1
|
Sun J, Sun Y, Prommer H, Bostick BC, Liu Q, Ma M, Li Z, Liu S, Siade AJ, Li C, Han S, Zheng Y. Sustaining Irrigation Supplies through Immobilization of Groundwater Arsenic In Situ. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12653-12663. [PMID: 38916402 PMCID: PMC11251839 DOI: 10.1021/acs.est.4c03225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Geogenic arsenic (As) in groundwater is widespread, affecting drinking water and irrigation supplies globally, with food security and safety concerns on the rise. Here, we present push-pull tests that demonstrate field-scale As immobilization through the injection of small amounts of ferrous iron (Fe) and nitrate, two readily available agricultural fertilizers. Such injections into an aquifer with As-rich (200 ± 52 μg/L) reducing groundwater led to the formation of a regenerable As reactive filter in situ, producing 15 m3 of groundwater meeting the irrigation water quality standard of 50 μg/L. Concurrently, sediment magnetic properties were markedly enhanced around the well screen, pointing to neo-formed magnetite-like minerals. A reactive transport modeling approach was used to quantitatively evaluate the experimental observations and assess potential strategies for larger-scale implementation. The modeling results demonstrate that As removal was primarily achieved by adsorption onto neo-formed minerals and that an increased adsorption site density coincides with the finer-grained textures of the target aquifer. Up-scaled model simulations with 80-fold more Fe-nitrate reactants suggest that enough As-safe water can be produced to irrigate 1000 m2 of arid land for one season of water-intense rice cultivation at a low cost without causing undue contamination in surface soils that threatens agricultural sustainability.
Collapse
Affiliation(s)
- Jing Sun
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- CSIRO Environment, Wembley, Western Australia 6913, Australia
- School of Earth Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Yuqin Sun
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Key Laboratory of Land Consolidation and Rehabilitation, Land Consolidation and Rehabilitation Center, Ministry of Natural Resources, Beijing 100035, China
| | - Henning Prommer
- CSIRO Environment, Wembley, Western Australia 6913, Australia
- School of Earth Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Benjamin C Bostick
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York 10964, United States
| | - Qingsong Liu
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Meng Ma
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Irrigation and Drainage, China Institute of Water Resources and Hydropower Research, Beijing 100048, China
| | - Zengyi Li
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Songlin Liu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Adam J Siade
- CSIRO Environment, Wembley, Western Australia 6913, Australia
- School of Earth Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Chao Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Shuangbao Han
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Center for Hydrogeology and Environmental Geology, China Geological Survey, Baoding 071051, China
| | - Yan Zheng
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
2
|
Barron A, Jamieson J, Colombani N, Bostick BC, Ortega-Tong P, Sbarbati C, Barbieri M, Petitta M, Prommer H. Model-Based Analysis of Arsenic Retention by Stimulated Iron Mineral Transformation under Coastal Aquifer Conditions. ACS ES&T WATER 2024; 4:2944-2956. [PMID: 39005241 PMCID: PMC11242918 DOI: 10.1021/acsestwater.4c00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
A multitude of geochemical processes control the aqueous concentration and transport properties of trace metal contaminants such as arsenic (As) in groundwater environments. Effective As remediation, especially under reducing conditions, has remained a significant challenge. Fe(II) nitrate treatments are a promising option for As immobilization but require optimization to be most effective. Here, we develop a process-based numerical modeling framework to provide an in-depth understanding of the geochemical mechanisms controlling the response of As-contaminated sediments to Fe(II) nitrate treatment. The analyzed data sets included time series from two batch experiments (control vs treatment) and effluent concentrations from a flow-through column experiment. The reaction network incorporates a mixture of homogeneous and heterogeneous reactions affecting Fe redox chemistry. Modeling revealed that the precipitation of the Fe treatment caused a rapid pH decline, which then triggered multiple heterogeneous buffering processes. The model quantifies key processes for effective remediation, including the transfer of aqueous As to adsorbed As and the transformation of Fe minerals, which act as sorption hosts, from amorphous to more stable phases. The developed model provides the basis for predictions of the remedial benefits of Fe(II) nitrate treatments under varying geochemical and hydrogeological conditions, particularly in high-As coastal environments.
