1
|
Galià-Camps C, Junkin L, Borrallo X, Carreras C, Pascual M, Turon X. Navigating spatio-temporal microbiome dynamics: Environmental factors and trace elements shape the symbiont community of an invasive marine species. MARINE POLLUTION BULLETIN 2024; 203:116477. [PMID: 38759466 DOI: 10.1016/j.marpolbul.2024.116477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
The proliferation of marine invasive species is a mounting concern. While the role of microbial communities in invasive ascidian species is recognized, the role of seasonal shifts in microbiome composition remains largely unexplored. We sampled five individuals of the invasive ascidian Styela plicata quarterly from January 2020 to October 2021 in two harbours, examining gills, tunics, and surrounding water. By analysing Amplicon Sequence Variants (ASVs) and seawater trace elements, we found that compartment (seawater, tunic, or gills) was the primary differentiating factor, followed by harbour. Clear seasonal patterns were evident in seawater bacteria, less so in gills, and absent in tunics. We identified compartment-specific bacteria, as well as seasonal indicator ASVs and ASVs correlated with trace element concentrations. Among these bacteria, we found that Endozoicomonas, Hepatoplasma and Rhodobacteraceae species had reported functions which might be necessary for overcoming seasonality and trace element shifts. This study contributes to understanding microbiome dynamics in invasive holobiont systems, and the patterns found indicate a potential role in adaptation and invasiveness.
Collapse
Affiliation(s)
- Carles Galià-Camps
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain; Department of Marine Ecology, Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Accés Cala Sant Francesc 14, 17300 Blanes, Spain.
| | - Liam Junkin
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain.
| | - Xavier Borrallo
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain
| | - Carlos Carreras
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain.
| | - Marta Pascual
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain.
| | - Xavier Turon
- Department of Marine Ecology, Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Accés Cala Sant Francesc 14, 17300 Blanes, Spain.
| |
Collapse
|
2
|
Goff JL, Szink EG, Durrence KL, Lui LM, Nielsen TN, Kuehl JV, Hunt KA, Chandonia JM, Huang J, Thorgersen MP, Poole FL, Stahl DA, Chakraborty R, Deutschbauer AM, Arkin AP, Adams MWW. Genomic and environmental controls on Castellaniella biogeography in an anthropogenically disturbed subsurface. ENVIRONMENTAL MICROBIOME 2024; 19:26. [PMID: 38671539 PMCID: PMC11046850 DOI: 10.1186/s40793-024-00570-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
Castellaniella species have been isolated from a variety of mixed-waste environments including the nitrate and multiple metal-contaminated subsurface at the Oak Ridge Reservation (ORR). Previous studies examining microbial community composition and nitrate removal at ORR during biostimulation efforts reported increased abundances of members of the Castellaniella genus concurrent with increased denitrification rates. Thus, we asked how genomic and abiotic factors control the Castellaniella biogeography at the site to understand how these factors may influence nitrate transformation in an anthropogenically impacted setting. We report the isolation and characterization of several Castellaniella strains from the ORR subsurface. Five of these isolates match at 100% identity (at the 16S rRNA gene V4 region) to two Castellaniella amplicon sequence variants (ASVs), ASV1 and ASV2, that have persisted in the ORR subsurface for at least 2 decades. However, ASV2 has consistently higher relative abundance in samples taken from the site and was also the dominant blooming denitrifier population during a prior biostimulation effort. We found that the ASV2 representative strain has greater resistance to mixed metal stress than the ASV1 representative strains. We attribute this resistance, in part, to the large number of unique heavy metal resistance genes identified on a genomic island in the ASV2 representative genome. Additionally, we suggest that the relatively lower fitness of ASV1 may be connected to the loss of the nitrous oxide reductase (nos) operon (and associated nitrous oxide reductase activity) due to the insertion at this genomic locus of a mobile genetic element carrying copper resistance genes. This study demonstrates the value of integrating genomic, environmental, and phenotypic data to characterize the biogeography of key microorganisms in contaminated sites.
Collapse
Affiliation(s)
- Jennifer L Goff
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
- State University of New York College of Environmental Science and Forestry, Syracuse, NY, USA
| | - Elizabeth G Szink
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Konnor L Durrence
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Lauren M Lui
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Torben N Nielsen
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jennifer V Kuehl
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kristopher A Hunt
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - John-Marc Chandonia
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jiawen Huang
- Earth and Environmental Science Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michael P Thorgersen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Farris L Poole
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - David A Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Romy Chakraborty
- Earth and Environmental Science Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Adam M Deutschbauer
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Adam P Arkin
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Bioengineering, University of California-Berkeley, Berkeley, CA, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
3
|
Quijia Pillajo J, Chapin LJ, Quiroz-Moreno CD, Altland JE, Jones ML. Nutrient availability and plant phenological stage influence the substrate microbiome in container-grown Impatiens walleriana 'Xtreme Red'. BMC PLANT BIOLOGY 2024; 24:176. [PMID: 38448825 PMCID: PMC10916185 DOI: 10.1186/s12870-024-04854-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND The microbiome plays a fundamental role in plant health and performance. Soil serves as a reservoir of microbial diversity where plants attract microorganisms via root exudates. The soil has an important impact on the composition of the rhizosphere microbiome, but greenhouse ornamental plants are commonly grown in soilless substrates. While soil microbiomes have been extensively studied in traditional agriculture to improve plant performance, health, and sustainability, information about the microbiomes of soilless substrates is still limited. Thus, we conducted an experiment to explore the microbiome of a peat-based substrate used in container production of Impatiens walleriana, a popular greenhouse ornamental plant. We investigated the effects of plant phenological stage and fertilization level on the substrate microbiome. RESULTS Impatiens plants grown under low fertilization rates were smaller and produced more flowers than plants grown under optimum and high fertilization. The top five bacterial phyla present in the substrate were Proteobacteria, Actinobacteria, Bacteriodota, Verrucomicrobiota, and Planctomycetota. We found a total of 2,535 amplicon sequence variants (ASV) grouped into 299 genera. The substrate core microbiome was represented by only 1.8% (48) of the identified ASV. The microbiome community composition was influenced by plant phenological stage and fertilizer levels. Phenological stage exhibited a stronger influence on microbiome composition than fertilizer levels. Differential abundance analysis using DESeq2 identified more ASVs significantly affected (enriched or depleted) in the high fertilizer levels at flowering. As observed for community composition, the effect of plant phenological stage on microbial community function was stronger than fertilizer level. Phenological stage and fertilizer treatments did not affect alpha-diversity in the substrate. CONCLUSIONS In container-grown ornamental plants, the substrate serves as the main microbial reservoir for the plant, and the plant and agricultural inputs (fertilization) modulate the microbial community structure and function of the substrate. The differences observed in substrate microbiome composition across plant phenological stage were explained by pH, total organic carbon (TOC) and fluoride, and across fertilizer levels by pH and phosphate (PO4). Our project provides an initial diversity profile of the bacteria occurring in soilless substrates, an underexplored source of microbial diversity.
Collapse
Affiliation(s)
- Juan Quijia Pillajo
- Department of Horticulture and Crop Science, The Ohio State University, Wooster, OH, 44691, USA
| | - Laura J Chapin
- Department of Horticulture and Crop Science, The Ohio State University, Wooster, OH, 44691, USA
| | - Cristian D Quiroz-Moreno
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, 43210, USA
| | - James E Altland
- Application Technology Research Unit, United States Department of Agriculture (USDA)-Agricultural Research Service, Wooster, OH, 44691, USA
| | - Michelle L Jones
- Department of Horticulture and Crop Science, The Ohio State University, Wooster, OH, 44691, USA.
| |
Collapse
|
4
|
Goff JL, Chen Y, Thorgersen MP, Hoang LT, Poole FL, Szink EG, Siuzdak G, Petzold CJ, Adams MWW. Mixed heavy metal stress induces global iron starvation response. THE ISME JOURNAL 2023; 17:382-392. [PMID: 36572723 PMCID: PMC9938188 DOI: 10.1038/s41396-022-01351-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022]
Abstract
Multiple heavy metal contamination is an increasingly common global problem. Heavy metals have the potential to disrupt microbially mediated biogeochemical cycling. However, systems-level studies on the effects of combinations of heavy metals on bacteria are lacking. For this study, we focused on the Oak Ridge Reservation (ORR; Oak Ridge, TN, USA) subsurface which is contaminated with several heavy metals and high concentrations of nitrate. Using a native Bacillus cereus isolate that represents a dominant species at this site, we assessed the combined impact of eight metal contaminants, all at site-relevant concentrations, on cell processes through an integrated multi-omics approach that included discovery proteomics, targeted metabolomics, and targeted gene-expression profiling. The combination of eight metals impacted cell physiology in a manner that could not have been predicted from summing phenotypic responses to the individual metals. Exposure to the metal mixture elicited a global iron starvation response not observed during individual metal exposures. This disruption of iron homeostasis resulted in decreased activity of the iron-cofactor-containing nitrate and nitrite reductases, both of which are important in biological nitrate removal at the site. We propose that the combinatorial effects of simultaneous exposure to multiple heavy metals is an underappreciated yet significant form of cell stress in the environment with the potential to disrupt global nutrient cycles and to impede bioremediation efforts at mixed waste sites. Our work underscores the need to shift from single- to multi-metal studies for assessing and predicting the impacts of complex contaminants on microbial systems.
