1
|
Rana AK, Thakur VK. Advances and new horizons in metabolic engineering of heterotrophic bacteria and cyanobacteria for enhanced lactic acid production. BIORESOURCE TECHNOLOGY 2025; 419:131951. [PMID: 39647717 DOI: 10.1016/j.biortech.2024.131951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/21/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Bacteria species such as E.Coli, Lactobacilli, and pediococci play an important role as starter strains in fermentation food or polysaccharides into lactic acid. These bacteria were metabolically engineered using multiple proven genome editing methods to enhance relevant phenotypes. The efficacy of these procedures varies depending on the editing tool used and researchers' ability to pick suitable recombinants, which significantly increased genome engineering throughput. Cyanobacteria produce oxygenic photosynthesis and play an important role in carbon dioxide fixing. The fixed carbon dioxide is then retained as polysaccharides in cells and metabolised into various low carbon molecules such as lactate, succinate, and ethanol. Lactate is used as a building ingredient in various bioplastics, food additives, and medicines. This review covers the recent advances in lactic acid production through metabolic and genetic engineering in bacteria and cyanobacteria.
Collapse
Affiliation(s)
- A K Rana
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, Edinburgh, UK; Department of Chemistry, Sri Sai University, Palampur 176061, India
| | - V K Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, Edinburgh, UK.
| |
Collapse
|
2
|
Ağagündüz D, Keskin FN. The impact of fermentation on development of medical foods (for celiac, irritable bowel syndrome patients). HANDBOOK OF SOURDOUGH MICROBIOTA AND FERMENTATION 2025:161-181. [DOI: 10.1016/b978-0-443-18622-6.00009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Kumar V, Agrawal D, Bommareddy RR, Islam MA, Jacob S, Balan V, Singh V, Thakur VK, Navani NK, Scrutton NS. Arabinose as an overlooked sugar for microbial bioproduction of chemical building blocks. Crit Rev Biotechnol 2024; 44:1103-1120. [PMID: 37932016 DOI: 10.1080/07388551.2023.2270702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/06/2023] [Accepted: 09/19/2023] [Indexed: 11/08/2023]
Abstract
The circular economy is anticipated to bring a disruptive transformation in manufacturing technologies. Robust and industrial scalable microbial strains that can simultaneously assimilate and valorize multiple carbon substrates are highly desirable, as waste bioresources contain substantial amounts of renewable and fermentable carbon, which is diverse. Lignocellulosic biomass (LCB) is identified as an inexhaustible and alternative resource to reduce global dependence on oil. Glucose, xylose, and arabinose are the major monomeric sugars in LCB. However, primary research has focused on the use of glucose. On the other hand, the valorization of pentose sugars, xylose, and arabinose, has been mainly overlooked, despite possible assimilation by vast microbial communities. The present review highlights the research efforts that have explicitly proven the suitability of arabinose as the starting feedstock for producing various chemical building blocks via biological routes. It begins by analyzing the availability of various arabinose-rich biorenewable sources that can serve as potential feedstocks for biorefineries. The subsequent section outlines the current understanding of arabinose metabolism, biochemical routes prevalent in prokaryotic and eukaryotic systems, and possible products that can be derived from this sugar. Further, currently, exemplar products from arabinose, including arabitol, 2,3-butanediol, 1,2,3-butanetriol, ethanol, lactic acid, and xylitol are discussed, which have been produced by native and non-native microbial strains using metabolic engineering and genome editing tools. The final section deals with the challenges and obstacles associated with arabinose-based production, followed by concluding remarks and prospects.
Collapse
Affiliation(s)
- Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield, UK
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Deepti Agrawal
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, India
| | - Rajesh Reddy Bommareddy
- Department of Applied Sciences, Health and Life Sciences, Hub for Biotechnology in the Built Environment, Northumbria University, Newcastle upon Tyne, UK
| | - M Ahsanul Islam
- Department of Chemical Engineering, Loughborough University, Loughborough, UK
| | - Samuel Jacob
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, India
| | - Venkatesh Balan
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugar Land, TX, USA
| | - Vijai Singh
- Department of Biosciences, School of Sciences, Indrashil University, Rajpur, Mehsana, India
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Edinburgh, UK
| | - Naveen Kumar Navani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Nigel S Scrutton
- EPSRC/BBSRC Future Biomanufacturing Research Hub, Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, UK
| |
Collapse
|
4
|
Leschonski KP, Mortensen MS, Hansen LB, Krogh KB, Kabel MA, Laursen MF. Structure-dependent stimulation of gut bacteria by arabinoxylo-oligosaccharides (AXOS): a review. Gut Microbes 2024; 16:2430419. [PMID: 39611305 PMCID: PMC11610566 DOI: 10.1080/19490976.2024.2430419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/05/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024] Open
Abstract
Arabinoxylo-oligosaccharides (AXOS) are non-digestible dietary fibers that potentially confer a health benefit by stimulating beneficial bacteria in the gut. Still, a detailed overview of the diversity of gut bacteria and their specificity to utilize structurally different AXOS has not been provided to date and was aimed for in this study. Moreover, we assessed the genetic information of summarized bacteria, and we extracted genes expected to encode for enzymes that are involved in AXOS hydrolysis (based on the CAZy database). The taxa involved in AXOS fermentation in the gut display a large variety of AXOS-active enzymes in their genome and consequently utilize AXOS to a highly different extent. Clostridia and Bacteroidales are generalists that consume many structurally diverse AXOS, whereas Bifidobacterium are specialists that specifically consume AXOS with a low degree of polymerization. Further complexity is evident from the fact that the exact bacterial species, and in some cases even the bacterial strains (e.g. in Bifidobacterium longum) that are stimulated, highly depend on the specific AXOS molecular structure. Furthermore, certain species in Bifidobacterium and Lactobacillaceae are active as cross-feeders and consume monosaccharides and unbranched short xylo-oligosaccharides released from AXOS. Our review highlights the possibility that (enzymatic) fine-tuning of specific AXOS structures leads to improved precision in targeting growth of specific beneficial bacterial species and strains in the gut.
Collapse
Affiliation(s)
- Kai P. Leschonski
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
- Novonesis A/S, Kongens Lyngby, Denmark
| | - Martin S. Mortensen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | | | - Mirjam A. Kabel
- Laboratory of Food Chemistry, Wageningen University, Wageningen, The Netherlands
| | - Martin F. Laursen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
5
|
Selective Activity of an Anthocyanin-Rich, Purified Blueberry Extract upon Pathogenic and Probiotic Bacteria. Foods 2023; 12:foods12040734. [PMID: 36832808 PMCID: PMC9955905 DOI: 10.3390/foods12040734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Blueberry extracts have been widely recognized as possessing antimicrobial activity against several potential pathogens. However, the contextualization of the interaction of these extracts with beneficial bacteria (i.e., probiotics), particularly when considering the food applications of these products, may be of importance, not only because their presence is important in the regular gut microbiota, but also because they are important constituents of regular and functional foodstuffs. Therefore, the present work first sought to demonstrate the inhibitory effect of a blueberry extract upon four potential food pathogens and, after identifying the active concentrations, evaluated their impact upon the growth and metabolic activity (organic acid production and sugar consumption) of five potential probiotic microorganisms. Results showed that the extract, at a concentration that inhibited L. monocytogenes, B. cereus, E. coli and S. enteritidis (1000 μg mL-1), had no inhibitory effect on the growth of the potential probiotic stains used. However, the results demonstrated, for the first time, that the extract had a significant impact on the metabolic activity of all probiotic strains, resulting in higher amounts of organic acid production (acetic, citric and lactic acids) and an earlier production of propionic acid.
