1
|
Bruno Baron C, Mon ML, Marrero Díaz de Villegas R, Cattaneo A, Di Donato P, Poli A, Negri ME, Alegre M, Soria MA, Rojo MC, Combina M, Finore I, Talia PM. Characterization of two GH10 enzymes with ability to hydrolyze pretreated Sorghum bicolor bagasse. Appl Microbiol Biotechnol 2025; 109:104. [PMID: 40295346 PMCID: PMC12037437 DOI: 10.1007/s00253-025-13484-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/30/2025]
Abstract
In this study, we characterized two novel enzymes of the glycoside hydrolase family 10 (GH10), Xyl10 C and Xyl10E, identified in the termite gut microbiome. The activities of both enzymes were assayed using beechwood xylan, barley β-glucan, and pretreated Sorghum bicolor bagasse (SBB) as substrates. Both enzymes, assessed individually and in combination, showed activity on beechwood xylan and pretreated SBB, whereas Xyl10E also showed activity on barley β-glucan. The composition of pretreated SBB mainly consisted of xylose and arabinose content. Purified Xyl10 C showed optimum xylanase activity in the pH range 7.0-8.0 and at a temperature of 50-60 °C, while Xyl10E was active at a wider pH range (5.0-10.0) and at 50 °C. The residual activities of Xyl10 C and Xyl10E after 8 h of incubation at 40 °C were 85% and 70%, respectively. The enzymatic activity of Xyl10 C increased to 115% in the presence of 5 M NaCl, was only inhibited in the presence of 0.5% sodium dodecyl sulfate (SDS), and decreased with β-mercaptoethanol. The xylanase and glucanase activities of Xyl10E were inhibited only in the presence of MnSO4, NaCl, and SDS. The main hydrolysis enzymatic product of Xyl10 C and Xyl10E on pretreated SBB was xylobiose. In addition, the xylo-oligosaccharides produced by xylanase Xyl10E on pretreated SBB demonstrated promising antioxidant activity. Thus, the hydrolysis products using Xyl10E on pretreated SBB indicate potential for antioxidant activity and other valuable industrial applications. KEY POINTS: • Two novel GH10 xylanases from the termite gut microbiome were characterized. • Xylo-oligosaccharides obtained from sorghum bagasse exhibited antioxidant potential. • Both enzymes and their hydrolysis product have potential to add value to agro-waste.
Collapse
Grants
- MISSIONE 4 COMPONENTE 2, INVESTIMENTO 1.3-D.D. 1551.11-10-2022, PE00000004 European Union Next-Generation EU (PIANO NAZIONALE DI RIPRESA E RESILIENZA (PNRR)
- MISSIONE 4 COMPONENTE 2, INVESTIMENTO 1.3-D.D. 1551.11-10-2022, PE00000004 European Union Next-Generation EU (PIANO NAZIONALE DI RIPRESA E RESILIENZA (PNRR)
- MISSIONE 4 COMPONENTE 2, INVESTIMENTO 1.3-D.D. 1551.11-10-2022, PE00000004 European Union Next-Generation EU (PIANO NAZIONALE DI RIPRESA E RESILIENZA (PNRR)
- (PI 085, 089, 122 and 159) Instituto Nacional de Tecnología Agropecuaria (INTA)
- (2018-#4149, 2019-#3156, 2020-#3570) Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) Proyectos de Investigación Científica y Tecnológica (PICT)
- #014 Fundación Williams
- # PIP-2021-2561 CONICET
- Consiglio Nazionale Delle Ricerche (CNR)
Collapse
Affiliation(s)
- Camila Bruno Baron
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), UEDD INTA-CONICET, Hurlingham, Buenos Aires, Argentina
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Laura Mon
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), UEDD INTA-CONICET, Hurlingham, Buenos Aires, Argentina
| | | | - Andrea Cattaneo
- Institute of Biomolecular Chemistry (ICB), Consiglio Nazionale Delle Ricerche (CNR), Pozzuoli, Italy
| | - Paola Di Donato
- Institute of Biomolecular Chemistry (ICB), Consiglio Nazionale Delle Ricerche (CNR), Pozzuoli, Italy
- Department of Science and Technology, University of Naples "Parthenope", Naples, Italy
| | - Annarita Poli
- Institute of Biomolecular Chemistry (ICB), Consiglio Nazionale Delle Ricerche (CNR), Pozzuoli, Italy
| | - Maria Emilia Negri
- Estación Experimental Agropecuaria Pergamino, Instituto Nacional de Tecnología Agropecuaria (INTA), Pergamino, Buenos Aires, Argentina
| | - Mariana Alegre
- Estación Experimental Agropecuaria Pergamino, Instituto Nacional de Tecnología Agropecuaria (INTA), Pergamino, Buenos Aires, Argentina
- Escuela de Ciencias Agrarias y Ambientales-Universidad Nacional del Noroeste de La Provincia de Buenos Aires, Pergamino, Buenos Aires, Argentina
| | - Marcelo A Soria
- Cátedra de Microbiología Agrícola, Facultad de Agronomía, Universidad de Buenos Aires, INBA UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Cecilia Rojo
- Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria (INTA), Luján de Cuyo, Mendoza, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Mariana Combina
- Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria (INTA), Luján de Cuyo, Mendoza, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Ilaria Finore
- Institute of Biomolecular Chemistry (ICB), Consiglio Nazionale Delle Ricerche (CNR), Pozzuoli, Italy.
| | - Paola M Talia
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), UEDD INTA-CONICET, Hurlingham, Buenos Aires, Argentina.
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
2
|
Liu M, Huang S, Yan P, Yin H, Yu J, Wu X, Wang L. Effective Degradation of Brewer Spent Grains by a Novel Thermostable GH10 Xylanase. Appl Biochem Biotechnol 2024; 196:4837-4848. [PMID: 37979082 DOI: 10.1007/s12010-023-04779-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Brewer spent grains (BSGs) are one of the most abundant by-products in brewing industry. Due to microbiological instability and high perishability, the efficient degradation of BSGs is of environmental and economic importance. Streptomyces sp. F-3 could grow in the medium with BSGs as the only carbon and nitrogen source. Proteome mass spectrometry revealed that a GH10 xylanase SsXyn10A could be secreted in large quantities. SsXyn10A showed optimum activity at pH 7.0 and 60 °C. SsXyn10A exhibited excellent thermostability which retained approximately 100% and 58% after incubation for 5 h at 50 and 60 °C. SsXyn10A displayed high activity to beechwood xylan (BX) and wheat arabinoxylan (WAX). SsXyn10A is active against xylotetracose (X4), xylopentose (X5), and xylohexose (X6) to produce main products xylobiose (X2) and xylotriose (X3). Ssxyn10A showed synergistic effects with commercial cellulase on BSGs hydrolyzing into soluble sugar. In addition, the steam explosion pretreatment of BSGs as the substrate produced twice as much reducing sugar as the degradation of the original substrate. This study will contribute to efficient utilization of BSGs and provide a thermostable GH10 xylanase which has potential application in biomass hydrolysis.
Collapse
Affiliation(s)
- Mengyu Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 72 Binhai Road, Jimo District, Qingdao, Shandong, 266237, China
| | - Shuxia Huang
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd, 56 Dengzhou Road, Shibei District, Qingdao, Shandong, 266000, China
| | - Peng Yan
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd, 56 Dengzhou Road, Shibei District, Qingdao, Shandong, 266000, China
| | - Hua Yin
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd, 56 Dengzhou Road, Shibei District, Qingdao, Shandong, 266000, China
| | - Junhong Yu
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd, 56 Dengzhou Road, Shibei District, Qingdao, Shandong, 266000, China.
| | - Xiuyun Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 72 Binhai Road, Jimo District, Qingdao, Shandong, 266237, China.
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 72 Binhai Road, Jimo District, Qingdao, Shandong, 266237, China
| |
Collapse
|
3
|
Liu X, Gao F, Wang Y, Zhang J, Bai Y, Zhang W, Luo H, Yao B, Wang Y, Tu T. Characterization of a novel thermostable α-l-arabinofuranosidase for improved synergistic effect with xylanase on lignocellulosic biomass hydrolysis without prior pretreatment. BIORESOURCE TECHNOLOGY 2024; 394:130177. [PMID: 38072076 DOI: 10.1016/j.biortech.2023.130177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 02/04/2024]
Abstract
Utilizing thermostable enzymes in biomass conversion processes presents a promising approach to bypass pretreatment, garnering significant attention from the biorefinery industry. A novel discovered α-l-arabinofuranosidase, Abf4980, exhibits exceptional thermostability by maintaining full activity after 24 h of incubation at 70 °C. It effectively acts on polyarabinosides, cleaving α-1,2- and α-1,3-linked arabinofuranose side chains from water-soluble wheat arabinoxylan while releasing xylose. When synergistically combined with the thermostable bifunctional xylanase/β-glucanase CbXyn10C from Caldicellulosiruptor bescii at an enzyme-activity ratio of 6:1, Abf4980 achieves the highest degradation efficiency for wheat arabinoxylan. Furthermore, Abf4980 and CbXyn10C demonstrated remarkable efficacy in hydrolyzing unmodified wheat bran and corn cob to generate arabinose and xylooligosaccharides. This discovery holds promising opportunities for improving the efficiency of lignocellulosic biomass conversion into fermentable sugars.
Collapse
Affiliation(s)
- Xiaoqing Liu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fang Gao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yaru Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jie Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yingguo Bai
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuan Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
4
|
Shao H. Cloning, expression, and molecular modification of glycoside hydrolase family 5 genes from Thermoascus aurantiacus. PLoS One 2023; 18:e0285680. [PMID: 37713448 PMCID: PMC10503741 DOI: 10.1371/journal.pone.0285680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 04/27/2023] [Indexed: 09/17/2023] Open
Abstract
In this paper, a novel bifunctional cellulase gene cel1 was cloned from Thermoascus aurantiacus by PCR and heterologously expressed in Pichia pastoris GS115. Bioinformatics and other related tools were used to compare the nucleotide homology of target genes, and analyze the signal peptide, transmembrane domain, hydrophilicity, secondary and tertiary structure of proteins. It was concluded that cel1 has similar endoglucanase nucleotide sequences and falls under the GH5 family. It was also found that cel1 has nucleotide sequences similar to glucosidase, which can infer that cel1 may have the properties of glucosidase, indicating that cel1 is multifunctional. At the same time, a part of the nucleotide sequence of the gene was removed to obtain a new gene cel2, and after highly efficient heterologous expression, its specific activity was found to be 2.1 times higher. Its enhancement is related to the exposure of the protein's hollow three-dimensional structure. This paper provides good material for exploring the relationship between the structure of bifunctional enzymes and their functions, which lays a solid foundation for further research and applications, and provides useful insight for gene mining of other novel enzymes.