Collapse
Affiliation(s)
- Jennifer L. Goff
- grid.213876.90000 0004 1936 738XDepartment of Biochemistry and Molecular Biology, University of Georgia, Athens, GA USA
| | - Yan Chen
- grid.184769.50000 0001 2231 4551Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Michael P. Thorgersen
- grid.213876.90000 0004 1936 738XDepartment of Biochemistry and Molecular Biology, University of Georgia, Athens, GA USA
| | - Linh T. Hoang
- grid.214007.00000000122199231Scripps Center for Metabolomics, Scripps Research, La Jolla, CA USA
| | - Farris L. Poole
- grid.213876.90000 0004 1936 738XDepartment of Biochemistry and Molecular Biology, University of Georgia, Athens, GA USA
| | - Elizabeth G. Szink
- grid.213876.90000 0004 1936 738XDepartment of Biochemistry and Molecular Biology, University of Georgia, Athens, GA USA
| | - Gary Siuzdak
- grid.214007.00000000122199231Scripps Center for Metabolomics, Scripps Research, La Jolla, CA USA
| | - Christopher J. Petzold
- grid.184769.50000 0001 2231 4551Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Michael W. W. Adams
- grid.213876.90000 0004 1936 738XDepartment of Biochemistry and Molecular Biology, University of Georgia, Athens, GA USA
| |
Collapse
|
5
|
Amanze C, Anaman R, Wu X, Alhassan SI, Yang K, Fosua BA, Yunhui T, Yu R, Wu X, Shen L, Dolgor E, Zeng W. Heterotrophic anodic denitrification coupled with cathodic metals recovery from on-site smelting wastewater with a bioelectrochemical system inoculated with mixed Castellaniella species. WATER RESEARCH 2023; 231:119655. [PMID: 36706471 DOI: 10.1016/j.watres.2023.119655] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Although Castellaniella species are crucial for denitrification, there is no report on their capacity to carry out denitrification and anode respiration simultaneously in a bioelectrochemical system (BES). Herein, the ability of a mixed inoculum of electricigenic Castellaniella species to perform simultaneous denitrification and anode respiration coupled with cathodic metals recovery was investigated in a BES. Results showed that 500 mg/L NO3--N significantly decreased power generation, whereas 100 and 250 mg/L NO3--N had a lesser impact. The single-chamber MFCs (SCMFCs) fed with 100 and 250 mg/L NO3--N concentrations achieved a removal efficiency higher than 90% in all cycles. In contrast, the removal efficiency in the SCMFCs declined dramatically at 500 mg/L NO3--N, which might be attributable to decreased microbial viability as revealed by SEM and CLSM. EPS protein content and enzymatic activities of the biofilms decreased significantly at this concentration. Cyclic voltammetry results revealed that the 500 mg/L NO3--N concentration decreased the redox activities of anodic biofilms, while electrochemical impedance spectroscopy showed that the internal resistance of the SCMFCs at this concentration increased significantly. In addition, BES inoculated with the Castellaniella species was able to simultaneously perform heterotrophic anodic denitrification and cathodic metals recovery from real wastewater. The BES attained Cu2+, Hg2+, Pb2+, and Zn2+ removal efficiencies of 99.86 ± 0.10%, 99.98 ± 0.014%, 99.98 ± 0.01%, and 99.17 ± 0.30%, respectively, from the real wastewater. Cu2+ was bio-electrochemically reduced to Cu0 and Cu2O, whereas Hg0 and HgO constituted the Hg species recovered via bioelectrochemical reduction and chemical deposition, respectively. Furthermore, Pb2+ and Zn2+ were bio-electrochemically reduced to Pb0 and Zn0, respectively. Over 89% of NO3--N was removed from the BES anolyte during the recovery of the metals. This research reveals promising denitrifying exoelectrogens for enhanced power generation, NO3--N removal, and heavy metals recovery in BES.
Collapse
Affiliation(s)
- Charles Amanze
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Richmond Anaman
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Xiaoyan Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Sikpaam Issaka Alhassan
- College of Engineering, Chemical and Environmental Engineering, University of Arizona, Tucson, AZ 85721, United States
| | - Kai Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Bridget Ataa Fosua
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Tang Yunhui
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Runlan Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Xueling Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Erdenechimeg Dolgor
- Department of Chemical and Biological Engineering, School of Engineering and Applied Sciences, National University of Mongolia, 14200, Mongolia
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China.
| |
Collapse
|
6
|
Tang Q, Cotton A, Wei Z, Xia Y, Daniell T, Yan X. How does partial substitution of chemical fertiliser with organic forms increase sustainability of agricultural production? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149933. [PMID: 34482141 DOI: 10.1016/j.scitotenv.2021.149933] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
To ensure global food security, agriculture must increase productivity while reducing environmental impacts associated with chemical nitrogen (N) fertilisation. This necessitates towards more sustainable practices such as recycling organic waste to substitute chemical fertiliser N inputs. However, hitherto how such strategy controls the succession of microbial communities and their relationship with crop yields and environmental impacts have not been comprehensively investigated. We conducted a field experiment with vegetable production in China examining partial substitution (25-50%) of chemical fertiliser with organic forms (pig manure or municipal sludge compost) considering key sustainability metrics: productivity, soil health, environmental impacts and microbial communities. We demonstrate that partial organic substitution improved crop yields, prevented soil acidification and improved soil fertility. Treatments also reduced detrimental environmental impacts with lower N2O emission, N leaching and runoff, likely due to reduced inorganic nitrogen surplus. Microbial communities, including key genes involved in the N cycle, were dynamic and time-dependent in response to partial organic substitution, and were also important in regulating crop yields and environmental impacts. Partial organic substitution increased bacterial diversity and the relative abundance of several specific microbial groups (e.g. Sphingomonadales, Myxococcales, Planctomycetes, and Rhizobiales) involved in N cycling. Additionally, partial organic substitution reduced the number of bacterial ammonia oxidizers and increased the number of denitrifiers, with the proportion of N2O-reducers being more pronounced, suggesting a mechanism for reducing N2O emissions. Comprehensive economic cost-benefit evaluation showed that partial organic substitution increased economic benefit per unit area by 37-46%, and reduced agricultural inputs and environmental impacts per unit product by 22-44%. Among them, 50% substitution of pig manure was the most profitable strategy. The study is crucial to policy-making as it highlights the potential advantages of shifting towards systems balancing chemical and organic fertilisers with economic benefits for farmers, reduced environmental damage and an efficient way for organic waste disposal.
Collapse
Affiliation(s)
- Quan Tang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anne Cotton
- Department of Animal and Plant Sciences, The University of Sheffield, Sheffield S10 2TN, UK
| | - Zhijun Wei
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongqiu Xia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Tim Daniell
- Department of Animal and Plant Sciences, The University of Sheffield, Sheffield S10 2TN, UK.
| | - Xiaoyuan Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
7
|
Paradis CJ, Miller JI, Moon J, Spencer SJ, Lui LM, Van Nostrand JD, Ning D, Steen AD, McKay LD, Arkin AP, Zhou J, Alm EJ, Hazen TC. Sustained Ability of a Natural Microbial Community to Remove Nitrate from Groundwater. GROUND WATER 2022; 60:99-111. [PMID: 34490626 PMCID: PMC9290691 DOI: 10.1111/gwat.13132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 05/23/2023]
Abstract
Microbial-mediated nitrate removal from groundwater is widely recognized as the predominant mechanism for nitrate attenuation in contaminated aquifers and is largely dependent on the presence of a carbon-bearing electron donor. The repeated exposure of a natural microbial community to an electron donor can result in the sustained ability of the community to remove nitrate; this phenomenon has been clearly demonstrated at the laboratory scale. However, in situ demonstrations of this ability are lacking. For this study, ethanol (electron donor) was repeatedly injected into a groundwater well (treatment) for six consecutive weeks to establish the sustained ability of a microbial community to remove nitrate. A second well (control) located upgradient was not injected with ethanol during this time. The treatment well demonstrated strong evidence of sustained ability as evident by ethanol, nitrate, and subsequent sulfate removal up to 21, 64, and 68%, respectively, as compared to the conservative tracer (bromide) upon consecutive exposures. Both wells were then monitored for six additional weeks under natural (no injection) conditions. During the final week, ethanol was injected into both treatment and control wells. The treatment well demonstrated sustained ability as evident by ethanol and nitrate removal up to 20 and 21%, respectively, as compared to bromide, whereas the control did not show strong evidence of nitrate removal (5% removal). Surprisingly, the treatment well did not indicate a sustained and selective enrichment of a microbial community. These results suggested that the predominant mechanism(s) of sustained ability likely exist at the enzymatic- and/or genetic-levels. The results of this study demonstrated the in situ ability of a microbial community to remove nitrate can be sustained in the prolonged absence of an electron donor.
Collapse
Affiliation(s)
- Charles J. Paradis
- Department of Earth and Planetary SciencesUniversity of TennesseeKnoxvilleTN
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTN
| | - John I. Miller
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTN
- Bredesen CenterUniversity of TennesseeKnoxvilleTN
| | - Ji‐Won Moon
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTN
| | - Sarah J. Spencer
- Biological Engineering DepartmentMassachusetts Institute of TechnologyCambridgeMA
| | - Lauren M. Lui
- Environmental Genomics and Systems Biology DivisionLawrence Berkeley National LaboratoryBerkeleyCA
| | - Joy D. Van Nostrand
- Institute for Environmental Genomics, Department of Microbiology and Plant Biologyand School of Civil Engineering and Environmental Sciences, University of OklahomaNormanOK
| | - Daliang Ning
- Institute for Environmental Genomics, Department of Microbiology and Plant Biologyand School of Civil Engineering and Environmental Sciences, University of OklahomaNormanOK
| | - Andrew D. Steen
- Department of Earth and Planetary SciencesUniversity of TennesseeKnoxvilleTN
- Department of MicrobiologyUniversity of TennesseeKnoxvilleTN
| | - Larry D. McKay
- Department of Earth and Planetary SciencesUniversity of TennesseeKnoxvilleTN
| | - Adam P. Arkin
- Environmental Genomics and Systems Biology DivisionLawrence Berkeley National LaboratoryBerkeleyCA
- Department of BioengineeringUniversity of CaliforniaBerkeleyCA
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biologyand School of Civil Engineering and Environmental Sciences, University of OklahomaNormanOK
| | - Eric J. Alm
- Biological Engineering DepartmentMassachusetts Institute of TechnologyCambridgeMA
| | - Terry C. Hazen
- Department of Earth and Planetary SciencesUniversity of TennesseeKnoxvilleTN
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTN
- Bredesen CenterUniversity of TennesseeKnoxvilleTN
- Department of BioengineeringUniversity of CaliforniaBerkeleyCA
- Department of Civil and Environmental SciencesUniversity of TennesseeKnoxvilleTN
- Center for Environmental BiotechnologyUniversity of TennesseeKnoxvilleTN
- Institute for a Secure and Sustainable EnvironmentUniversity of TennesseeKnoxvilleTN
| |
Collapse
|
8
|
Fida TT, Sharma M, Shen Y, Voordouw G. Microbial sulfite oxidation coupled to nitrate reduction in makeup water for oil production. CHEMOSPHERE 2021; 284:131298. [PMID: 34175514 DOI: 10.1016/j.chemosphere.2021.131298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/21/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Bisulfite is used as an oxygen scavenger in waters used for oil production to prevent oxygen-mediated pipeline corrosion. Analysis of nitrate-containing water injected with ammonium bisulfite indicated increased concentrations of ammonium, sulfate and nitrite. To understand the microbial process causing these changes, water samples were used in enrichments with bisulfite and nitrate. Oxidation of bisulfite, reduction of nitrate, change in microbial community composition and corrosivity of bisulfite were determined. The results indicated that the microbial community was dominated by Sulfuricurvum, a sulfite-oxidizing nitrate-reducing bacterium (StONRB). Plating of the enriched StONRB culture yielded the bacterial isolate Sulfuricurvum sp. TK005, which coupled bisulfite oxidation with nitrate reduction to form sulfate and nitrite. Bisulfite also induced chemical corrosion of carbon steel at a rate of 0.28 ± 0.18 mm yr-1. Bisulfite and the generated sulfate could serve as electron acceptors for sulfate-reducing microorganisms (SRM), which reduce sulfate and bisulfite to sulfide. Nitrate is frequently injected to injection waters to contain the activity of SRM in oil reservoirs. This study suggests an alternative bisulfite injection procedure: Injection of nitrate after the chemical reaction of bisulfite with oxygen is completed. This could maintain the oxygen scavenger function of bisulfite and SRM inhibitory activity of nitrate.
