuador;
| | - José L. Paz
- Departamento Académico de Química Inorgánica, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru;
| | - Maryury Flores-Sumoza
- Programa de Química y Farmacia, Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolívar, Carrera 59 N° 59-65, Barranquilla 080002, Colombia;
| | - Adel Mendoza-Mendoza
- Programa de Ingeniería Industrial, Universidad del Atlántico, Barranquilla 080001, Colombia;
| | - Virginia Flores-Morales
- Laboratorio de Síntesis Asimétrica y Bioenergética (LSAyB), Ingeniería Química (UACQ), Universidad Autónoma de Zacatecas, Campus XXI Km 6 Carr. Zac-Gdl, Zacatecas 98160, Mexico;
| | - Yovani Marrero-Ponce
- Facultad de Ingeniería, Universidad Panamericana, Augusto Rodin No. 498, Insurgentes Mixcoac, Benito Juárez, Ciudad de México 03920, Mexico; (Y.M.-P.); (F.M.-R.)
- Grupo de Medicina Molecular y Traslacional (MeM&T), Colegio de Ciencias de la Salud (COCSA), Escuela de Medicina, Edificio de Especialidades Médicas, Diego de Robles y Vía Interoceánica, Universidad San Francisco de Quito (USFQ), Quito 170157, Ecuador
| | - Stephen J. Barigye
- Departamento de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain;
| | - Felix Martinez-Rios
- Facultad de Ingeniería, Universidad Panamericana, Augusto Rodin No. 498, Insurgentes Mixcoac, Benito Juárez, Ciudad de México 03920, Mexico; (Y.M.-P.); (F.M.-R.)
| |
Collapse
|
6
|
Dinglasan JLN, Otani H, Doering DT, Udwary D, Mouncey NJ. Microbial secondary metabolites: advancements to accelerate discovery towards application. Nat Rev Microbiol 2025:10.1038/s41579-024-01141-y. [PMID: 39824928 DOI: 10.1038/s41579-024-01141-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2024] [Indexed: 01/20/2025]
Abstract
Microbial secondary metabolites not only have key roles in microbial processes and relationships but are also valued in various sectors of today's economy, especially in human health and agriculture. The advent of genome sequencing has revealed a previously untapped reservoir of biosynthetic capacity for secondary metabolites indicating that there are new biochemistries, roles and applications of these molecules to be discovered. New predictive tools for biosynthetic gene clusters (BGCs) and their associated pathways have provided insights into this new diversity. Advanced molecular and synthetic biology tools and workflows including cell-based and cell-free expression facilitate the study of previously uncharacterized BGCs, accelerating the discovery of new metabolites and broadening our understanding of biosynthetic enzymology and the regulation of BGCs. These are complemented by new developments in metabolite detection and identification technologies, all of which are important for unlocking new chemistries that are encoded by BGCs. This renaissance of secondary metabolite research and development is catalysing toolbox development to power the bioeconomy.
Collapse
Affiliation(s)
- Jaime Lorenzo N Dinglasan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Hiroshi Otani
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Drew T Doering
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Daniel Udwary
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nigel J Mouncey
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
7
|
Joseph T, Smith L. Approach advancements for engineering novel peptide analogs of existing lantibiotics: where are we today? Expert Opin Drug Discov 2025; 20:17-30. [PMID: 39667922 DOI: 10.1080/17460441.2024.2441351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/08/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
INTRODUCTION The emergence of antibiotic resistance among the clinically important bacterial pathogens has increased healthcare costs and reduced patient safety and quality of life. Lantibiotics is a large class of ribosomally synthesized, and posttranslationally modified peptides have been the primary focus of numerous research aimed at discovering compounds for treating bacterial infections. AREAS COVERED The article explains the most up to date hierarchy of methods followed in the field for high throughput screening of lantibiotics/analogs with improved therapeutic properties. Herein, we explain how the structure and the biosynthesis of lantibiotics can be manipulated for the expansion of the horizon of lantibiotic potency. Furthermore, we discuss the lantibiotic analogs that have demonstrated the efficacy against bacterial pathogens of interest in animal models. EXPERT OPINION In this current age of rapidly advancing antimicrobial resistance, there is a dire need for the development of therapeutic agents that possess distinct mechanisms of action to existing modes of treatment. Recent advances in the understanding of many of the lantibiotic biosynthesis systems and the discovery of new analogs with superior properties to the native compound may have paved the way for the development of a much-needed novel potent class of antibiotic.
Collapse
Affiliation(s)
- Thushinari Joseph
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Leif Smith
- Department of Biology, Texas A&M University, College Station, TX, United States
- Antimicrobial Division, Sano Chemicals Inc, Bryan, TX, United States
| |
Collapse
|
8
|
Todorov SD, de Almeida BM, Lima EMF, Fabi JP, Lajolo FM, Hassimotto NMA. Phenolic Compounds and Bacteriocins: Mechanisms, Interactions, and Applications in Food Preservation and Safety. Mol Nutr Food Res 2025; 69:e202400723. [PMID: 39828980 DOI: 10.1002/mnfr.202400723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/27/2024] [Accepted: 12/02/2024] [Indexed: 01/22/2025]
Abstract
Beneficial properties of different natural antimicrobials are topics of scientific curiosity for improving safety and extending the shelf life of food commodities. In this regard, phenolic compounds, natural molecules known for their antioxidant, anti-inflammatory, and antimicrobial properties can be right choice. Moreover, bacteriocins, antimicrobial peptides produced by various microorganisms, capable of inhibiting the growth of other bacteria, particularly closely related species can be genuine alternative. Combining phenolic compounds with bacteriocins can enhance antimicrobial effects, extending the shelf-life of food products by combating spoilage and foodborne pathogens. Despite their potential, the chemical interactions between phenolic compounds and bacteriocins, including synergistic and antagonistic effects, are not well understood. Key areas needing further research include the following: the mechanisms of action against different bacterium types, interactions with cell membranes, enzyme activity, and gene expression; the effects of environmental factors like concentration, pH, temperature, and food matrix specificity on their interactions; and methods for incorporating these compounds into food products and packaging materials to improve food safety. Additionally, the safety, toxicity, allergenicity, sensory properties, nutritional value, regulatory approval, and consumer acceptance of using phenolic compounds and bacteriocins in food products require thorough investigation.
Collapse
Affiliation(s)
- Svetoslav Dimitrov Todorov
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Food Research Center (FoRC), CEPIX-USP, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- CISAS - Center for Research and Development in Agrifood Systems and Sustainability, Instituto Politécnico de Viana do Castelo, Viana do Castelo, Portugal
| | - Beatriz Marinho de Almeida
- Food Research Center (FoRC), CEPIX-USP, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Emília Maria França Lima
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Food Research Center (FoRC), CEPIX-USP, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - João Paulo Fabi
- Food Research Center (FoRC), CEPIX-USP, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Franco Maria Lajolo
- Food Research Center (FoRC), CEPIX-USP, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Neuza Mariko Aymoto Hassimotto
- Food Research Center (FoRC), CEPIX-USP, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Xu Y, Reuvekamp R, Kuipers OP. Biosynthesis of Antimicrobial Ornithine-Containing Lacticin 481 Analogues by Use of a Combinatorial Biosynthetic Pathway in Escherichia coli. ACS Synth Biol 2024; 13:4209-4217. [PMID: 39660664 DOI: 10.1021/acssynbio.4c00650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Lacticin 481, a ribosomally synthesized and post-translationally modified peptide (RiPP), exhibits antimicrobial activity, for which its characteristic lanthionine and methyllanthionine ring structures are essential. The post-translational introduction of (methyl)lanthionines in lacticin 481 is catalyzed by the enzyme LctM. In addition to macrocycle formation, various other post-translational modifications can enhance and modulate the chemical and functional diversity of antimicrobial peptides. The incorporation of noncanonical amino acids, occurring in many nonribosomal peptides (NRPs), is a valuable strategy to improve the properties of antimicrobial peptides. Ornithine, a noncanonical amino acid, can be integrated into RiPPs through the conversion of arginine residues by the newly characterized peptide arginase OspR. Recently, a flexible expression system was described for engineering lanthipeptides using the post-translational modification enzyme SyncM, which has a relaxed substrate specificity. This study demonstrates that SyncM is able to catalyze the production of active lacticin 481 by recognition of a designed hybrid leader peptide, which enables the incorporation of both ornithine and (methyl)lanthionine. Utilizing this hybrid leader peptide, the functional order was established for the production of active ornithine-containing lacticin 481 analogues at positions 8 and 12 in vivo. Furthermore, this study demonstrates that prior lanthionine (Lan) and methyllanthionine (MeLan) formation may preclude ornithine incorporation at specific sites of lacticin 481. The antibacterial activity of ornithine-containing lacticin 481 analogues was evaluated using Bacillus subtilis as the indicator strain. Overall, the synthetic biology pathway constructed here helped to elucidate aspects of the substrate preferences of OspR and SyncM, offering practical guidance to combine these modifications for further lantibiotic bioengineering.
Collapse
Affiliation(s)
- Yanli Xu
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Roos Reuvekamp
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| |
Collapse
|
10
|
Roblero-Mejía DO, García-Ausencio C, Rodríguez-Sanoja R, Guzmán-Chávez F, Sánchez S. Embleporicin: A Novel Class I Lanthipeptide from the Actinobacteria Embleya sp. NF3. Antibiotics (Basel) 2024; 13:1179. [PMID: 39766569 PMCID: PMC11672506 DOI: 10.3390/antibiotics13121179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Genome mining has emerged as a revolutionary tool for discovering new ribosomally synthesized and post-translationally modified peptides (RiPPs) in various genomes. Recently, these approaches have been used to detect and explore unique environments as sources of RiPP-producing microorganisms, particularly focusing on endophytic microorganisms found in medicinal plants. Some endophytic actinobacteria, especially strains of Streptomyces, are notable examples of peptide producers, as specific biosynthetic clusters encode them. To uncover the genetic potential of these organisms, we analyzed the genome of the endophytic actinobacterium Embleya sp. NF3 using genome mining and bioinformatics tools. Our analysis led to the identification of a putative class I lanthipeptide. We cloned the core biosynthetic genes of this putative lanthipeptide, named embleporicin, and expressed them in vitro using a cell-free protein system (CFPS). The resulting product demonstrated antimicrobial activity against Micrococcus luteus ATCC 9341. This represents the first RiPP reported in the genus Embleya and the first actinobacterial lanthipeptide produced through cell-free technology.