Collapse
Affiliation(s)
- Alyssa Barron
- School of Earth Sciences, University of Western Australia, Crawley 6009 WA, Australia
| | | | | | - Benjamin C Bostick
- Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York 10964, United States
| | - Pablo Ortega-Tong
- School of Earth Sciences, University of Western Australia, Crawley 6009 WA, Australia; Intera Inc., Perth 6000 WA, Australia
| | - Chiara Sbarbati
- Dept. of Ecological and Biological Sciences, University of Tuscia, Viterbo 01100, Italy
| | - Maurizio Barbieri
- Dept. of Earth Sciences, "Sapienza" University of Roma, Roma 00185, Italy
| | - Marco Petitta
- Dept. of Earth Sciences, "Sapienza" University of Roma, Roma 00185, Italy
| | - Henning Prommer
- School of Earth Sciences, University of Western Australia, Crawley 6009 WA, Australia; Ekion Pty Ltd., Swanbourne 6010 WA, Australia
| |
Collapse
|
3
|
Pérez-de-Mora A, de Wilde H, Paulus D, Roosa S, Onderwater R, Paint Y, Avignone Rossa C, Farkas D. Biostimulation of sulfate reduction for in-situ metal(loid) precipitation at an industrial site in Flanders, Belgium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172298. [PMID: 38615778 DOI: 10.1016/j.scitotenv.2024.172298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/17/2024] [Accepted: 04/05/2024] [Indexed: 04/16/2024]
Abstract
A 30-month pilot study was conducted to evaluate the potential of in-situ metal(loid) removal through biostimulation of sulfate-reducing processes. The study took place at an industrial site in Flanders, Belgium, known for metal(loid) contamination in soil and groundwater. Biostimulation involved two incorporations of an organic substrate (emulsified vegetable oil) as electron donor and potassium bicarbonate to raise the pH of the groundwater by 1-1.5 units. The study focused on the most impacted permeable fine sand aquifer (8-9 m below groundwater level) confined by layers of non-permeable clay. The fine sands exhibited initially oxic conditions (50-200 mV), an acidic pH of 4.5 and sulfate concentrations ranging from 600 to 800 mg/L. At the central monitoring well, anoxic conditions (-200 to -400 mV) and a pH of 5.9 established shortly after the second substrate and reagent injection. Over the course of 12 months, there was a significant decrease in the concentration of arsenic (from 2500 to 12 μg/L), nickel (from 360 to <2 μg/L), zinc (from 78,000 to <2 μg/L), and sulfate (from 930 to 450 mg/L). Low levels of metal(loid)s were still present after 34 months (end of study). Mineralogical analysis indicated that the precipitates formed were amorphous in nature. Evidence for biologically driven metal(loid) precipitation was provided by compound specific stable isotope analysis of sulfate. In addition, changes in microbial populations were assessed using next-generation sequencing, revealing stimulation of native sulfate-reducing bacteria. These results highlight the potential of biostimulation for long-term in situ metal(loid) plume treatment/containment.