Collapse
|
6
|
Apostolakos I, Paramithiotis S, Mataragas M. Comparative Genomic Analysis Reveals the Functional Traits and Safety Status of Lactic Acid Bacteria Retrieved from Artisanal Cheeses and Raw Sheep Milk. Foods 2023; 12:foods12030599. [PMID: 36766127 PMCID: PMC9914385 DOI: 10.3390/foods12030599] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/21/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Lactic acid bacteria (LAB) are valuable for the production of fermented dairy products. We investigated the functional traits of LAB isolated from artisanal cheeses and raw sheep milk, assessed their safety status, and explored the genetic processes underlying the fermentation of carbohydrates. Lactiplantibacillus plantarum had the largest and more functional genome compared to all other LAB, while most of its protein-encoding genes had unknown functions. A key finding of our analysis was the overall absence of acquired resistance genes (RGs), virulence genes (VGs), and prophages, denoting that all LAB isolates fulfill safety criteria and can be used as starter or adjunct cultures. In this regard, the identified mobile genetic elements found in LAB, rather than enabling the integration of RGs or VGs, they likely facilitate the uptake of genes involved in beneficial functions and in the adaptation of LAB in dairy matrices. Another important finding of our study was that bacteriocins and CAZymes were abundant in LAB though each species was associated with specific genes, which in turn had different activity spectrums and identified applications. Additionally, all isolates were able to metabolize glucose, lactose, maltose, and sucrose, but Lactiplantibacillus plantarum was strongly associated with the fermentation of rhamnose, mannose, cellobiose, and trehalose whereas Levilactobacillus brevis with the utilization of arabinose and xylose. Altogether these results suggest that to fully exploit the beneficial properties of LAB, a combination of strains as food additives may be necessary. Interestingly, biological processes involved in the metabolism of carbohydrates that are not of direct interest for the dairy industry may yield valuable metabolites or activate pathways associated with beneficial health effects. Our results provide useful information for the development of new probiotic artisanal cheeses and probiotic starter cultures.
Collapse
Affiliation(s)
- Ilias Apostolakos
- Department of Dairy Research, Institution of Technology of Agricultural Products, Hellenic Agricultural Organization “DIMITRA”, 3 Ethnikis Antistaseos St., 45221 Ioannina, Greece
| | - Spiros Paramithiotis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece
| | - Marios Mataragas
- Department of Dairy Research, Institution of Technology of Agricultural Products, Hellenic Agricultural Organization “DIMITRA”, 3 Ethnikis Antistaseos St., 45221 Ioannina, Greece
- Correspondence:
| |
Collapse
|
7
|
Xu X, Xu R, Hou S, Kang Z, Lü C, Wang Q, Zhang W, Wang X, Xu P, Gao C, Ma C. A Selective Fluorescent l-Lactate Biosensor Based on an l-Lactate-Specific Transcription Regulator and Förster Resonance Energy Transfer. BIOSENSORS 2022; 12:1111. [PMID: 36551077 PMCID: PMC9775004 DOI: 10.3390/bios12121111] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Selective detection of l-lactate levels in foods, clinical, and bacterial fermentation samples has drawn intensive attention. Many fluorescent biosensors based on non-stereoselective recognition elements have been developed for lactate detection. Herein, the allosteric transcription factor STLldR from Salmonella enterica serovar Typhimurium LT2 was identified to be stereo-selectively respond to l-lactate. Then, STLldR was combined with Förster resonance energy transfer (FRET) to construct a fluorescent l-lactate biosensor FILLac. FILLac was further optimized by truncating the N- and C-terminal amino acids of STLldR between cyan and yellow fluorescent proteins. The optimized biosensor FILLac10N0C exhibited a maximum emission ratio change (ΔRmax) of 33.47 ± 1.91%, an apparent dissociation constant (Kd) of 6.33 ± 0.79 μM, and a limit of detection of 0.68 μM. FILLac10N0C was applied in 96-well microplates to detect l-lactate in bacterial fermentation samples and commercial foods such as Jiaosu and yogurt. The quantitation results of FILLac10N0C exhibited good agreement with that of a commercial l-lactate biosensor SBA-40D bioanalyzer. Thus, the biosensor FILLac10N0C compatible with high-throughput detection may be a potential choice for quantitation of l-lactate in different biological samples.
Collapse
Affiliation(s)
- Xianzhi Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Rong Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Shuang Hou
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Zhaoqi Kang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Chuanjuan Lü
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Qian Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Wen Zhang
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Xia Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
8
|
Nagarajan D, Chen CY, Ariyadasa TU, Lee DJ, Chang JS. Macroalgal biomass as a potential resource for lactic acid fermentation. CHEMOSPHERE 2022; 309:136694. [PMID: 36206920 DOI: 10.1016/j.chemosphere.2022.136694] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Lactic acid is an essential platform chemical with various applications in the chemicals, food, pharmaceutical, and cosmetic industries. Currently, the demand for lactic acid is driven by the role of lactic acid as the starting material for the production of bioplastic polylactide. Microbial fermentation for lactic acid production is favored due to the production of enantiomerically pure lactic acid required for polylactide synthesis, as opposed to the racemic mixture obtained via chemical synthesis. The utilization of first-generation feedstock for commercial lactic acid production is challenged by feedstock costs and sustainability issues. Macroalgae are photosynthetic benthic aquatic plants that contribute tremendously towards carbon capture with subsequent carbon-rich biomass production. Macroalgae are commercially cultivated to extract hydrocolloids, and recent studies have focused on applying biomass as a fermentation feedstock. This review provides comprehensive information on the design and development of sustainable and cost-effective, algae-based lactic acid production. The central carbon regulation in lactic acid bacteria and the metabolism of seaweed-derived sugars are described. An exhaustive compilation of lactic acid fermentation of macroalgae hydrolysates revealed that lactic acid bacteria can effectively ferment the mixture of sugars present in the hydrolysate with comparable yields. The environmental impacts and economic prospects of macroalgal lactic acid are analyzed. Valorization of the vast amounts of spent macroalgal biomass residue post hydrocolloid extraction in a biorefinery is a viable strategy for cost-effective lactic acid production.
Collapse
Affiliation(s)
- Dillirani Nagarajan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.
| | - Chun-Yen Chen
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Research Center for Circular Economy, National Cheng Kung University, Tainan, Taiwan
| | - Thilini U Ariyadasa
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Moratuwa, Moratuwa, 10400, Sri Lanka
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung, 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, 32003, Taiwan.
| |
Collapse
|
9
|
Zhang X, Feng H, He J, Muhammad A, Zhang F, Lu X. Features and Colonization Strategies of Enterococcus faecalis in the Gut of Bombyx mori. Front Microbiol 2022; 13:921330. [PMID: 35814682 PMCID: PMC9263704 DOI: 10.3389/fmicb.2022.921330] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022] Open
Abstract
The complex gut microbiome is a malleable microbial community that can undergo remodeling in response to many factors, including the gut environment and microbial properties. Enterococcus has emerged as one of the predominant gut commensal bacterial and plays a fundamental role in the host physiology and health of the major economic agricultural insect, Bombyx mori. Although extensive research on gut structure and microbiome diversity has been carried out, how these microbial consortia are established in multifarious niches within the gut has not been well characterized to date. Here, an Enterococcus species that was stably associated with its host, the model organism B. mori, was identified in the larval gut. GFP–tagged E. faecalis LX10 was constructed as a model bacterium to track the colonization mechanism in the intestine of B. mori. The results revealed that the minimum and optimum colonization results were obtained by feeding at doses of 105 CFU/silkworm and 107 CFU/silkworm, respectively, as confirmed by bioassays and fluorescence-activated cell sorting analyses (FACS). Furthermore, a comprehensive genome-wide exploration of signal sequences provided insight into the relevant colonization properties of E. faecalis LX10. E. faecalis LX10 grew well under alkaline conditions and stably reduced the intestinal pH through lactic acid production. Additionally, the genomic features responsible for lactic acid fermentation were characterized. We further expressed and purified E. faecalis bacteriocin and found that it was particularly effective against other gut bacteria, including Enterococcus casselifavus, Enterococcus mundtii, Serratia marcescens, Bacillus amyloliquefaciens, and Escherichia coli. In addition, the successful colonization of E. faecalis LX10 led to drastically increased expression of all adhesion genes (znuA, lepB, hssA, adhE, EbpA, and Lap), defense genes (cspp, tagF, and esp), regulation gene (BfmRS), secretion gene (prkC) and immune evasion genes (patA and patB), while the expression of iron acquisition genes (ddpD and metN) was largely unchanged or decreased. This work establishes an unprecedented conceptual model for understanding B. mori–gut microbiota interactions in an ecological context. Moreover, these results shed light on the molecular mechanisms of gut microbiota proliferation and colonization in the intestinal tract of this insect.