Collapse
Affiliation(s)
- Dora Onely Roblero-Mejía
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (D.O.R.-M.); (C.G.-A.); (R.R.-S.)
| | - Carlos García-Ausencio
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (D.O.R.-M.); (C.G.-A.); (R.R.-S.)
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (D.O.R.-M.); (C.G.-A.); (R.R.-S.)
| | - Fernando Guzmán-Chávez
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Sergio Sánchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (D.O.R.-M.); (C.G.-A.); (R.R.-S.)
| |
Collapse
|
11
|
Shi C, Zhao H. A Plug-and-Play T7 Expression System for Heterologous Production of Lanthipeptides in Bacillus subtilis. ACS Synth Biol 2024; 13:3746-3753. [PMID: 39480482 DOI: 10.1021/acssynbio.4c00594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Ribosomally synthesized lanthionine-containing peptides (lanthipeptides) have emerged as a promising source of antimicrobials against multidrug resistance pathogens. An effective way to discover and engineer lanthipeptides is through heterologous expression of their biosynthetic gene clusters (BGCs) in a host of choice. Here we report a plug-and-play pathway refactoring strategy for rapid evaluation of lanthipeptide BGCs in Bacillus subtilis based on the T7 expression system. As a proof of concept, we used this strategy to not only observe the successful production of a known lanthipeptide haloduracin β but also discover two new human-microbiota-derived lanthipeptides that previously failed to be produced in Escherichia coli. The resulting B. subtilis plug-and-play T7 expression system should enable the genome mining of new lanthipeptides in a high-throughput manner.
Collapse
Affiliation(s)
- Chengyou Shi
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
12
|
He Y, Deng J, Zhong X, Dai S, Song X, Zou Y, Ye G, Zhou X, Yin Z, Wan H, Zhao X. Engineered Hybrid Lantibiotic that Selectively Combats Infections Caused by Staphylococcus aureus. ACS Infect Dis 2024; 10:3891-3901. [PMID: 39512095 DOI: 10.1021/acsinfecdis.4c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The rapid emergence of antibiotic-resistant strains of Staphylococcus aureus presents a substantial challenge to global public health, underscoring the urgent need for novel antibiotics with diverse mechanisms of action. In this study, we conducted mutagenesis on the C-terminal region of the lantibiotic ripcin C to enhance its antimicrobial efficacy against S. aureus. The resulting optimized variant, ripcin CP23A, demonstrated potent and selective antimicrobial activity, with a minimal inhibitory concentration of 2-4 mg/L against S. aureus. Beyond its strong antimicrobial properties, ripcin CP23A exhibited significant antibiofilm activity against methicillin-resistant S. aureus (MRSA). Mechanistic studies revealed that, in addition to targeting lipid II, ripcin CP23A disrupts bacterial membranes, a capability absent in ripcin C, which may contribute to its superior antimicrobial and antibiofilm effects. Moreover, ripcin CP23A displayed favorable biosafety and plasma stability profiles. Notably, in a mouse model of MRSA-induced mastitis, ripcin CP23A effectively reduced bacterial load, alleviated inflammation, and preserved the normal histomorphology of mammary glands. This study introduces ripcin CP23A as a promising antibiotic candidate for the treatment of MRSA-related infections.
Collapse
Affiliation(s)
- Yongcheng He
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Center for Infectious Diseases Control (CIDC), College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiarong Deng
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Center for Infectious Diseases Control (CIDC), College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinyi Zhong
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Center for Infectious Diseases Control (CIDC), College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shujun Dai
- Xinjiang Tycoon Group, Xinjiang, Changji 831199, China
| | - Xu Song
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuanfeng Zou
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Gang Ye
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xun Zhou
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongqiong Yin
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongping Wan
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Center for Infectious Diseases Control (CIDC), College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinghong Zhao
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Center for Infectious Diseases Control (CIDC), College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
13
|
Fu Y, Pateri E, Kuipers OP. Discovery, Biosynthesis, and Characterization of Rodencin, a Two-Component Lanthipeptide, Harboring d-Amino Acids Introduced by the Unusual Dehydrogenase RodJ A. JOURNAL OF NATURAL PRODUCTS 2024; 87:2344-2354. [PMID: 39302883 PMCID: PMC11519912 DOI: 10.1021/acs.jnatprod.4c00170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Lanthipeptides, a group of ribosomally synthesized and post-translationally modified peptides (RiPPs), exhibit diverse structures and bioactivities. Their biosynthetic enzymes serve as valuable tools for peptide bioengineering. Here, we report a class II lanthipeptide biosynthetic gene cluster in a Bacillus strain, driving the biosynthesis of a two-component lanthipeptide, termed rodencin, featured by the presence of two different d-amino acids, i.e., d-Ala and d-Abu. Rodencin displays synergistic antimicrobial activity against food-borne pathogens such as Bacillus cereus, Staphylococcus aureus, and Listeria monocytogenes. The α-peptide of rodencin contains one d-Ala and the β-peptide features both d-Ala and d-Abu. These are installed by dehydratases RodM1 and RodM2 and dehydrogenase RodJA, the activities of which were successfully reconstituted using a dedicated E. coli expression system. To illustrate the unusual d-Abu incorporation potential of the enzymes, analogous to the d-amino acid-containing β peptide of lacticin 3147, was successfully produced with the rodencin heterologous expression system, by employing RodM2 and the dehydrogenase RodJA.
Collapse
Affiliation(s)
- Yuxin Fu
- Department
of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Groningen 9747 AG The Netherlands
| | - Eleftheria Pateri
- Department
of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Groningen 9747 AG The Netherlands
| | - Oscar P. Kuipers
- Department
of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Groningen 9747 AG The Netherlands
| |
Collapse
|
14
|
Li Y, Shao K, Li Z, Zhu K, Gan BK, Shi J, Xiao Y, Luo M. Mechanistic insights into lanthipeptide modification by a distinct subclass of LanKC enzyme that forms dimers. Nat Commun 2024; 15:7090. [PMID: 39154050 PMCID: PMC11330476 DOI: 10.1038/s41467-024-51600-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 08/13/2024] [Indexed: 08/19/2024] Open
Abstract
Naturally occurring lanthipeptides, peptides post-translationally modified by various enzymes, hold significant promise as antibiotics. Despite extensive biochemical and structural studies, the events preceding peptide modification remain poorly understood. Here, we identify a distinct subclass of lanthionine synthetase KC (LanKC) enzymes with distinct structural and functional characteristics. We show that PneKC, a member of this subclass, forms a dimer and possesses GTPase activity. Through three cryo-EM structures of PneKC, we illustrate different stages of peptide PneA binding, from initial recognition to full binding. Our structures show the kinase domain complexed with the PneA core peptide and GTPγS, a phosphate-bound lyase domain, and an unconventional cyclase domain. The leader peptide of PneA interact with a gate loop, transitioning from an extended to a helical conformation. We identify a dimerization hot spot and propose a "negative cooperativity" mechanism toggling the enzyme between tense and relaxed conformation. Additionally, we identify an important salt bridge in the cyclase domain, differing from those in in conventional cyclase domains. These residues are highly conserved in the LanKC subclass and are part of two signature motifs. These results unveil potential differences in lanthipeptide modification enzymes assembly and deepen our understanding of allostery in these multifunctional enzymes.
Collapse
Affiliation(s)
- Yifan Li
- Department of Biological sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Kai Shao
- Department of Biological sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Zhaoxing Li
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kongfu Zhu
- Department of Biological sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Bee Koon Gan
- Department of Biological sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Jian Shi
- Center for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Yibei Xiao
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Min Luo
- Department of Biological sciences, Faculty of Science, National University of Singapore, Singapore, Singapore.
- Center for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
15
|
Vermeulen RR, van Staden ADP, Ollewagen T, van Zyl LJ, Luo Y, van der Donk WA, Dicks LMT, Smith C, Trindade M. Initial Characterization of the Viridisins' Biological Properties. ACS OMEGA 2024; 9:31832-31841. [PMID: 39072090 PMCID: PMC11270710 DOI: 10.1021/acsomega.4c03149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/30/2024]
Abstract
Viridisin A1 and A2 were previously heterologously expressed, purified, and characterized as ribosomally produced and post-translationally modified lanthipeptides. Such lanthipeptide operons are surprisingly common in Gram-negative bacteria, although their expression seems to be predominantly cryptic under laboratory conditions. However, the bioactivity and biological role of most lanthipeptide operons originating from marine-associated Pseudomonadota, such asThalassomonas viridans XOM25T, have not been described. Therefore, marine-associated Gram-negative lanthipeptide operons represent an untapped resource for novel structures, biochemistries, and bioactivities. Here, the upscaled production of viridisin A1 and A2 was performed for (methyl)lanthionine stereochemistry characterization, antibacterial, antifungal, and larval zebrafish behavioral screening. While antimicrobial activity was not observed, the VirBC modification machinery was found to install both dl- and ll-lanthionine stereoisomers. The VdsA1 and VdsA2 peptides induced sedative and stimulatory effects in zebrafish larvae, respectively, which is a bioactivity not previously reported from lanthipeptides. When combined, VdsA1 and VdsA2 counteracted the sedative and stimulatory effects observed when used individually.