Collapse
Affiliation(s)
| | - Herwig de Wilde
- TAUW België nv, Dept. of Soil & Groundwater, Waaslandlaan 8A3, 9160 Lokeren, Belgium
| | - Dirk Paulus
- TAUW België nv, Dept. of Soil & Groundwater, Remylaan 4C, Bus 3, 3018 Leuven, Belgium
| | - Stephanie Roosa
- Materia NOVA Institute, 6 Avenue du champ de Mars, 7000 Mons, Belgium
| | - Rob Onderwater
- Materia NOVA Institute, 6 Avenue du champ de Mars, 7000 Mons, Belgium
| | - Yoann Paint
- Materia NOVA Institute, 6 Avenue du champ de Mars, 7000 Mons, Belgium
| | - Claudio Avignone Rossa
- University of Surrey, Deptartment of Microbial Sciences, Guildford GU2 7XH, United Kingdom
| | - Daniel Farkas
- University of Surrey, Deptartment of Microbial Sciences, Guildford GU2 7XH, United Kingdom.
| |
Collapse
|
4
|
Mohsin H, Shafique M, Zaid M, Rehman Y. Microbial biochemical pathways of arsenic biotransformation and their application for bioremediation. Folia Microbiol (Praha) 2023:10.1007/s12223-023-01068-6. [PMID: 37326815 DOI: 10.1007/s12223-023-01068-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 05/19/2023] [Indexed: 06/17/2023]
Abstract
Arsenic is a ubiquitous toxic metalloid, the concentration of which is beyond WHO safe drinking water standards in many areas of the world, owing to many natural and anthropogenic activities. Long-term exposure to arsenic proves lethal for plants, humans, animals, and even microbial communities in the environment. Various sustainable strategies have been developed to mitigate the harmful effects of arsenic which include several chemical and physical methods, however, bioremediation has proved to be an eco-friendly and inexpensive technique with promising results. Many microbes and plant species are known for arsenic biotransformation and detoxification. Arsenic bioremediation involves different pathways such as uptake, accumulation, reduction, oxidation, methylation, and demethylation. Each of these pathways has a certain set of genes and proteins to carry out the mechanism of arsenic biotransformation. Based on these mechanisms, various studies have been conducted for arsenic detoxification and removal. Genes specific for these pathways have also been cloned in several microorganisms to enhance arsenic bioremediation. This review discusses different biochemical pathways and the associated genes which play important roles in arsenic redox reactions, resistance, methylation/demethylation, and accumulation. Based on these mechanisms, new methods can be developed for effective arsenic bioremediation.
Collapse
Affiliation(s)
- Hareem Mohsin
- Department of Life Sciences, School of Science, University of Management and Technology, Lahore, Pakistan
| | - Maria Shafique
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan
| | - Muhammad Zaid
- Department of Life Sciences, School of Science, University of Management and Technology, Lahore, Pakistan
| | - Yasir Rehman
- Department of Life Sciences, School of Science, University of Management and Technology, Lahore, Pakistan.
| |
Collapse
|
5
|
Li Z, Ma S, Sang L, Qu G, Zhang T, Xu B, Jin W, Zhao Y. Enhanced arsenite removal from water using zirconium-ferrocene MOFs coupled with peroxymonosulfate:oxidation and multi-sites adsorption mechanism. CHEMOSPHERE 2023; 319:138044. [PMID: 36736837 DOI: 10.1016/j.chemosphere.2023.138044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/08/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
The efficient removal of arsenite (As(III)) poses a significant challenge to traditional water treatment technologies due to its high toxicity and mobility. In this work, multifunctional Zirconium-Ferrocene Metal Organic Framework (ZrFc-MOF) fabricated with redox-active 1,1-ferrocene dicarboxylic acid ligands and Zr4+ precursors were elaborated to achieve remarkably enhanced As(III) removal via activation by peroxymonosulfate (PMS). The adsorption affinity coefficient increased from 0.097 to 2.035 L mg-1 and the maximum adsorption capacity increased from 59.79 to 111.34 mg g-1 compared with that without PMS. Besides the conventional homogeneous PMS oxidation and the following adsorption through Zr-O clusters of ZrFc-MOFs, the enhanced As(III) removal synergistic combines the oxidation mechanism of As(III) by reactive oxygen species (•OH, SO4•-, O2•- and 1O2) formed in Ferrocene (Fc) activating PMS process with the simultaneous formed extra adsorption sites of Ferrocenium (Fc+). PMS also help ZrFc-MOF to avoid destruction in harsh alkaline condition, making the effluent in this advanced treatment meet the World Health Organization (WHO) threshold of 10 μg L-1 over a wide range of initial pH (2-11) with high selectivity and durability. These results indicate that this novel Fc-based MOFs activating PMS system has potential applicability for As(III) in oxidation and selectively capturing in the water environment.