Collapse
Affiliation(s)
- Xiancui Zhang
- College of Animal Sciences, Institute of Sericulture and Apiculture, Zhejiang University, Hangzhou, China
| | - Huihui Feng
- College of Animal Sciences, Institute of Sericulture and Apiculture, Zhejiang University, Hangzhou, China
| | - Jintao He
- College of Animal Sciences, Institute of Sericulture and Apiculture, Zhejiang University, Hangzhou, China
| | - Abrar Muhammad
- College of Animal Sciences, Institute of Sericulture and Apiculture, Zhejiang University, Hangzhou, China
| | - Fan Zhang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
- *Correspondence: Fan Zhang,
| | - Xingmeng Lu
- College of Animal Sciences, Institute of Sericulture and Apiculture, Zhejiang University, Hangzhou, China
- Xingmeng Lu,
| |
Collapse
|
10
|
Gladwin SA, Kenji O, Honda K. One-step preparation of cell-free ATP regeneration module based on non-oxidative glycolysis using thermophilic enzymes. Chembiochem 2022; 23:e202200210. [PMID: 35642750 DOI: 10.1002/cbic.202200210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/01/2022] [Indexed: 11/11/2022]
Abstract
Adenosine triphosphate (ATP) is an essential cofactor for energy-dependent enzymatic reactions that occur during in vitro biochemical conversion. Recently, an enzyme cascade based on non-oxidative glycolysis, which uses starch and orthophosphate as energy and phosphate sources, respectively, for the regeneration of ATP from adenosine diphosphate, has been developed (Wei et. al., ChemCatChem 2018 , 10 , 5597-5601). However, the 12 enzymes required for this system hampered its practical usability and further testing potential. Here, we addressed this issue by constructing co-expression vectors for the simultaneous gene expression of the 12 enzymes in a single expression strain. All enzymes were sourced from (hyper)thermophiles, which enabled a one-step purification via a heat-treatment process. We showed that the combination of the two enabled the ATP regeneration system to function in a single recombinant Escherichia coli strain. Additionally, this work provides a strategy to rationally design and control proteins expression levels in the co-expression vectors.
Collapse
Affiliation(s)
| | - Okano Kenji
- Kansai University: Kansai Daigaku, Department of Life Science and Biotechnology, JAPAN
| | - Kohsuke Honda
- Osaka University: Osaka Daigaku, International Center for Biotechnology, 2-1 Yamadaoka, 565-0871, Suita, JAPAN
| |
Collapse
|
11
|
Dewi G, Kollanoor Johny A. Lactobacillus in Food Animal Production—A Forerunner for Clean Label Prospects in Animal-Derived Products. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.831195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Lactobacillus, the largest genus within the lactic acid bacteria group, has served diverse roles in improving the quality of foods for centuries. The heterogeneity within this genus has resulted in the industry's continued use of their well-known functions and exploration of novel applications. Moreover, the perceived health benefits in many applications have also made them fond favorites of consumers and researchers alike. Their familiarity lends to their utility in the growing “clean label” movement, of which consumers prefer fewer additions to the food label and opt for recognizable and naturally-derived substances. Our review primarily focuses on the historical use of lactobacilli for their antimicrobial functionality in improving preharvest safety, a critical step to validate their role as biocontrol agents and antibiotic alternatives in food animal production. We also explore their potential as candidates catering to the consumer-driven demand for more authentic, transparent, and socially responsible labeling of animal products.
Collapse
|
12
|
Okano K, Sato Y, Hama S, Tanaka T, Noda H, Kondo A. L-Lactate oxidase-mediated removal of L-lactic acid derived from fermentation medium for the production of optically pure D-lactic acid. Biotechnol J 2022; 17:e2100331. [PMID: 35076998 DOI: 10.1002/biot.202100331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND There has been an increasing demand for optically pure D-lactic and L-lactic acid for the production of stereocomplex-type polylactic acid. The D-lactic acid production from lignocellulosic biomass is important owing to its great abundance in nature. Corn steep liquor (CSL) is a cheap nitrogen source used for industrial fermentation, though it contains a significant amount of L-lactic acid, which decreases the optical purity of D-lactic acid produced. METHOD AND RESULTS To remove L-lactic acid derived from the CSL-based medium, L-lactate oxidase (LoxL) from Enterococcus sp. NBRC 3427 was expressed in an engineered Lactiplantibacillus plantarum (formally called Lactobacillus plantarum) strain KOLP7, which exclusively produces D-lactic acid from both hexose and pentose sugars. When the resulting strain was applied for D-lactic acid fermentation from the mixed sugars consisting of the major constituent sugars of lignocellulose (35 g/L glucose, 10 g/L xylose, and 5 g/L arabinose) using the medium containing 10 g/L CSL, it completely removed L-lactic acid derived from CSL (0.52 g/L) and produced 41.7 g/L of D-lactic acid. The L-lactic acid concentration was below the detection limit, and improvement in the optical purity of D-lactic acid was observed (from 98.2% to > 99.99%) by the overexpression of LoxL. CONCLUSION AND IMPLICATIONS The LoxL-mediated consumption of L-lactic acid would enable the production of optically pure D-lactic acid in any medium contaminated by L-lactic acid. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kenji Okano
- International Center for Biotechnology, Osaka University, Osaka, Japan.,Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka, Japan
| | - Yu Sato
- International Center for Biotechnology, Osaka University, Osaka, Japan
| | - Shnji Hama
- Bio-energy Corporation, Research & Development Laboratory, Amagasaki, Hyogo, Japan
| | - Tsutomu Tanaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan
| | - Hideo Noda
- Bio-energy Corporation, Research & Development Laboratory, Amagasaki, Hyogo, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology, and Innovation, Kobe University, Kobe, Hyogo, Japan
| |
Collapse
|
13
|
Dorau R, Liu J, Solem C, Jensen PR. Metabolic Engineering of Lactic Acid Bacteria. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Rao R, Basak N. Fermentative molecular biohydrogen production from cheese whey: present prospects and future strategy. Appl Biochem Biotechnol 2021; 193:2297-2330. [PMID: 33608807 DOI: 10.1007/s12010-021-03528-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022]
Abstract
Waste-dependent fermentative routes for biohydrogen production present a possible scenario to produce hydrogen gas on a large scale in a sustainable way. Cheese whey contains a high portion of organic carbohydrate and other organic acids, which makes it a feasible substrate for biohydrogen production. In the present review, recent research progress related to fermentative technologies, which explore the potentiality of cheese whey for biohydrogen production as an effective tool on a large scale, has been analyzed systematically. In addition, application of multiple response surface methodology tools such as full factorial design, Box-Behnken model, and central composite design during fermentative biohydrogen production to study the interactive effects of different bioprocess variables for higher biohydrogen yield in batch, fed-batch, and continuous mode is also discussed. The current paper also emphasizes computational fluid dynamics-based simulation designs, by which the substrate conversion efficiency of the cheese whey-based bioprocess and temperature distribution toward the turbulent flow of reaction liquid can be enhanced. The possible future developments toward higher process efficiency are outlined.