Collapse
Affiliation(s)
- Ross Rayne Vermeulen
- Department
of Microbiology, Stellenbosch University, Matieland 7602, South Africa
- Institute
for Microbial Biotechnology and Metagenomics, University of the Western Cape, Level 2 New Life Sciences Building, Robert Sobukwe Rd, Bellville 7535, South Africa
| | - Anton Du Preez van Staden
- Experimental
Research Group, Faculty of Medicine and Health Sciences, Department
of Medicine, Stellenbosch University, Francie van Zijl Drive, Parow 7499, South Africa
| | - Tracey Ollewagen
- Experimental
Research Group, Faculty of Medicine and Health Sciences, Department
of Medicine, Stellenbosch University, Francie van Zijl Drive, Parow 7499, South Africa
| | - Leonardo Joaquim van Zyl
- Institute
for Microbial Biotechnology and Metagenomics, University of the Western Cape, Level 2 New Life Sciences Building, Robert Sobukwe Rd, Bellville 7535, South Africa
| | - Youran Luo
- Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | | | - Carine Smith
- Experimental
Research Group, Faculty of Medicine and Health Sciences, Department
of Medicine, Stellenbosch University, Francie van Zijl Drive, Parow 7499, South Africa
| | - Marla Trindade
- Institute
for Microbial Biotechnology and Metagenomics, University of the Western Cape, Level 2 New Life Sciences Building, Robert Sobukwe Rd, Bellville 7535, South Africa
| |
Collapse
|
16
|
Maheshwari N, Jermiin LS, Cotroneo C, Gordon SV, Shields DC. Insights into the production and evolution of lantibiotics from a computational analysis of peptides associated with the lanthipeptide cyclase domain. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240491. [PMID: 39021782 PMCID: PMC11251773 DOI: 10.1098/rsos.240491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024]
Abstract
Lanthipeptides are a large group of ribosomally encoded peptides cyclized by thioether and methylene bridges, which include the lantibiotics, lanthipeptides with antimicrobial activity. There are over 100 experimentally characterized lanthipeptides, with at least 25 distinct cyclization bridging patterns. We set out to understand the evolutionary dynamics and diversity of lanthipeptides. We identified 977 peptides in 2785 bacterial genomes from short open-reading frames encoding lanthipeptide modifiable amino acids (C, S and T) that lay chromosomally adjacent to genes encoding proteins containing the cyclase domain. These appeared to be synthesized by both known and novel enzymatic combinations. Our predictor of bridging topology suggested 36 novel-predicted topologies, including a single-cysteine topology seen in 179 lanthionine or labionin containing peptides, which were enriched for histidine. Evidence that supported the relevance of the single-cysteine containing lanthipeptide precursors included the presence of the labionin motif among single cysteine peptides that clustered with labionin-associated synthetase domains, and the leader features of experimentally defined lanthipeptides that were shared with single cysteine predictions. Evolutionary rate variation among peptide subfamilies suggests that selection pressures for functional change differ among subfamilies. Lanthipeptides that have recently evolved specific novel features may represent a richer source of potential novel antimicrobials, since their target species may have had less time to evolve resistance.
Collapse
Affiliation(s)
- Nikunj Maheshwari
- School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Lars S. Jermiin
- School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- Research School of Biology, Australian National University, Canberra, ACT, Australia
- School of Mathematical and Statistical Sciences, University of Galway, Galway, Ireland
| | - Chiara Cotroneo
- School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Stephen V. Gordon
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Denis C. Shields
- School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
17
|
Zábolyová N, Lauková A, Pogány Simonová M. Susceptibility to postbiotics - enterocins of methicillin-resistant Staphylococcus aureus strains isolated from rabbits. Vet Res Commun 2024; 48:1449-1457. [PMID: 38324077 PMCID: PMC11147817 DOI: 10.1007/s11259-024-10323-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/01/2024] [Indexed: 02/08/2024]
Abstract
There is a major problem with the rising occurrence of highly virulent and multiply-resistant strains, including methicillin-resistant Staphylococcus aureus (MRSA), because of their difficult treatment. This study aimed to evaluate the antibacterial and antibiofilm effect of new enterocins (Ent) against potential pathogenic MRSA strains isolated from rabbits. Staphylococci were identified with PCR and screened for methicillin/oxacillin/cefoxitin resistance (MR) using the disk diffusion method and the PBP2' Latex Agglutination Test Kit. Enzyme production, hemolysis, DNase activity, slime production, and biofilm formation were tested in MRSA strains. The susceptibility of MRSA to eight partially-purified enterocins (Ent) produced by E. faecium and E. durans strains was checked using agar spot tests. The antibiofilm activity of Ents was tested using a quantitative plate assay. Out of 14 MRSA, PBP testing confirmed MR in 8 strains. The majority of MRSA showed DNase activity and β-hemolysis. Slime production and moderate biofilm formation were observed in all strains. MRSA were susceptible to tested Ents (100-12,800 AU/mL; except Ent4231). The antibiofilm effect of Ents (except Ent4231) was noted in the high range (64.9-97.0%). These results indicate that enterocins offer a promising option for the prevention and treatment of bacterial infections caused by biofilm-forming MRSA.
Collapse
Affiliation(s)
- Natália Zábolyová
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Šoltésovej 4-6, Košice, 04001, Slovakia
- University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice, 04181, Slovakia
| | - Andrea Lauková
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Šoltésovej 4-6, Košice, 04001, Slovakia
| | - Monika Pogány Simonová
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Šoltésovej 4-6, Košice, 04001, Slovakia.
| |
Collapse
|
18
|
Wang M, Li WW, Cao Z, Sun J, Xiong J, Tao SQ, Lv T, Gao K, Luo S, Dong SH. Genome mining of sulfonated lanthipeptides reveals unique cyclic peptide sulfotransferases. Acta Pharm Sin B 2024; 14:2773-2785. [PMID: 38828142 PMCID: PMC11143521 DOI: 10.1016/j.apsb.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 06/05/2024] Open
Abstract
Although sulfonation plays crucial roles in various biological processes and is frequently utilized in medicinal chemistry to improve water solubility and chemical diversity of drug leads, it is rare and underexplored in ribosomally synthesized and post-translationally modified peptides (RiPPs). Biosynthesis of RiPPs typically entails modification of hydrophilic residues, which substantially increases their chemical stability and bioactivity, albeit at the expense of reducing water solubility. To explore sulfonated RiPPs that may have improved solubility, we conducted co-occurrence analysis of RiPP class-defining enzymes and sulfotransferase (ST), and discovered two distinctive biosynthetic gene clusters (BGCs) encoding both lanthipeptide synthetase (LanM) and ST. Upon expressing these BGCs, we characterized the structures of novel sulfonated lanthipeptides and determined the catalytic details of LanM and ST. We demonstrate that SslST-catalyzed sulfonation is leader-independent but relies on the presence of A ring formed by LanM. Both LanM and ST are promiscuous towards residues in the A ring, but ST displays strict regioselectivity toward Tyr5. The recognition of cyclic peptide by ST was further discussed. Bioactivity evaluation underscores the significance of the ST-catalyzed sulfonation. This study sets up the starting point to engineering the novel lanthipeptide STs as biocatalysts for hydrophobic lanthipeptides improvement.
Collapse
Affiliation(s)
| | | | - Zhe Cao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jianong Sun
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jiang Xiong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Si-Qin Tao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Tinghong Lv
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Kun Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Shangwen Luo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Shi-Hui Dong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
19
|
Liu WQ, Ji X, Ba F, Zhang Y, Xu H, Huang S, Zheng X, Liu Y, Ling S, Jewett MC, Li J. Cell-free biosynthesis and engineering of ribosomally synthesized lanthipeptides. Nat Commun 2024; 15:4336. [PMID: 38773100 PMCID: PMC11109155 DOI: 10.1038/s41467-024-48726-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024] Open
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a major class of natural products with diverse chemical structures and potent biological activities. A vast majority of RiPP gene clusters remain unexplored in microbial genomes, which is partially due to the lack of rapid and efficient heterologous expression systems for RiPP characterization and biosynthesis. Here, we report a unified biocatalysis (UniBioCat) system based on cell-free gene expression for rapid biosynthesis and engineering of RiPPs. We demonstrate UniBioCat by reconstituting a full biosynthetic pathway for de novo biosynthesis of salivaricin B, a lanthipeptide RiPP. Next, we delete several protease/peptidase genes from the source strain to enhance the performance of UniBioCat, which then can synthesize and screen salivaricin B variants with enhanced antimicrobial activity. Finally, we show that UniBioCat is generalizable by synthesizing and evaluating the bioactivity of ten uncharacterized lanthipeptides. We expect UniBioCat to accelerate the discovery, characterization, and synthesis of RiPPs.
Collapse
Affiliation(s)
- Wan-Qiu Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiangyang Ji
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Fang Ba
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yufei Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Huiling Xu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shuhui Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiao Zheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yifan Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| | - Michael C Jewett
- Department of Bioengineering, Stanford University, Stanford, CA, US.
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| |
Collapse
|
20
|
Ralhan K, Iyer KA, Diaz LL, Bird R, Maind A, Zhou QA. Navigating Antibacterial Frontiers: A Panoramic Exploration of Antibacterial Landscapes, Resistance Mechanisms, and Emerging Therapeutic Strategies. ACS Infect Dis 2024; 10:1483-1519. [PMID: 38691668 PMCID: PMC11091902 DOI: 10.1021/acsinfecdis.4c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
The development of effective antibacterial solutions has become paramount in maintaining global health in this era of increasing bacterial threats and rampant antibiotic resistance. Traditional antibiotics have played a significant role in combating bacterial infections throughout history. However, the emergence of novel resistant strains necessitates constant innovation in antibacterial research. We have analyzed the data on antibacterials from the CAS Content Collection, the largest human-curated collection of published scientific knowledge, which has proven valuable for quantitative analysis of global scientific knowledge. Our analysis focuses on mining the CAS Content Collection data for recent publications (since 2012). This article aims to explore the intricate landscape of antibacterial research while reviewing the advancement from traditional antibiotics to novel and emerging antibacterial strategies. By delving into the resistance mechanisms, this paper highlights the need to find alternate strategies to address the growing concern.