Collapse
Affiliation(s)
- Zongchen Li
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Shengjia Ma
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Linfeng Sang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Guojuan Qu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Tao Zhang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Bin Xu
- School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Wei Jin
- School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yaping Zhao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
6
|
Saha A, Gupta A, Sar P. Metagenome based analysis of groundwater from arsenic contaminated sites of West Bengal revealed community diversity and their metabolic potential. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:91-106. [PMID: 36852697 DOI: 10.1080/10934529.2023.2173919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The study of microbial community in groundwater systems is considered to be essential to improve our understanding of arsenic (As) biogeochemical cycling in aquifers, mainly as it relates to the fate and transport of As. The present study was conducted to determine the microbial community composition and its functional potential using As-contaminated groundwater from part of the Bengal Delta Plain (BDP) in West Bengal, India. Geochemical analyses indicated low to moderate dissolved oxygen (0.42-3.02 mg/L), varying As (2.5-311 µg/L) and Fe (0.19-1.2 mg/L) content, while low concentrations of total organic carbon (TOC), total inorganic carbon (TIC), nitrate, and sulfate were detected. Proteobacteria was the most abundant phylum, while the indiscriminate presence of an array of archaeal phyla, Euryarchaeota, Crenarchaeota, Nanoarchaeota, etc., was noteworthy. The core community members were affiliated to Sideroxydans, Acidovorax, Pseudoxanthomonas, Brevundimonas, etc. However, diversity assessed over multiple seasons indicated a shift from Sideroxydans to Pseudomonas or Brevundimonas dominant community, suggestive of microbial response to seasonally fluctuating geochemical stimuli. Taxonomy-based functional potential showed prospects for As biotransformation, methanogenesis, sulfate respiration, denitrification, etc. Thus, this study strengthened existing reports from this region by capturing the less abundant or difficult-to-culture taxa collectively forming a major fraction of the microbial community.
Collapse
Affiliation(s)
- Anumeha Saha
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Abhishek Gupta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Pinaki Sar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| |
Collapse
|
7
|
Zhang D, Ke T, Xiu W, Ren C, Chen G, Lloyd JR, Bassil NM, Richards LA, Polya DA, Wang G, Guo H. Quantifying sulfidization and non-sulfidization in long-term in-situ microbial colonized As(V)-ferrihydrite coated sand columns: Insights into As mobility. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160066. [PMID: 36356776 DOI: 10.1016/j.scitotenv.2022.160066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Sulfide-induced reduction (sulfidization) of arsenic (As)-bearing Fe(III) (oxyhydro)oxides may lead to As mobilization in aquifer systems. However, little is known about the relative contributions of sulfidization and non-sulfidization of Fe(III) (oxyhydro)oxides reduction to As mobilization. To address this issue, high As groundwater with low sulfide (LS) and high sulfide (HS) concentrations were pumped through As(V)-bearing ferrihydrite-coated sand columns (LS-column and HS-column, respectively) being settled within wells in the western Hetao Basin, China. Sulfidization of As(V)-bearing ferrihydrite was evidenced by the increase in dissolved Fe(II) and the presence of solid Fe(II) and elemental sulfur (S0) in both the columns. A conceptual model was built using accumulated S0 and Fe(II) produced in the columns to calculate the proportions of sulfidization-induced Fe(III) (oxyhydro)oxide reduction and non-sulfidization-induced Fe(III) (oxyhydro)oxide reduction. Fe(III) reduction via sulfidization occurred preferentially in the inlet ends (LS-column, 31 %; HS-column, 86 %), while Fe(III) reduction via non-sulfidization processes predominated in the outlet ends (LS-column, 96 %; HS-column, 86 %), and was attributed to the metabolism of genera associated with Fe(III) reduction (including Shewanella, Ferribacterium, and Desulfuromonas). Arsenic was mobilized in the columns via sulfidization and non-sulfidization processes. More As was released from the solid of the HS-column than that of the LS-column due to the higher intensity of sulfidization in the presence of higher concentrations of dissolved S(-II). Overall, this study highlights the sulfidization of As-bearing Fe(III) (oxyhydro)oxides as an important As-mobilizing pathway in complex As-Fe-S bio-hydrogeochemical networks.