Collapse
Affiliation(s)
- Hongwei Shao
- School of Life Sciences, Qilu Normal University, Ji’nan, China
| |
Collapse
|
5
|
Elcheninov AG, Ugolkov YA, Elizarov IM, Klyukina AA, Kublanov IV, Sorokin DY. Cellulose metabolism in halo(natrono)archaea: a comparative genomics study. Front Microbiol 2023; 14:1112247. [PMID: 37323904 PMCID: PMC10267330 DOI: 10.3389/fmicb.2023.1112247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Extremely halophilic archaea are one of the principal microbial community components in hypersaline environments. The majority of cultivated haloarchaea are aerobic heterotrophs using peptides or simple sugars as carbon and energy sources. At the same time, a number of novel metabolic capacities of these extremophiles were discovered recently among which is a capability of growing on insoluble polysaccharides such as cellulose and chitin. Still, polysaccharidolytic strains are in minority among cultivated haloarchaea and their capacities of hydrolyzing recalcitrant polysaccharides are hardly investigated. This includes the mechanisms and enzymes involved in cellulose degradation, which are well studied for bacterial species, while almost unexplored in archaea and haloarchaea in particular. To fill this gap, a comparative genomic analysis of 155 cultivated representatives of halo(natrono)archaea, including seven cellulotrophic strains belonging to the genera Natronobiforma, Natronolimnobius, Natrarchaeobius, Halosimplex, Halomicrobium and Halococcoides was performed. The analysis revealed a number of cellulases, encoded in the genomes of cellulotrophic strains but also in several haloarchaea, for which the capacity to grow on cellulose was not shown. Surprisingly, the cellulases genes, especially of GH5, GH9 and GH12 families, were significantly overrepresented in the cellulotrophic haloarchaea genomes in comparison with other cellulotrophic archaea and even cellulotrophic bacteria. Besides cellulases, the genes for GH10 and GH51 families were also abundant in the genomes of cellulotrophic haloarchaea. These results allowed to propose the genomic patterns, determining the capability of haloarchaea to grow on cellulose. The patterns helped to predict cellulotrophic capacity for several halo(natrono)archaea, and for three of them it was experimentally confirmed. Further genomic search revealed that glucose and cellooligosaccharides import occurred by means of porters and ABC (ATP-binding cassette) transporters. Intracellular glucose oxidation occurred through glycolysis or the semi-phosphorylative Entner-Dudoroff pathway which occurrence was strain-specific. Comparative analysis of CAZymes toolbox and available cultivation-based information allowed proposing two possible strategies used by haloarchaea capable of growing on cellulose: so-called specialists are more effective in degradation of cellulose while generalists are more flexible in nutrient spectra. Besides CAZymes profiles the groups differed in genome sizes, as well as in variability of mechanisms of import and central metabolism of sugars.
Collapse
Affiliation(s)
- Alexander G. Elcheninov
- Winogradsky Institute of Microbiology, Federal Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Yaroslav A. Ugolkov
- Winogradsky Institute of Microbiology, Federal Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Ivan M. Elizarov
- Winogradsky Institute of Microbiology, Federal Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Alexandra A. Klyukina
- Winogradsky Institute of Microbiology, Federal Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Ilya V. Kublanov
- Winogradsky Institute of Microbiology, Federal Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Dimitry Y. Sorokin
- Winogradsky Institute of Microbiology, Federal Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
6
|
Mendonça M, Barroca M, Collins T. Endo-1,4-β-xylanase-containing glycoside hydrolase families: Characteristics, singularities and similarities. Biotechnol Adv 2023; 65:108148. [PMID: 37030552 DOI: 10.1016/j.biotechadv.2023.108148] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023]
Abstract
Endo-1,4-β-xylanases (EC 3.2.1.8) are O-glycoside hydrolases that cleave the internal β-1,4-D-xylosidic linkages of the complex plant polysaccharide xylan. They are produced by a vast array of organisms where they play critical roles in xylan saccharification and plant cell wall hydrolysis. They are also important industrial biocatalysts with widespread application. A large and ever growing number of xylanases with wildly different properties and functionalites are known and a better understanding of these would enable a more effective use in various applications. The Carbohydrate-Active enZYmes database (CAZy), which classifies evolutionarily related proteins into a glycoside hydrolase family-subfamily organisational scheme has proven powerful in understanding these enzymes. Nevertheless, ambiguity currently exists as to the number of glycoside hydrolase families and subfamilies harbouring catalytic domains with true endoxylanase activity and as to the specific characteristics of each of these families/subfamilies. This review seeks to clarify this, identifying 9 glycoside hydrolase families containing enzymes with endo-1,4-β-xylanase activity and discussing their properties, similarities, differences and biotechnological perspectives. In particular, substrate specificities and hydrolysis patterns and the structural determinants of these are detailed, with taxonomic aspects of source organisms being also presented. Shortcomings in current knowledge and research areas that require further clarification are highlighted and suggestions for future directions provided. This review seeks to motivate further research on these enzymes and especially of the lesser known endo-1,4-β-xylanase containing families. A better understanding of these enzymes will serve as a foundation for the knowledge-based development of process-fitted endo-1,4-β-xylanases and will accelerate their development for use with even the most recalcitrant of substrates in the biobased industries of the future.
Collapse
|
7
|
Characterization of a novel bifunctional enzyme from buffalo rumen metagenome and its effect on in vitro ruminal fermentation and microbial community composition. ANIMAL NUTRITION 2023; 13:137-149. [PMID: 37123618 PMCID: PMC10130076 DOI: 10.1016/j.aninu.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 12/26/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
To efficiently use lignocellulosic materials in ruminants, it is crucial to explore effective enzymes, especially bifunctional enzymes. In this study, a novel stable bifunctional cellulase-xylanase protein from buffalo rumen metagenome was expressed and characterized, CelXyn2. The enzyme displayed optimal activity at pH 6.0 and 45 °C. The residual endoglucanase and xylanase activities were 90.6% and 86.4% after a 60-min pre-incubation at 55 °C. Hydrolysis of rice straw, wheat straw, sheepgrass and sugar beet pulp by CelXyn2 showed its ability to degrade both cellulose and hemicellulose polymers. Treatment with CelXyn2 improved the hydrolysis of agricultural residues with an evident increase in production of total gas, lactate and volatile fatty acids. The results of 16S rRNA and real-time PCR showed that the effect on in vitro ruminal microbial community depended on fermentation substrates. This study demonstrated that CelXyn2 could strengthen lignocellulose hydrolysis and in vitro ruminal fermentation. These characteristics of CelXyn2 distinguish it as a promising candidate for agricultural application.
Collapse
|
8
|
Crosby JR, Laemthong T, Bing RG, Zhang K, Tanwee TNN, Lipscomb GL, Rodionov DA, Zhang Y, Adams MWW, Kelly RM. Biochemical and Regulatory Analyses of Xylanolytic Regulons in Caldicellulosiruptor bescii Reveal Genus-Wide Features of Hemicellulose Utilization. Appl Environ Microbiol 2022; 88:e0130222. [PMID: 36218355 PMCID: PMC9642015 DOI: 10.1128/aem.01302-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/19/2022] [Indexed: 11/20/2022] Open
Abstract
Caldicellulosiruptor species scavenge carbohydrates from runoff containing plant biomass that enters hot springs and from grasses that grow in more moderate parts of thermal features. While only a few Caldicellulosiruptor species can degrade cellulose, all known species are hemicellulolytic. The most well-characterized species, Caldicellulosiruptor bescii, decentralizes its hemicellulase inventory across five different genomic loci and two isolated genes. Transcriptomic analyses, comparative genomics, and enzymatic characterization were utilized to assign functional roles and determine the relative importance of its six putative endoxylanases (five glycoside hydrolase family 10 [GH10] enzymes and one GH11 enzyme) and two putative exoxylanases (one GH39 and one GH3) in C. bescii. Two genus-wide conserved xylanases, C. bescii XynA (GH10) and C. bescii Xyl3A (GH3), had the highest levels of sugar release on oat spelt xylan, were in the top 10% of all genes transcribed by C. bescii, and were highly induced on xylan compared to cellulose. This indicates that a minimal set of enzymes are used to drive xylan degradation in the genus Caldicellulosiruptor, complemented by hemicellulolytic inventories that are tuned to specific forms of hemicellulose in available plant biomasses. To this point, synergism studies revealed that the pairing of specific GH family proteins (GH3, -11, and -39) with C. bescii GH10 proteins released more sugar in vitro than mixtures containing five different GH10 proteins. Overall, this work demonstrates the essential requirements for Caldicellulosiruptor to degrade various forms of xylan and the differences in species genomic inventories that are tuned for survival in unique biotopes with variable lignocellulosic substrates. IMPORTANCE Microbial deconstruction of lignocellulose for the production of biofuels and chemicals requires the hydrolysis of heterogeneous hemicelluloses to access the microcrystalline cellulose portion. This work extends previous in vivo and in vitro efforts to characterize hemicellulose utilization by integrating genomic reconstruction, transcriptomic data, operon structures, and biochemical characteristics of key enzymes to understand the deployment and functionality of hemicellulases by the extreme thermophile Caldicellulosiruptor bescii. Furthermore, comparative genomics of the genus revealed both conserved and divergent mechanisms for hemicellulose utilization across the 15 sequenced species, thereby paving the way to connecting functional enzyme characterization with metabolic engineering efforts to enhance lignocellulose conversion.
Collapse
Affiliation(s)
- James R. Crosby
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Tunyaboon Laemthong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Ryan G. Bing
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Ke Zhang
- Department of Cell and Molecular Biology, College of the Environmental and Life Sciences, University of Rhode Island, Kinston, Rhode Island, USA
| | - Tania N. N. Tanwee
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Gina L. Lipscomb
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Dmitry A. Rodionov
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Ying Zhang
- Department of Cell and Molecular Biology, College of the Environmental and Life Sciences, University of Rhode Island, Kinston, Rhode Island, USA
| | - Michael W. W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
9
|
Zhang R, Lin D, Zhang L, Zhan R, Wang S, Wang K. Molecular and Biochemical Analyses of a Novel Trifunctional Endoxylanase/Endoglucanase/Feruloyl Esterase from the Human Colonic Bacterium Bacteroides intestinalis DSM 17393. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4044-4056. [PMID: 35316064 DOI: 10.1021/acs.jafc.2c01019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A novel enzyme Bi76 comprising GH10, E_set_Esterase_N, and CE1 modules was identified, with the highest homology (62.9%) with a bifunctional endoxylanase/feruloyl esterase among characterized enzymes. Interestingly, Bi76 hydrolyzed glucan substrates besides xylans and feruloylated substrates, suggesting that it is the first characterized trifunctional endoxylanase/endoglucanase/feruloyl esterase. Analyses of truncation variants revealed that GH10 and E_set_Esterase_N + CE1 modules encoded endoxylanase/endoglucanase and feruloyl esterase activities, respectively. Synergism analyses indicated that endoxylanase, α-l-arabinofuranosidase, and feruloyl esterase acted cooperatively in releasing ferulic acid (FA) and xylooligosaccharides from feruloylated arabinoxylan. The interdomain synergism of Bi76 overmatched the intermolecular synergism of TM1 and TM2. Importantly, Bi76 exhibited good capacity in producing FA, releasing 5.20, 4.38, 2.12, 1.35, 0.46, and 0.19 mg/g from corn bran, corn cob, wheat bran, corn stover, rice husk, and rice bran, respectively. This study expands the trifunctional endoxylanase/endoglucanase/feruloyl esterase repertoire and demonstrates the great potential of Bi76 in agricultural residue utilization.