Collapse
Affiliation(s)
| | | | - Leilani Lotti Diaz
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Robert Bird
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Ankush Maind
- ACS
International India Pvt. Ltd., Pune 411044, India
| | | |
Collapse
|
21
|
Gopikrishnan M, Haryini S, C GPD. Emerging strategies and therapeutic innovations for combating drug resistance in Staphylococcus aureus strains: A comprehensive review. J Basic Microbiol 2024; 64:e2300579. [PMID: 38308076 DOI: 10.1002/jobm.202300579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/04/2024]
Abstract
In recent years, antibiotic therapy has encountered significant challenges due to the rapid emergence of multidrug resistance among bacteria responsible for life-threatening illnesses, creating uncertainty about the future management of infectious diseases. The escalation of antimicrobial resistance in the post-COVID era compared to the pre-COVID era has raised global concern. The prevalence of nosocomial-related infections, especially outbreaks of drug-resistant strains of Staphylococcus aureus, have been reported worldwide, with India being a notable hotspot for such occurrences. Various virulence factors and mutations characterize nosocomial infections involving S. aureus. The lack of proper alternative treatments leading to increased drug resistance emphasizes the need to investigate and examine recent research to combat future pandemics. In the current genomics era, the application of advanced technologies such as next-generation sequencing (NGS), machine learning (ML), and quantum computing (QC) for genomic analysis and resistance prediction has significantly increased the pace of diagnosing drug-resistant pathogens and insights into genetic intricacies. Despite prompt diagnosis, the elimination of drug-resistant infections remains unattainable in the absence of effective alternative therapies. Researchers are exploring various alternative therapeutic approaches, including phage therapy, antimicrobial peptides, photodynamic therapy, vaccines, host-directed therapies, and more. The proposed review mainly focuses on the resistance journey of S. aureus over the past decade, detailing its resistance mechanisms, prevalence in the subcontinent, innovations in rapid diagnosis of the drug-resistant strains, including the applicants of NGS and ML application along with QC, it helps to design alternative novel therapeutics approaches against S. aureus infection.
Collapse
Affiliation(s)
- Mohanraj Gopikrishnan
- Department of Integrative Biology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Sree Haryini
- Department of Biomedical Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - George Priya Doss C
- Department of Integrative Biology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| |
Collapse
|
22
|
Guo L, Stoffels K, Broos J, Kuipers OP. Altering Specificity and Enhancing Stability of the Antimicrobial Peptides Nisin and Rombocin through Dehydrated Amino Acid Residue Engineering. Peptides 2024; 174:171152. [PMID: 38220092 DOI: 10.1016/j.peptides.2024.171152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Nisin serves as the prototype within the lantibiotic group of antimicrobial peptides, exhibiting a broad-spectrum inhibition against Gram-positive bacteria, including important food-borne pathogens and clinically relevant antibiotic-resistant strains. The gene-encoded nature of nisin allows for gene-based bioengineering, enabling the generation of novel derivatives. It has been demonstrated that nisin mutants can be produced with improved functional properties. Here, we particularly focus on the uncommon amino acid residues dehydroalanine (Dha) and dehydrobutyrin (Dhb), whose functions are not yet fully elucidated. Prior to this study, we developed a new expression system that utilizes the nisin modification machinery NisBTC to advance expression, resulting in enhanced peptide dehydration efficiency. Through this approach, we discovered that the dehydrated amino acid Dhb at position 18 in the peptide rombocin, a short variant of nisin, displayed four times higher activity compared to the non-dehydrated peptide against the strain Lactococcus lactis. Furthermore, we observed that in the peptides nisin and rombocin, the dehydrated amino acid Dha at residue positon 18 exhibited superior activity compared to the dehydrated amino acid Dhb. Upon purifying the wild-type nisin and its variant nisinG18/Dha to homogeneity, the minimum inhibitory concentration (MIC) indicated that the variant exhibited activity similar to that of wild-type nisin in inhibiting the growth of Bacillus cereus but showed twice the MIC values against the other four tested Gram-positive strains. Further stability tests demonstrated that the dehydrated peptide exhibited properties similar to wild-type nisin under different temperatures but displayed higher resistance to proteolytic enzymes compared to wild-type nisin.
Collapse
Affiliation(s)
- Longcheng Guo
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Konstantin Stoffels
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Jaap Broos
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
23
|
Li H, Ding W, Zhang Q. Discovery and engineering of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products. RSC Chem Biol 2024; 5:90-108. [PMID: 38333193 PMCID: PMC10849128 DOI: 10.1039/d3cb00172e] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/17/2023] [Indexed: 02/10/2024] Open
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) represent a diverse superfamily of natural products with immense potential for drug development. This review provides a concise overview of the recent advances in the discovery of RiPP natural products, focusing on rational strategies such as bioactivity guided screening, enzyme or precursor-based genome mining, and biosynthetic engineering. The challenges associated with activating silent biosynthetic gene clusters and the development of elaborate catalytic systems are also discussed. The logical frameworks emerging from these research studies offer valuable insights into RiPP biosynthesis and engineering, paving the way for broader pharmaceutic applications of these peptide natural products.
Collapse
Affiliation(s)
- He Li
- Department of Chemistry, Fudan University Shanghai 200433 China
| | - Wei Ding
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University Shanghai 200240 China
| | - Qi Zhang
- Department of Chemistry, Fudan University Shanghai 200433 China
| |
Collapse
|
24
|
Puls JS, Winnerling B, Power JJ, Krüger AM, Brajtenbach D, Johnson M, Bilici K, Camus L, Fließwasser T, Schneider T, Sahl HG, Ghosal D, Kubitscheck U, Heilbronner S, Grein F. Staphylococcus epidermidis bacteriocin A37 kills natural competitors with a unique mechanism of action. THE ISME JOURNAL 2024; 18:wrae044. [PMID: 38470311 PMCID: PMC10988021 DOI: 10.1093/ismejo/wrae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
Many bacteria produce antimicrobial compounds such as lantibiotics to gain advantage in the competitive natural environments of microbiomes. Epilancins constitute an until now underexplored family of lantibiotics with an unknown ecological role and unresolved mode of action. We discovered production of an epilancin in the nasal isolate Staphylococcus epidermidis A37. Using bioinformatic tools, we found that epilancins are frequently encoded within staphylococcal genomes, highlighting their ecological relevance. We demonstrate that production of epilancin A37 contributes to Staphylococcus epidermidis competition specifically against natural corynebacterial competitors. Combining microbiological approaches with quantitative in vivo and in vitro fluorescence microscopy and cryo-electron tomography, we show that A37 enters the corynebacterial cytoplasm through a partially transmembrane-potential-driven uptake without impairing the cell membrane function. Upon intracellular aggregation, A37 induces the formation of intracellular membrane vesicles, which are heavily loaded with the compound and are essential for the antibacterial activity of the epilancin. Our work sheds light on the ecological role of epilancins for staphylococci mediated by a mode of action previously unknown for lantibiotics.
Collapse
Affiliation(s)
- Jan-Samuel Puls
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, 53115 Bonn, Germany
| | - Benjamin Winnerling
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, 53115 Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53115 Bonn, Germany
| | - Jeffrey J Power
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Annika M Krüger
- Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, 53115 Bonn, Germany
| | - Dominik Brajtenbach
- Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, 53115 Bonn, Germany
| | - Matthew Johnson
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Kevser Bilici
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Laura Camus
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Thomas Fließwasser
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, 53115 Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53115 Bonn, Germany
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, 53115 Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53115 Bonn, Germany
| | - Hans-Georg Sahl
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, 53115 Bonn, Germany
| | - Debnath Ghosal
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ulrich Kubitscheck
- Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, 53115 Bonn, Germany
| | - Simon Heilbronner
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, 72076 Tübingen, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
- Present address: Faculty of Biology, Microbiology, Ludwig-Maximilians-University of Munich, 82152 München, Germany
| | - Fabian Grein
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, 53115 Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53115 Bonn, Germany
| |
Collapse
|
25
|
King AM, Zhang Z, Glassey E, Siuti P, Clardy J, Voigt CA. Systematic mining of the human microbiome identifies antimicrobial peptides with diverse activity spectra. Nat Microbiol 2023; 8:2420-2434. [PMID: 37973865 DOI: 10.1038/s41564-023-01524-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/12/2023] [Indexed: 11/19/2023]
Abstract
Human-associated bacteria secrete modified peptides to control host physiology and remodel the microbiota species composition. Here we scanned 2,229 Human Microbiome Project genomes of species colonizing skin, gastrointestinal tract, urogenital tract, mouth and trachea for gene clusters encoding RiPPs (ribosomally synthesized and post-translationally modified peptides). We found 218 lanthipeptides and 25 lasso peptides, 70 of which were synthesized and expressed in E. coli and 23 could be purified and functionally characterized. They were tested for activity against bacteria associated with healthy human flora and pathogens. New antibiotics were identified against strains implicated in skin, nasal and vaginal dysbiosis as well as from oral strains selectively targeting those in the gut. Extended- and narrow-spectrum antibiotics were found against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci. Mining natural products produced by human-associated microbes will enable the elucidation of ecological relationships and may be a rich resource for antimicrobial discovery.