Collapse
Affiliation(s)
- Di Zhang
- State Key Laboratory of Biogeology and Environmental Geology and MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Tiantian Ke
- State Key Laboratory of Biogeology and Environmental Geology and MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Wei Xiu
- State Key Laboratory of Biogeology and Environmental Geology and MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, PR China; Institute of Earth sciences, China University of Geosciences (Beijing), Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China; Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom.
| | - Cui Ren
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Guangyu Chen
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Jonathan R Lloyd
- Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Naji M Bassil
- Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Laura A Richards
- Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - David A Polya
- Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Guangcai Wang
- State Key Laboratory of Biogeology and Environmental Geology and MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Huaming Guo
- State Key Laboratory of Biogeology and Environmental Geology and MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China.
| |
Collapse
|
8
|
Yang J, Zou L, Zheng L, Yuan Z, Huang K, Gustave W, Shi L, Tang X, Liu X, Xu J. Iron-based passivator mitigates the coupling process of anaerobic methane oxidation and arsenate reduction in paddy soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120182. [PMID: 36152707 DOI: 10.1016/j.envpol.2022.120182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/03/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Arsenic (As) is a toxic metalloid that is ubiquitous in paddy soils, where passivation is the most widely used method for remediating As contamination. Recently, anaerobic methane oxidation coupled with arsenate (As(V)) reduction (AOM-AsR) has been shown to act as a critical driver for As release in paddy fields. However, the effect and mechanism of the passivators on the AOM-AsR process remain unclear. In this study, we incubated arsenate-contaminated paddy soils under anaerobic conditions. Using isotopically labelled methane and different passivators, we found that an iron-based passivator containing calcium sulfate and iron oxide (9:1, m/m) named IBP showed a much better performance than the other passivators. Adding IBP decreased the arsenite (As(III)) concentration in the soil solution by 78% and increased the AOM rate by 55%. Furthermore, we employed high-throughput sequencing and real-time quantitative polymerase chain reaction (qPCR) to investigate the ability of IBP to control As release mediated by AOM-AsR in paddy fields, as well as its underlying mechanism. Our results showed that IBP addition significantly increased anaerobic methanotrophic (ANME) archaea (ANME-2a-c, ANME-2d, and ANME-3) by 91%, and increased the methane-oxidizing bacterium Methylobacter by 262%. Similarly, IBP addition significantly increased the Fe(III) concentration in soil solution by 39% and increased the absolute abundance of Fe(III)-reducing bacteria (Geobacteraceae) by 21 times in soil. Adding IBP may significantly promote AOM coupled with Fe(III) reduction, significantly reducing electron transfer from AOM to As(V) reduction. Hence, IBP may be used as an efficient passivator to remediate As-contaminated soil using an active AOM-AsR process. These results provide a novel insight into controlling soil As release by regulating an active and critical As mobilization pathway in the environment.