Collapse
Affiliation(s)
- Raman Rao
- Department of Biotechnology, Dr. B R Ambedkar National Institute of Technology, Jalandhar, 144 011, India
| | - Nitai Basak
- Department of Biotechnology, Dr. B R Ambedkar National Institute of Technology, Jalandhar, 144 011, India.
| |
Collapse
|
15
|
Song Y, Hervé V, Radek R, Pfeiffer F, Zheng H, Brune A. Characterization and phylogenomic analysis of Breznakiella homolactica gen. nov. sp. nov. indicate that termite gut treponemes evolved from non-acetogenic spirochetes in cockroaches. Environ Microbiol 2021; 23:4228-4245. [PMID: 33998119 DOI: 10.1111/1462-2920.15600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 01/01/2023]
Abstract
Spirochetes of the genus Treponema are surprisingly abundant in termite guts, where they play an important role in reductive acetogenesis. Although they occur in all termites investigated, their evolutionary origin is obscure. Here, we isolated the first representative of 'termite gut treponemes' from cockroaches, the closest relatives of termites. Phylogenomic analysis revealed that Breznakiella homolactica gen. nov. sp. nov. represents the most basal lineage of the highly diverse 'termite cluster I', a deep-branching sister group of Treponemataceae (fam. 'Termitinemataceae') that was present already in the cockroach ancestor of termites and subsequently coevolved with its host. Breznakiella homolactica is obligately anaerobic and catalyses the homolactic fermentation of both hexoses and pentoses. Resting cells produced acetate in the presence of oxygen. Genome analysis revealed the presence of pyruvate oxidase and catalase, and a cryptic potential for the formation of acetate, ethanol, formate, CO2 and H2 - the fermentation products of termite gut isolates. Genes encoding key enzymes of reductive acetogenesis, however, are absent, confirming the hypothesis that the ancestral metabolism of the cluster was fermentative, and that the capacity for acetogenesis from H2 plus CO2 - the most intriguing property among termite gut treponemes - was acquired by lateral gene transfer.
Collapse
Affiliation(s)
- Yulin Song
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, 35043, Germany
| | - Vincent Hervé
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, 35043, Germany
| | - Renate Radek
- Institute of Biology/Zoology, Free University of Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany
| | - Fabienne Pfeiffer
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, 35043, Germany
| | - Hao Zheng
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, 35043, Germany
| | - Andreas Brune
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, 35043, Germany
| |
Collapse
|
16
|
Bacterial valorization of pulp and paper industry process streams and waste. Appl Microbiol Biotechnol 2021; 105:1345-1363. [PMID: 33481067 DOI: 10.1007/s00253-021-11107-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/28/2020] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
The pulp and paper industry is a major source of lignocellulose-containing streams. The components of lignocellulose material are lignin, hemicellulose, and cellulose that may be hydrolyzed into their smaller components and used as feedstocks for valorization efforts. Much of this material is contained in underutilized streams and waste products, such as black liquor, pulp and paper sludge, and wastewater. Bacterial fermentation strategies have suitable potential to upgrade lignocellulosic biomass contained in these streams to value-added chemicals. Bacterial conversion allows for a sustainable and economically feasible approach to valorizing these streams, which can bolster and expand applications of the pulp and paper industry. This review discusses the composition of pulp and paper streams, bacterial isolates from process streams that can be used for lignocellulose biotransformations, and technological approaches for improving valorization efforts. KEY POINTS: • Reviews the conversion of pulp and paper industry waste by bacterial isolates. • Metabolic pathways for the breakdown of lignocellulose components. • Methods for isolating bacteria, determining value-added products, and increasing product yields.
Collapse
|
17
|
Combining metabolic engineering and evolutionary adaptation in Klebsiella oxytoca KMS004 to significantly improve optically pure D-(-)-lactic acid yield and specific productivity in low nutrient medium. Appl Microbiol Biotechnol 2020; 104:9565-9579. [PMID: 33009939 DOI: 10.1007/s00253-020-10933-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/15/2020] [Accepted: 09/23/2020] [Indexed: 10/23/2022]
Abstract
In this study, K. oxytoca KMS004 (ΔadhE Δpta-ackA) was further reengineered by the deletion of frdABCD and pflB genes to divert carbon flux through D-(-)-lactate production. During fermentation of high glucose concentration, the resulted strain named K. oxytoca KIS004 showed poor in growth and glucose consumption due to its insufficient capacity to generate acetyl-CoA for biosynthesis. Evolutionary adaptation was thus employed with the strain to overcome impaired growth and acetate auxotroph. The evolved K. oxytoca KIS004-91T strain exhibited significantly higher glucose-utilizing rate and D-(-)-lactate production as a primary route to regenerate NAD+. D-(-)-lactate at concentration of 133 g/L (1.48 M), with yield and productivity of 0.98 g/g and 2.22 g/L/h, respectively, was obtained by the strain. To the best of our knowledge, this strain provided a relatively high specific productivity of 1.91 g/gCDW/h among those of other previous works. Cassava starch was also used to demonstrate a potential low-cost renewable substrate for D-(-)-lactate production. Production cost of D-(-)-lactate was estimated at $3.72/kg. Therefore, it is possible for the KIS004-91T strain to be an alternative biocatalyst offering a more economically competitive D-(-)-lactate production on an industrial scale. KEY POINTS: • KIS004-91T produced optically pure D-(-)-lactate up to 1.48 M in a low salts medium. • It possessed the highest specific D-(-)-lactate productivity than other reported strains. • Cassava starch as a cheap and renewable substrate was used for D-(-)-lactate production. • Costs related to media, fermentation, purification, and waste disposal were reduced.
Collapse
|
18
|
Jia Y, Yang B, Ross P, Stanton C, Zhang H, Zhao J, Chen W. Comparative Genomics Analysis of Lactobacillus mucosae from Different Niches. Genes (Basel) 2020; 11:genes11010095. [PMID: 31947593 PMCID: PMC7016874 DOI: 10.3390/genes11010095] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/30/2019] [Accepted: 01/09/2020] [Indexed: 12/15/2022] Open
Abstract
The potential probiotic benefits of Lactobacillus mucosae have received increasing attention. To investigate the genetic diversity of L. mucosae, comparative genomic analyses of 93 strains isolated from different niches (human and animal gut, human vagina, etc.) and eight strains of published genomes were conducted. The results showed that the core genome of L. mucosae mainly encoded translation and transcription, amino acid biosynthesis, sugar metabolism, and defense function while the pan-genomic curve tended to be close. The genetic diversity of L. mucosae mainly reflected in carbohydrate metabolism and immune/competitive-related factors, such as exopolysaccharide (EPS), enterolysin A, and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas. It was worth noting that this research firstly predicted the complete EPS operon shared among L. mucosae. Additionally, the type IIIA CRISPR-Cas system was discovered in L. mucosae for the first time. This work provided new ideas for the study of this species.
Collapse
Affiliation(s)
- Yan Jia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Y.J.); (H.Z.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Y.J.); (H.Z.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, China; (P.R.); (C.S.)
- Correspondence: ; Tel.: +86-510-591-2155
| | - Paul Ross
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, China; (P.R.); (C.S.)
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| | - Catherine Stanton
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, China; (P.R.); (C.S.)