Collapse
Affiliation(s)
- Tekle Tafese Fida
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada.
| | - Mohita Sharma
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Yin Shen
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Gerrit Voordouw
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
9
|
Peng T, Liao W, Wang J, Miao J, Peng Y, Gu G, Wu X, Qiu G, Zeng W. Bioleaching and Electrochemical Behavior of Chalcopyrite by a Mixed Culture at Low Temperature. Front Microbiol 2021; 12:663757. [PMID: 34040597 PMCID: PMC8141852 DOI: 10.3389/fmicb.2021.663757] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
Low-temperature biohydrometallurgy is implicated in metal recovery in alpine mining areas, but bioleaching using microbial consortia at temperatures <10°C was scarcely discussed. To this end, a mixed culture was used for chalcopyrite bioleaching at 6°C. The mixed culture resulted in a higher copper leaching rate than the pure culture of Acidithiobacillus ferrivorans strain YL15. High-throughput sequencing technology showed that Acidithiobacillus spp. and Sulfobacillus spp. were the mixed culture's major lineages. Cyclic voltammograms, potentiodynamic polarization and electrochemical impedance spectroscopy unveiled that the mixed culture enhanced the dissolution reactions, decreased the corrosion potential and increased the corrosion current, and lowered the charge transfer resistance and passivation layer impedance of the chalcopyrite electrode compared with the pure culture. This study revealed the mechanisms via which the mixed culture promoted the chalcopyrite bioleaching.
Collapse
Affiliation(s)
- Tangjian Peng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| | - Wanqing Liao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Jingshu Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Jie Miao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yuping Peng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Guohua Gu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| | - Xueling Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| | - Guanzhou Qiu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
- CSIRO Process Science and Engineering, Clayton, VIC, Australia
| |
Collapse
|
10
|
Bioprospecting potential of microbial communities in solid waste landfills for novel enzymes through metagenomic approach. World J Microbiol Biotechnol 2020; 36:34. [PMID: 32088773 DOI: 10.1007/s11274-020-02812-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 02/13/2020] [Indexed: 01/19/2023]
Abstract
Landfills are repository for complex microbial diversity responsible for bio-degradation of solid waste. To elucidate this complexity, samples from three different landfill sites of North India (sample V: Bhalswa near Karnal byepass road, New Delhi, India; sample T: Chandigarh, India and sample S3: Una, H.P., India) were analyzed using metagenomic approach. Selected landfill sites had different geographical location, varied in waste composition, size of landfill and climate zone. For comparison, one sample from high altitude (sample J) having less human interference was taken in this study. The aim of this study was to explore microbial diversity of communities responsible for degradation of landfill. Samples were characterized by 16S rRNA gene sequencing. Data from three landfill sites showed abundance of phylum Proteobacteria while less contaminated sample from high altitude showed abundance of phylum Cholroflexi followed by phylum Proteobacteria. The most abundant genus was unknown suggesting that these landfills could be repository for various novel bacterial communities. Sample T was relatively more active in terms of microbial activity. It was relatively abundant in enzymes responsible for dioxin degradation, styrene degradation, steroid degradation, streptomycin biosynthesis, carbapenem biosynthesis, monobactam biosynthesis, furfural degradation pathways while sample J was predicted to be enriched in plant cell wall degrading enzymes. Co-occurrence analysis revealed presence of complex interaction networks between microbial assemblages responsible for bio-degradation of hydrocarbons. The data provides insights about synergetic interactions and functional interplay between bacterial communities in different landfill sites which could be further exploited to develop an effective bioremediation process.
Collapse
|
11
|
Ultramicrobacteria from Nitrate- and Radionuclide-Contaminated Groundwater. SUSTAINABILITY 2020. [DOI: 10.3390/su12031239] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The goal of the present work was to investigate the physicochemical and radiochemical conditions and the microbial diversity in groundwater collected near the Lake Karachai (Russia), which was formerly used for the disposal of liquid radioactive waste, to isolate the dominant bacteria, and to determine their taxonomy and the physiological characteristics responsible for their adaptation to this environment. Groundwater samples contained high concentrations of acetate, oxalate, nitrate, and sulfate, as well as radionuclides. High-throughput sequencing and analysis of the clone libraries revealed lower microbial diversity in the most strongly contaminated groundwater and a predominance of bacteria of the genera Polynucleobacter, Pusillimonas, Candidatus Pelagibacter, and of the candidate phylum Parcubacteria; these groups include species with an ultra small cell size. Archaeal sequences in the libraries belonged to ammonium oxidizers of the phylum Thaumarchaeota and methanogens of the phylum Euryarchaeota. Pure cultures of obligate and facultative ultramicrobacteria belonging to the genera Chryseobacterium, Microbacterium, Salinibacterium, Pusillimonas, Roseomonas, and Janibacter were isolated from water samples. In genomes of Pusillimonas and Roseomonas strains the genes associated with nitrate reduction, resistance to heavy metals and metalloids were revealed. Several isolates are able to participate in the geochemical process of nitrate conversion to N2 using acetate; this results in decreasing redox potential, which in turn may stimulate radionuclide reduction and decrease radionuclide migration in groundwater.
Collapse
|
12
|
Sant' Anna D, Sampaio JLM, Sommaggio LRD, Mazzeo DEC, Marin-Morales MA, Marson FAL, Levy CE. The applicability of gene sequencing and MALDI-TOF to identify less common gram-negative rods (Advenella, Castellaniella, Kaistia, Pusillimonas and Sphingobacterium) from environmental isolates. Antonie van Leeuwenhoek 2019; 113:233-252. [PMID: 31560092 DOI: 10.1007/s10482-019-01333-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 09/13/2019] [Indexed: 11/26/2022]
Abstract
Our aim was to identify less common non-fermenting gram-negative rods during the bioremediation process. Five genera were found: Advenella, Castellaniella, Kaistia, Pusillimonas and Sphingobacterium, for a total of 15 isolates. Therefore, we evaluated the applicability of four methods currently available for bacteria identification: (1) conventional biochemical methods, (2) the VITEK®-2 system, (3) MALDI-TOF mass spectrometry and (4) 16S rRNA gene sequencing. The biochemical methods and the VITEK®-2 system were reliable only for the Sphingobacterium isolate and solely at the genus level. Both MALDI-TOF mass spectrometry platforms (Bruker and VITEK® MS) did not achieve reliable identification results for any of these genera. 16S rRNA gene sequencing identified eight isolates to the species level but not to the subspecies level, when applicable. The remaining seven isolates were reliably identified through 16S rRNA gene sequencing to the genus level only. Our findings suggest that the detection and identification of less common genera (and species) that appeared at certain moments during the bioremediation process can be a challenge to microbiologists considering the most used techniques. In addition, more studies are required to confirm our results.
Collapse
Affiliation(s)
- Débora Sant' Anna
- Microbiology Laboratory, Department of Clinical Pathology, Faculty of Medical Sciences, University of Campinas, Rua Tessália Vieira de Camargo, 126, Cidade Universitária, Campinas, São Paulo, 13083-887, Brazil.
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, Barretos, São Paulo, Brazil.
| | - Jorge Luiz Mello Sampaio
- Microbiology Section, Fleury-Centers for Diagnostic Medicine, Av. General Waldomiro de Lima 508, São Paulo, 04344-070, Brazil
- Clinical Analysis and Toxicology Department, School of Pharmacy, University of São Paulo, Av. Professor Lineu Prestes, 580, Butantã, São Paulo, 05508-000, Brazil
| | - Lais Roberta Deroldo Sommaggio
- Department of Biology, Institute of Biosciences, São Paulo State University - Rio Claro, Av. 24 A, 1515, Bela Vista, Rio Claro, São Paulo, 13506-900, Brazil
| | - Dânia Elisa Christofoletti Mazzeo
- Department of Analytical Chemistry, Institute of Chemistry, São Paulo State University - Araraquara, Rua Professor Francisco Degni, 55, Araraquara, São Paulo, 14800-060, Brazil
| | - Maria Aparecida Marin-Morales
- Department of Biology, Institute of Biosciences, São Paulo State University - Rio Claro, Av. 24 A, 1515, Bela Vista, Rio Claro, São Paulo, 13506-900, Brazil
| | - Fernando Augusto Lima Marson
- Department of Pediatrics, Faculty of Medical Sciences, University of Campinas, Rua Tessália Vieira de Camargo, 126, Cidade Universitária, Campinas, São Paulo, 13083-887, Brazil.
- Laboratory of Pulmonary Physiology, Center for Pediatrics Investigation, Faculty of Medical Sciences, University of Campinas, Rua Tessália Vieira de Camargo, 126, Cidade Universitária, Campinas, São Paulo, 13083-887, Brazil.
- Department of Medical Genetics and Genomic Medicine, Faculty of Medical Sciences, University of Campinas, Rua Tessália Vieira de Camargo, 126, Cidade Universitária, Campinas, São Paulo, 13083-887, Brazil.