Collapse
Affiliation(s)
- Jingxuan Yang
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lina Zou
- Zhejiang Xiaoshan Institute of Cotton & Bast Fiber Crops, Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311251, China
| | - Lei Zheng
- Jinhua Meixi Watershed Management Center, Jinhua, 321000, China
| | - Zhaofeng Yuan
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ketan Huang
- Jinhua Meixi Watershed Management Center, Jinhua, 321000, China
| | - Williamson Gustave
- School of Chemistry, Environmental & Life Sciences, University of The Bahamas, New Providence, Nassau, Bahamas
| | - Lanxia Shi
- Jinhua Meixi Watershed Management Center, Jinhua, 321000, China
| | - Xianjin Tang
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Xingmei Liu
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
9
|
Mechanism of As(V) adsorption from aqueous solution by chitosan-modified diatomite adsorbent. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2021.1876592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
10
|
Xiu W, Wu M, Nixon SL, Lloyd JR, Bassil NM, Gai R, Zhang T, Su Z, Guo H. Genome-Resolved Metagenomic Analysis of Groundwater: Insights into Arsenic Mobilization in Biogeochemical Interaction Networks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10105-10119. [PMID: 35763428 DOI: 10.1021/acs.est.2c02623] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
High-arsenic (As) groundwaters, a worldwide issue, are critically controlled by multiple interconnected biogeochemical processes. However, there is limited information on the complex biogeochemical interaction networks that cause groundwater As enrichment in aquifer systems. The western Hetao basin was selected as a study area to address this knowledge gap, offering an aquifer system where groundwater flows from an oxidizing proximal fan (low dissolved As) to a reducing flat plain (high dissolved As). The key microbial interaction networks underpinning the biogeochemical pathways responsible for As mobilization along the groundwater flow path were characterized by genome-resolved metagenomic analysis. Genes associated with microbial Fe(II) oxidation and dissimilatory nitrate reduction were noted in the proximal fan, suggesting the importance of nitrate-dependent Fe(II) oxidation in immobilizing As. However, genes catalyzing microbial Fe(III) reduction (omcS) and As(V) detoxification (arsC) were highlighted in groundwater samples downgradient flow path, inferring that reductive dissolution of As-bearing Fe(III) (oxyhydr)oxides mobilized As(V), followed by enzymatic reduction to As(III). Genes associated with ammonium oxidation (hzsABC and hdh) were also positively correlated with Fe(III) reduction (omcS), suggesting a role for the Feammox process in driving As mobilization. The current study illustrates how genomic sequencing tools can help dissect complex biogeochemical systems, and strengthen biogeochemical models that capture key aspects of groundwater As enrichment.
Collapse
Affiliation(s)
- Wei Xiu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, P. R. China
- Institute of Earth sciences, China University of Geosciences (Beijing), Beijing 100083, P. R. China
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, P. R. China
- Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, U.K
| | - Min Wu
- Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, U.K
| | - Sophie L Nixon
- Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, U.K
- Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, U.K
| | - Jonathan R Lloyd
- Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, U.K
| | - Naji M Bassil
- Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, U.K
| | - Ruixuan Gai
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, P. R. China
- Institute of Earth sciences, China University of Geosciences (Beijing), Beijing 100083, P. R. China
| | - Tianjing Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, P. R. China
- Institute of Earth sciences, China University of Geosciences (Beijing), Beijing 100083, P. R. China
| | - Zhan Su
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, P. R. China
- Institute of Earth sciences, China University of Geosciences (Beijing), Beijing 100083, P. R. China
| | - Huaming Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, P. R. China
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, P. R. China
| |
Collapse
|
11
|
Angai JU, Ptacek CJ, Pakostova E, Bain JG, Verbuyst BR, Blowes DW. Removal of arsenic and metals from groundwater impacted by mine waste using zero-valent iron and organic carbon: Laboratory column experiments. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127295. [PMID: 34601408 DOI: 10.1016/j.jhazmat.2021.127295] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/31/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Acid mine drainage and the associated contaminants, including As and metals, are ongoing environmental issues. Passive remediation technologies have the potential to remove As from mine waste effluents. A series of laboratory column experiments was conducted to evaluate the effectiveness of varying mixtures of organic carbon (OC), zero-valent iron (ZVI), and limestone for the treatment of As, metals, SO42-, and acidity in groundwater from an abandoned gold mine. The onset of bacterially-mediated SO42- reduction was indicated by a decrease in Eh, a decline in aqueous SO42- concentrations coupled with enrichment of δ34S, and the presence of sulfate-reducing bacteria and H2S. Removal of As was observed within the first 3 cm of reactive material, to values below 10 µg L-1, representing > 99.9% removal. An increase in pH from 3.5 to circumneutral values and removal of metals including Al, Cu, and Zn was also observed. Synchrotron results suggest As was removed through precipitation of As-crystalline phases such as realgar and orpiment, or through adsorption as As(V) on ferrihydrite. The results indicate the potential for a mixture of OC and ZVI to remove As from acidic, mine-impacted water.