Collapse
Affiliation(s)
- Ruiqin Zhang
- Research Center of Chinese Herbal Resource Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education of the People's Republic of China, Guangzhou, Guangdong 510006, People's Republic of China
| | - Dongxia Lin
- Research Center of Chinese Herbal Resource Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education of the People's Republic of China, Guangzhou, Guangdong 510006, People's Republic of China
| | - Liang Zhang
- Research Center of Chinese Herbal Resource Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education of the People's Republic of China, Guangzhou, Guangdong 510006, People's Republic of China
| | - Ruoting Zhan
- Research Center of Chinese Herbal Resource Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education of the People's Republic of China, Guangzhou, Guangdong 510006, People's Republic of China
| | - Sidi Wang
- College of Fundamental Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, People's Republic of China
| | - Kui Wang
- Research Center of Chinese Herbal Resource Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education of the People's Republic of China, Guangzhou, Guangdong 510006, People's Republic of China
| |
Collapse
|
10
|
The Emergence of New Catalytic Abilities in an Endoxylanase from Family GH10 by Removing an Intrinsically Disordered Region. Int J Mol Sci 2022; 23:ijms23042315. [PMID: 35216436 PMCID: PMC8874783 DOI: 10.3390/ijms23042315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/05/2023] Open
Abstract
Endoxylanases belonging to family 10 of the glycoside hydrolases (GH10) are versatile in the use of different substrates. Thus, an understanding of the molecular mechanisms underlying substrate specificities could be very useful in the engineering of GH10 endoxylanases for biotechnological purposes. Herein, we analyzed XynA, an endoxylanase that contains a (β/α)8-barrel domain and an intrinsically disordered region (IDR) of 29 amino acids at its amino end. Enzyme activity assays revealed that the elimination of the IDR resulted in a mutant enzyme (XynAΔ29) in which two new activities emerged: the ability to release xylose from xylan, and the ability to hydrolyze p-nitrophenyl-β-d-xylopyranoside (pNPXyl), a substrate that wild-type enzyme cannot hydrolyze. Circular dichroism and tryptophan fluorescence quenching by acrylamide showed changes in secondary structure and increased flexibility of XynAΔ29. Molecular dynamics simulations revealed that the emergence of the pNPXyl-hydrolyzing activity correlated with a dynamic behavior not previously observed in GH10 endoxylanases: a hinge-bending motion of two symmetric regions within the (β/α)8-barrel domain, whose hinge point is the active cleft. The hinge-bending motion is more intense in XynAΔ29 than in XynA and promotes the formation of a wider active site that allows the accommodation and hydrolysis of pNPXyl. Our results open new avenues for the study of the relationship between IDRs, dynamics and activity of endoxylanases, and other enzymes containing (β/α)8-barrel domain.
Collapse
|
11
|
Scheffer G, Rachel NM, Ng KK, Sen A, Gieg LM. Preparation and identification of carboxymethyl cellulose-degrading enzyme candidates for oilfield applications. J Biotechnol 2022; 347:18-25. [DOI: 10.1016/j.jbiotec.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 11/28/2022]
|
12
|
Gufe C, Ngenyoung A, Rattanarojpong T, Khunrae P. Investigation into the effects of CbXyn10C and Xyn11A on xylooligosaccharide profiles produced from sugarcane bagasse and rice straw and their impact on probiotic growth. BIORESOURCE TECHNOLOGY 2022; 344:126319. [PMID: 34775054 DOI: 10.1016/j.biortech.2021.126319] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
This comparative study investigated the effects of CbXyn10C and Xyn11A on xylooligosaccharide profiles produced from sugarcane bagasse (SCB) and rice straw (RS) and their impact on probiotic growth. Generally, CbXyn10C produced more xylose and a higher total phenolic content than Xyn11A. Interestingly, XOS obtained from SCB with CbXyn10C contained significantly more gallic acid than that produced by Xn11A. All selected probiotics thrived in RS-derived XOS, regardless of the enzyme used. However, probiotics grew differently on SCB-derived XOS depending on the enzyme used. All probiotics thrived in Xyn11A-derived XOS from SCB. Only Lactobacillus plantarum thrived on CbXyn10C-derived XOS, while the other two were inhibited. Gallic acid in CbXyn10C-derived XOS from SCB has been linked to probiotic retardation, and gallic acid-enriched broth has been found to inhibit Bifidobacterium longum and Bacillus subtilis, but not L. plantarum. Consequently, the selection of enzymes and plant biomass is crucial for XOS properties and prebiotic effects.
Collapse
Affiliation(s)
- Claudious Gufe
- Department of Microbiology, Science Laboratory Building, Faculty of Science, King Mongkut's University of Technology Thonburi, Thailand
| | - Apichet Ngenyoung
- Department of Microbiology, Science Laboratory Building, Faculty of Science, King Mongkut's University of Technology Thonburi, Thailand
| | - Triwit Rattanarojpong
- Department of Microbiology, Science Laboratory Building, Faculty of Science, King Mongkut's University of Technology Thonburi, Thailand
| | - Pongsak Khunrae
- Department of Microbiology, Science Laboratory Building, Faculty of Science, King Mongkut's University of Technology Thonburi, Thailand.
| |
Collapse
|
13
|
You S, Zhang YX, Shi F, Zhang WX, Li J, Zhang S, Chen ZL, Zhao WG, Wang J. Lowering energy consumption for fermentable sugar production from Ramulus mori: Engineered xylanase synergy and improved pretreatment strategy. BIORESOURCE TECHNOLOGY 2022; 344:126368. [PMID: 34808317 DOI: 10.1016/j.biortech.2021.126368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Biorefinery of Ramulus mori with lower energy consumption through improved enzyme and pretreatment strategies was reported. Directed evolution and saturation mutagenesis were used for the modification of xylanase, the yield of fermentable sugars and the degree of synergy (DS) were determined for different pretreatment (seawater/non-seawater) and enzyme treatment groups (xylanase/cellulase/co-treatment). The dominant mutant I133A/Q143Y of Bispora sp. xylanase XYL10C_ΔN was obtained with improved specific activity (1860 U/mg), catalytic efficiency (1150 mL/s∙mg) at 40 °C, and thermostability (T50 increased by 7 °C). With the pretreatment of seawater immersion, the highest yield of fermentable sugars for Ramulus mori at 40 °C reached 199 μmol/g when hydrolyzed with cellulase and I133A/Q143Y, with the highest DS of 2.6; this was 4.5-fold that of the group hydrolyzed by cellulase alone with non-seawater pretreatment. Thus, bioconversion of reducing sugar from Ramulus mori was improved significantly at lower temperatures, which provides an efficient and energy-saving wayfor biofuel production.
Collapse
Affiliation(s)
- Shuai You
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China; Key Laboratory of Silkworm and Mulberry Gene tic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, PR China
| | - Yi-Xin Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Fan Shi
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Wen-Xin Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Jing Li
- Department of Nephrology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, PR China
| | - Sheng Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Zhong-Li Chen
- Xinyuan Cocoon Silk Group Co., Ltd., Nantong 226600, PR China
| | - Wei-Guo Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China; Key Laboratory of Silkworm and Mulberry Gene tic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, PR China
| | - Jun Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China; Key Laboratory of Silkworm and Mulberry Gene tic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, PR China.
| |
Collapse
|
14
|
Gu X, Fu L, Pan A, Gui Y, Zhang Q, Li J. Multifunctional alkalophilic α-amylase with diverse raw seaweed degrading activities. AMB Express 2021; 11:139. [PMID: 34669086 PMCID: PMC8528909 DOI: 10.1186/s13568-021-01300-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Uncultured microbes are an important resource for the discovery of novel enzymes. In this study, an amylase gene (amy2587) that codes a protein with 587 amino acids (Amy2587) was obtained from the metagenomic library of macroalgae-associated bacteria. Recombinant Amy2587 was expressed in Escherichia coli BL21 (DE3) and was found to simultaneously possess α-amylase, agarase, carrageenase, cellulase, and alginate lyase activities. Moreover, recombinant Amy2587 showed high thermostability and alkali resistance which are important characteristics for industrial application. To investigate the multifunctional mechanism of Amy2587, three motifs (functional domains) in the Amy2587 sequence were deleted to generate three truncated Amy2587 variants. The results showed that, even though these functional domains affected the multiple substrates degrading activity of Amy2587, they did not wholly explain its multifunctional characteristics. To apply the multifunctional activity of Amy2587, three seaweed substrates (Grateloupia filicina, Chondrus ocellatus, and Scagassum) were digested using Amy2587. After 2 h, 6 h, and 24 h of digestion, 121.2 ± 4 µg/ml, 134.8 ± 6 µg/ml, and 70.3 ± 3.5 µg/ml of reducing sugars were released, respectively. These results show that Amy2587 directly and effectively degraded three kinds of raw seaweeds. This finding provides a theoretical basis for one-step enzymatic digestion of raw seaweeds to obtain seaweed oligosaccharides.
Collapse
|
15
|
Ariaeenejad S, Kavousi K, Mamaghani ASA, Motahar SFS, Nedaei H, Salekdeh GH. In-silico discovery of bifunctional enzymes with enhanced lignocellulose hydrolysis from microbiota big data. Int J Biol Macromol 2021; 177:211-220. [PMID: 33549667 DOI: 10.1016/j.ijbiomac.2021.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022]
Abstract
Due to the importance of using lignocellulosic biomass, it is always important to find an effective novel enzyme or enzyme cocktail or fusion enzymes. Identification of bifunctional enzymes through a metagenomic approach is an efficient method for converting agricultural residues and a beneficial way to reduce the cost of enzyme cocktail and fusion enzyme production. In this study, a novel stable bifunctional cellulase/xylanase, PersiCelXyn1 was identified from the rumen microbiota by the multi-stage in-silico screening pipeline and computationally assisted methodology. The enzyme exhibited the optimal activity at pH 5 and 50°C. Analyzing the enzyme activity at extreme temperature, pH, long-term storage, and presence of inhibitors and metal ions, confirmed the stability of the bifunctional enzyme under harsh conditions. Hydrolysis of the rice straw by PersiCelXyn1 showed its capability to degrade both cellulose and hemicellulose polymers. Also, the enzyme improved the degradation of various biomass substrates after 168 h of hydrolysis. Our results demonstrated the power of the multi-stage in-silico screening to identify bifunctional enzymes from metagenomic big data for effective bioconversion of lignocellulosic biomass.
Collapse
Affiliation(s)
- Shohreh Ariaeenejad
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Atefeh Sheykh Abdollahzadeh Mamaghani
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Seyedeh Fatemeh Sadeghian Motahar
- Department of Food Science and Engineering, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
| | - Hadi Nedaei
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran; Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
16
|
Lai Z, Zhou C, Ma X, Xue Y, Ma Y. Enzymatic characterization of a novel thermostable and alkaline tolerant GH10 xylanase and activity improvement by multiple rational mutagenesis strategies. Int J Biol Macromol 2020; 170:164-177. [PMID: 33352153 DOI: 10.1016/j.ijbiomac.2020.12.137] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/08/2020] [Accepted: 12/17/2020] [Indexed: 11/15/2022]
Abstract
Thermo-alkaline xylanases are widely applied in paper pulping industry. In this study, a novel thermostable and alkaline tolerant GH10 xylanase (Xyn30Y5) gene from alkaliphilic Bacillus sp. 30Y5 was cloned and the surface-layer homology (SLH) domains truncated enzyme (Xyn30Y5-SLH) was expressed in Escherichia coli. The purified Xyn30Y5-SLH was most active at 70 °C and pH 7.0 and showed the highest specific activity of 349.4 U mg-1. It retained more than 90% activity between pH 6.0 to 9.5 and was stable at pH 6.0-10.0. To improve the activity, 47 mutants were designed based on eight rational strategies and 21 mutants showed higher activity. By combinatorial mutagenesis, the best mutant 3B demonstrated specific activity of 1016.8 U mg-1 with a doubled catalytic efficiency (kcat/Km) and RA601/2h value, accompanied by optimal pH shift to 8.0. The molecular dynamics simulation analysis indicated that the increase of flexibility of α5 helix and loop7 located near to the catalytic residues is likely responsible for its activity improvement. And the decrease of flexibility of the most unstable regions is vital for the thermostablity improvement. This work provided not only a novel thermostable and alkaline tolerant xylanase with industrial application potential but also an effective mutagenesis strategy for xylanase activity improvement.