- Post-Graduate Program in Health Science, São Francisco University, Avenida São Francisco de Assis, 218, Cidade Universitária, Bragança Paulista, São Paulo, 12916-400, Brazil.
| | - Carlos Emílio Levy
- Microbiology Laboratory, Department of Clinical Pathology, Faculty of Medical Sciences, University of Campinas, Rua Tessália Vieira de Camargo, 126, Cidade Universitária, Campinas, São Paulo, 13083-887, Brazil.
- Department of Pediatrics, Faculty of Medical Sciences, University of Campinas, Rua Tessália Vieira de Camargo, 126, Cidade Universitária, Campinas, São Paulo, 13083-887, Brazil.
| |
Collapse
|
13
|
Nitrate-Utilizing Microorganisms Resistant to Multiple Metals from the Heavily Contaminated Oak Ridge Reservation. Appl Environ Microbiol 2019; 85:AEM.00896-19. [PMID: 31253673 DOI: 10.1128/aem.00896-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/20/2019] [Indexed: 11/20/2022] Open
Abstract
Contamination of environments with nitrate generated by industrial processes and the use of nitrogen-containing fertilizers is a growing problem worldwide. While nitrate can be removed from contaminated areas by microbial denitrification, nitrate frequently occurs with other contaminants, such as heavy metals, that have the potential to impede the process. Here, nitrate-reducing microorganisms were enriched and isolated from both groundwater and sediments at the Oak Ridge Reservation (ORR) using concentrations of nitrate and metals (Al, Mn, Fe, Co, Ni, Cu, Cd, and U) similar to those observed in a contaminated environment at ORR. Seven new metal-resistant, nitrate-reducing strains were characterized, and their distribution across both noncontaminated and contaminated areas at ORR was examined. While the seven strains have various pH ranges for growth, carbon source preferences, and degrees of resistance to individual and combinations of metals, all were able to reduce nitrate at similar rates both in the presence and absence of the mixture of metals found in the contaminated ORR environment. Four strains were identified in groundwater samples at different ORR locations by exact 16S RNA sequence variant analysis, and all four were found in both noncontaminated and contaminated areas. By using environmentally relevant metal concentrations, we successfully isolated multiple organisms from both ORR noncontaminated and contaminated environments that are capable of reducing nitrate in the presence of extreme mixed-metal contamination.IMPORTANCE Nitrate contamination is a global issue that affects groundwater quality. In some cases, cocontamination of groundwater with nitrate and mixtures of heavy metals could decrease microbially mediated nitrate removal, thereby increasing the duration of nitrate contamination. Here, we used metal and nitrate concentrations that are present in a contaminated site at the Oak Ridge Reservation to isolate seven metal-resistant strains. All were able to reduce nitrate in the presence of high concentrations of a mixture of heavy metals. Four of seven strains were located in pristine as well as contaminated sites at the Oak Ridge Reservation. Further study of these nitrate-reducing strains will uncover mechanisms of resistance to multiple metals that will increase our understanding of the effect of nitrate and metal contamination on groundwater microbial communities.
Collapse
|
14
|
Zeng T, Li L, Mo G, Wang G, Liu H, Xie S. Analysis of uranium removal capacity of anaerobic granular sludge bacterial communities under different initial pH conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:5613-5622. [PMID: 30612368 DOI: 10.1007/s11356-018-4017-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
The bacterial community of an anaerobic granular sludge associated with uranium depletion was investigated following its exposure to uranium under different initial pH conditions (pH 4.5, 5.5, and 6.5). The highest uranium removal efficiency (98.1%) was obtained for the sample with an initial pH of 6.5, which also supported the highest bacterial community richness and diversity. Venn diagrams visualized the decrease in the number of genera present in both the inoculum and the uranium-exposed biomass as the initial pH decreased from 6.5 to 4.5. Compared with the inoculum, a significant increase in the abundances of the phyla Chloroflexi and Proteobacteria was observed following uranium exposure. At initial pH conditions of 6.5 to 4.5, the proportions of the taxa Anaerolineaceae, Chryseobacterium, Acinetobacter, Pseudomonas, and Sulfurovum increased significantly, likely contributing to the observed uranium removal. Uranium exposure induced a greater level of dynamic diversification of bacterial abundances than did the initial pH difference.
Collapse
Affiliation(s)
- Taotao Zeng
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, People's Republic of China.
| | - Licheng Li
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Guanhai Mo
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Guohua Wang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Haiyan Liu
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Shuibo Xie
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, People's Republic of China.
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, People's Republic of China.
| |
Collapse
|
15
|
Bacterial Community Shift and Coexisting/Coexcluding Patterns Revealed by Network Analysis in a Uranium-Contaminated Site after Bioreduction Followed by Reoxidation. Appl Environ Microbiol 2018; 84:AEM.02885-17. [PMID: 29453264 DOI: 10.1128/aem.02885-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 02/10/2018] [Indexed: 11/20/2022] Open
Abstract
A site in Oak Ridge, TN, USA, has sediments that contain >3% iron oxides and is contaminated with uranium (U). The U(VI) was bioreduced to U(IV) and immobilized in situ through intermittent injections of ethanol. It then was allowed to reoxidize via the invasion of low-pH (3.6 to 4.0), high-nitrate (up to 200 mM) groundwater back into the reduced zone for 1,383 days. To examine the biogeochemical response, high-throughput sequencing and network analysis were applied to characterize bacterial population shifts, as well as cooccurrence and coexclusion patterns among microbial communities. A paired t test indicated no significant changes of α-diversity for the bioactive wells. However, both nonmetric multidimensional scaling and analysis of similarity confirmed a significant distinction in the overall composition of the bacterial communities between the bioreduced and the reoxidized sediments. The top 20 major genera accounted for >70% of the cumulative contribution to the dissimilarity in the bacterial communities before and after the groundwater invasion. Castellaniella had the largest dissimilarity contribution (17.7%). For the bioactive wells, the abundance of the U(VI)-reducing genera Geothrix, Desulfovibrio, Ferribacterium, and Geobacter decreased significantly, whereas the denitrifying Acidovorax abundance increased significantly after groundwater invasion. Additionally, seven genera, i.e., Castellaniella, Ignavibacterium, Simplicispira, Rhizomicrobium, Acidobacteria Gp1, Acidobacteria Gp14, and Acidobacteria Gp23, were significant indicators of bioactive wells in the reoxidation stage. Canonical correspondence analysis indicated that nitrate, manganese, and pH affected mostly the U(VI)-reducing genera and indicator genera. Cooccurrence patterns among microbial taxa suggested the presence of taxa sharing similar ecological niches or mutualism/commensalism/synergism interactions.IMPORTANCE High-throughput sequencing technology in combination with a network analysis approach were used to investigate the stabilization of uranium and the corresponding dynamics of bacterial communities under field conditions with regard to the heterogeneity and complexity of the subsurface over the long term. The study also examined diversity and microbial community composition shift, the common genera, and indicator genera before and after long-term contaminated-groundwater invasion and the relationship between the target functional community structure and environmental factors. Additionally, deciphering cooccurrence and coexclusion patterns among microbial taxa and environmental parameters could help predict potential biotic interactions (cooperation/competition), shared physiologies, or habitat affinities, thus, improving our understanding of ecological niches occupied by certain specific species. These findings offer new insights into compositions of and associations among bacterial communities and serve as a foundation for future bioreduction implementation and monitoring efforts applied to uranium-contaminated sites.
Collapse
|
16
|
Liu J, Qiu W, Wang Y. Fungal pretreatment of raw digested piggery wastewater enhancing the survival of algae as biofuel feedstock. BIORESOUR BIOPROCESS 2017; 4:6. [PMID: 28133597 PMCID: PMC5236085 DOI: 10.1186/s40643-016-0136-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/19/2016] [Accepted: 12/29/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Understanding about the impact of white rot fungi on indigenous bacterial communities, NH4+ and turbidity in digested piggery wastewater, will allow the optimization of wastewater treatment methods and its use as a feasible medium for algal growth. Here, the white rot fungi were inoculated into undiluted and unsterilized digested piggery wastewater under different temperatures and pH regimes in order to lower the pretreatment cost. Diversity and abundance of the bacterial communities in the pretreated wastewater were assessed by PCR-denaturing gradient gel electrophoresis coupled with 16S rDNA sequencing. RESULTS The research showed a significant reduction on the microbial diversity with the presence of white rot fungi which occur at pH 6. The distribution and presence of bacteria taxa were strongly correlated with NH4+ concentration, pH, and the presence of white rot fungi. Variance partition analysis also showed that the effect on the chlorophyll content of algae in fungi-filtered wastewater was as the following hierarchy: bacterial diversity > NH4+ > turbidity. Therefore, the algae in treated wastewater with less abundance of bacteria proliferated more successfully, indicating that bacterial community not only played an important role in algal growth but also imposed a strong top-down control on the algal population. The algae grown in wastewater treated with fungi reached the highest specific growth rate (0.033 day-1), whereas the controls displayed the negative specific growth rate. The fatty acid composition varied markedly in C16:0 and C18:0 between these treatments, with a higher content of C16:0. CONCLUSIONS This study firstly showed that Chlorella can grow as cost-effective biofuel feedstocks in undiluted and unsterilized digested wastewater with high ammonium concentration and dark brown color because the bacterial abundance of digested piggery wastewater could be reduced greatly by the white rot fungi.