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Y.J.); (H.Z.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Y.J.); (H.Z.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Y.J.); (H.Z.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 102488, China
| |
Collapse
|
19
|
Mazzoli R. Metabolic engineering strategies for consolidated production of lactic acid from lignocellulosic biomass. Biotechnol Appl Biochem 2020; 67:61-72. [DOI: 10.1002/bab.1869] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/05/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Roberto Mazzoli
- Structural and Functional BiochemistryLaboratory of Proteomics and Metabolic Engineering of ProkaryotesDepartment of Life Sciences and Systems BiologyUniversity of Torino Torino Italy
| |
Collapse
|
20
|
Tarraran L, Mazzoli R. Alternative strategies for lignocellulose fermentation through lactic acid bacteria: the state of the art and perspectives. FEMS Microbiol Lett 2019; 365:4995910. [PMID: 30007320 DOI: 10.1093/femsle/fny126] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/11/2018] [Indexed: 12/22/2022] Open
Abstract
Lactic acid bacteria (LAB) have a long history in industrial processes as food starters and biocontrol agents, and also as producers of high-value compounds. Lactic acid, their main product, is among the most requested chemicals because of its multiple applications, including the synthesis of biodegradable plastic polymers. Moreover, LAB are attractive candidates for the production of ethanol, polyhydroalkanoates, sweeteners and exopolysaccharides. LAB generally have complex nutritional requirements. Furthermore, they cannot directly ferment inexpensive feedstocks such as lignocellulose. This significantly increases the cost of LAB fermentation and hinders its application in the production of high volumes of low-cost chemicals. Different strategies have been explored to extend LAB fermentation to lignocellulosic biomass. Fermentation of lignocellulose hydrolysates by LAB has been frequently reported and is the most mature technology. However, current economic constraints of this strategy have driven research for alternative approaches. Co-cultivation of LAB with native cellulolytic microorganisms may reduce the high cost of exogenous cellulase supplementation. Special attention is given in this review to the construction of recombinant cellulolytic LAB by metabolic engineering, which may generate strains able to directly ferment plant biomass. The state of the art of these strategies is illustrated along with perspectives of their applications to industrial second generation biorefinery processes.
Collapse
Affiliation(s)
- Loredana Tarraran
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy
| | - Roberto Mazzoli
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy
| |
Collapse
|
21
|
Hatti-Kaul R, Chen L, Dishisha T, Enshasy HE. Lactic acid bacteria: from starter cultures to producers of chemicals. FEMS Microbiol Lett 2018; 365:5087731. [DOI: 10.1093/femsle/fny213] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/29/2018] [Indexed: 12/26/2022] Open
Affiliation(s)
- Rajni Hatti-Kaul
- Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Lu Chen
- Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Tarek Dishisha
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, 62511 Beni-Suef, Egypt
| | - Hesham El Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), 81 310 Skudai, Johor, Malaysia
- City of Scientific Research and Technology Applications, New Burg Al Arab, Alexandria, Egypt
| |
Collapse
|
22
|
Biosynthesis of d-lactic acid from lignocellulosic biomass. Biotechnol Lett 2018; 40:1167-1179. [DOI: 10.1007/s10529-018-2588-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/25/2018] [Indexed: 11/25/2022]
|
23
|
Alves de Oliveira R, Komesu A, Vaz Rossell CE, Maciel Filho R. Challenges and opportunities in lactic acid bioprocess design—From economic to production aspects. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.03.003] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
A Human Gut Commensal Ferments Cranberry Carbohydrates To Produce Formate. Appl Environ Microbiol 2017; 83:AEM.01097-17. [PMID: 28667113 DOI: 10.1128/aem.01097-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/22/2017] [Indexed: 02/07/2023] Open
Abstract
Commensal bifidobacteria colonize the human gastrointestinal tract and catabolize glycans that are impervious to host digestion. Accordingly, Bifidobacterium longum typically secretes acetate and lactate as fermentative end products. This study tested the hypothesis that B. longum utilizes cranberry-derived xyloglucans in a strain-dependent manner. Interestingly, the B. longum strain that efficiently utilizes cranberry xyloglucans secretes 2.0 to 2.5 mol of acetate-lactate. The 1.5 acetate:lactate ratio theoretical yield obtained in hexose fermentations shifts during xyloglucan metabolism. Accordingly, this metabolic shift is characterized by increased acetate and formate production at the expense of lactate. α-l-Arabinofuranosidase, an arabinan endo-1,5-α-l-arabinosidase, and a β-xylosidase with a carbohydrate substrate-binding protein and carbohydrate ABC transporter membrane proteins are upregulated (>2-fold change), which suggests carbon flux through this catabolic pathway. Finally, syntrophic interactions occurred with strains that utilize carbohydrate products derived from initial degradation from heterologous bacteria.IMPORTANCE This was a study of bacterial metabolism of complex cranberry carbohydrates termed xyloglucans that are likely not digested prior to reaching the colon. This is significant, as bifidobacteria interact with this dietary compound to potentially impact human host health through energy and metabolite production by utilizing these substrates. Specific bacterial strains utilize cranberry xyloglucans as a nutritive source, indicating unknown mechanisms that are not universal in bifidobacteria. In addition, xyloglucan metabolism proceeds by using an alternative pathway that could lead to further research to investigate mechanisms underlying this interaction. Finally, we observed cross-feeding between bacteria in which one strain degrades the cranberry xyloglucan to make it available to a second strain. Similar nutritive strategies are known to occur within the gut. In aggregate, this study may lead to novel foods or supplements used to impact human health through rational manipulation of the human microbiome.
Collapse
|
25
|
Das G, Patra JK, Lee SY, Kim C, Park JG, Baek KH. Analysis of metabolomic profile of fermented Orostachys japonicus A. Berger by capillary electrophoresis time of flight mass spectrometry. PLoS One 2017; 12:e0181280. [PMID: 28704842 PMCID: PMC5509444 DOI: 10.1371/journal.pone.0181280] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/28/2017] [Indexed: 12/18/2022] Open
Abstract
Microbial cell performance in food biotechnological processes has become an important concern for improving human health worldwide. Lactobacillus plantarum, which is widely distributed in nature, is a lactic acid bacterium with many industrial applications for fermented foods or functional foods (e.g., probiotics). In the present study, using capillary electrophoresis time of flight mass spectrometry, the metabolomic profile of dried Orostachys japonicus A. Berger, a perennial medicinal herb with L. plantarum was compared with that of O. japonicus fermented with L. plantarum to elucidate the metabolomic changes induced by the fermentation process. The levels of several metabolites were changed by the fermentation process, indicating their involvement in microbial performance. For example, glycolysis, the pentose phosphate pathway, the TCA cycle, the urea cycle-related metabolism, nucleotide metabolism, and lipid and amino acid metabolism were altered significantly by the fermentation process. Although the fermented metabolites were not tested using in vivo studies to increase human health benefits, our findings provide an insight into the alteration of metabolites induced by fermentation, and indicated that the metabolomic analysis for the process should be accompanied by fermenting strains and conditions.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Gyeonggi-do, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Gyeonggi-do, Republic of Korea
| | - Sun-Young Lee
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea
| | - Changgeon Kim
- Pohang Center for Evaluation Biomaterials (POCEB), Pohang Technopark Foundation, Pohang, Gyeongbuk, Republic of Korea
| | - Jae Gyu Park
- Pohang Center for Evaluation Biomaterials (POCEB), Pohang Technopark Foundation, Pohang, Gyeongbuk, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea
| |
Collapse
|
26
|
Bosma EF, Forster J, Nielsen AT. Lactobacilli and pediococci as versatile cell factories - Evaluation of strain properties and genetic tools. Biotechnol Adv 2017; 35:419-442. [PMID: 28396124 DOI: 10.1016/j.biotechadv.2017.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/29/2017] [Accepted: 04/03/2017] [Indexed: 12/14/2022]
Abstract
This review discusses opportunities and bottlenecks for cell factory development of Lactic Acid Bacteria (LAB), with an emphasis on lactobacilli and pediococci, their metabolism and genetic tools. In order to enable economically feasible bio-based production of chemicals and fuels in a biorefinery, the choice of product, substrate and production organism is important. Currently, the most frequently used production hosts include Escherichia coli and Saccharomyces cerevisiae, but promising examples are available of alternative hosts such as LAB. Particularly lactobacilli and pediococci can offer benefits such as thermotolerance, an extended substrate range and increased tolerance to stresses such as low pH or high alcohol concentrations. This review will evaluate the properties and metabolism of these organisms, and provide an overview of their current biotechnological applications and metabolic engineering. We substantiate the review by including experimental results from screening various lactobacilli and pediococci for transformability, growth temperature range and ability to grow under biotechnologically relevant stress conditions. Since availability of efficient genetic engineering tools is a crucial prerequisite for industrial strain development, genetic tool development is extensively discussed. A range of genetic tools exist for Lactococcus lactis, but for other species of LAB like lactobacilli and pediococci such tools are less well developed. Whereas lactobacilli and pediococci have a long history of use in food and beverage fermentation, their use as platform organisms for production purposes is rather new. By harnessing their properties such as thermotolerance and stress resistance, and by using emerging high-throughput genetic tools, these organisms are very promising as versatile cell factories for biorefinery applications.