Collapse
Affiliation(s)
- Zhihua Lai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Cheng Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xiaochen Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanfen Xue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanhe Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; National Engineering Laboratory for Industrial Enzymes, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
17
|
Singh N, Mathur AS, Gupta RP, Barrow CJ, Tuli DK, Puri M. Enzyme systems of thermophilic anaerobic bacteria for lignocellulosic biomass conversion. Int J Biol Macromol 2020; 168:572-590. [PMID: 33309672 DOI: 10.1016/j.ijbiomac.2020.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 11/17/2022]
Abstract
Economic production of lignocellulose degrading enzymes for biofuel industries is of considerable interest to the biotechnology community. While these enzymes are widely distributed in fungi, their industrial production from other sources, particularly by thermophilic anaerobic bacteria (growth Topt ≥ 60 °C), is an emerging field. Thermophilic anaerobic bacteria produce a large number of lignocellulolytic enzymes having unique structural features and employ different schemes for biomass degradation, which can be classified into four systems namely; 'free enzyme system', 'cell anchored enzymes', 'complex cellulosome system', and 'multifunctional multimodular enzyme system'. Such enzymes exhibit high specific activity and have a natural ability to withstand harsh bioprocessing conditions. However, achieving a higher production of these thermostable enzymes at current bioprocessing targets is challenging. In this review, the research opportunities for these distinct enzyme systems in the biofuel industry and the associated technological challenges are discussed. The current status of research findings is highlighted along with a detailed description of the categorization of the different enzyme production schemes. It is anticipated that high temperature-based bioprocessing will become an integral part of sustainable bioenergy production in the near future.
Collapse
Affiliation(s)
- Nisha Singh
- Centre for Chemistry and Biotechnology, Deakin University, Waurn Ponds, Victoria 3217, Australia; DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad 121007, India
| | - Anshu S Mathur
- DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad 121007, India
| | - Ravi P Gupta
- DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad 121007, India
| | - Colin J Barrow
- Centre for Chemistry and Biotechnology, Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - Deepak K Tuli
- DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad 121007, India
| | - Munish Puri
- Centre for Chemistry and Biotechnology, Deakin University, Waurn Ponds, Victoria 3217, Australia; Medical Biotechnology, Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide 5042, Australia.
| |
Collapse
|
18
|
Abstract
Cold-active enzymes increase their catalytic efficiency at low-temperature, introducing structural flexibility at or near the active sites. Inevitably, this feat seems to be accompanied by lower thermal stability. These characteristics have made cold-active enzymes into attractive targets for the industrial applications, since they could reduce the energy cost in the reaction, attenuate side-reactions, and simply be inactivated. In addition, the increased structural flexibility could result in broad substrate specificity for various non-native substrates, which is called substrate promiscuity. In this perspective, we deal with a less addressed aspect of cold-active enzymes, substrate promiscuity, which has enormous potential for semi-synthesis or enzymatic modification of fine chemicals and drugs. Further structural and directed-evolutional studies on substrate promiscuity of cold-active enzymes will provide a new workhorse in white biotechnology.
Collapse
|
19
|
Ben‐David Y, Moraïs S, Bayer EA, Mizrahi I. Rapid adaptation for fibre degradation by changes in plasmid stoichiometry within Lactobacillus plantarum at the synthetic community level. Microb Biotechnol 2020; 13:1748-1764. [PMID: 32639625 PMCID: PMC7533337 DOI: 10.1111/1751-7915.13584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/11/2020] [Accepted: 04/12/2020] [Indexed: 12/19/2022] Open
Abstract
The multi-enzyme cellulosome complex can mediate the valorization of lignocellulosic biomass into soluble sugars that can serve in the production of biofuels and valuable products. A potent bacterial chassis for the production of active cellulosomes displayed on the cell surface is the bacterium Lactobacillus plantarum, a lactic acid bacterium used in many applications. Here, we developed a methodological pipeline to produce improved designer cellulosomes, using a cell-consortium approach, whereby the different components self-assemble on the surface of L. plantarum. The pipeline served as a vehicle to select and optimize the secretion efficiency of potent designer cellulosome enzyme components, to screen for the most efficient enzymatic combinations and to assess attempts to grow the engineered bacterial cells on wheat straw as a sole carbon source. Using this strategy, we were able to improve the secretion efficiency of the selected enzymes and to secrete a fully functional high-molecular-weight scaffoldin component. The adaptive laboratory process served to increase significantly the enzymatic activity of the most efficient cell consortium. Internal plasmid re-arrangement towards a higher enzymatic performance attested for the suitability of the approach, which suggests that this strategy represents an efficient way for microbes to adapt to changing conditions.
Collapse
Affiliation(s)
- Yonit Ben‐David
- Department of Biomolecular SciencesThe Weizmann Institute of ScienceRehovot7610001Israel
| | - Sarah Moraïs
- Department of Biomolecular SciencesThe Weizmann Institute of ScienceRehovot7610001Israel
- Department of Life SciencesNational Institute for Biotechnology in the NegevBen‐Gurion University of the NegevBeer‐Sheva8499000Israel
| | - Edward A. Bayer
- Department of Biomolecular SciencesThe Weizmann Institute of ScienceRehovot7610001Israel
| | - Itzhak Mizrahi
- Department of Life SciencesNational Institute for Biotechnology in the NegevBen‐Gurion University of the NegevBeer‐Sheva8499000Israel
| |
Collapse
|
20
|
Caldicellulosiruptor bescii Adheres to Polysaccharides via a Type IV Pilin-Dependent Mechanism. Appl Environ Microbiol 2020; 86:AEM.00200-20. [PMID: 32086304 DOI: 10.1128/aem.00200-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
Biological hydrolysis of cellulose above 70°C involves microorganisms that secrete free enzymes and deploy separate protein systems to adhere to their substrate. Strongly cellulolytic Caldicellulosiruptor bescii is one such extreme thermophile, which deploys modular, multifunctional carbohydrate-acting enzymes to deconstruct plant biomass. Additionally, C. bescii also encodes noncatalytic carbohydrate binding proteins, which likely evolved as a mechanism to compete against other heterotrophs in carbon-limited biotopes that these bacteria inhabit. Analysis of the Caldicellulosiruptor pangenome identified a type IV pilus (T4P) locus encoded upstream of the tāpirins, that is encoded by all Caldicellulosiruptor species. In this study, we sought to determine if the C. bescii T4P plays a role in attachment to plant polysaccharides. The major C. bescii pilin (CbPilA) was identified by the presence of pilin-like protein domains, paired with transcriptomics and proteomics data. Using immuno-dot blots, we determined that the plant polysaccharide xylan induced production of CbPilA 10- to 14-fold higher than glucomannan or xylose. Furthermore, we are able to demonstrate that recombinant CbPilA directly interacts with xylan and cellulose at elevated temperatures. Localization of CbPilA at the cell surface was confirmed by immunofluorescence microscopy. Lastly, a direct role for CbPilA in cell adhesion was demonstrated using recombinant CbPilA or anti-CbPilA antibodies to reduce C. bescii cell adhesion to xylan and crystalline cellulose up to 4.5- and 2-fold, respectively. Based on these observations, we propose that CbPilA and, by extension, the T4P play a role in Caldicellulosiruptor cell attachment to plant biomass.IMPORTANCE Most microorganisms are capable of attaching to surfaces in order to persist in their environment. Type IV (T4) pili produced by certain mesophilic Firmicutes promote adherence; however, a role for T4 pili encoded by thermophilic members of this phylum has yet to be demonstrated. Prior comparative genomics analyses identified a T4 pilus locus possessed by an extremely thermophilic genus within the Firmicutes Here, we demonstrate that attachment to plant biomass-related carbohydrates by strongly cellulolytic Caldicellulosiruptor bescii is mediated by T4 pilins. Surprisingly, xylan but not cellulose induced expression of the major T4 pilin. Regardless, the C. bescii T4 pilin interacts with both polysaccharides at high temperatures and is located to the cell surface, where it is directly involved in C. bescii attachment. Adherence to polysaccharides is likely key to survival in environments where carbon sources are limiting, allowing C. bescii to compete against other plant-degrading microorganisms.
Collapse
|
21
|
Neotropical termite microbiomes as sources of novel plant cell wall degrading enzymes. Sci Rep 2020; 10:3864. [PMID: 32123275 PMCID: PMC7052144 DOI: 10.1038/s41598-020-60850-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/24/2019] [Indexed: 11/08/2022] Open
Abstract
In this study, we used shotgun metagenomic sequencing to characterise the microbial metabolic potential for lignocellulose transformation in the gut of two colonies of Argentine higher termite species with different feeding habits, Cortaritermes fulviceps and Nasutitermes aquilinus. Our goal was to assess the microbial community compositions and metabolic capacity, and to identify genes involved in lignocellulose degradation. Individuals from both termite species contained the same five dominant bacterial phyla (Spirochaetes, Firmicutes, Proteobacteria, Fibrobacteres and Bacteroidetes) although with different relative abundances. However, detected functional capacity varied, with C. fulviceps (a grass-wood-feeder) gut microbiome samples containing more genes related to amino acid metabolism, whereas N. aquilinus (a wood-feeder) gut microbiome samples were enriched in genes involved in carbohydrate metabolism and cellulose degradation. The C. fulviceps gut microbiome was enriched specifically in genes coding for debranching- and oligosaccharide-degrading enzymes. These findings suggest an association between the primary food source and the predicted categories of the enzymes present in the gut microbiomes of each species. To further investigate the termite microbiomes as sources of biotechnologically relevant glycosyl hydrolases, a putative GH10 endo-β-1,4-xylanase, Xyl10E, was cloned and expressed in Escherichia coli. Functional analysis of the recombinant metagenome-derived enzyme showed high specificity towards beechwood xylan (288.1 IU/mg), with the optimum activity at 50 °C and a pH-activity range from 5 to 10. These characteristics suggest that Xy110E may be a promising candidate for further development in lignocellulose deconstruction applications.