Collapse
Affiliation(s)
- Junying Liu
- The Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, 330047 China
| | - Wen Qiu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Yunpu Wang
- The Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, 330047 China
| |
Collapse
|
17
|
Abstract
Unraveling the drivers controlling the response and adaptation of biological communities to environmental change, especially anthropogenic activities, is a central but poorly understood issue in ecology and evolution. Comparative genomics studies suggest that lateral gene transfer (LGT) is a major force driving microbial genome evolution, but its role in the evolution of microbial communities remains elusive. To delineate the importance of LGT in mediating the response of a groundwater microbial community to heavy metal contamination, representative Rhodanobacter reference genomes were sequenced and compared to shotgun metagenome sequences. 16S rRNA gene-based amplicon sequence analysis indicated that Rhodanobacter populations were highly abundant in contaminated wells with low pHs and high levels of nitrate and heavy metals but remained rare in the uncontaminated wells. Sequence comparisons revealed that multiple geochemically important genes, including genes encoding Fe2+/Pb2+ permeases, most denitrification enzymes, and cytochrome c553, were native to Rhodanobacter and not subjected to LGT. In contrast, the Rhodanobacter pangenome contained a recombinational hot spot in which numerous metal resistance genes were subjected to LGT and/or duplication. In particular, Co2+/Zn2+/Cd2+ efflux and mercuric resistance operon genes appeared to be highly mobile within Rhodanobacter populations. Evidence of multiple duplications of a mercuric resistance operon common to most Rhodanobacter strains was also observed. Collectively, our analyses indicated the importance of LGT during the evolution of groundwater microbial communities in response to heavy metal contamination, and a conceptual model was developed to display such adaptive evolutionary processes for explaining the extreme dominance of Rhodanobacter populations in the contaminated groundwater microbiome. Lateral gene transfer (LGT), along with positive selection and gene duplication, are the three main mechanisms that drive adaptive evolution of microbial genomes and communities, but their relative importance is unclear. Some recent studies suggested that LGT is a major adaptive mechanism for microbial populations in response to changing environments, and hence, it could also be critical in shaping microbial community structure. However, direct evidence of LGT and its rates in extant natural microbial communities in response to changing environments is still lacking. Our results presented in this study provide explicit evidence that LGT played a crucial role in driving the evolution of a groundwater microbial community in response to extreme heavy metal contamination. It appears that acquisition of genes critical for survival, growth, and reproduction via LGT is the most rapid and effective way to enable microorganisms and associated microbial communities to quickly adapt to abrupt harsh environmental stresses.
Collapse
|
18
|
Montero-Calasanz MDC, Hofner B, Göker M, Rohde M, Spröer C, Hezbri K, Gtari M, Schumann P, Klenk HP. Geodermatophilus poikilotrophi sp. nov.: a multitolerant actinomycete isolated from dolomitic marble. BIOMED RESEARCH INTERNATIONAL 2014; 2014:914767. [PMID: 25114928 PMCID: PMC4119925 DOI: 10.1155/2014/914767] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/03/2014] [Accepted: 06/09/2014] [Indexed: 12/02/2022]
Abstract
A novel Gram-reaction-positive, aerobic actinobacterium, tolerant to mitomycin C, heavy metals, metalloids, hydrogen peroxide, desiccation, and ionizing- and UV-radiation, designated G18T, was isolated from dolomitic marble collected from outcrops in Samara (Namibia). The growth range was 15-35°C, at pH 5.5-9.5 and in presence of 1% NaCl, forming greenish-black coloured colonies on GYM Streptomyces agar. Chemotaxonomic and molecular characteristics of the isolate matched those described for other representatives of the genus Geodermatophilus. The peptidoglycan contained meso-diaminopimelic acid as diagnostic diaminoacid. The main phospholipids were phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol, and small amount of diphosphatidylglycerol. MK-9(H4) was the dominant menaquinone and galactose was detected as diagnostic sugar. The major cellular fatty acids were branched-chain saturated acids iso-C16:0 and iso-C15:0 and the unsaturated C17:1 ω8c and C16:1 ω7c. The 16S rRNA gene showed 97.4-99.1% sequence identity with the other representatives of genus Geodermatophilus. Based on phenotypic results and 16S rRNA gene sequence analysis, strain G18T is proposed to represent a novel species, Geodermatophilus poikilotrophi. Type strain is G18T (=DSM 44209T=CCUG 63018T). The INSDC accession number is HF970583. The novel R software package lethal was used to compute the lethal doses with confidence intervals resulting from tolerance experiments.
Collapse
Affiliation(s)
- Maria del Carmen Montero-Calasanz
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
- Instituto de Investigacióon y Formacióon Agraria y Pesquera (IFAPA), Centro Las Torres-Tomejil, Carretera Sevilla-Cazalla de la Sierra, Km 12.2, 41200 Alcalá del Río, Sevilla, Spain
| | - Benjamin Hofner
- Institut für Medizininformatik, Biometrie und Epidemiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Waldstraße 6, 91054 Erlangen, Germany
| | - Markus Göker
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Manfred Rohde
- Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Karima Hezbri
- Laboratoire Microorganismes et Biomolécules Actives, Université de Tunis Elmanar (FST) et Université de Carthage (INSAT), 2092 Tunis, Tunisia
| | - Maher Gtari
- Laboratoire Microorganismes et Biomolécules Actives, Université de Tunis Elmanar (FST) et Université de Carthage (INSAT), 2092 Tunis, Tunisia
| | - Peter Schumann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Hans-Peter Klenk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| |
Collapse
|
19
|
Gabarró J, Hernández-Del Amo E, Gich F, Ruscalleda M, Balaguer MD, Colprim J. Nitrous oxide reduction genetic potential from the microbial community of an intermittently aerated partial nitritation SBR treating mature landfill leachate. WATER RESEARCH 2013; 47:7066-7077. [PMID: 24183561 DOI: 10.1016/j.watres.2013.07.057] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 07/10/2013] [Accepted: 07/18/2013] [Indexed: 06/02/2023]
Abstract
This study investigates the microbial community dynamics in an intermittently aerated partial nitritation (PN) SBR treating landfill leachate, with emphasis to the nosZ encoding gene. PN was successfully achieved and high effluent stability and suitability for a later anammox reactor was ensured. Anoxic feedings allowed denitrifying activity in the reactor. The influent composition influenced the mixed liquor suspended solids concentration leading to variations of specific operational rates. The bacterial community was low diverse due to the stringent conditions in the reactor, and was mostly enriched by members of Betaproteobacteria and Bacteroidetes as determined by 16S rRNA sequencing from excised DGGE melting types. The qPCR analysis for nitrogen cycle-related enzymes (amoA, nirS, nirK and nosZ) demonstrated high amoA enrichment but being nirS the most relatively abundant gene. nosZ was also enriched from the seed sludge. Linear correlation was found mostly between nirS and the organic specific rates. Finally, Bacteroidetes sequenced in this study by 16S rRNA DGGE were not sequenced for nosZ DGGE, indicating that not all denitrifiers deal with complete denitrification. However, nosZ encoding gene bacteria was found during the whole experiment indicating the genetic potential to reduce N2O.
Collapse
Affiliation(s)
- J Gabarró
- LEQUIA, Institute of the Environment, University of Girona, Campus Montilivi, E-17071 Girona, Catalonia, Spain.
| | | | | | | | | | | |
Collapse
|
20
|
Fish JA, Chai B, Wang Q, Sun Y, Brown CT, Tiedje JM, Cole JR. FunGene: the functional gene pipeline and repository. Front Microbiol 2013; 4:291. [PMID: 24101916 PMCID: PMC3787254 DOI: 10.3389/fmicb.2013.00291] [Citation(s) in RCA: 361] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 09/10/2013] [Indexed: 11/29/2022] Open
Abstract
Ribosomal RNA genes have become the standard molecular markers for microbial community analysis for good reasons, including universal occurrence in cellular organisms, availability of large databases, and ease of rRNA gene region amplification and analysis. As markers, however, rRNA genes have some significant limitations. The rRNA genes are often present in multiple copies, unlike most protein-coding genes. The slow rate of change in rRNA genes means that multiple species sometimes share identical 16S rRNA gene sequences, while many more species share identical sequences in the short 16S rRNA regions commonly analyzed. In addition, the genes involved in many important processes are not distributed in a phylogenetically coherent manner, potentially due to gene loss or horizontal gene transfer. While rRNA genes remain the most commonly used markers, key genes in ecologically important pathways, e.g., those involved in carbon and nitrogen cycling, can provide important insights into community composition and function not obtainable through rRNA analysis. However, working with ecofunctional gene data requires some tools beyond those required for rRNA analysis. To address this, our Functional Gene Pipeline and Repository (FunGene; http://fungene.cme.msu.edu/) offers databases of many common ecofunctional genes and proteins, as well as integrated tools that allow researchers to browse these collections and choose subsets for further analysis, build phylogenetic trees, test primers and probes for coverage, and download aligned sequences. Additional FunGene tools are specialized to process coding gene amplicon data. For example, FrameBot produces frameshift-corrected protein and DNA sequences from raw reads while finding the most closely related protein reference sequence. These tools can help provide better insight into microbial communities by directly studying key genes involved in important ecological processes.
Collapse
Affiliation(s)
- Jordan A Fish
- Center for Microbial Ecology, Michigan State University East Lansing, MI, USA ; Department of Computer Science and Engineering, Michigan State University East Lansing, MI, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Yang S, Sun W, Zhang F, Li Z. Phylogenetically diverse denitrifying and ammonia-oxidizing bacteria in corals Alcyonium gracillimum and Tubastraea coccinea. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:540-551. [PMID: 23564007 DOI: 10.1007/s10126-013-9503-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 03/12/2013] [Indexed: 06/02/2023]
Abstract
To date, the association of coral-bacteria and the ecological roles of bacterial symbionts in corals remain largely unknown. In particular, little is known about the community components of bacterial symbionts of corals involved in the process of denitrification and ammonia oxidation. In this study, the nitrite reductase (nirS and nirK) and ammonia monooxygenase subunit A (amoA) genes were used as functional markers. Diverse bacteria with the potential to be active as denitrifiers and ammonia-oxidizing bacteria (AOB) were found in two East China Sea corals: stony coral Alcyonium gracillimum and soft coral Tubastraea coccinea. The 16S rRNA gene library analysis demonstrated different communities of bacterial symbionts in these two corals of the same location. Nitrite reductase nirK gene was found only in T. coccinea, while both nirK and nirS genes were detected in A. gracillimum, which might be the result of the presence of different bacterial symbionts in these two corals. AOB rather than ammonia-oxidizing archaea were detected in both corals, suggesting that AOB might play an important role in the ammonia oxidation process of the corals. This study indicates that the coral bacterial symbionts with the potential for nitrite reduction and ammonia oxidation might have multiple ecological roles in the coral holobiont, which promotes our understanding of bacteria-mediated nitrogen cycling in corals. To our knowledge, this study is the first assessment of the community structure and phylogenetic diversity of denitrifying bacteria and AOB in corals based on nirK, nirS, and amoA gene library analysis.