Collapse
Affiliation(s)
- Joanne U Angai
- Department of Earth and Environmental Sciences, Faculty of Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Carol J Ptacek
- Department of Earth and Environmental Sciences, Faculty of Science, University of Waterloo, Waterloo, Ontario, Canada.
| | - Eva Pakostova
- Department of Earth and Environmental Sciences, Faculty of Science, University of Waterloo, Waterloo, Ontario, Canada; Faculty Research Centre for Sport, Exercise and Life Sciences, Faculty of Health and Life Sciences, Coventry University, Coventry, UK
| | - Jeff G Bain
- Department of Earth and Environmental Sciences, Faculty of Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Brent R Verbuyst
- Department of Earth and Environmental Sciences, Faculty of Science, University of Waterloo, Waterloo, Ontario, Canada
| | - David W Blowes
- Department of Earth and Environmental Sciences, Faculty of Science, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
12
|
Bertin PN, Crognale S, Plewniak F, Battaglia-Brunet F, Rossetti S, Mench M. Water and soil contaminated by arsenic: the use of microorganisms and plants in bioremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:9462-9489. [PMID: 34859349 PMCID: PMC8783877 DOI: 10.1007/s11356-021-17817-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 11/23/2021] [Indexed: 04/16/2023]
Abstract
Owing to their roles in the arsenic (As) biogeochemical cycle, microorganisms and plants offer significant potential for developing innovative biotechnological applications able to remediate As pollutions. This possible use in bioremediation processes and phytomanagement is based on their ability to catalyse various biotransformation reactions leading to, e.g. the precipitation, dissolution, and sequestration of As, stabilisation in the root zone and shoot As removal. On the one hand, genomic studies of microorganisms and their communities are useful in understanding their metabolic activities and their interaction with As. On the other hand, our knowledge of molecular mechanisms and fate of As in plants has been improved by laboratory and field experiments. Such studies pave new avenues for developing environmentally friendly bioprocessing options targeting As, which worldwide represents a major risk to many ecosystems and human health.
Collapse
Affiliation(s)
- Philippe N Bertin
- Génétique Moléculaire, Génomique et Microbiologie, UMR7156 CNRS - Université de Strasbourg, Strasbourg, France.