Collapse
|
22
|
You S, Xie C, Ma R, Huang HQ, Herman RA, Su XY, Ge Y, Cai HY, Yao B, Wang J, Luo HY. Improvement in catalytic activity and thermostability of a GH10 xylanase and its synergistic degradation of biomass with cellulase. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:278. [PMID: 31827606 PMCID: PMC6892236 DOI: 10.1186/s13068-019-1620-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/25/2019] [Indexed: 05/29/2023]
Abstract
BACKGROUND Xylanase is one of the most extensively used biocatalysts for biomass degradation. However, its low catalytic efficiency and poor thermostability limit its applications. Therefore, improving the properties of xylanases to enable synergistic degradation of lignocellulosic biomass with cellulase is of considerable significance in the field of bioenergy. RESULTS Using fragment replacement, we improved the catalytic performance and thermostability of a GH10 xylanase, XylE. Of the ten hybrid enzymes obtained, seven showed xylanase activity. Substitution of fragments, M3, M6, M9, and their combinations enhanced the catalytic efficiency (by 2.4- to fourfold) as well as the specific activity (by 1.2- to 3.3-fold) of XylE. The hybrids, XylE-M3, XylE-M3/M6, XylE-M3/M9, and XylE-M3/M6/M9, showed enhanced thermostability, as observed by the increase in the T 50 (3-4.7 °C) and T m (1.1-4.7 °C), and extended t 1/2 (by 1.8-2.3 h). In addition, the synergistic effect of the mutant xylanase and cellulase on the degradation of mulberry bark showed that treatment with both XylE-M3/M6 and cellulase exhibited the highest synergistic effect. In this case, the degree of synergy reached 1.3, and the reducing sugar production and dry matter reduction increased by 148% and 185%, respectively, compared to treatment with only cellulase. CONCLUSIONS This study provides a successful strategy to improve the catalytic properties and thermostability of enzymes. We identified several xylanase candidates for applications in bioenergy and biorefinery. Synergistic degradation experiments elucidated a possible mechanism of cellulase inhibition by xylan and xylo-oligomers.
Collapse
Affiliation(s)
- Shuai You
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018 People’s Republic of China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018 People’s Republic of China
| | - Chen Xie
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018 People’s Republic of China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018 People’s Republic of China
| | - Rui Ma
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Huo-qing Huang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Richard Ansah Herman
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018 People’s Republic of China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018 People’s Republic of China
| | - Xiao-yun Su
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yan Ge
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018 People’s Republic of China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018 People’s Republic of China
| | - Hui-yi Cai
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Jun Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018 People’s Republic of China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018 People’s Republic of China
| | - Hui-ying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
23
|
Chu Y, Hao Z, Wang K, Tu T, Huang H, Wang Y, Bai YG, Wang Y, Luo H, Yao B, Su X. The GH10 and GH48 dual-functional catalytic domains from a multimodular glycoside hydrolase synergize in hydrolyzing both cellulose and xylan. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:279. [PMID: 31827607 PMCID: PMC6892212 DOI: 10.1186/s13068-019-1617-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/23/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Regarding plant cell wall polysaccharides degradation, multimodular glycoside hydrolases (GHs) with two catalytic domains separated by one or multiple carbohydrate-binding domains are rare in nature. This special mode of domain organization endows the Caldicellulosiruptor bescii CelA (GH9-CBM3c-CBM3b-CBM3b-GH48) remarkably high efficiency in hydrolyzing cellulose. CbXyn10C/Cel48B from the same bacterium is also such an enzyme which has, however, evolved to target both xylan and cellulose. Intriguingly, the GH10 endoxylanase and GH48 cellobiohydrolase domains are both dual functional, raising the question if they can act synergistically in hydrolyzing cellulose and xylan, the two major components of plant cell wall. RESULTS In this study, we discovered that CbXyn10C and CbCel48B, which stood for the N- and C-terminal catalytic domains, respectively, cooperatively released much more cellobiose and cellotriose from cellulose. In addition, they displayed intramolecular synergy but only at the early stage of xylan hydrolysis by generating higher amounts of xylooligosaccharides including xylotriose, xylotetraose, and xylobiose. When complex lignocellulose corn straw was used as the substrate, the synergy was found only for cellulose but not xylan hydrolysis. CONCLUSION This is the first report to reveal the synergy between a GH10 and a GH48 domain. The synergy discovered in this study is helpful for understanding how C. bescii captures energy from these recalcitrant plant cell wall polysaccharides. The insight also sheds light on designing robust and multi-functional enzymes for plant cell wall polysaccharides degradation.
Collapse
Affiliation(s)
- Yindi Chu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 China
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 5# Dong Dan San Tiao, Beijing, 100005 China
| | - Zhenzhen Hao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 China
| | - Kaikai Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 China
| | - Tao Tu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 China
| | - Huoqing Huang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 China
| | - Yuan Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 China
| | - Ying Guo Bai
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 China
| | - Yaru Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 China
| | - Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 China
| | - Xiaoyun Su
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 China
| |
Collapse
|
24
|
Guo J, Xie Y, Yu Z, Meng G, Wu Z. Effect of Lactobacillus plantarum expressing multifunctional glycoside hydrolases on the characteristics of alfalfa silage. Appl Microbiol Biotechnol 2019; 103:7983-7995. [PMID: 31468090 DOI: 10.1007/s00253-019-10097-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/31/2019] [Accepted: 08/21/2019] [Indexed: 12/31/2022]
Abstract
For the first time, Lactobacillus plantarum strains carrying heterologous genes encoding multifunctional glycoside hydrolases were constructed and used as additives for alfalfa silage. The chemical characteristics, nonstructural carbohydrate composition, and fermentation quality of alfalfa silage were examined. The supernatant of L. plantarum expressing CbXyn10C and Bgxg1 (LP11AG) showed activities on xylan, Avicel, and carboxymethylcellulose (CMC), while the supernatant of the wild-type L. plantarum showed no activity. When LP11AG was used as silage additive, the water-soluble carbohydrate content of alfalfa silage increased by 72%, 55%, and 155% compared with control when the silage was stored at 20 °C, 30 °C, and 40 °C, respectively. With LP11AG being used as an additive for the alfalfa silage stored at 20 °C, the hemicellulose, cellulose, and acid detergent ligninin (ADL) contents decreased by 17%, 6%, and 14% compared with the control (p < 0.05), respectively. Compared with the corresponding original contents, the contents of glucose, arabinose, galactose, and fructose detected in silage treated with LP11AG after 45 days of ensiling increased by 55%, 1494%, 68%, and 5% , respectively, when stored at 40 °C. Raffinose and stachyose, originally present in alfalfa, disappeared after ensiling. In conclusion, our results suggest that LP11AG provides a substantial benefit as a silage additive.
Collapse
Affiliation(s)
- Jingui Guo
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100094, China
| | - Yixiao Xie
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100094, China
| | - Zhu Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100094, China
| | - Geng Meng
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhe Wu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100094, China.
| |
Collapse
|
25
|
A Novel Subfamily of Endo-β-1,4-Glucanases in Glycoside Hydrolase Family 10. Appl Environ Microbiol 2019; 85:AEM.01029-19. [PMID: 31253686 DOI: 10.1128/aem.01029-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/26/2019] [Indexed: 11/20/2022] Open
Abstract
As classified by the Carbohydrate-Active Enzymes (CAZy) database, enzymes in glycoside hydrolase (GH) family 10 (GH10) are all monospecific or bifunctional xylanases (except a tomatinase), and no endo-β-1,4-glucanase has been reported in the family. Here, we identified Arcticibacterium luteifluviistationis carboxymethyl cellulase (AlCMCase) as a GH10 endo-β-1,4-glucanase. AlCMCase originated from an Arctic marine bacterium, Arcticibacterium luteifluviistationis SM1504T It shows low identity (<35%) with other GH10 xylanases. The gene encoding AlCMCase was overexpressed in Escherichia coli Biochemical characterization showed that recombinant AlCMCase is a cold-adapted and salt-tolerant enzyme. AlCMCase hydrolyzes cello- and xylo-configured substrates via an endoaction mode. However, in comparison to its significant cellulase activity, the xylanase activity of AlCMCase is negligible. Correspondingly, AlCMCase has remarkable binding capacity for cello-oligosaccharides but no obvious binding capacity for xylo-oligosaccharides. AlCMCase and its homologs are grouped into a branch separate from other GH10 xylanases in a phylogenetic tree, and two homologs also displayed the same substrate specificity as AlCMCase. These results suggest that AlCMCase and its homologs form a novel subfamily of GH10 enzymes that have robust endo-β-1,4-glucanase activity. In addition, given the cold-adapted and salt-tolerant characters of AlCMCase, it may be a candidate biocatalyst under certain industrial conditions, such as low temperature or high salinity.IMPORTANCE Cellulase and xylanase have been widely used in the textile, pulp and paper, animal feed, and food-processing industries. Exploring novel cellulases and xylanases for biocatalysts continues to be a hot issue. Enzymes derived from the polar seas might have novel hydrolysis patterns, substrate specificities, or extremophilic properties that have great potential for both fundamental research and industrial applications. Here, we identified a novel cold-adapted and salt-tolerant endo-β-1,4-glucanase, AlCMCase, from an Arctic marine bacterium. It may be useful in certain industrial processes, such as under low temperature or high salinity. Moreover, AlCMCase is a bifunctional representative of glycoside hydrolase (GH) family 10 that preferentially hydrolyzes β-1,4-glucans. With its homologs, it represents a new subfamily in this family. Thus, this study sheds new light on the substrate specificity of GH10.
Collapse
|
26
|
Genomic and physiological analyses reveal that extremely thermophilic Caldicellulosiruptor changbaiensis deploys uncommon cellulose attachment mechanisms. J Ind Microbiol Biotechnol 2019; 46:1251-1263. [PMID: 31392469 DOI: 10.1007/s10295-019-02222-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/01/2019] [Indexed: 10/26/2022]
Abstract
The genus Caldicellulosiruptor is comprised of extremely thermophilic, heterotrophic anaerobes that degrade plant biomass using modular, multifunctional enzymes. Prior pangenome analyses determined that this genus is genetically diverse, with the current pangenome remaining open, meaning that new genes are expected with each additional genome sequence added. Given the high biodiversity observed among the genus Caldicellulosiruptor, we have sequenced and added a 14th species, Caldicellulosiruptor changbaiensis, to the pangenome. The pangenome now includes 3791 ortholog clusters, 120 of which are unique to C. changbaiensis and may be involved in plant biomass degradation. Comparisons between C. changbaiensis and Caldicellulosiruptor bescii on the basis of growth kinetics, cellulose solubilization and cell attachment to polysaccharides highlighted physiological differences between the two species which are supported by their respective gene inventories. Most significantly, these comparisons indicated that C. changbaiensis possesses uncommon cellulose attachment mechanisms not observed among the other strongly cellulolytic members of the genus Caldicellulosiruptor.