Collapse
Affiliation(s)
- Shan Yang
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | | | | | | |
Collapse
|
22
|
Bellini MI, Gutiérrez L, Tarlera S, Scavino AF. Isolation and functional analysis of denitrifiers in an aquifer with high potential for denitrification. Syst Appl Microbiol 2013; 36:505-16. [DOI: 10.1016/j.syapm.2013.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 07/04/2013] [Accepted: 07/06/2013] [Indexed: 10/26/2022]
|
23
|
Ribeiro H, Mucha AP, Almeida CMR, Bordalo AA. Bacterial community response to petroleum contamination and nutrient addition in sediments from a temperate salt marsh. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 458-460:568-576. [PMID: 23707865 DOI: 10.1016/j.scitotenv.2013.04.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 04/05/2013] [Accepted: 04/05/2013] [Indexed: 06/02/2023]
Abstract
Microbial communities play an important role in the biodegradation of organic pollutants in sediments, including hydrocarbons. The aim of this study was to evaluate the response of temperate salt marsh microbial communities to petroleum contamination, in terms of community structure, abundance and capacity to degrade hydrocarbons. Sediments un-colonized and colonized (rhizosediments) by Juncus maritimus, Phragmites australis and Triglochin striata were collected in a temperate estuary (Lima, NW Portugal), spiked with petroleum under variable nutritional conditions, and incubated for 15 days. Results showed that plant speciation emerged as the major factor for shaping the rhizosphere community structure, overriding the petroleum influence. Moreover, when exposed to petroleum contamination, the distinct salt marsh microbial communities responded similarly with (i) increased abundance, (ii) changes in structure, and (iii) decreased diversity. Communities, particularly those associated to J. maritimus and P. australis roots displayed a potential to degrade petroleum hydrocarbons, with degradation percentages between 15% and 41%, depending on sediment type and nutritional conditions. In conclusion, distinct salt marsh microbial communities responded similarly to petroleum contamination, but presented different pace, nutritional requirements, and potential for its biodegradation, which should be taken into account when developing bioremediation strategies.
Collapse
Affiliation(s)
- Hugo Ribeiro
- Laboratório de Hidrobiologia e Ecologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS-UP), Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | | | | | | |
Collapse
|
24
|
Zhang X, He L, Zhang F, Sun W, Li Z. The different potential of sponge bacterial symbionts in N₂ release indicated by the phylogenetic diversity and abundance analyses of denitrification genes, nirK and nosZ. PLoS One 2013; 8:e65142. [PMID: 23762300 PMCID: PMC3677918 DOI: 10.1371/journal.pone.0065142] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 04/22/2013] [Indexed: 01/31/2023] Open
Abstract
Nitrogen cycle is a critical biogeochemical process of the oceans. The nitrogen fixation by sponge cyanobacteria was early observed. Until recently, sponges were found to be able to release nitrogen gas. However the gene-level evidence for the role of bacterial symbionts from different species sponges in nitrogen gas release is limited. And meanwhile, the quanitative analysis of nitrogen cycle-related genes of sponge microbial symbionts is relatively lacking. The nirK gene encoding nitrite reductase which catalyzes soluble nitrite into gas NO and nosZ gene encoding nitrous oxide reductase which catalyzes N₂O into N₂ are two key functional genes in the complete denitrification pathway. In this study, using nirK and nosZ genes as markers, the potential of bacterial symbionts in six species of sponges in the release of N2 was investigated by phylogenetic analysis and real-time qPCR. As a result, totally, 2 OTUs of nirK and 5 OTUs of nosZ genes were detected by gene library-based saturated sequencing. Difference phylogenetic diversity of nirK and nosZ genes were observed at OTU level in sponges. Meanwhile, real-time qPCR analysis showed that Xestospongia testudinaria had the highest abundance of nosZ gene, while Cinachyrella sp. had the greatest abundance of nirK gene. Phylogenetic analysis showed that the nirK and nosZ genes were probably of Alpha-, Beta-, and Gammaproteobacteria origin. The results from this study suggest that the denitrification potential of bacteria varies among sponges because of the different phylogenetic diversity and relative abundance of nosZ and nirK genes in sponges. Totally, both the qualitative and quantitative analyses of nirK and nosZ genes indicated the different potential of sponge bacterial symbionts in the release of nitrogen gas.
Collapse
Affiliation(s)
- Xia Zhang
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Liming He
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Fengli Zhang
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Wei Sun
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Zhiyong Li
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China
- * E-mail:
| |
Collapse
|
25
|
Gtari M, Essoussi I, Maaoui R, Sghaier H, Boujmil R, Gury J, Pujic P, Brusetti L, Chouaia B, Crotti E, Daffonchio D, Boudabous A, Normand P. Contrasted resistance of stone-dwelling Geodermatophilaceae species to stresses known to give rise to reactive oxygen species. FEMS Microbiol Ecol 2012; 80:566-77. [DOI: 10.1111/j.1574-6941.2012.01320.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/24/2012] [Accepted: 01/25/2012] [Indexed: 11/30/2022] Open
Affiliation(s)
- Maher Gtari
- Laboratoire Microorganismes et Biomolécules Actives; Université de Tunis Elmanar (FST) et Université de Carthage (ISSTE); Tunis; Tunisia
| | - Imen Essoussi
- Laboratoire Microorganismes et Biomolécules Actives; Université de Tunis Elmanar (FST) et Université de Carthage (ISSTE); Tunis; Tunisia
| | - Radhi Maaoui
- Laboratoire Microorganismes et Biomolécules Actives; Université de Tunis Elmanar (FST) et Université de Carthage (ISSTE); Tunis; Tunisia
| | - Haïtham Sghaier
- Unité de Microbiologie et de Biologie Moléculaire; Centre National des Sciences et Technologies Nucléaires (CNSTN); Sidi Thabet; Tunisia
| | - Rabeb Boujmil
- Laboratoire Microorganismes et Biomolécules Actives; Université de Tunis Elmanar (FST) et Université de Carthage (ISSTE); Tunis; Tunisia
| | - Jérôme Gury
- IPREM UMR CNRS 5254; IBEAS - UFR Sciences et Techniques; Université de Pau et des Pays de l'Adour; Pau; France
| | - Petar Pujic
- Ecologie Microbienne; Centre National de la Recherche Scientifique UMR 5557; Université Lyon I; Université Lyon; Villeurbanne; France
| | - Lorenzo Brusetti
- Faculty of Science and Technology; Free University of Bozen/Bolzano; Bolzano; Italy
| | - Bessem Chouaia
- Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche (DiSTAM); Università degli Studi di Milano; Milan; Italy
| | - Elena Crotti
- Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche (DiSTAM); Università degli Studi di Milano; Milan; Italy
| | - Daniele Daffonchio
- Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche (DiSTAM); Università degli Studi di Milano; Milan; Italy
| | - Abdellatif Boudabous
- Laboratoire Microorganismes et Biomolécules Actives; Université de Tunis Elmanar (FST) et Université de Carthage (ISSTE); Tunis; Tunisia
| | - Philippe Normand
- Ecologie Microbienne; Centre National de la Recherche Scientifique UMR 5557; Université Lyon I; Université Lyon; Villeurbanne; France
| |
Collapse
|
26
|
Denitrifying bacteria from the genus Rhodanobacter dominate bacterial communities in the highly contaminated subsurface of a nuclear legacy waste site. Appl Environ Microbiol 2011; 78:1039-47. [PMID: 22179233 DOI: 10.1128/aem.06435-11] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The effect of long-term mixed-waste contamination, particularly uranium and nitrate, on the microbial community in the terrestrial subsurface was investigated at the field scale at the Oak Ridge Integrated Field Research Challenge (ORIFRC) site in Oak Ridge, TN. The abundance, community composition, and distribution of groundwater microorganisms were examined across the site during two seasonal sampling events. At representative locations, subsurface sediment was also examined from two boreholes, one sampled from the most heavily contaminated area of the site and another from an area with low contamination. A suite of DNA- and RNA-based molecular tools were employed for community characterization, including quantitative PCR of rRNA and nitrite reductase genes, community composition fingerprinting analysis, and high-throughput pyrotag sequencing of rRNA genes. The results demonstrate that pH is a major driver of the subsurface microbial community structure and that denitrifying bacteria from the genus Rhodanobacter (class Gammaproteobacteria) dominate at low pH. The relative abundance of bacteria from this genus was positively correlated with lower-pH conditions, and these bacteria were abundant and active in the most highly contaminated areas. Other factors, such as the concentration of nitrogen species, oxygen level, and sampling season, did not appear to strongly influence the distribution of Rhodanobacter bacteria. The results indicate that these organisms are acid-tolerant denitrifiers, well suited to the acidic, nitrate-rich subsurface conditions, and pH is confirmed as a dominant driver of bacterial community structure in this contaminated subsurface environment.
Collapse
|
27
|
Lin X, Kennedy D, Fredrickson J, Bjornstad B, Konopka A. Vertical stratification of subsurface microbial community composition across geological formations at the Hanford Site. Environ Microbiol 2011; 14:414-25. [DOI: 10.1111/j.1462-2920.2011.02659.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Linking specific heterotrophic bacterial populations to bioreduction of uranium and nitrate in contaminated subsurface sediments by using stable isotope probing. Appl Environ Microbiol 2011; 77:8197-200. [PMID: 21948831 DOI: 10.1128/aem.05247-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shifts in terminal electron-accepting processes during biostimulation of uranium-contaminated sediments were linked to the composition of stimulated microbial populations using DNA-based stable isotope probing. Nitrate reduction preceded U(VI) and Fe(III) reduction in [¹³C]ethanol-amended microcosms. The predominant, active denitrifying microbial groups were identified as members of the Betaproteobacteria, whereas Actinobacteria dominated under metal-reducing conditions.