Collapse
Affiliation(s)
- Elleke F Bosma
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet B220, 2800 Kgs. Lyngby, Denmark
| | - Jochen Forster
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet B220, 2800 Kgs. Lyngby, Denmark
| | - Alex Toftgaard Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet B220, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
27
|
Díaz AB, Marzo C, Caro I, de Ory I, Blandino A. Valorization of exhausted sugar beet cossettes by successive hydrolysis and two fermentations for the production of bio-products. BIORESOURCE TECHNOLOGY 2017; 225:225-233. [PMID: 27894041 DOI: 10.1016/j.biortech.2016.11.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/04/2016] [Accepted: 11/05/2016] [Indexed: 06/06/2023]
Abstract
Exhausted sugar beet cossettes (ESBC) show an enormous potential as a source of sugars for the production of bio-products. Enzyme hydrolysis with the combined effect of mainly cellulases, xylanases and pectinases, turned out to be very efficient, obtaining almost double the concentration of sugars measured with the sole action of Celluclast® and β-glucosidase, and increasing 5 times the hydrolysis rate. As the sole pretreatment, ESBC soaked in the hydrolysis buffer were autoclaved, avoiding the application of severe conventional biomass pretreatments. Moreover, a promising alternative for the complete utilization of glucose, xylose, arabinose, mannose and maltose contained in ESBC is proposed in this paper. It consists of sequential fermentation of sugars released in the hydrolysis step to produce bioethanol and lactic acid as main bio-products. Compared to separate fermentations, with this strategy glucose and hemicellulose derived sugars were completely consumed and the 44% of pectin derived sugars.
Collapse
Affiliation(s)
- A B Díaz
- Laboratory of Microbiology, Faculty of Marine and Environmental Sciences, University of Cádiz, Pol. Río San Pedro s/n, Puerto Real, Spain.
| | - C Marzo
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, International Agro-Food Campus of Excellence (CeiA3), University of Cádiz, Pol. Río San Pedro s/n, Puerto Real, Spain
| | - I Caro
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, International Agro-Food Campus of Excellence (CeiA3), University of Cádiz, Pol. Río San Pedro s/n, Puerto Real, Spain
| | - I de Ory
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, International Agro-Food Campus of Excellence (CeiA3), University of Cádiz, Pol. Río San Pedro s/n, Puerto Real, Spain
| | - A Blandino
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, International Agro-Food Campus of Excellence (CeiA3), University of Cádiz, Pol. Río San Pedro s/n, Puerto Real, Spain
| |
Collapse
|
28
|
Ruiz-Rodríguez L, Bleckwedel J, Eugenia Ortiz M, Pescuma M, Mozzi F. Lactic Acid Bacteria. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Luciana Ruiz-Rodríguez
- Centro de Referencia para Lactobacilos (CERELA)-CONICET; Chacabuco 145. San Miguel de Tucumán 4000 Argentina
| | - Juliana Bleckwedel
- Centro de Referencia para Lactobacilos (CERELA)-CONICET; Chacabuco 145. San Miguel de Tucumán 4000 Argentina
| | - Maria Eugenia Ortiz
- Centro de Referencia para Lactobacilos (CERELA)-CONICET; Chacabuco 145. San Miguel de Tucumán 4000 Argentina
| | - Micaela Pescuma
- Centro de Referencia para Lactobacilos (CERELA)-CONICET; Chacabuco 145. San Miguel de Tucumán 4000 Argentina
| | - Fernanda Mozzi
- Centro de Referencia para Lactobacilos (CERELA)-CONICET; Chacabuco 145. San Miguel de Tucumán 4000 Argentina
| |
Collapse
|
29
|
Abdel-Rahman MA, Sonomoto K. Opportunities to overcome the current limitations and challenges for efficient microbial production of optically pure lactic acid. J Biotechnol 2016; 236:176-92. [DOI: 10.1016/j.jbiotec.2016.08.008] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/11/2016] [Indexed: 10/21/2022]
|
30
|
Biotechnological production of enantiomerically pure d-lactic acid. Appl Microbiol Biotechnol 2016; 100:9423-9437. [DOI: 10.1007/s00253-016-7843-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/04/2016] [Accepted: 09/07/2016] [Indexed: 12/13/2022]
|
31
|
Zhang Y, Zeng F, Hohn K, Vadlani PV. Metabolic flux analysis of carbon balance inLactobacillusstrains. Biotechnol Prog 2016; 32:1397-1403. [DOI: 10.1002/btpr.2361] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/23/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Yixing Zhang
- Bioprocessing and Renewable Energy Laboratory, Department of Grain Science and Industry; Kansas State University; Manhattan Kansas
| | - Fan Zeng
- Dept. of Chemical Engineering; Kansas State University; Manhattan Kansas
| | - Keith Hohn
- Dept. of Chemical Engineering; Kansas State University; Manhattan Kansas
| | - Praveen V. Vadlani
- Dept. of Chemical Engineering; Kansas State University; Manhattan Kansas
- Dept. of Grain Science and Industry, Bioprocessing and Renewable Energy Laboratory; Kansas State University; Manhattan Kansas
| |
Collapse
|
32
|
Li C, Tao F, Xu P. Carbon Flux Trapping: Highly Efficient Production of Polymer-Grade d-Lactic Acid with a Thermophilic d-Lactate Dehydrogenase. Chembiochem 2016; 17:1491-4. [PMID: 27237045 DOI: 10.1002/cbic.201600288] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Indexed: 11/10/2022]
Abstract
High production of polymer-grade d-lactic acid is urgently required, particularly for the synthesis of polylactic acid. High-temperature fermentation has multiple advantages, such as lower equipment requirement and energy consumption, which are essential for lowering operating costs. We identified and introduced a unique d-lactate dehydrogenase into a thermotolerant butane-2,3-diol-producing strain. Carbon flux "trapping" was achieved by a "trapping point" created by combination of the introduced enzyme and the host efflux pump, which afforded irreversible transport of d-lactic acid. The overall carbon flux of the engineered strain was significantly enhanced and was redistributed predominantly to d-lactic acid. Under optimized conditions at 50 °C, d-lactic acid reached the highest titer (226.6 g L(-1) ) reported to date. This discovery allows us to extend the carbon flux trapping strategy to engineering complex metabolic networks.
Collapse
Affiliation(s)
- Chao Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Joint International Research Laboratory of Metabolic, and Developmental Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Fei Tao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Joint International Research Laboratory of Metabolic, and Developmental Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China. .,Joint International Research Laboratory of Metabolic, and Developmental Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China. .,Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 800 Dongchuan Road, Shanghai, 200237, China.
| |
Collapse
|
33
|
Reddy Tadi SR, E. V. R. A, Limaye AM, Sivaprakasam S. Enhanced production of optically pure d
(-) lactic acid from nutritionally rich Borassus flabellifer
sugar and whey protein hydrolysate based-fermentation medium. Biotechnol Appl Biochem 2016; 64:279-289. [DOI: 10.1002/bab.1470] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/11/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Subbi Rami Reddy Tadi
- BioPAT Laboratory; Department of Biosciences and Bioengineering; Indian Institute of Technology Guwahati; Guwahati India
| | - Arun E. V. R.