Collapse
|
27
|
Insight into kinetics and thermodynamics of a novel hyperstable GH family 10 endo-1,4-β-xylanase (TnXynB) with broad substrates specificity cloned from Thermotoga naphthophilaRKU-10T. Enzyme Microb Technol 2019; 127:32-42. [DOI: 10.1016/j.enzmictec.2019.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/07/2019] [Accepted: 04/12/2019] [Indexed: 11/20/2022]
|
28
|
Lee LL, Crosby JR, Rubinstein GM, Laemthong T, Bing RG, Straub CT, Adams MW, Kelly RM. The biology and biotechnology of the genus Caldicellulosiruptor: recent developments in ‘Caldi World’. Extremophiles 2019; 24:1-15. [DOI: 10.1007/s00792-019-01116-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/09/2019] [Indexed: 12/01/2022]
|
29
|
Abdella A, Segato F, Wilkins MR. Optimization of nutrient medium components for production of a client endo-β-1,4-xylanase from Aspergillus fumigatus var. niveus using a recombinant Aspergillus nidulans strain. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Ullah SF, Souza AA, Hamann PRV, Ticona ARP, Oliveira GM, Barbosa JARG, Freitas SM, Noronha EF. Structural and functional characterisation of xylanase purified from Penicillium chrysogenum produced in response to raw agricultural waste. Int J Biol Macromol 2019; 127:385-395. [PMID: 30654038 DOI: 10.1016/j.ijbiomac.2019.01.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/28/2018] [Accepted: 01/11/2019] [Indexed: 11/29/2022]
Abstract
Commercial interest in plant cell wall degrading enzymes (PCWDE) is motivated by their potential for energy or bioproduct generation that reduced dependency on non-renewable (fossil-derived) feedstock. Therefore, underlying work analysed the Penicillium chrysogenum isolate for PCWDE production by employing different biomass as a carbon source. Among the produced enzymes, three xylanase isoforms were observed in the culture filtrate containing sugarcane bagasse. Xylanase (PcX1) presenting 35 kDa molecular mass was purified by gel filtration and anion exchange chromatography. Unfolding was probed and analysed using fluorescence, circular dichroism and enzyme assay methods. Secondary structure contents were estimated by circular dichroism 45% α-helix and 10% β-sheet, consistent with the 3D structure predicted by homology. PcX1 optimally active at pH 5.0 and 30 °C, presenting t1/2 19 h at 30 °C and 6 h at 40 °C. Thermodynamic parameters/melting temperature 51.4 °C confirmed the PcX1 stability at pH 5.0. PcX1 have a higher affinity for oat spelt xylan, KM 1.2 mg·mL-1, in comparison to birchwood xylan KM 29.86 mg·mL-1, activity was inhibited by Cu+2 and activated by Zn+2. PcX1 exhibited significant tolerance for vanillin, trans-ferulic acid, ρ-coumaric acid, syringaldehyde and 4-hydroxybenzoic acid, activity slightly inhibited (17%) by gallic and tannic acid.
Collapse
Affiliation(s)
- Sadia Fida Ullah
- Laboratory de Enzymology, Department of Cellular Biology, University of Brasilia, DF, Brazil
| | - Amanda Araújo Souza
- Laboratory of Molecular Biophysics, Department of Cellular Biology, University of Brasilia, DF, Brazil
| | - Pedro Ricardo V Hamann
- Laboratory de Enzymology, Department of Cellular Biology, University of Brasilia, DF, Brazil
| | - Alonso Roberto P Ticona
- Laboratory de Enzymology, Department of Cellular Biology, University of Brasilia, DF, Brazil
| | - Gideane M Oliveira
- Laboratory of Molecular Biophysics, Department of Cellular Biology, University of Brasilia, DF, Brazil
| | | | - Sonia M Freitas
- Laboratory of Molecular Biophysics, Department of Cellular Biology, University of Brasilia, DF, Brazil
| | - Eliane Ferreira Noronha
- Laboratory de Enzymology, Department of Cellular Biology, University of Brasilia, DF, Brazil.
| |
Collapse
|
31
|
Chadha BS, Kaur B, Basotra N, Tsang A, Pandey A. Thermostable xylanases from thermophilic fungi and bacteria: Current perspective. BIORESOURCE TECHNOLOGY 2019; 277:195-203. [PMID: 30679061 DOI: 10.1016/j.biortech.2019.01.044] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/06/2019] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
Thermostable xylanases from thermophilic fungi and bacteria have a wide commercial acceptability in feed, food, paper and pulp and bioconversion of lignocellulosics with an estimated annual market of USD 500 Million. The genome wide analysis of thermophilic fungi clearly shows the presence of elaborate genetic information coding for multiple xylanases primarily coding for GH10, GH11 in addition to GH7 and GH30 xylanases. The transcriptomics and proteome profiling has given insight into the differential expression of these xylanases in some of the thermophilic fungi. Bioprospecting has resulted in identification of novel thermophilic xylanases that have been endorsed by the industrial houses for heterologous over- expression and formulations. The future use of xylanases is expected to increase exponentially for their role in biorefineries. The discovery of new and improvement of existing xylanases using molecular tools such as directed evolution is expected to be the mainstay to meet increasing demand of thermostable xylanases.
Collapse
Affiliation(s)
- B S Chadha
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143 005, India.
| | - Baljit Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143 005, India
| | - Neha Basotra
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143 005, India
| | - Adrian Tsang
- Center for Structural and Functional Genomics, Concordia University, Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada.
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India.
| |
Collapse
|
32
|
Wang K, Cao R, Wang M, Lin Q, Zhan R, Xu H, Wang S. A novel thermostable GH10 xylanase with activities on a wide variety of cellulosic substrates from a xylanolytic Bacillus strain exhibiting significant synergy with commercial Celluclast 1.5 L in pretreated corn stover hydrolysis. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:48. [PMID: 30899328 PMCID: PMC6408826 DOI: 10.1186/s13068-019-1389-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 02/25/2019] [Indexed: 05/28/2023]
Abstract
BACKGROUND Cellulose and hemicellulose are the two largest components in lignocellulosic biomass. Enzymes with activities towards cellulose and xylan have attracted great interest in the bioconversion of lignocellulosic biomass, since they have potential in improving the hydrolytic performance and reducing the enzyme costs. Exploring glycoside hydrolases (GHs) with good thermostability and activities on xylan and cellulose would be beneficial to the industrial production of biofuels and bio-based chemicals. RESULTS A novel GH10 enzyme (XynA) identified from a xylanolytic strain Bacillus sp. KW1 was cloned and expressed. Its optimal pH and temperature were determined to be pH 6.0 and 65 °C. Stability analyses revealed that XynA was stable over a broad pH range (pH 6.0-11.0) after being incubated at 25 °C for 24 h. Moreover, XynA retained over 95% activity after heat treatment at 60 °C for 60 h, and its half-lives at 65 °C and 70 °C were about 12 h and 1.5 h, respectively. More importantly, in terms of substrate specificity, XynA exhibits hydrolytic activities towards xylans, microcrystalline cellulose (filter paper and Avicel), carboxymethyl cellulose (CMC), cellobiose, p-nitrophenyl-β-d-cellobioside (pNPC), and p-nitrophenyl-β-d-glucopyranoside (pNPG). Furthermore, the addition of XynA into commercial cellulase in the hydrolysis of pretreated corn stover resulted in remarkable increases (the relative increases may up to 90%) in the release of reducing sugars. Finally, it is worth mentioning that XynA only shows high amino acid sequence identity (88%) with rXynAHJ14, a GH10 xylanase with no activity on CMC. The similarities with other characterized GH10 enzymes, including xylanases and bifunctional xylanase/cellulase enzymes, are no more than 30%. CONCLUSIONS XynA is a novel thermostable GH10 xylanase with a wide substrate spectrum. It displays good stability in a broad range of pH and high temperatures, and exhibits activities towards xylans and a wide variety of cellulosic substrates, which are not found in other GH10 enzymes. The enzyme also has high capacity in saccharification of pretreated corn stover. These characteristics make XynA a good candidate not only for assisting cellulase in lignocellulosic biomass hydrolysis, but also for the research on structure-function relationship of bifunctional xylanase/cellulase.
Collapse
Affiliation(s)
- Kui Wang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
| | - Ruoting Cao
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
| | - Meiling Wang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
| | - Qibin Lin
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
| | - Ruoting Zhan
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
| | - Hui Xu
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
| | - Sidi Wang
- College of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
| |
Collapse
|
33
|
Discovery of a Thermostable GH10 Xylanase with Broad Substrate Specificity from the Arctic Mid-Ocean Ridge Vent System. Appl Environ Microbiol 2019; 85:AEM.02970-18. [PMID: 30635385 DOI: 10.1128/aem.02970-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/03/2019] [Indexed: 11/20/2022] Open
Abstract
A two-domain GH10 xylanase-encoding gene (amor_gh10a) was discovered from a metagenomic data set, generated after in situ incubation of a lignocellulosic substrate in hot sediments on the sea floor of the Arctic Mid-Ocean Ridge (AMOR). AMOR_GH10A comprises a signal peptide, a carbohydrate-binding module belonging to a previously uncharacterized family, and a catalytic glycosyl hydrolase (GH10) domain. The enzyme shares the highest sequence identity (42%) with a hypothetical protein from a Verrucomicrobia bacterium, and its GH10 domain shares low identity (24 to 28%) with functionally characterized xylanases. Purified AMOR_GH10A showed thermophilic and halophilic properties and was active toward various xylans. Uniquely, the enzyme showed high activity toward amorphous cellulose, glucomannan, and xyloglucan and was more active toward cellopentaose than toward xylopentaose. Binding assays showed that the N-terminal domain of this broad-specificity GH10 binds strongly to amorphous cellulose, as well as to microcrystalline cellulose, birchwood glucuronoxylan, barley β-glucan, and konjac glucomannan, confirming its classification as a novel CBM (CBM85).IMPORTANCE Hot springs at the sea bottom harbor unique biodiversity and are a promising source of enzymes with interesting properties. We describe the functional characterization of a thermophilic and halophilic multidomain xylanase originating from the Arctic Mid-Ocean Ridge vent system, belonging to the well-studied family 10 of glycosyl hydrolases (GH10). This xylanase, AMOR_GH10A, has a surprisingly wide substrate range and is more active toward cellopentaose than toward xylopentaose. This substrate promiscuity is unique for the GH10 family and could prove useful in industrial applications. Emphasizing the versatility of AMOR_GH10A, its N-terminal domain binds to both xylans and glycans, while not showing significant sequence similarities to any known carbohydrate-binding module (CBM) in the CAZy database. Thus, this N-terminal domain lays the foundation for the new CBM85 family.
Collapse
|
34
|
Lee LL, Hart WS, Lunin VV, Alahuhta M, Bomble YJ, Himmel ME, Blumer-Schuette SE, Adams MWW, Kelly RM. Comparative Biochemical and Structural Analysis of Novel Cellulose Binding Proteins (Tāpirins) from Extremely Thermophilic Caldicellulosiruptor Species. Appl Environ Microbiol 2019; 85:e01983-18. [PMID: 30478233 PMCID: PMC6344629 DOI: 10.1128/aem.01983-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/18/2018] [Indexed: 11/20/2022] Open
Abstract
Genomes of extremely thermophilic Caldicellulosiruptor species encode novel cellulose binding proteins, called tāpirins, located proximate to the type IV pilus locus. The C-terminal domain of Caldicellulosiruptor kronotskyensis tāpirin 0844 (Calkro_0844) is structurally unique and has a cellulose binding affinity akin to that seen with family 3 carbohydrate binding modules (CBM3s). Here, full-length and C-terminal versions of tāpirins from Caldicellulosiruptor bescii (Athe_1870), Caldicellulosiruptor hydrothermalis (Calhy_0908), Caldicellulosiruptor kristjanssonii (Calkr_0826), and Caldicellulosiruptor naganoensis (NA10_0869) were produced recombinantly in Escherichia coli and compared to Calkro_0844. All five tāpirins bound to microcrystalline cellulose, switchgrass, poplar, and filter paper but not to xylan. Densitometry analysis of bound protein fractions visualized by SDS-PAGE revealed that Calhy_0908 and Calkr_0826 (from weakly cellulolytic species) associated with the cellulose substrates to a greater extent than Athe_1870, Calkro_0844, and NA10_0869 (from strongly cellulolytic species). Perhaps this relates to their specific needs to capture glucans released from lignocellulose by cellulases produced in Caldicellulosiruptor communities. Calkro_0844 and NA10_0869 share a higher degree of amino acid sequence identity (>80% identity) with each other than either does with Athe_1870 (∼50%). The levels of amino acid sequence identity of Calhy_0908 and Calkr_0826 to Calkro_0844 were only 16% and 36%, respectively, although the three-dimensional structures of their C-terminal binding regions were closely related. Unlike the parent strain, C. bescii mutants lacking the tāpirin genes did not bind to cellulose following short-term incubation, suggesting a role in cell association with plant biomass. Given the scarcity of carbohydrates in neutral terrestrial hot springs, tāpirins likely help scavenge carbohydrates from lignocellulose to support growth and survival of Caldicellulosiruptor species.IMPORTANCE The mechanisms by which microorganisms attach to and degrade lignocellulose are important to understand if effective approaches for conversion of plant biomass into fuels and chemicals are to be developed. Caldicellulosiruptor species grow on carbohydrates from lignocellulose at elevated temperatures and have biotechnological significance for that reason. Novel cellulose binding proteins, called tāpirins, are involved in the way that Caldicellulosiruptor species interact with microcrystalline cellulose, and additional information about the diversity of these proteins across the genus, including binding affinity and three-dimensional structural comparisons, is provided here.