Collapse
|
29
|
Peacock AD, Hedrick DB, Long PE, Nevin KP, Resch CT, Lovley DR, White DC. Field-scale uranium (VI) bioimmobilization monitored by lipid biomarkers and 13C-acetate incorporation. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/rem.20301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Kasi M, McEvoy J, Padmanabhan G, Khan E. Groundwater remediation using an enricher reactor-permeable reactive biobarrier for periodically absent contaminants. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2011; 83:603-612. [PMID: 21790078 DOI: 10.2175/106143011x12928814444457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A combined enricher reactor (ER)-permeable reactive biobarrier (PRBB) system was developed to treat groundwater with contaminants that appear in batches. An enricher reactor is an offline reactor used to enrich contaminant degraders by supplying necessary growth materials, and the enriched degraders are used to augment PRBB to increase its performance after a period of contaminant absence. Bench-scale experiments on PRBBs with and without bacterial supply from the enricher reactor were conducted to evaluate PRBB removal performances for benzene, which was used as a model contaminant. Benzene absence periods of 10 and 25 days were tested in the presence and absence of ethanol. The PRBBs without the bioaugmentation from the enricher reactor experienced a decrease in performance from approximately 65% to 30% after benzene reappeared. The presence of ethanol accelerated the benzene removal performance recovery of PRBBs. The 25-day benzene absence period caused greater changes in the bacterial community structure, regardless of the ethanol availability.
Collapse
Affiliation(s)
- Murthy Kasi
- Department of Civil Engineering, North Dakota State University, Fargo, North Dakota 58105, USA
| | | | | | | |
Collapse
|
31
|
Dynamics of microbial community composition and function during in situ bioremediation of a uranium-contaminated aquifer. Appl Environ Microbiol 2011; 77:3860-9. [PMID: 21498771 DOI: 10.1128/aem.01981-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A pilot-scale system was established to examine the feasibility of in situ U(VI) immobilization at a highly contaminated aquifer (U.S. DOE Integrated Field Research Challenge site, Oak Ridge, TN). Ethanol was injected intermittently as an electron donor to stimulate microbial U(VI) reduction, and U(VI) concentrations fell to below the Environmental Protection Agency drinking water standard (0.03 mg liter(-1)). Microbial communities from three monitoring wells were examined during active U(VI) reduction and maintenance phases with GeoChip, a high-density, comprehensive functional gene array. The overall microbial community structure exhibited a considerable shift over the remediation phases examined. GeoChip-based analysis revealed that Fe(III)-reducing bacterial (FeRB), nitrate-reducing bacterial (NRB), and sulfate-reducing bacterial (SRB) functional populations reached their highest levels during the active U(VI) reduction phase (days 137 to 370), in which denitrification and Fe(III) and sulfate reduction occurred sequentially. A gradual decrease in these functional populations occurred when reduction reactions stabilized, suggesting that these functional populations could play an important role in both active U(VI) reduction and maintenance of the stability of reduced U(IV). These results suggest that addition of electron donors stimulated the microbial community to create biogeochemical conditions favorable to U(VI) reduction and prevent the reduced U(IV) from reoxidation and that functional FeRB, SRB, and NRB populations within this system played key roles in this process.
Collapse
|
32
|
Isolation and physiology of bacteria from contaminated subsurface sediments. Appl Environ Microbiol 2010; 76:7413-9. [PMID: 20870785 DOI: 10.1128/aem.00376-10] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The majority of environmental microorganisms cannot be grown by traditional techniques. Here we employed, and contrasted with conventional plating, an alternative approach based on cultivation of microorganisms inside diffusion chambers incubated within natural samples, followed by subculturing in petri dishes. Using this approach, we isolated microorganisms from subsurface sediments from the Field Research Center (FRC) in Oak Ridge, TN. The sediments were acidic and highly contaminated with uranium, heavy metals, nitrate, and organic pollutants. Phylogenetic analysis of 16S rRNA gene sequences revealed clear differences between diversity of isolates obtained by the diffusion chamber approach and those obtained by conventional plating. The latter approach led to isolation of members of the Alpha- and Gammaproteobacteria, Actinobacteria, and Verrucomicrobia. Isolates obtained via the diffusion chamber approach represented the Alpha-, Beta-, and Gammaproteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes. Notably, one-third of the isolates obtained by the new method were closely related to species known from previous molecular surveys conducted in the FRC area. Since the initial growth of microorganisms inside diffusion chambers occurred in the presence of the environmental stress factors, we expected the isolates we obtained to be tolerant of these factors. We investigated the physiologies of selected isolates and discovered that the majority were indeed capable of growth under low pH and/or high concentrations of heavy metals and nitrate. This indicated that in contrast to conventional isolation, the diffusion chamber-based approach leads to isolation of species that are novel, exhibit tolerance to extant environmental conditions, and match some of the species previously discovered by molecular methods.
Collapse
|
33
|
Significant association between sulfate-reducing bacteria and uranium-reducing microbial communities as revealed by a combined massively parallel sequencing-indicator species approach. Appl Environ Microbiol 2010; 76:6778-86. [PMID: 20729318 DOI: 10.1128/aem.01097-10] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Massively parallel sequencing has provided a more affordable and high-throughput method to study microbial communities, although it has mostly been used in an exploratory fashion. We combined pyrosequencing with a strict indicator species statistical analysis to test if bacteria specifically responded to ethanol injection that successfully promoted dissimilatory uranium(VI) reduction in the subsurface of a uranium contamination plume at the Oak Ridge Field Research Center in Tennessee. Remediation was achieved with a hydraulic flow control consisting of an inner loop, where ethanol was injected, and an outer loop for flow-field protection. This strategy reduced uranium concentrations in groundwater to levels below 0.126 μM and created geochemical gradients in electron donors from the inner-loop injection well toward the outer loop and downgradient flow path. Our analysis with 15 sediment samples from the entire test area found significant indicator species that showed a high degree of adaptation to the three different hydrochemical-created conditions. Castellaniella and Rhodanobacter characterized areas with low pH, heavy metals, and low bioactivity, while sulfate-, Fe(III)-, and U(VI)-reducing bacteria (Desulfovibrio, Anaeromyxobacter, and Desulfosporosinus) were indicators of areas where U(VI) reduction occurred. The abundance of these bacteria, as well as the Fe(III) and U(VI) reducer Geobacter, correlated with the hydraulic connectivity to the substrate injection site, suggesting that the selected populations were a direct response to electron donor addition by the groundwater flow path. A false-discovery-rate approach was implemented to discard false-positive results by chance, given the large amount of data compared.
Collapse
|
34
|
Microbial community changes in response to ethanol or methanol amendments for U(VI) reduction. Appl Environ Microbiol 2010; 76:5728-35. [PMID: 20601514 DOI: 10.1128/aem.00308-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial community responses to ethanol, methanol, and methanol plus humics amendments in relationship to U(VI) bioreduction were studied in laboratory microcosm experiments using sediments and ground water from a uranium-contaminated site in Oak Ridge, TN. The type of carbon source added, the duration of incubation, and the sampling site influenced the bacterial community structure upon incubation. Analysis of 16S rRNA gene clone libraries indicated that (i) bacterial communities found in ethanol- and methanol-amended samples with U(VI) reduction were similar due to the presence of Deltaproteobacteria and Betaproteobacteria (members of the families Burkholderiaceae, Comamonadaceae, Oxalobacteraceae, and Rhodocyclaceae); (ii) methanol-amended samples without U(VI) reduction exhibited the lowest diversity and the bacterial community contained 69.2 to 92.8% of the family Methylophilaceae; and (iii) the addition of humics resulted in an increase of phylogenetic diversity of Betaproteobacteria (Rodoferax, Polaromonas, Janthinobacterium, Methylophilales, and unclassified) and Firmicutes (Desulfosporosinus and Clostridium).
Collapse
|
35
|
Denitrifying bacteria isolated from terrestrial subsurface sediments exposed to mixed-waste contamination. Appl Environ Microbiol 2010; 76:3244-54. [PMID: 20305024 DOI: 10.1128/aem.03069-09] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In terrestrial subsurface environments where nitrate is a critical groundwater contaminant, few cultivated representatives are available to verify the metabolism of organisms that catalyze denitrification. In this study, five species of denitrifying bacteria from three phyla were isolated from subsurface sediments exposed to metal radionuclide and nitrate contamination as part of the U.S. Department of Energy's Oak Ridge Integrated Field Research Challenge (OR-IFRC). Isolates belonged to the genera Afipia and Hyphomicrobium (Alphaproteobacteria), Rhodanobacter (Gammaproteobacteria), Intrasporangium (Actinobacteria), and Bacillus (Firmicutes). Isolates from the phylum Proteobacteria were complete denitrifiers, whereas the Gram-positive isolates reduced nitrate to nitrous oxide. rRNA gene analyses coupled with physiological and genomic analyses suggest that bacteria from the genus Rhodanobacter are a diverse population of denitrifiers that are circumneutral to moderately acidophilic, with a high relative abundance in areas of the acidic source zone at the OR-IFRC site. Based on genome analysis, Rhodanobacter species contain two nitrite reductase genes and have not been detected in functional-gene surveys of denitrifying bacteria at the OR-IFRC site. Nitrite and nitrous oxide reductase gene sequences were recovered from the isolates and from the terrestrial subsurface by designing primer sets mined from genomic and metagenomic data and from draft genomes of two of the isolates. We demonstrate that a combination of cultivation and genomic and metagenomic data is essential to the in situ characterization of denitrifiers and that current PCR-based approaches are not suitable for deep coverage of denitrifiers. Our results indicate that the diversity of denitrifiers is significantly underestimated in the terrestrial subsurface.
Collapse
|
36
|
Geissler A, Merroun M, Geipel G, Reuther H, Selenska-Pobell S. Biogeochemical changes induced in uranium mining waste pile samples by uranyl nitrate treatments under anaerobic conditions. GEOBIOLOGY 2009; 7:282-294. [PMID: 19476503 DOI: 10.1111/j.1472-4669.2009.00199.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Response of the subsurface soil bacterial community of a uranium mining waste pile to treatments with uranyl nitrate over different periods of time was studied under anaerobic conditions. The fate of the added U(VI) without supplementation with electron donors was investigated as well. By using 16S rRNA gene retrieval, we demonstrated that incubation with uranyl nitrate for 4 weeks resulted in a strong reduction in and even disappearance of some of the most predominant bacterial groups of the original sample. Instead, a strong proliferation of denitrifying and uranium-resistant populations of Rahnella spp. from Gammaproteobacteria and of Firmicutes occurred. After longer incubations for 14 weeks with uranyl nitrate, bacterial diversity increased and populations intrinsic to the untreated samples such as Bacteroidetes and Deltaproteobacteria propagated and replaced the above-mentioned uranium-resistant groups. This indicated that U(VI) was immobilized. Mössbauer spectroscopic analysis revealed an increased Fe(III) reduction by increasing the incubation time from four to 14 weeks. This result signified that Fe(III) was used as an electron acceptor by the bacterial community established at the later stages of the treatment. X-ray absorption spectroscopic analysis demonstrated that no detectable amounts of U(VI) were reduced to U(IV) in the time frames of the performed experiments. The reason for this observation is possibly due to the low level of electron donors in the studied oligotrophic environment. Time-resolved laser-induced fluorescence spectroscopic analysis demonstrated that most of the added U(VI) was bound by organic or inorganic phosphate phases both of biotic origin.