- BioPAT Laboratory; Department of Biosciences and Bioengineering; Indian Institute of Technology Guwahati; Guwahati India
| | - Anil Mukund Limaye
- BioPAT Laboratory; Department of Biosciences and Bioengineering; Indian Institute of Technology Guwahati; Guwahati India
| | - Senthilkumar Sivaprakasam
- BioPAT Laboratory; Department of Biosciences and Bioengineering; Indian Institute of Technology Guwahati; Guwahati India
| |
Collapse
|
34
|
Zhang Y, Kumar A, Hardwidge PR, Tanaka T, Kondo A, Vadlani PV. d-lactic acid production from renewable lignocellulosic biomass via genetically modifiedLactobacillus plantarum. Biotechnol Prog 2016; 32:271-8. [DOI: 10.1002/btpr.2212] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 12/03/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Yixing Zhang
- Dept. of Grain Science and Industry, Bioprocessing and Renewable Energy Laboratory; Kansas State University; Manhattan KS 66506
| | - Amit Kumar
- Dept. of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine; Kansas State University; Manhattan KS 66506
| | - Philip R. Hardwidge
- Dept. of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine; Kansas State University; Manhattan KS 66506
| | - Tsutomu Tanaka
- Dept. of Chemical Science and Engineering, Graduate School of Engineering; Kobe University, 1-1 Rokkodaicho; Nada Kobe 657-8501 Japan
| | - Akihiko Kondo
- Dept. of Chemical Science and Engineering, Graduate School of Engineering; Kobe University, 1-1 Rokkodaicho; Nada Kobe 657-8501 Japan
| | - Praveen V. Vadlani
- Dept. of Grain Science and Industry, Bioprocessing and Renewable Energy Laboratory; Kansas State University; Manhattan KS 66506A
- Dept. of Chemical Engineering; Kansas State University; Manhattan KS 66506
| |
Collapse
|
35
|
Zhang Y, Vadlani PV, Kumar A, Hardwidge PR, Govind R, Tanaka T, Kondo A. Enhanced D-lactic acid production from renewable resources using engineered Lactobacillus plantarum. Appl Microbiol Biotechnol 2016; 100:279-88. [PMID: 26433970 DOI: 10.1007/s00253-015-7016-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/24/2015] [Accepted: 09/16/2015] [Indexed: 10/23/2022]
Abstract
D-lactic acid is used as a monomer in the production of poly-D-lactic acid (PDLA), which is used to form heat-resistant stereocomplex poly-lactic acid. To produce cost-effective D-lactic acid by using all sugars derived from biomass efficiently, xylose-assimilating genes encoding xylose isomerase and xylulokinase were cloned into an L-lactate-deficient strain, Lactobacillus plantarum. The resulting recombinant strain, namely L. plantarum NCIMB 8826 ∆ldhL1-pLEM-xylAB, was able to produce D-lactic acid (at optical purity >99 %) from xylose at a yield of 0.53 g g(-1). Simultaneous utilization of glucose and xylose to produce D-lactic acid was also achieved by this strain, and 47.2 g L(-1) of D-lactic acid was produced from 37.5 g L(-1) glucose and 19.7 g L(-1) xylose. Corn stover and soybean meal extract (SBME) were evaluated as cost-effective medium components for D-lactic acid production. Optimization of medium composition using response surface methodology resulted in 30 % reduction in enzyme loading and 70 % reduction in peptone concentration. In addition, we successfully demonstrated D-lactic acid fermentation from corn stover and SBME in a fed-batch fermentation, which yielded 61.4 g L(-1) D-lactic acid with an overall yield of 0.77 g g(-1). All these approaches are geared to attaining high D-lactic acid production from biomass sugars to produce low-cost, highly thermostable biodegradable plastics.
Collapse
Affiliation(s)
- Yixing Zhang
- Bioprocessing and Renewable Energy Laboratory, Department of Grain Science and Industry, Kansas State University, Manhattan, KS, USA.
| | - Praveen V Vadlani
- Bioprocessing and Renewable Energy Laboratory, Department of Grain Science and Industry, Kansas State University, Manhattan, KS, USA
- Department of Chemical Engineering, Kansas State University, Manhattan, KS, USA
| | - Amit Kumar
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Philip R Hardwidge
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Revathi Govind
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Tsutomu Tanaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe, 657-8501, Japan
| | - Akihiko Kondo
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe, 657-8501, Japan
| |
Collapse
|
36
|
Eiteman MA, Ramalingam S. Microbial production of lactic acid. Biotechnol Lett 2015; 37:955-72. [PMID: 25604523 DOI: 10.1007/s10529-015-1769-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 01/07/2015] [Indexed: 10/24/2022]
Abstract
Lactic acid is an important commodity chemical having a wide range of applications. Microbial production effectively competes with chemical synthesis methods because biochemical synthesis permits the generation of either one of the two enantiomers with high optical purity at high yield and titer, a result which is particularly beneficial for the production of poly(lactic acid) polymers having specific properties. The commercial viability of microbial lactic acid production relies on utilization of inexpensive carbon substrates derived from agricultural or waste resources. Therefore, optimal lactic acid formation requires an understanding and engineering of both the competing pathways involved in carbohydrate metabolism, as well as pathways leading to potential by-products which both affect product yield. Recent research leverages those biochemical pathways, while researchers also continue to seek strains with improved tolerance and ability to perform under desirable industrial conditions, for example, of pH and temperature.
Collapse
Affiliation(s)
- Mark A Eiteman
- BioChemical Engineering Program, College of Engineering, University of Georgia, Athens, GA, 30602, USA,
| | | |
Collapse
|
37
|
Microorganisms for the Production of Lactic Acid and Organic Lactates. MICROORGANISMS IN BIOREFINERIES 2015. [DOI: 10.1007/978-3-662-45209-7_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Mazzoli R, Bosco F, Mizrahi I, Bayer EA, Pessione E. Towards lactic acid bacteria-based biorefineries. Biotechnol Adv 2014; 32:1216-1236. [PMID: 25087936 DOI: 10.1016/j.biotechadv.2014.07.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 07/14/2014] [Accepted: 07/16/2014] [Indexed: 10/25/2022]
Abstract
Lactic acid bacteria (LAB) have long been used in industrial applications mainly as starters for food fermentation or as biocontrol agents or as probiotics. However, LAB possess several characteristics that render them among the most promising candidates for use in future biorefineries in converting plant-derived biomass-either from dedicated crops or from municipal/industrial solid wastes-into biofuels and high value-added products. Lactic acid, their main fermentation product, is an attractive building block extensively used by the chemical industry, owing to the potential for production of polylactides as biodegradable and biocompatible plastic alternative to polymers derived from petrochemicals. LA is but one of many high-value compounds which can be produced by LAB fermentation, which also include biofuels such as ethanol and butanol, biodegradable plastic polymers, exopolysaccharides, antimicrobial agents, health-promoting substances and nutraceuticals. Furthermore, several LAB strains have ascertained probiotic properties, and their biomass can be considered a high-value product. The present contribution aims to provide an extensive overview of the main industrial applications of LAB and future perspectives concerning their utilization in biorefineries. Strategies will be described in detail for developing LAB strains with broader substrate metabolic capacity for fermentation of cheaper biomass.