Collapse
Affiliation(s)
- Andrew M King
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhengan Zhang
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emerson Glassey
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Piro Siuti
- Synthetic Biology Group, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Christopher A Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
26
|
Ramírez-Rendón D, Guzmán-Chávez F, García-Ausencio C, Rodríguez-Sanoja R, Sánchez S. The untapped potential of actinobacterial lanthipeptides as therapeutic agents. Mol Biol Rep 2023; 50:10605-10616. [PMID: 37934370 PMCID: PMC10676316 DOI: 10.1007/s11033-023-08880-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/03/2023] [Indexed: 11/08/2023]
Abstract
The increase in bacterial resistance generated by the indiscriminate use of antibiotics in medical practice set new challenges for discovering bioactive natural products as alternatives for therapeutics. Lanthipeptides are an attractive natural product group that has been only partially explored and shows engaging biological activities. These molecules are small peptides with potential application as therapeutic agents. Some members show antibiotic activity against problematic drug-resistant pathogens and against a wide variety of viruses. Nevertheless, their biological activities are not restricted to antimicrobials, as their contribution to the treatment of cystic fibrosis, cancer, pain symptoms, control of inflammation, and blood pressure has been demonstrated. The study of biosynthetic gene clusters through genome mining has contributed to accelerating the discovery, enlargement, and diversification of this group of natural products. In this review, we provide insight into the recent advances in the development and research of actinobacterial lanthipeptides that hold great potential as therapeutics.
Collapse
Affiliation(s)
- Dulce Ramírez-Rendón
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, México
| | - Fernando Guzmán-Chávez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, México
| | - Carlos García-Ausencio
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, México
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, México
| | - Sergio Sánchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, México.
| |
Collapse
|
27
|
Kudryakova I, Afoshin A, Tarlachkov S, Leontyevskaya E, Suzina N, (Vasilyeva) NL. Lysobacter gummosus 10.1.1, a Producer of Antimicrobial Agents. Microorganisms 2023; 11:2853. [PMID: 38137997 PMCID: PMC10745450 DOI: 10.3390/microorganisms11122853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
This work investigated the antimicrobial potential of Lysobacter gummosus 10.1.1. The culture fluid of the strain was found to contain antimicrobial agents active against Staphylococcus aureus, Micrococcus luteus, and Bacillus cereus. L. gummosus was first shown to be capable of forming outer membrane vesicles, which have a bacteriolytic effect against not only Gram-positive bacteria but also against the Gram-negative pathogen Pseudomonas aeruginosa. Transcriptomic analysis revealed the genes of almost all known bacteriolytic enzymes of Lysobacter, as well as the genes of enzymes with putative bacteriolytic activity. Also identified were genes involved in the biosynthesis of a number of secondary metabolites for which antimicrobial activities are known. This research is indicative of the relevance of isolating and studying L. gummosus antimicrobial agents.
Collapse
Affiliation(s)
| | | | | | | | | | - Natalia Leontyevskaya (Vasilyeva)
- Laboratory of Microbial Cell Surface Biochemistry, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC PSCBR, Russian Academy of Sciences, 5 Prosp. Nauki, Pushchino 142290, Russia; (I.K.); (A.A.); (S.T.); (E.L.); (N.S.)
| |
Collapse
|
28
|
Karlyshev AV, Gould S. Ligilactobacillus salivarius 2102-15 complete genome sequence data. Data Brief 2023; 50:109564. [PMID: 37823062 PMCID: PMC10562671 DOI: 10.1016/j.dib.2023.109564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/02/2023] [Accepted: 09/05/2023] [Indexed: 10/13/2023] Open
Abstract
The article presents Ligilactobacillus salivarius 2102-15 whole genome sequencing data generated by using Illumina and Oxford Nanopore platforms. The genome of the isolate consists of a chromosome and two plasmids. The data on bacteriocin-encoding genes present in the genome were collected through genome annotation and by using a BAGEL4 tool. The advantages and limitations of the approaches are highlighted. The data indicate the presence of different types of bacteriocin and immunity protein-encoding genes on both the chromosome and one of the plasmids. The data obtained represents interest to researchers working in the areas related to whole genome sequencing and analysis, as well as being useful for the identification of novel probiotic bacteria and their biomedical applications.
Collapse
Affiliation(s)
- Andrey V. Karlyshev
- Department of Biomolecular Sciences, School of Life Sciences, Chemistry and Farmacy, Faculty of Health, Science, Social Care and Education, Kingston University London, Kingston upon Thames, KT1 2EE, UK
| | - Simon Gould
- Department of Biomolecular Sciences, School of Life Sciences, Chemistry and Farmacy, Faculty of Health, Science, Social Care and Education, Kingston University London, Kingston upon Thames, KT1 2EE, UK
| |
Collapse
|
29
|
Van Zyl WF, Van Staden AD, Dicks LMT, Trindade M. Use of the mCherry fluorescent protein to optimize the expression of class I lanthipeptides in Escherichia coli. Microb Cell Fact 2023; 22:149. [PMID: 37559122 PMCID: PMC10413542 DOI: 10.1186/s12934-023-02162-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/29/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Lanthipeptides are a rapidly expanding family of ribosomally synthesized and post-translationally modified natural compounds with diverse biological functions. Lanthipeptide structural and biosynthetic genes can readily be identified in genomic datasets, which provides a substantial repository for unique peptides with a wide range of potentially novel bioactivities. To realize this potential efficiently optimized heterologous production systems are required. However, only a few class I lanthipeptides have been successfully expressed using Escherichia coli as heterologous producer. This may be attributed to difficulties experienced in the co-expression of structural genes and multiple processing genes as well as complex optimization experiments. RESULTS Here, an optimized modular plasmid system is presented for the complete biosynthesis for each of the class I lanthipeptides nisin and clausin, in E. coli. Genes encoding precursor lanthipeptides were fused to the gene encoding the mCherry red fluorescent protein and co-expressed along with the required synthetases from the respective operons. Antimicrobially active nisin and clausin were proteolytically liberated from the expressed mCherry fusions. The mCherry-NisA expression system combined with in vivo fluorescence monitoring was used to elucidate the effect of culture media composition, promoter arrangement, and culture conditions including choice of growth media and inducer agents on the heterologous expression of the class I lanthipeptides. To evaluate the promiscuity of the clausin biosynthetic enzymes, the optimized clausin expression system was used for the heterologous expression of epidermin. CONCLUSION We succeeded in developing novel mCherry-fusion based plug and play heterologous expression systems to produce two different subgroups of class I lanthipeptides. Fully modified Pre-NisA, Pre-ClausA and Pre-EpiA fused to the mCherry fluorescence gene was purified from the Gram-negative host E. coli BL21 (DE3). Our study demonstrates the potential of using in vivo fluorescence as a platform to evaluate the expression of mCherry-fused lanthipeptides in E. coli. This allowed a substantial reduction in optimization time, since expression could be monitored in real-time, without the need for extensive and laborious purification steps or the use of in vitro activity assays. The optimized heterologous expression systems developed in this study may be employed in future studies for the scalable expression of novel NisA derivatives, or novel genome mined derivatives of ClausA and other class I lanthipeptides in E. coli.
Collapse
Affiliation(s)
- Winschau F Van Zyl
- Department of Microbiology, Stellenbosch University, Cape Town, South Africa.
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa.
| | - Anton D Van Staden
- Department of Microbiology, Stellenbosch University, Cape Town, South Africa
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Leon M T Dicks
- Department of Microbiology, Stellenbosch University, Cape Town, South Africa
| | - Marla Trindade
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
30
|
Afoshin A, Kudryakova I, Tarlachkov S, Leontyevskaya E, Zelenov D, Rudenko P, Leontyevskaya Vasilyeva N. Transcriptomic Analysis Followed by the Isolation of Extracellular Bacteriolytic Proteases from Lysobacter capsici VKM B-2533 T. Int J Mol Sci 2023; 24:11652. [PMID: 37511410 PMCID: PMC10380237 DOI: 10.3390/ijms241411652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The aim of the study was to search for, isolate and characterize new bacteriolytic enzymes that show promising potential for their use in medicine, agriculture and veterinary. Using a transcriptomic analysis, we annotated in Lysobacter capsici VKM B-2533T the genes of known bacteriolytic and antifungal enzymes, as well as of antibiotics, whose expression levels increased when cultivated on media conducive to the production of antimicrobial agents. The genes of the secreted putative bacteriolytic proteases were also annotated. Two new bacteriolytic proteases, Serp and Serp3, were isolated and characterized. The maximum bacteriolytic activities of Serp and Serp3 were exhibited at low ionic strength of 10 mM Tris-HCl, and high temperatures of, respectively, 80 °C and 70 °C. The pH optimum for Serp was 8.0; for Serp3, it was slightly acidic, at 6.0. Both enzymes hydrolyzed autoclaved cells of Micrococcus luteus Ac-2230T, Proteus vulgaris H-19, Pseudomonas aeruginosa and Staphylococcus aureus 209P. Serp also digested cells of Bacillus cereus 217. Both enzymes hydrolyzed casein and azofibrin. The newly discovered enzymes are promising for developing proteolytic antimicrobial drugs on their basis.