Collapse
Affiliation(s)
- Laura L Lee
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - William S Hart
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Vladimir V Lunin
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Markus Alahuhta
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Yannick J Bomble
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Michael E Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Sara E Blumer-Schuette
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
35
|
Conway JM, Crosby JR, Hren AP, Southerland RT, Lee LL, Lunin VV, Alahuhta P, Himmel ME, Bomble YJ, Adams MWW, Kelly RM. Novel multidomain, multifunctional glycoside hydrolases from highly lignocellulolytic
Caldicellulosiruptor
species. AIChE J 2018. [DOI: 10.1002/aic.16354] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jonathan M. Conway
- Dept. of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighNC27695
| | - James R. Crosby
- Dept. of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighNC27695
| | - Andrew P. Hren
- Dept. of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighNC27695
| | - Robert T. Southerland
- Dept. of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighNC27695
| | - Laura L. Lee
- Dept. of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighNC27695
| | | | - Petri Alahuhta
- Biosciences CenterNational Renewable Energy LaboratoryGoldenCO80401
| | | | | | - Michael W. W. Adams
- Dept. of Biochemistry and Molecular BiologyUniversity of GeorgiaAthensGA30602
| | - Robert M. Kelly
- Dept. of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighNC27695
| |
Collapse
|
36
|
Conway JM, Crosby JR, McKinley BS, Seals NL, Adams MWW, Kelly RM. Parsing in vivo and in vitro contributions to microcrystalline cellulose hydrolysis by multidomain glycoside hydrolases in theCaldicellulosiruptor besciisecretome. Biotechnol Bioeng 2018; 115:2426-2440. [DOI: 10.1002/bit.26773] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/21/2018] [Accepted: 06/21/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Jonathan M. Conway
- Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleigh NC
| | - James R. Crosby
- Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleigh NC
| | - Bennett S. McKinley
- Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleigh NC
| | - Nathaniel L. Seals
- Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleigh NC
| | - Michael W. W. Adams
- Department of Biochemistry and Molecular BiologyUniversity of GeorgiaAthens GA
| | - Robert M. Kelly
- Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleigh NC
| |
Collapse
|
37
|
Chen CC, Gao GJ, Kao AL, Tsai ZC. Bi-functional fusion enzyme EG-M-Xyn displaying endoglucanase and xylanase activities and its utility in improving lignocellulose degradation. Int J Biol Macromol 2018; 111:722-729. [DOI: 10.1016/j.ijbiomac.2018.01.080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/08/2018] [Accepted: 01/12/2018] [Indexed: 10/18/2022]
|
38
|
Production and characterization of a novel acidophilic and thermostable xylanase from Thermoascus aurantiacu. Int J Biol Macromol 2018; 109:1270-1279. [DOI: 10.1016/j.ijbiomac.2017.11.130] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 01/24/2023]
|
39
|
Brunecky R, Chung D, Sarai NS, Hengge N, Russell JF, Young J, Mittal A, Pason P, Vander Wall T, Michener W, Shollenberger T, Westpheling J, Himmel ME, Bomble YJ. High activity CAZyme cassette for improving biomass degradation in thermophiles. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:22. [PMID: 29434665 PMCID: PMC5793385 DOI: 10.1186/s13068-018-1014-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/09/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Thermophilic microorganisms and their enzymes offer several advantages for industrial application over their mesophilic counterparts. For example, a hyperthermophilic anaerobe, Caldicellulosiruptor bescii, was recently isolated from hot springs in Kamchatka, Siberia, and shown to have very high cellulolytic activity. Additionally, it is one of a few microorganisms being considered as viable candidates for consolidated bioprocessing applications. Moreover, C. bescii is capable of deconstructing plant biomass without enzymatic or chemical pretreatment. This ability is accomplished by the production and secretion of free, multi-modular and multi-functional enzymes, one of which, CbCel9A/Cel48A also known as CelA, is able to outperform enzymes found in commercial enzyme preparations. Furthermore, the complete C. bescii exoproteome is extremely thermostable and highly active at elevated temperatures, unlike commercial fungal cellulases. Therefore, understanding the functional diversity of enzymes in the C. bescii exoproteome and how inter-molecular synergy between them confers C. bescii with its high cellulolytic activity is an important endeavor to enable the production of more efficient biomass degrading enzyme formulations and in turn, better cellulolytic industrial microorganisms. RESULTS To advance the understanding of the C. bescii exoproteome we have expressed, purified, and tested four of the primary enzymes found in the exoproteome and we have found that the combination of three or four of the most highly expressed enzymes exhibit synergistic activity. We also demonstrated that discrete combinations of these enzymes mimic and even improve upon the activity of the whole C. bescii exoproteome, even though some of the enzymes lack significant activity on their own. CONCLUSIONS We have demonstrated that it is possible to replicate the cellulolytic activity of the native C. bescii exoproteome utilizing a minimal gene set, and that these minimal gene sets are more active than the whole exoproteome. In the future, this may lead to more simplified and efficient cellulolytic enzyme preparations or yield improvements when these enzymes are expressed in microorganisms engineered for consolidated bioprocessing.
Collapse
Affiliation(s)
- Roman Brunecky
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401 USA
| | - Daehwan Chung
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401 USA
| | - Nicholas S. Sarai
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401 USA
| | - Neal Hengge
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401 USA
| | | | - Jenna Young
- Department of Genetics, University of Georgia, Athens, GA 30602 USA
| | - Ashutosh Mittal
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401 USA
| | - Patthra Pason
- Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Todd Vander Wall
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401 USA
| | - William Michener
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401 USA
| | - Todd Shollenberger
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401 USA
| | | | - Michael E. Himmel
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401 USA
| | - Yannick J. Bomble
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401 USA
| |
Collapse
|
40
|
Improvement of the catalytic efficiency of a hyperthermophilic xylanase from Bispora sp. MEY-1. PLoS One 2017; 12:e0189806. [PMID: 29253895 PMCID: PMC5734778 DOI: 10.1371/journal.pone.0189806] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 12/01/2017] [Indexed: 01/14/2023] Open
Abstract
Extremophilic xylanases have attracted great scientific and industrial interest. In this study, a GH10 xylanase-encoding gene, Xyl10E, was cloned from Bispora sp. MEY-1 and expressed in Pichia pastoris GS115. Deduced Xyl10E shares the highest identities of 62% and 57% with characterized family GH10 xylanases from Talaromyces leycettanus and Penicillium canescens (structure 4F8X), respectively. Xyl10E was most active at 93 to 95°C and pH 4.0, retained more than 75% or 48% of the initial activity when heated at 80°C or 90°C for 30 min, respectively, and hardly lost activity at pH 1.0 to 7.0, but was completely inhibited by SDS. Two residues, A160 and A161, located on loop 4, were identified to play roles in catalysis. Mutants A160D/E demonstrated higher affinity to substrate with lower Km values, while mutants A161D/E mainly displayed elevated Vmax values. All of these mutants had significantly improved catalytic efficiency. According to the molecular dynamics simulation, the mutation of A160E was able to affect the important substrate binding site Y204 and then improve the substrate affinity, and the mutation of A161D was capable of forming a hydrogen bond with the substrate to promote the substrate binding or accelerate the product release. This study introduces a highly thermophilic fungal xylanase and reveals the importance of loop 4 for catalytic efficiency.
Collapse
|
41
|
Functional Analysis of the Glucan Degradation Locus in Caldicellulosiruptor bescii Reveals Essential Roles of Component Glycoside Hydrolases in Plant Biomass Deconstruction. Appl Environ Microbiol 2017; 83:AEM.01828-17. [PMID: 28986379 DOI: 10.1128/aem.01828-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 09/29/2017] [Indexed: 12/26/2022] Open
Abstract
The ability to hydrolyze microcrystalline cellulose is an uncommon feature in the microbial world, but it can be exploited for conversion of lignocellulosic feedstocks into biobased fuels and chemicals. Understanding the physiological and biochemical mechanisms by which microorganisms deconstruct cellulosic material is key to achieving this objective. The glucan degradation locus (GDL) in the genomes of extremely thermophilic Caldicellulosiruptor species encodes polysaccharide lyases (PLs), unique cellulose binding proteins (tāpirins), and putative posttranslational modifying enzymes, in addition to multidomain, multifunctional glycoside hydrolases (GHs), thereby representing an alternative paradigm for plant biomass degradation compared to fungal or cellulosomal systems. To examine the individual and collective in vivo roles of the glycolytic enzymes, the six GH genes in the GDL of Caldicellulosiruptor bescii were systematically deleted, and the extents to which the resulting mutant strains could solubilize microcrystalline cellulose (Avicel) and plant biomass (switchgrass or poplar) were examined. Three of the GDL enzymes, Athe_1867 (CelA) (GH9-CBM3-CBM3-CBM3-GH48), Athe_1859 (GH5-CBM3-CBM3-GH44), and Athe_1857 (GH10-CBM3-CBM3-GH48), acted synergistically in vivo and accounted for 92% of naked microcrystalline cellulose (Avicel) degradation. However, the relative importance of the GDL GHs varied for the plant biomass substrates tested. Furthermore, mixed cultures of mutant strains showed that switchgrass solubilization depended on the secretome-bound enzymes collectively produced by the culture, not on the specific strain from which they came. These results demonstrate that certain GDL GHs are primarily responsible for the degradation of microcrystalline cellulose-containing substrates by C. bescii and provide new insights into the workings of a novel microbial mechanism for lignocellulose utilization.IMPORTANCE The efficient and extensive degradation of complex polysaccharides in lignocellulosic biomass, particularly microcrystalline cellulose, remains a major barrier to its use as a renewable feedstock for the production of fuels and chemicals. Extremely thermophilic bacteria from the genus Caldicellulosiruptor rapidly degrade plant biomass to fermentable sugars at temperatures of 70 to 78°C, although the specific mechanism by which this occurs is not clear. Previous comparative genomic studies identified a genomic locus found only in certain Caldicellulosiruptor species that was hypothesized to be mainly responsible for microcrystalline cellulose degradation. By systematically deleting genes in this locus in Caldicellulosiruptor bescii, the nuanced, substrate-specific in vivo roles of glycolytic enzymes in deconstructing crystalline cellulose and plant biomasses could be discerned. The results here point to synergism of three multidomain cellulases in C. bescii, working in conjunction with the aggregate secreted enzyme inventory, as the key to the plant biomass degradation ability of this extreme thermophile.