Collapse
Affiliation(s)
- Roberto Mazzoli
- Laboratory of Biochemistry: Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy.
| | - Francesca Bosco
- Department of Applied Science and Technology (DISAT), Politecnico of Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy.
| | - Itzhak Mizrahi
- Institute of Animal Science, ARO, Volcani Research Center, P.O. Box 6Â, Bet Dagan 50-250, Israel.
| | - Edward A Bayer
- Department of Biological Chemistry, the Weizmann Institute of Science, Rehovot 76100 Israel.
| | - Enrica Pessione
- Laboratory of Biochemistry: Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy.
| |
Collapse
|
39
|
Wang Y, Tashiro Y, Sonomoto K. Fermentative production of lactic acid from renewable materials: recent achievements, prospects, and limits. J Biosci Bioeng 2014; 119:10-8. [PMID: 25077706 DOI: 10.1016/j.jbiosc.2014.06.003] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/02/2014] [Accepted: 06/03/2014] [Indexed: 01/26/2023]
Abstract
The development and implementation of renewable materials for the production of versatile chemical resources have gained considerable attention recently, as this offers an alternative to the environmental problems caused by the petroleum industry and the limited supply of fossil resources. Therefore, the concept of utilizing biomass or wastes from agricultural and industrial residues to produce useful chemical products has been widely accepted. Lactic acid plays an important role due to its versatile application in the food, medical, and cosmetics industries and as a potential raw material for the manufacture of biodegradable plastics. Currently, the fermentative production of optically pure lactic acid has increased because of the prospects of environmental friendliness and cost-effectiveness. In order to produce lactic acid with high yield and optical purity, many studies focus on wild microorganisms and metabolically engineered strains. This article reviews the most recent advances in the biotechnological production of lactic acid mainly by lactic acid bacteria, and discusses the feasibility and potential of various processes.
Collapse
Affiliation(s)
- Ying Wang
- Laboratory of Microbial Technology, Division of Applied Molecular Microbiology and Biomass Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Yukihiro Tashiro
- Institute of Advanced Study, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan; Laboratory of Soil Microbiology, Division of Applied Molecular Microbiology and Biomass Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Kenji Sonomoto
- Laboratory of Microbial Technology, Division of Applied Molecular Microbiology and Biomass Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan; Laboratory of Functional Food Design, Department of Functional Metabolic Design, Bio-Architecture Centre, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| |
Collapse
|
40
|
Goodarzi Boroojeni F, Vahjen W, Mader A, Knorr F, Ruhnke I, Röhe I, Hafeez A, Villodre C, Männer K, Zentek J. The effects of different thermal treatments and organic acid levels in feed on microbial composition and activity in gastrointestinal tract of broilers. Poult Sci 2014; 93:1440-52. [DOI: 10.3382/ps.2013-03763] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
41
|
Tsuge Y, Kawaguchi H, Sasaki K, Tanaka T, Kondo A. Two-step production of d-lactate from mixed sugars by growing and resting cells of metabolically engineered Lactobacillus plantarum. Appl Microbiol Biotechnol 2014; 98:4911-8. [DOI: 10.1007/s00253-014-5594-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/03/2014] [Accepted: 02/04/2014] [Indexed: 12/20/2022]
|
42
|
|
43
|
Recent advances in lactic acid production by microbial fermentation processes. Biotechnol Adv 2013; 31:877-902. [DOI: 10.1016/j.biotechadv.2013.04.002] [Citation(s) in RCA: 607] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 04/14/2013] [Accepted: 04/15/2013] [Indexed: 11/18/2022]
|
44
|
From physiology to systems metabolic engineering for the production of biochemicals by lactic acid bacteria. Biotechnol Adv 2013; 31:764-88. [DOI: 10.1016/j.biotechadv.2013.03.011] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 03/28/2013] [Accepted: 03/31/2013] [Indexed: 11/21/2022]
|
45
|
Mondala A, Hernandez R, Holmes W, French T, McFarland L, Sparks D, Haque M. Enhanced microbial oil production by activated sludge microorganisms via co-fermentation of glucose and xylose. AIChE J 2013. [DOI: 10.1002/aic.14169] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Andro Mondala
- Dept. of Chemical and Paper Engineering; Western Michigan University; Kalamazoo; MI 49008
| | - Rafael Hernandez
- Dept. of Chemical Engineering; University of Louisiana at Lafayette; Lafayette; LA 70504
| | - William Holmes
- Dept. of Chemical Engineering; University of Louisiana at Lafayette; Lafayette; LA 70504
| | - Todd French
- Dave C. Swalm School of Chemical Engineering; Mississippi State University; Mississippi State; MS 39762
| | - Linda McFarland
- Dave C. Swalm School of Chemical Engineering; Mississippi State University; Mississippi State; MS 39762
| | - Darrell Sparks
- Dave C. Swalm School of Chemical Engineering; Mississippi State University; Mississippi State; MS 39762
| | - Monica Haque
- Dave C. Swalm School of Chemical Engineering; Mississippi State University; Mississippi State; MS 39762
| |
Collapse
|
46
|
Bolado-Martínez E, Acedo-Félix E, Peregrino-Uriarte AB, Yepiz-Plascencia G. Fructose 6-phosphate phosphoketolase activity in wild-type strains of Lactobacillus, isolated from the intestinal tract of pigs. APPL BIOCHEM MICRO+ 2012. [DOI: 10.1134/s000368381205002x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Relative catalytic efficiency of ldhL- and ldhD-encoded products is crucial for optical purity of lactic acid produced by lactobacillus strains. Appl Environ Microbiol 2012; 78:3480-3. [PMID: 22344644 DOI: 10.1128/aem.00058-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NAD-dependent l- and d-lactate dehydrogenases coexist in Lactobacillus genomes and may convert pyruvic acid into l-lactic acid and d-lactic acid, respectively. Our findings suggest that the relative catalytic efficiencies of ldhL- and ldhD-encoded products are crucial for the optical purity of lactic acid produced by Lactobacillus strains.
Collapse
|
48
|
Hwang HJ, Lee SY, Kim SM, Lee SB. Fermentation of seaweed sugars by Lactobacillus species and the potential of seaweed as a biomass feedstock. BIOTECHNOL BIOPROC E 2011. [DOI: 10.1007/s12257-011-0278-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
49
|
Abdel-Rahman MA, Tashiro Y, Sonomoto K. Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits. J Biotechnol 2011; 156:286-301. [PMID: 21729724 DOI: 10.1016/j.jbiotec.2011.06.017] [Citation(s) in RCA: 280] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 05/31/2011] [Accepted: 06/17/2011] [Indexed: 10/18/2022]
Abstract
Lactic acid is an industrially important product with a large and rapidly expanding market due to its attractive and valuable multi-function properties. The economics of lactic acid production by fermentation is dependent on many factors, of which the cost of the raw materials is very significant. It is very expensive when sugars, e.g., glucose, sucrose, starch, etc., are used as the feedstock for lactic acid production. Therefore, lignocellulosic biomass is a promising feedstock for lactic acid production considering its great availability, sustainability, and low cost compared to refined sugars. Despite these advantages, the commercial use of lignocellulose for lactic acid production is still problematic. This review describes the "conventional" processes for producing lactic acid from lignocellulosic materials with lactic acid bacteria. These processes include: pretreatment of the biomass, enzyme hydrolysis to obtain fermentable sugars, fermentation technologies, and separation and purification of lactic acid. In addition, the difficulties associated with using this biomass for lactic acid production are especially introduced and several key properties that should be targeted for low-cost and advanced fermentation processes are pointed out. We also discuss the metabolism of lignocellulose-derived sugars by lactic acid bacteria.
Collapse
Affiliation(s)
- Mohamed Ali Abdel-Rahman
- Laboratory of Microbial Technology, Division of Applied Molecular Microbiology and Biomass Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Hakozaki, Higashi-ku, Fukuoka, Japan
| | | | | |
Collapse
|
50
|
Homo-d-lactic acid production from mixed sugars using xylose-assimilating operon-integrated Lactobacillus plantarum. Appl Microbiol Biotechnol 2011; 92:67-76. [DOI: 10.1007/s00253-011-3356-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 04/19/2011] [Accepted: 04/25/2011] [Indexed: 10/18/2022]
|