Collapse
Affiliation(s)
- Alexey Afoshin
- Laboratory of Microbial Cell Surface Biochemistry, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC PSCBR, Russian Academy of Sciences, 5 Prosp. Nauki, Pushchino 142290, Russia
| | - Irina Kudryakova
- Laboratory of Microbial Cell Surface Biochemistry, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC PSCBR, Russian Academy of Sciences, 5 Prosp. Nauki, Pushchino 142290, Russia
| | - Sergey Tarlachkov
- Laboratory of Microbial Cell Surface Biochemistry, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC PSCBR, Russian Academy of Sciences, 5 Prosp. Nauki, Pushchino 142290, Russia
| | - Elena Leontyevskaya
- Laboratory of Microbial Cell Surface Biochemistry, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC PSCBR, Russian Academy of Sciences, 5 Prosp. Nauki, Pushchino 142290, Russia
| | - Dmitry Zelenov
- Laboratory of Microbial Cell Surface Biochemistry, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC PSCBR, Russian Academy of Sciences, 5 Prosp. Nauki, Pushchino 142290, Russia
- Pushchino Branch of the Federal State Budgetary Educational Institution of Higher Education «Russian Biotechnological University (BIOTECH University)», 3 Institutskaya Str., Pushchino 142290, Russia
| | - Pavel Rudenko
- Laboratory of Microbial Cell Surface Biochemistry, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC PSCBR, Russian Academy of Sciences, 5 Prosp. Nauki, Pushchino 142290, Russia
| | - Natalya Leontyevskaya Vasilyeva
- Laboratory of Microbial Cell Surface Biochemistry, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC PSCBR, Russian Academy of Sciences, 5 Prosp. Nauki, Pushchino 142290, Russia
| |
Collapse
|
31
|
Shleeva MO, Kondratieva DA, Kaprelyants AS. Bacillus licheniformis: A Producer of Antimicrobial Substances, including Antimycobacterials, Which Are Feasible for Medical Applications. Pharmaceutics 2023; 15:1893. [PMID: 37514078 PMCID: PMC10383908 DOI: 10.3390/pharmaceutics15071893] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Bacillus licheniformis produces several classes of antimicrobial substances, including bacteriocins, which are peptides or proteins with different structural composition and molecular mass: ribosomally synthesized by bacteria (1.4-20 kDa), non-ribosomally synthesized peptides and cyclic lipopeptides (0.8-42 kDa) and exopolysaccharides (>1000 kDa). Different bacteriocins act against Gram-positive or Gram-negative bacteria, fungal pathogens and amoeba cells. The main mechanisms of bacteriocin lytic activity include interaction of peptides with membranes of target cells resulting in structural alterations, pore-forming, and inhibition of cell wall biosynthesis. DNase and RNase activity for some bacteriocines are also postulated. Non-ribosomal peptides are synthesized by special non-ribosomal multimodular peptide synthetases and contain unnatural amino acids or fatty acids. Their harmful effect is due to their ability to form pores in biological membranes, destabilize lipid packaging, and disrupt the peptidoglycan layer. Lipopeptides, as biosurfactants, are able to destroy bacterial biofilms. Secreted polysaccharides are high molecular weight compounds, composed of repeated units of sugar moieties attached to a carrier lipid. Their antagonistic action was revealed in relation to bacteria, viruses, and fungi. Exopolysaccharides also inhibit the formation of biofilms by pathogenic bacteria and prevent their colonization on various surfaces. However, mechanism of the harmful effect for many secreted antibacterial substances remains unknown. The antimicrobial activity for most substances has been studied in vitro only, but some substances have been characterized in vivo and they have found practical applications in medicine and veterinary. The cyclic lipopeptides that have surfactant properties are used in some industries. In this review, special attention is paid to the antimycobacterials produced by B. licheniformis as a possible approach to combat multidrug-resistant and latent tuberculosis. In particular, licheniformins and bacitracins have shown strong antimycobacterial activity. However, the medical application of some antibacterials with promising in vitro antimycobacterial activity has been limited by their toxicity to animals and humans. As such, similar to the enhancement in the antimycobacterial activity of natural bacteriocins achieved using genetic engineering, the reduction in toxicity using the same approach appears feasible. The unique capability of B. licheniformis to synthesize and produce a range of different antibacterial compounds means that this organism can act as a natural universal vehicle for antibiotic substances in the form of probiotic cultures and strains to combat various types of pathogens, including mycobacteria.
Collapse
Affiliation(s)
- Margarita O Shleeva
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology', Russian Academy of Sciences, 119071 Moscow, Russia
| | - Daria A Kondratieva
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology', Russian Academy of Sciences, 119071 Moscow, Russia
| | - Arseny S Kaprelyants
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology', Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
32
|
Barbour A, Smith L, Oveisi M, Williams M, Huang RC, Marks C, Fine N, Sun C, Younesi F, Zargaran S, Orugunty R, Horvath TD, Haidacher SJ, Haag AM, Sabharwal A, Hinz B, Glogauer M. Discovery of phosphorylated lantibiotics with proimmune activity that regulate the oral microbiome. Proc Natl Acad Sci U S A 2023; 120:e2219392120. [PMID: 37216534 PMCID: PMC10235938 DOI: 10.1073/pnas.2219392120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/15/2023] [Indexed: 05/24/2023] Open
Abstract
Lantibiotics are ribosomally synthesized and posttranslationally modified peptides (RiPPs) that are produced by bacteria. Interest in this group of natural products is increasing rapidly as alternatives to conventional antibiotics. Some human microbiome-derived commensals produce lantibiotics to impair pathogens' colonization and promote healthy microbiomes. Streptococcus salivarius is one of the first commensal microbes to colonize the human oral cavity and gastrointestinal tract, and its biosynthesis of RiPPs, called salivaricins, has been shown to inhibit the growth of oral pathogens. Herein, we report on a phosphorylated class of three related RiPPs, collectively referred to as salivaricin 10, that exhibit proimmune activity and targeted antimicrobial properties against known oral pathogens and multispecies biofilms. Strikingly, the immunomodulatory activities observed include upregulation of neutrophil-mediated phagocytosis, promotion of antiinflammatory M2 macrophage polarization, and stimulation of neutrophil chemotaxis-these activities have been attributed to the phosphorylation site identified on the N-terminal region of the peptides. Salivaricin 10 peptides were determined to be produced by S. salivarius strains found in healthy human subjects, and their dual bactericidal/antibiofilm and immunoregulatory activity may provide new means to effectively target infectious pathogens while maintaining important oral microbiota.
Collapse
Affiliation(s)
- Abdelahhad Barbour
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Leif Smith
- Department of Biology, College of Science, Texas A&M University, College Station, TX 77843
| | - Morvarid Oveisi
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - McKinley Williams
- Department of Biology, College of Science, Texas A&M University, College Station, TX 77843
| | - Ruo Chen Huang
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Cara Marks
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Noah Fine
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Chunxiang Sun
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Fereshteh Younesi
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
- Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Toronto, ON M5B 1T8, Canada
| | - Sina Zargaran
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | | | - Thomas D Horvath
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030
- Texas Children's Microbiome Center, Texas Children's Hospital, Houston, TX 77030
| | - Sigmund J Haidacher
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030
- Texas Children's Microbiome Center, Texas Children's Hospital, Houston, TX 77030
| | - Anthony M Haag
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030
- Texas Children's Microbiome Center, Texas Children's Hospital, Houston, TX 77030
| | - Amarpreet Sabharwal
- Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Boris Hinz
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
- Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Toronto, ON M5B 1T8, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
- Department of Dental Oncology, Maxillofacial and Ocular Prosthetics, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada
| |
Collapse
|
33
|
Yang Y, Kessler MGC, Marchán-Rivadeneira MR, Han Y. Combating Antimicrobial Resistance in the Post-Genomic Era: Rapid Antibiotic Discovery. Molecules 2023; 28:molecules28104183. [PMID: 37241928 DOI: 10.3390/molecules28104183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Constantly evolving drug-resistant "superbugs" have caused an urgent demand for novel antimicrobial agents. Natural products and their analogs have been a prolific source of antimicrobial agents, even though a high rediscovery rate and less targeted research has made the field challenging in the pre-genomic era. With recent advancements in technology, natural product research is gaining new life. Genome mining has allowed for more targeted excavation of biosynthetic potential from natural sources that was previously overlooked. Researchers use bioinformatic algorithms to rapidly identify and predict antimicrobial candidates by studying the genome before even entering the lab. In addition, synthetic biology and advanced analytical instruments enable the accelerated identification of novel antibiotics with distinct structures. Here, we reviewed the literature for noteworthy examples of novel antimicrobial agents discovered through various methodologies, highlighting the candidates with potent effectiveness against antimicrobial-resistant pathogens.
Collapse
Affiliation(s)
- Yuehan Yang
- Translational Biomedical Sciences Program, Ohio University, Athens, OH 45701, USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | - Mara Grace C Kessler
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Honors Tutorial College, Ohio University, Athens, OH 45701, USA
| | - Maria Raquel Marchán-Rivadeneira
- Translational Biomedical Sciences Program, Ohio University, Athens, OH 45701, USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
- Center for Research on Health in Latinamerica (CISeAL)-Biological Science Department, Pontificia Universidad Católica del Ecuador (PUCE), Quito 170143, Ecuador
| | - Yong Han
- Translational Biomedical Sciences Program, Ohio University, Athens, OH 45701, USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
34
|
Field D, Fernandez de Ullivarri M, Ross RP, Hill C. After a century of nisin research - where are we now? FEMS Microbiol Rev 2023; 47:fuad023. [PMID: 37300874 PMCID: PMC10257480 DOI: 10.1093/femsre/fuad023] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/13/2023] Open
Abstract
It is almost a century since nisin was discovered in fermented milk cultures, coincidentally in the same year that penicillin was first described. Over the last 100 years this small, highly modified pentacyclic peptide has not only found success in the food industry as a preservative but has also served as the paradigm for our understanding of the genetic organization, expression, and regulation of genes involved in lantibiotic biosynthesis-one of the few cases of extensive post-translation modification in prokaryotes. Recent developments in understanding the complex biosynthesis of nisin have shed light on the cellular location of the modification and transport machinery and the co-ordinated series of spatio-temporal events required to produce active nisin and provide resistance and immunity. The continued unearthing of new natural variants from within human and animal gastrointestinal tracts has sparked interest in the potential application of nisin to influence the microbiome, given the growing recognition of the role the gastrointestinal microbiota plays in health and disease. Moreover, interdisciplinary approaches have taken advantage of biotechnological advancements to bioengineer nisin to produce novel variants and expand nisin functionality for applications in the biomedical field. This review will discuss the latest progress in these aspects of nisin research.