Collapse
|
42
|
Chu Y, Tu T, Penttinen L, Xue X, Wang X, Yi Z, Gong L, Rouvinen J, Luo H, Hakulinen N, Yao B, Su X. Insights into the roles of non-catalytic residues in the active site of a GH10 xylanase with activity on cellulose. J Biol Chem 2017; 292:19315-19327. [PMID: 28974575 PMCID: PMC5702671 DOI: 10.1074/jbc.m117.807768] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/20/2017] [Indexed: 11/06/2022] Open
Abstract
Bifunctional glycoside hydrolases have potential for cost-savings in enzymatic decomposition of plant cell wall polysaccharides for biofuels and bio-based chemicals. The N-terminal GH10 domain of a bifunctional multimodular enzyme CbXyn10C/Cel48B from Caldicellulosiruptor bescii is an enzyme able to degrade xylan and cellulose simultaneously. However, the molecular mechanism underlying its substrate promiscuity has not been elucidated. Herein, we discovered that the binding cleft of CbXyn10C would have at least six sugar-binding subsites by using isothermal titration calorimetry analysis of the inactive E140Q/E248Q mutant with xylo- and cello-oligosaccharides. This was confirmed by determining the catalytic efficiency of the wild-type enzyme on these oligosaccharides. The free form and complex structures of CbXyn10C with xylose- or glucose-configured oligosaccharide ligands were further obtained by crystallographic analysis and molecular modeling and docking. CbXyn10C was found to have a typical (β/α)8-TIM barrel fold and "salad-bowl" shape of GH10 enzymes. In complex structures with xylo-oligosaccharides, seven sugar-binding subsites were found, and many residues responsible for substrate interactions were identified. Site-directed mutagenesis indicated that 6 and 10 amino acid residues were key residues for xylan and cellulose hydrolysis, respectively. The most important residues are centered on subsites -2 and -1 near the cleavage site, whereas residues playing moderate roles could be located at more distal regions of the binding cleft. Manipulating the residues interacting with substrates in the distal regions directly or indirectly improved the activity of CbXyn10C on xylan and cellulose. Most of the key residues for cellulase activity are conserved across GH10 xylanases. Revisiting randomly selected GH10 enzymes revealed unreported cellulase activity, indicating that the dual function may be a more common phenomenon than has been expected.
Collapse
Affiliation(s)
- Yindi Chu
- From the Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tao Tu
- From the Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Leena Penttinen
- the Department of Chemistry, University of Eastern Finland, Joensuu Campus, Joensuu FIN-80101, Finland
| | - Xianli Xue
- From the Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoyu Wang
- From the Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhuolin Yi
- the Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China, and
| | - Li Gong
- From the Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- the Key Laboratory of Molecular Animal Nutrition and Feed Sciences, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Juha Rouvinen
- the Department of Chemistry, University of Eastern Finland, Joensuu Campus, Joensuu FIN-80101, Finland
| | - Huiying Luo
- From the Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Nina Hakulinen
- the Department of Chemistry, University of Eastern Finland, Joensuu Campus, Joensuu FIN-80101, Finland,
| | - Bin Yao
- From the Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China,
| | - Xiaoyun Su
- From the Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China,
| |
Collapse
|
43
|
Carbohydrate active enzyme domains from extreme thermophiles: components of a modular toolbox for lignocellulose degradation. Extremophiles 2017; 22:1-12. [PMID: 29110088 DOI: 10.1007/s00792-017-0974-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/24/2017] [Indexed: 02/06/2023]
Abstract
Lignocellulosic biomass is a promising feedstock for the manufacture of biodegradable and renewable bioproducts. However, the complex lignocellulosic polymeric structure of woody tissue is difficult to access without extensive industrial pre-treatment. Enzyme processing of partly depolymerised biomass is an established technology, and there is evidence that high temperature (extremely thermophilic) lignocellulose degrading enzymes [carbohydrate active enzymes (CAZymes)] may enhance processing efficiency. However, wild-type thermophilic CAZymes will not necessarily be functionally optimal under industrial pre-treatment conditions. With recent advances in synthetic biology, it is now potentially possible to build CAZyme constructs from individual protein domains, tailored to the conditions of specific industrial processes. In this review, we identify a 'toolbox' of thermostable CAZyme domains from extremely thermophilic organisms and highlight recent advances in CAZyme engineering which will allow for the rational design of CAZymes tailored to specific aspects of lignocellulose digestion.
Collapse
|
44
|
Kim DY, Lee SH, Lee MJ, Cho HY, Lee JS, Rhee YH, Shin DH, Son KH, Park HY. Genetic and functional characterization of a novel GH10 endo-β- 1,4-xylanase with a ricin-type β-trefoil domain-like domain from Luteimicrobium xylanilyticum HY-24. Int J Biol Macromol 2017; 106:620-628. [PMID: 28813686 DOI: 10.1016/j.ijbiomac.2017.08.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 01/08/2023]
Abstract
The gene (1488-bp) encoding a novel GH10 endo-β-1,4-xylanase (XylM) consisting of an N-terminal catalytic GH10 domain and a C-terminal ricin-type β-trefoil lectin domain-like (RICIN) domain was identified from Luteimicrobium xylanilyticum HY-24. The GH10 domain of XylM was 72% identical to that of Micromonospora lupini endo-β-1,4-xylanase and the RICIN domain was 67% identical to that of Actinospica robiniae hypothetical protein. The recombinant enzyme (rXylM: 49kDa) exhibited maximum activity toward beechwood xylan at 65°C and pH 6.0, while the optimum temperature and pH of its C-terminal truncated mutant (rXylM△RICIN: 35kDa) were 45°C and 5.0, respectively. After pre-incubation of 1h at 60°C, rXylM retained over 80% of its initial activity, but the thermostability of rXylM△RICIN was sharply decreased at temperatures exceeding 40°C. The specific activity (254.1Umg-1) of rXylM toward oat spelts xylan was 3.4-fold higher than that (74.8Umg-1) of rXylM△RICIN when the same substrate was used. rXylM displayed superior binding capacities to lignin and insoluble polysaccharides compared to rXylM△RICIN. Enzymatic hydrolysis of β-1,4-d-xylooligosaccharides (X3-X6) and birchwood xylan yielded X3 as the major product. The results suggest that the RICIN domain in XylM might play an important role in substrate-binding and biocatalysis.
Collapse
Affiliation(s)
- Do Young Kim
- Industrial Bio-Materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Sun Hwa Lee
- Industrial Bio-Materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Min Ji Lee
- Industrial Bio-Materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Han-Young Cho
- Industrial Bio-Materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jong Suk Lee
- Gyeonggi Bio-Center, Gyeonggi Institute of Science & Technology Promotion, Suwon 16229, Republic of Korea
| | - Young Ha Rhee
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Dong-Ha Shin
- Insect Biotech Co. Ltd., Daejeon 34054, Republic of Korea
| | - Kwang-Hee Son
- Industrial Bio-Materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea.
| | - Ho-Yong Park
- Industrial Bio-Materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea.
| |
Collapse
|
45
|
Sermsathanaswadi J, Baramee S, Tachaapaikoon C, Pason P, Ratanakhanokchai K, Kosugi A. The family 22 carbohydrate-binding module of bifunctional xylanase/β-glucanase Xyn10E from Paenibacillus curdlanolyticus B-6 has an important role in lignocellulose degradation. Enzyme Microb Technol 2017; 96:75-84. [DOI: 10.1016/j.enzmictec.2016.09.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/05/2016] [Accepted: 09/24/2016] [Indexed: 10/20/2022]
|
46
|
Wang X, Huang H, Xie X, Ma R, Bai Y, Zheng F, You S, Zhang B, Xie H, Yao B, Luo H. Improvement of the catalytic performance of a hyperthermostable GH10 xylanase from Talaromyces leycettanus JCM12802. BIORESOURCE TECHNOLOGY 2016; 222:277-284. [PMID: 27723474 DOI: 10.1016/j.biortech.2016.10.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/30/2016] [Accepted: 10/01/2016] [Indexed: 05/07/2023]
Abstract
A xylanase gene of GH 10, Tlxyn10A, was cloned from Talaromyces leycettanus JCM12802 and expressed in Pichia pastoris. Purified recombinant TlXyn10A was acidic and hyperthermophilic, and retained stable over the pH range of 2.0-6.0 and at 90°C. Sequence analysis of TlXyn10A identified seven residues probably involved in substrate contacting. Three mutants (TlXyn10A_P, _N and _C) were then constructed by substituting some or all of the residues with corresponding ones of hyperthermal Xyl10C from Bispora sp. MEY-1. TlXyn10A_P with mutations at subsites +2 to +4 exhibited improved specific activity (by 0.44-fold) and pH stability (2.0-10.0). Molecular dynamics simulation analysis indicated that mutations E229I and F232E probably weaken the substrate affinity at subsites +3 to +4, and G149D may introduce a new hydrogen bond. These modifications altogether account for the improved performance of TlXyn10A_P. Moreover, TlXyn10A_P was able to hydrolyze wheat straw persistently, and has the application potentials in various industries.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China; College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Huoqing Huang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Xiangming Xie
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Rui Ma
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Yingguo Bai
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Fei Zheng
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China; College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Shuai You
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Bingyu Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Huifang Xie
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China.
| |
Collapse
|
47
|
Wang X, Luo H, Yu W, Ma R, You S, Liu W, Hou L, Zheng F, Xie X, Yao B. A thermostable Gloeophyllum trabeum xylanase with potential for the brewing industry. Food Chem 2016; 199:516-23. [DOI: 10.1016/j.foodchem.2015.12.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 12/04/2015] [Accepted: 12/07/2015] [Indexed: 01/13/2023]
|
48
|
Production and Partial Characterization of an Alkaline Xylanase from a Novel Fungus Cladosporium oxysporum. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4575024. [PMID: 27213150 PMCID: PMC4861788 DOI: 10.1155/2016/4575024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/16/2016] [Accepted: 03/02/2016] [Indexed: 11/17/2022]
Abstract
A new fungus Cladosporium oxysporum GQ-3 producing extracellular xylanase was isolated from decaying agricultural waste and identified based on the morphology and comparison of internal transcribed spacer (ITS) rDNA gene sequence. C. oxysporum produced maximum xylanase activity of 55.92 U/mL with wheat bran as a substrate and NH4Cl as a nitrogen source. Mg2+ improved C. oxysporum xylanase production. Partially purified xylanase exhibited maximum activity at 50°C and pH 8.0, respectively, and showed the stable activity after 2-h treatment in pH 7.0–8.5 or below 55°C. Mg2+ enhanced the xylanase activity by 2% while Cu2+ had the highest inhibition ratio of 57.9%. Furthermore, C. oxysporum xylanase was resistant to most of tested neutral and alkaline proteases. Our findings indicated that Cladosporium oxysporum GQ-3 was a novel xylanase producer, which could be used in the textile processes or paper/feed industries.
Collapse
|
49
|
Liang D, Gong L, Yao B, Xue X, Qin X, Ma R, Luo H, Xie X, Su X. Implication of a galactomannan-binding GH2 β-mannosidase in mannan utilization by Caldicellulosiruptor bescii. Biochem Biophys Res Commun 2015; 467:334-40. [DOI: 10.1016/j.bbrc.2015.09.156] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 09/28/2015] [Indexed: 01/20/2023]
|