Collapse
Affiliation(s)
- A Geissler
- Institute of Radiochemistry, Forschungszentrum Dresden-Rossendorf, Dresden, Germany
| | | | | | | | | |
Collapse
|
37
|
Waldron PJ, Wu L, Van Nostrand JD, Schadt CW, He Z, Watson DB, Jardine PM, Palumbo AV, Hazen TC, Zhou J. Functional gene array-based analysis of microbial community structure in groundwaters with a gradient of contaminant levels. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:3529-3534. [PMID: 19544850 DOI: 10.1021/es803423p] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To understand how contaminants affect microbial community diversity, heterogeneity, and functional structure, six groundwater monitoring wells from the Field Research Center of the U.S. Department of Energy Environmental Remediation Science Program (ERSP; Oak Ridge, TN), with a wide range of pH, titrate, and heavy metal contamination were investigated. DNA from the groundwater community was analyzed with a functional gene array containing 2006 probes to detect genes involved in metal resistance, sulfate reduction, organic contaminant degradation, and carbon and nitrogen cycling. Microbial diversity decreased in relation to the contamination levels of the wells. Highly contaminated wells had lower gene diversity but greater signal intensity than the pristine well. The microbial composition was heterogeneous, with 17-70% overlap between differentwells. Metal-resistant and metal-reducing microorganisms were detected in both contaminated and pristine wells, suggesting the potential for successful bioremediation of metal-contaminated groundwaters. In addition, results of Mantel tests and canonical correspondence analysis indicate that nitrate, sulfate, pH, uranium, and technetium have a significant (p < 0.05) effect on microbial community structure. This study provides an overall picture of microbial community structure in contaminated environments with functional gene arrays by showing that diversity and heterogeneity can vary greatly in relation to contamination.
Collapse
Affiliation(s)
- Patricia J Waldron
- Institute for Environmental Genomics, Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma 73019, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Michalsen MM, Peacock AD, Smithgal AN, White DC, Spain AM, Sanchez-Rosario Y, Krumholz LR, Kelly SD, Kemner KM, McKinley J, Heald SM, Bogle MA, Watson DB, Istok JD. Treatment of nitric acid-, U(VI)-, and Tc(VII)-contaminated groundwater in intermediate-scale physical models of an in situ biobarrier. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:1952-1961. [PMID: 19368198 DOI: 10.1021/es8012485] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Metal and hydrogen ion acidity and extreme nitrate concentrations at Department of Energy legacywaste sites pose challenges for successful in situ U and Tc bioimmobilization. In this study, we investigated a potential in situ biobarrier configuration designed to neutralize pH and remove nitrate and radionuclides from nitric acid-, U-, and Tc-contaminated groundwater for over 21 months. Ethanol additions to groundwater flowing through native sediment and crushed limestone effectively increased pH (from 4.7 to 6.9), promoted removal of 116 mM nitrate, increased sediment biomass, and immobilized 94% of total U. Increased groundwater pH and significant U removal was also observed in a control column that received no added ethanol. Sequential extraction and XANES analyses showed U in this sediment to be solid-associated U(VI), and EXAFS analysis results were consistent with uranyl orthophosphate (UO2)3(PO4)2.4H2O(s), which may control U solubility in this system. Ratios of respiratory ubiquinones to menaquinones and copies of dissimilatory nitrite reductase genes, nirS and nirK, were at least 1 order of magnitude greater in the ethanol-stimulated system compared to the control, indicating that ethanol addition promoted growth of a largely denitrifying microbial community. Sediment 16S rRNA gene clone libraries showed that Betaproteobacteria were dominant (89%) near the source of influent acidic groundwater, whereas members of Gamma- and Alphaproteobacteria and Bacteroidetes increased along the flow path as pH increased and nitrate concentrations decreased, indicating spatial shifts in community composition as a function of pH and nitrate concentrations. Results of this study support the utility of biobarriers for treating acidic radionuclide- and nitrate-contaminated groundwater.
Collapse
Affiliation(s)
- Mandy M Michalsen
- Environmental Engineering & Technology Section, U.S. Army Corps of Engineers, Seattle, Washington 98134, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Functional diversity and electron donor dependence of microbial populations capable of U(VI) reduction in radionuclide-contaminated subsurface sediments. Appl Environ Microbiol 2008; 74:3159-70. [PMID: 18378664 DOI: 10.1128/aem.02881-07] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to elucidate the potential mechanisms of U(VI) reduction for the optimization of bioremediation strategies, the structure-function relationships of microbial communities were investigated in microcosms of subsurface materials cocontaminated with radionuclides and nitrate. A polyphasic approach was used to assess the functional diversity of microbial populations likely to catalyze electron flow under conditions proposed for in situ uranium bioremediation. The addition of ethanol and glucose as supplemental electron donors stimulated microbial nitrate and Fe(III) reduction as the predominant terminal electron-accepting processes (TEAPs). U(VI), Fe(III), and sulfate reduction overlapped in the glucose treatment, whereas U(VI) reduction was concurrent with sulfate reduction but preceded Fe(III) reduction in the ethanol treatments. Phyllosilicate clays were shown to be the major source of Fe(III) for microbial respiration by using variable-temperature Mössbauer spectroscopy. Nitrate- and Fe(III)-reducing bacteria (FeRB) were abundant throughout the shifts in TEAPs observed in biostimulated microcosms and were affiliated with the genera Geobacter, Tolumonas, Clostridium, Arthrobacter, Dechloromonas, and Pseudomonas. Up to two orders of magnitude higher counts of FeRB and enhanced U(VI) removal were observed in ethanol-amended treatments compared to the results in glucose-amended treatments. Quantification of citrate synthase (gltA) levels demonstrated a stimulation of Geobacteraceae activity during metal reduction in carbon-amended microcosms, with the highest expression observed in the glucose treatment. Phylogenetic analysis indicated that the active FeRB share high sequence identity with Geobacteraceae members cultivated from contaminated subsurface environments. Our results show that the functional diversity of populations capable of U(VI) reduction is dependent upon the choice of electron donor.
Collapse
|
40
|
Li X, Krumholz LR. Influence of nitrate on microbial reduction of pertechnetate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:1910-1915. [PMID: 18409612 DOI: 10.1021/es071164j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Factors influencing microbial reduction of Tc(VII) in nitrate and radionuclide contaminated aquifer sediments were investigated using sediment microcosms containing organic electron donor, nitrate and Tc(VII). Microcosms underwent nitrate reduction followed by Tc(VII) reduction. During this transition, the microbial community changed from being dominated by bacteria affiliated with the genus Paenibacillus during the nitrate reduction phase, to those affiliated with genera Agrobacterium, Geothrix, and Desulfosporosinus during the Tc(VII) reduction phase. To investigate the mechanism of Tc(VII) reduction, the nitrate reducing strains Agrobacterium FRC-A2, Azoarcus FRC-B1, and a fermentative Clostridium FRC-C11 were isolated from sediment microcosms undergoing Tc(VII) reduction. Nitrate reducing bacteria reduced Tc(VII) effectively only in the presence of Fe(lll) and after nitrate was reduced, implying a major role for Fe(ll) as an electron shuttle in Tc(VII) reduction. It is likely that accumulation of nitrite blocks Fe(ll) production and hence Tc(VII) reduction during the active nitrate reduction phase. The pure culture of Clostridium FRC-C11 is able to reduce Tc(VII) enzymatically with H2 or glucose as electron donor and deposits insoluble Tc compounds within the cells in a manner that is not significantly influenced by the presence of nitrate. These results provided a possible mechanism for Tc(VII) reduction independent of Fe(III) and not influenced by nitrate.
Collapse
Affiliation(s)
- Xiangzhen Li
- Department of Botany and Microbiology and Institute for Energy and the Environment, The University of Oklahoma, Norman, Oklahoma 73019, USA
| | | |
Collapse
|
41
|
Michalsen MM, Peacock AD, Spain AM, Smithgal AN, White DC, Sanchez-Rosario Y, Krumholz LR, Istok JD. Changes in microbial community composition and geochemistry during uranium and technetium bioimmobilization. Appl Environ Microbiol 2007; 73:5885-96. [PMID: 17630297 PMCID: PMC2074911 DOI: 10.1128/aem.00309-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In a previous column study, we investigated the long-term impact of ethanol additions on U and Tc mobility in groundwater (M. M. Michalsen et al., Environ. Sci. Technol. 40:7048-7053, 2006). Ethanol additions stimulated iron- and sulfate-reducing conditions and significantly enhanced U and Tc removal from groundwater compared to an identical column that received no ethanol additions (control). Here we present the results of a combined signature lipid and nucleic acid-based microbial community characterization in sediments collected from along the ethanol-stimulated and control column flow paths. Phospholipid fatty acid analysis showed both an increase in microbial biomass (approximately 2 orders of magnitude) and decreased ratios of cyclopropane to monoenoic precursor fatty acids in the stimulated column compared to the control, which is consistent with electron donor limitation in the control. Spatial shifts in microbial community composition were identified by PCR-denaturing gradient gel electrophoresis analysis as well as by quantitative PCR, which showed that Geobacteraceae increased significantly near the stimulated-column outlet, where soluble electron acceptors were largely depleted. Clone libraries of 16S rRNA genes from selected flow path locations in the stimulated column showed that Proteobacteria were dominant near the inlet (46 to 52%), while members of candidate division OP11 were dominant near the outlet (67%). Redundancy analysis revealed a highly significant difference (P = 0.0003) between microbial community compositions within stimulated and control sediments, with geochemical variables explaining 68% of the variance in community composition on the first two canonical axes.
Collapse
Affiliation(s)
- Mandy M Michalsen
- Department of Civil Engineering, Oregon State University, Corvallis, OR 97331, USA.
| | | | | | | | | | | | | | | |
Collapse
|