Collapse
Affiliation(s)
- Des Field
- APC Microbiome Ireland, University College Cork,Western Road, Cork T12 YN60, Ireland
- School of Microbiology, University College Cork, College Road, Cork T12 YT20, Ireland
| | | | - R Paul Ross
- APC Microbiome Ireland, University College Cork,Western Road, Cork T12 YN60, Ireland
- School of Microbiology, University College Cork, College Road, Cork T12 YT20, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork,Western Road, Cork T12 YN60, Ireland
- School of Microbiology, University College Cork, College Road, Cork T12 YT20, Ireland
| |
Collapse
|
35
|
Tagg JR, Harold LK, Jain R, Hale JDF. Beneficial modulation of human health in the oral cavity and beyond using bacteriocin-like inhibitory substance-producing streptococcal probiotics. Front Microbiol 2023; 14:1161155. [PMID: 37056747 PMCID: PMC10086258 DOI: 10.3389/fmicb.2023.1161155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
The human oral cavity contains a diversity of microbial habitats that have been adopted and adapted to as homeland by an amazingly heterogeneous population of microorganisms collectively referred to as the oral microbiota. These microbes generally co-habit in harmonious homeostasis. However, under conditions of imposed stress, as with changes to the host’s physiology or nutritional status, or as a response to foreign microbial or antimicrobial incursions, some components of the oral “microbiome” (viz. the in situ microbiota) may enter a dysbiotic state. This microbiome dysbiosis can manifest in a variety of guises including streptococcal sore throats, dental caries, oral thrush, halitosis and periodontal disease. Most of the strategies currently available for the management or treatment of microbial diseases of the oral cavity focus on the repetitive “broad sweep” and short-term culling of oral microbe populations, hopefully including the perceived principal pathogens. Both physical and chemical techniques are used. However, the application of more focused approaches to the harnessing or elimination of key oral cavity pathogens is now feasible through the use of probiotic strains that are naturally adapted for oral cavity colonization and also are equipped to produce anti-competitor molecules such as the bacteriocins and bacteriocin-like inhibitory substances (viz BLIS). Some of these probiotics are capable of suppressing the proliferation of a variety of recognized microbial pathogens of the human mouth, thereby assisting with the restoration of oral microbiome homeostasis. BLIS K12 and BLIS M18, the progenitors of the BLIS-producing oral probiotics, are members of the human oral cavity commensal species Streptococcus salivarius. More recently however, a number of other streptococcal and some non-streptococcal candidate oral probiotics have also been promoted. What is becoming increasingly apparent is that the future for oral probiotic applications will probably extend well beyond the attempted limitation of the direct pathological consequences of oral microbiome dysbiosis to also encompass a plethora of systemic diseases and disorders of the human host. The background to and the evolving prospects for the beneficial modulation of the oral microbiome via the application of BLIS-producing S. salivarius probiotics comprises the principal focus of the present review.
Collapse
|
36
|
Lee H, Wu C, Desormeaux EK, Sarksian R, van der Donk WA. Improved production of class I lanthipeptides in Escherichia coli. Chem Sci 2023; 14:2537-2546. [PMID: 36908960 PMCID: PMC9993889 DOI: 10.1039/d2sc06597e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Lanthipeptides are ribosomally synthesised and post-translationally modified peptides containing lanthionine (Lan) and methyllanthionine (MeLan) residues that are formed by dehydration of Ser/Thr residues followed by conjugate addition of Cys to the resulting dehydroamino acids. Class I lanthipeptide dehydratases utilize glutamyl-tRNAGlu as a co-substrate to glutamylate Ser/Thr followed by glutamate elimination. Here we report a new system to heterologously express class I lanthipeptides in Escherichia coli through co-expression of the producing organism's glutamyl-tRNA synthetase (GluRS) and tRNAGlu pair in the vector pEVOL. In contrast to the results in the absence of the pEVOL system, we observed the production of fully-dehydrated peptides, including epilancin 15X, and peptides from the Bacteroidota Chryseobacterium and Runella. A second common obstacle to production of lanthipeptides in E. coli is the formation of glutathione adducts. LanC-like (LanCL) enzymes were previously reported to add glutathione to dehydroamino-acid-containing proteins in Eukarya. Herein, we demonstrate that the LanCL enzymes can remove GSH adducts from C-glutathionylated peptides with dl- or ll-lanthionine stereochemistry. These two advances will aid synthetic biology-driven genome mining efforts to discover new lanthipeptides.
Collapse
Affiliation(s)
- Hyunji Lee
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign 1206 W Gregory Drive Urbana Illinois 61801 USA
- College of Pharmacy, Kyungsung University Busan 48434 Republic of Korea
| | - Chunyu Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana Illinois 61801 USA
| | - Emily K Desormeaux
- Department of Chemistry, The Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana Illinois 61801 USA
| | - Raymond Sarksian
- Department of Chemistry, The Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana Illinois 61801 USA
| | - Wilfred A van der Donk
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign 1206 W Gregory Drive Urbana Illinois 61801 USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana Illinois 61801 USA
- Department of Chemistry, The Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana Illinois 61801 USA
| |
Collapse
|
37
|
Class II two-peptide lanthipeptide proteases: exploring LicTP for biotechnological applications. Appl Microbiol Biotechnol 2023; 107:1687-1696. [PMID: 36763118 PMCID: PMC10006061 DOI: 10.1007/s00253-023-12388-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/23/2022] [Accepted: 01/15/2023] [Indexed: 02/11/2023]
Abstract
The enzymatic machinery involved in the biosynthesis of lantibiotic is an untapped source of proteases with different specificities. Lanthipeptide biosynthesis requires proteolysis of specific target sequences by known proteases, which are encoded by contiguous genes. Herein, the activity of lichenicidin A2 (LicA2) trimming proteases (LicP and LicT) was investigated in vivo. Firstly, the impact of some residues and the size of the peptide were evaluated. Then followed trials in which LicA2 leader was evaluated as a tag to direct production and secretion of other relevant peptides. Our results show that a negatively charged residue (preferably Glu) at cleavage site is important for LicP efficacy. Some mutations of the lichenicidin hexapeptide such as Val-4Ala, Asp-5Ala, Asn-6Ser, and the alteration of GG-motif to GA resulted in higher processing rates, indicating the possibility of improved lichenicidin production in Escherichia coli. More importantly, insulin A, amylin (non-lanthipeptides), and epidermin were produced and secreted to E. coli supernatant, when fused to the LicA2 leader peptide. This work aids in clarifying the activity of lantibiotic-related transporters and proteases and to evaluate their possible application in industrial processes of relevant compounds, taking advantage of the potential of microorganisms as biofactories. KEY POINTS: • LicM2 correct activity implies a negatively charged residue at position -1. • Hexapeptide mutations can increase the amount of fully processed Bliβ. • LicA2 leader peptide directs LicTP cleavage and secretion of other peptides.
Collapse
|
38
|
Janssen K, Krasenbrink J, Strangfeld S, Kroheck S, Josten M, Engeser M, Bierbaum G. Elucidation of the Bridging Pattern of the Lantibiotic Pseudomycoicidin. Chembiochem 2023; 24:e202200540. [PMID: 36399337 PMCID: PMC10107895 DOI: 10.1002/cbic.202200540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/18/2022] [Indexed: 11/19/2022]
Abstract
Lantibiotics are post-translationally modified antibiotic peptides with lanthionine thioether bridges that represent potential alternatives to conventional antibiotics. The lantibiotic pseudomycoicidin is produced by Bacillus pseudomycoides DSM 12442 and is effective against many Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus. While prior work demonstrated that pseudomycoicidin possesses one disulfide bridge and four thioether bridges, the ring topology has so far remained unclear. Here, we analyzed several pseudomycoicidin analogues that are affected in ring formation via MALDI-TOF-MS and tandem mass spectrometry with regard to their dehydration and fragmentation patterns, respectively. As a result, we propose a bridging pattern involving Thr8 and Cys13, Thr10 and Cys16, Ser18 and Cys21, and Ser20 and Cys26, thus, forming two double ring systems. Additionally, we localized the disulfide bridge to connect Cys3 and Cys7 and, therefore, fully elucidated the bridging pattern of pseudomycoicidin.
Collapse
Affiliation(s)
- Kathrin Janssen
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Julia Krasenbrink
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany.,Present address: Centre for Microbiology and Environmental Systems Science, Department for Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Sarina Strangfeld
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Sarah Kroheck
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Michaele Josten
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Marianne Engeser
- Kekulé Institute of Organic Chemistry and Biochemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Gabriele Bierbaum
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| |
Collapse
|
39
|
Fernandes A, Yadav P, Nalawade O, Joshi S, Jobby R. Properties, classification and applications of lantibiotics from Gram-positive bacteria. LANTIBIOTICS AS ALTERNATIVE THERAPEUTICS 2023:411-425. [DOI: 10.1016/b978-0-323-99141-4.00016-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
40
|
Guo E, Fu L, Fang X, Xie W, Li K, Zhang Z, Hong Z, Si T. Robotic Construction and Screening of Lanthipeptide Variant Libraries in Escherichia coli. ACS Synth Biol 2022; 11:3900-3911. [PMID: 36379012 DOI: 10.1021/acssynbio.2c00344] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lanthipeptides are a major class of ribosomally synthesized and post-translationally modified peptides (RiPPs) characterized by thioether cross-links called lanthionine (Lan) and methyllanthionine (MeLan). Previously, we developed a method to produce mature lanthipeptides in recombinant Escherichia coli, but manual steps hinder large-scale analogue screening. Here we devised an automated workflow for creating and screening variant libraries of haloduracin, a two-component class II lanthipeptide. An integrated work cell of a synthetic biology foundry was programmed to robotically execute DNA library construction, host transformation, peptide production, mass spectrometry analysis, and activity screening by agar diffusion assay. For recombinantly produced Halα peptides, the sequence-activity relationship of 380 single-residue variants and >1300 triple-residue combinatorial variants were rapidly analyzed in microplates within weeks. The peptide expression levels in E. coli were also visualized via robotic creation and analysis of GFP-lanthipeptide fusions for select peptide mutants. Following shake-flask fermentation and purification, one Halα mutant was confirmed with enhanced specific antimicrobial activity relative to the wild-type peptide. Overall, this approach may be generally applicable for the high-throughput characterization and engineering of RiPP natural products.
Collapse
Affiliation(s)
- Erpeng Guo
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,BGI-Shenzhen, Shenzhen 518083, China
| | - Lihao Fu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoting Fang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wenhao Xie
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Keyi Li
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhiyu Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhilai Hong
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,BGI-Shenzhen, Shenzhen 518083, China
| | - Tong Si
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,BGI-Shenzhen, Shenzhen 518083, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Shenzhen 518055, China
| |
Collapse
|
41
|
Arias-Orozco P, Yi Y, Ruijne F, Cebrián R, Kuipers OP. Investigating the Specificity of the Dehydration and Cyclization Reactions in Engineered Lanthipeptides by Synechococcal SyncM. ACS Synth Biol 2022; 12:164-177. [PMID: 36520855 PMCID: PMC9872173 DOI: 10.1021/acssynbio.2c00455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
ProcM-like enzymes are class II promiscuous lanthipeptide synthetases that are an attractive tool in synthetic biology for producing lanthipeptides with biotechnological or clinically desired properties. SyncM is a recently described modification enzyme from this family used to develop a versatile expression platform for engineering lanthipeptides. Most remarkably, SyncM can modify up to 79 SyncA substrates in a single strain. Six SyncAs were previously characterized from this pool of substrates. They showed particular characteristics, such as the presence of one or two lanthionine rings, different flanking residues influencing ring formation, and different ring directions, demonstrating the relaxed specificity of SyncM toward its precursor peptides. To gain a deeper understanding of the potential of SyncM as a biosynthetic tool, we further explored the enzyme's capabilities and limits in dehydration and ring formation. We used different SyncA scaffolds for peptide engineering, including changes in the ring's directionality (relative position of Ser/Thr to Cys in the peptide) and size. We further aimed to rationally design mimetics of cyclic antimicrobials and introduce macrocycles in prochlorosin-related and nonrelated substrates. This study highlights the largest lanthionine ring with 15 amino acids (ring-forming residues included) described to date. Taking advantage of the amino acid substrate tolerance of SyncM, we designed the first single-SyncA-based antimicrobial. The insights gained from this work will aid future bioengineering studies. Additionally, it broadens SyncM's application scope for introducing macrocycles in other bioactive molecules.
Collapse
Affiliation(s)
- Patricia Arias-Orozco
- Department
of Molecular Genetics, University of Groningen, Nijenborg 7, 9747 AG Groningen, The Netherlands
| | - Yunhai Yi
- Department
of Molecular Genetics, University of Groningen, Nijenborg 7, 9747 AG Groningen, The Netherlands
| | - Fleur Ruijne
- Department
of Molecular Genetics, University of Groningen, Nijenborg 7, 9747 AG Groningen, The Netherlands
| | - Rubén Cebrián
- Department
of Molecular Genetics, University of Groningen, Nijenborg 7, 9747 AG Groningen, The Netherlands,Department
of Clinical Microbiology, Instituto de Investigación Biosanitaria,
ibs. GRANADA, San Cecilio University Hospital, Av. De la Innovación s/n, 18016 Granada, Spain
| | - Oscar P. Kuipers
- Department
of Molecular Genetics, University of Groningen, Nijenborg 7, 9747 AG Groningen, The Netherlands,
| |
Collapse
|
42
|
Vermeulen R, Van Staden ADP, van Zyl LJ, Dicks LMT, Trindade M. Unusual Class I Lanthipeptides from the Marine Bacteria Thalassomonas viridans. ACS Synth Biol 2022; 11:3608-3616. [PMID: 36323319 PMCID: PMC9680876 DOI: 10.1021/acssynbio.2c00480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Indexed: 11/06/2022]
Abstract
A novel class I lanthipeptide produced by the marine bacterium Thalassomonas viridans XOM25T was identified using genome mining. The putative lanthipeptides were heterologously coexpressed in Escherichia coli as GFP-prepeptide fusions along with the operon-encoded class I lanthipeptide modification machinery VdsCB. The core peptides, VdsA1 and VdsA2, were liberated from GFP using the NisP protease, purified, and analyzed by collision-induced tandem mass spectrometry. The operon-encoded cyclase and dehydratase, VdsCB, exhibited lanthipeptide synthetase activity via post-translational modification of the VdsA1 and VdsA2 core peptides. Modifications were directed by the conserved double glycine leader containing prepeptides of VdsA1 and VdsA2.
Collapse
Affiliation(s)
- Ross Vermeulen
- Department
of Microbiology, Stellenbosch University, Matieland 7602, South Africa
- Department
of Biotechnology, Institute for Microbial Biotechnology and Metagenomics
(IMBM), University of the Western Cape, Bellville 7535 South Africa
| | - Anton Du Preez Van Staden
- Department
of Microbiology, Stellenbosch University, Matieland 7602, South Africa
- Division
of Clinical Pharmacology, Department of Medicine, Faculty of Medicine
and Health Sciences, Stellenbosch University, Parow 7505, South Africa
| | - Leonardo Joaquim van Zyl
- Department
of Biotechnology, Institute for Microbial Biotechnology and Metagenomics
(IMBM), University of the Western Cape, Bellville 7535 South Africa
| | - Leon M. T. Dicks
- Department
of Microbiology, Stellenbosch University, Matieland 7602, South Africa
| | - Marla Trindade
- Department
of Biotechnology, Institute for Microbial Biotechnology and Metagenomics
(IMBM), University of the Western Cape, Bellville 7535 South Africa
| |
Collapse
|
43
|
Dicks LMT, Vermeulen W. Do Bacteria Provide an Alternative to Cancer Treatment and What Role Does Lactic Acid Bacteria Play? Microorganisms 2022; 10:microorganisms10091733. [PMID: 36144335 PMCID: PMC9501580 DOI: 10.3390/microorganisms10091733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/17/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is one of the leading causes of mortality and morbidity worldwide. According to 2022 statistics from the World Health Organization (WHO), close to 10 million deaths have been reported in 2020 and it is estimated that the number of cancer cases world-wide could increase to 21.6 million by 2030. Breast, lung, thyroid, pancreatic, liver, prostate, bladder, kidney, pelvis, colon, and rectum cancers are the most prevalent. Each year, approximately 400,000 children develop cancer. Treatment between countries vary, but usually includes either surgery, radiotherapy, or chemotherapy. Modern treatments such as hormone-, immuno- and antibody-based therapies are becoming increasingly popular. Several recent reports have been published on toxins, antibiotics, bacteriocins, non-ribosomal peptides, polyketides, phenylpropanoids, phenylflavonoids, purine nucleosides, short chain fatty acids (SCFAs) and enzymes with anticancer properties. Most of these molecules target cancer cells in a selective manner, either directly or indirectly through specific pathways. This review discusses the role of bacteria, including lactic acid bacteria, and their metabolites in the treatment of cancer.
Collapse
|
44
|
Teng K, Huang F, Liu Y, Wang Y, Xia T, Yun F, Zhong J. Food and gut originated bacteriocins involved in gut microbe-host interactions. Crit Rev Microbiol 2022:1-13. [PMID: 35713699 DOI: 10.1080/1040841x.2022.2082860] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The gut microbes interact with each other as well as host, influencing human health and some diseases. Many gut commensals and food originated bacteria produce bacteriocins which can inhibit pathogens and modulate gut microbiota. Bacteriocins have comparable narrow antimicrobial spectrum and are attractive potentials for precision therapy of gut disorders. In this review, the bacteriocins from food and gut microbiomes and their involvement in the interaction between producers and gut ecosystem, along with their characteristics, types, biosynthesis, and functions are described and discussed. Bacteriocins are produced by many intestinal commensals and food microbes among which lactic acid bacteria (many are probiotics) has been paid more attention. Bacteriocin production has been generally regarded as a probiotic trait. They give a competitive advantage to bacteria, enabling their colonization in human gut, and mediating the interaction between the producers and host ecosystem. They fight against unwanted bacteria and pathogens without significant impact on the composition of commensal microbiota. Bacteriocins assist the producers to survive and colonize in the gut microbial populations. There is a great need to evaluate and utilize the potential of bacteriocins for improved therapeutic implications for intestinal health.
Collapse
Affiliation(s)
- Kunling Teng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Fuqing Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yayong Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yudong Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Tianqi Xia
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Fangfei Yun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jin Zhong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
45
|
Li C, Alam K, Zhao Y, Hao J, Yang Q, Zhang Y, Li R, Li A. Mining and Biosynthesis of Bioactive Lanthipeptides From Microorganisms. Front Bioeng Biotechnol 2021; 9:692466. [PMID: 34395400 PMCID: PMC8358304 DOI: 10.3389/fbioe.2021.692466] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022] Open
Abstract
Antimicrobial resistance is one of the most serious public health issues in the worldwide and only a few new antimicrobial drugs have been discovered in recent decades. To overcome the ever-increasing emergence of multidrug-resistant (MDR) pathogens, discovery of new natural products (NPs) against MDR pathogens with new technologies is in great demands. Lanthipeptides which are ribosomally synthesized and post-translationally modified peptides (RiPPs) display high diversity in their chemical structures and mechanisms of action. Genome mining and biosynthetic engineering have also yielded new lanthipeptides, which are a valuable source of drug candidates. In this review we cover the recent advances in the field of microbial derived lanthipeptide discovery and development.
Collapse
Affiliation(s)
- Caiyun Li
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Khorshed Alam
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yiming Zhao
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jinfang Hao
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Qing Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Youming Zhang
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ruijuan Li
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Aiying Li
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|