| | - Simona Crognale
- Water Research Institute, National Research Council of Italy (IRSA - CNR), Rome, Italy
| | - Frédéric Plewniak
- Génétique Moléculaire, Génomique et Microbiologie, UMR7156 CNRS - Université de Strasbourg, Strasbourg, France
| | | | - Simona Rossetti
- Water Research Institute, National Research Council of Italy (IRSA - CNR), Rome, Italy
| | - Michel Mench
- Univ. Bordeaux, INRAE, BIOGECO, F-33615, Pessac, France
| |
Collapse
|
13
|
Tian T, Zhou K, Li YS, Liu DF, Yu HQ. Recovery of Iron-Dependent Autotrophic Denitrification Activity from Cell-Iron Mineral Aggregation-Induced Reversible Inhibition by Low-Intensity Ultrasonication. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:595-604. [PMID: 34932326 DOI: 10.1021/acs.est.1c05553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Iron-dependent autotrophic denitrification (IDAD) has garnered increasing interests as an efficient method for removing nitrogen from wastewater with a low carbon to nitrogen ratio. However, an inevitable deterioration of IDAD performance casts a shadow over its further development. In this work, the hidden cause for such a deterioration is uncovered, and a viable solution to this problem is provided. Batch test results reveal that the aggregation of microbial cells and iron-bearing minerals induced a cumulative and reversible inhibition on the activity of IDAD sludge. Extracellular polymeric substances were found to play a glue-like role in the cell-iron mineral aggregates, where microbial cells were caged, and their metabolisms were suppressed. Adopting low-intensity ultrasound treatment efficiently restored the IDAD activity by disintegrating such aggregates rather than stimulating the microbial metabolism. Moreover, the ultrasonication-assisted IDAD bioreactor exhibited an advantageous nitrogen removal efficiency (with a maximum enhancement of 72.3%) and operational stability compared to the control one, demonstrating a feasible strategy to achieve long-term stability of the IDAD process. Overall, this work provides a better understanding about the mechanism for the performance deterioration and a simple approach to maintain the stability of IDAD.
Collapse
Affiliation(s)
- Tian Tian
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ke Zhou
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yu-Sheng Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
14
|
Barron A, Sun J, Passaretti S, Sbarbati C, Barbieri M, Colombani N, Jamieson J, Bostick BC, Zheng Y, Mastrocicco M, Petitta M, Prommer H. In situ arsenic immobilisation for coastal aquifers using stimulated iron cycling: Lab-based viability assessment. APPLIED GEOCHEMISTRY : JOURNAL OF THE INTERNATIONAL ASSOCIATION OF GEOCHEMISTRY AND COSMOCHEMISTRY 2022; 136:105155. [PMID: 34955596 PMCID: PMC8699153 DOI: 10.1016/j.apgeochem.2021.105155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Arsenic (As) is one of the most harmful and widespread groundwater contaminants globally. Besides the occurrence of geogenic As pollution, there is also a large number of sites that have been polluted by anthropogenic activities, with many of those requiring active remediation to reduce their environmental impact. Cost-effective remedial strategies are however still sorely needed. At the laboratory-scale in situ formation of magnetite through the joint addition of nitrate and Fe(II) has shown to be a promising new technique. However, its applicability under a wider range of environmental conditions still needs to be assessed. Here we use sediment and groundwater from a severely polluted coastal aquifer and explore the efficiency of nitrate-Fe(II) treatments in mitigating dissolved As concentrations. In selected experiments >99% of dissolved As was removed, compared to unamended controls, and maintained upon addition of lactate, a labile organic carbon source. Pre- and post experimental characterisation of iron (Fe) mineral phases suggested a >90% loss of amorphous Fe oxides in favour of increased crystalline, recalcitrant oxide and sulfide phases. Magnetite formation did not occur via the nitrate-dependent oxidation of the amended Fe(II) as originally expected. Instead, magnetite is thought to have formed by the Fe(II)-catalysed transformation of pre-existing amorphous and crystalline Fe oxides. The extent of amorphous and crystalline Fe oxide transformation was then limited by the exhaustion of dissolved Fe(II). Elevated phosphate concentrations lowered the treatment efficacy indicating joint removal of phosphate is necessary for maximum impact. The remedial efficiency was not impacted by varying salinities, thus rendering the tested approach a viable remediation method for coastal aquifers.
Collapse
Affiliation(s)
- Alyssa Barron
- School of Earth Sciences, University of Western Australia, Crawley, WA, Australia
- CSIRO Land and Water, Wembley Australia
| | - Jing Sun
- School of Earth Sciences, University of Western Australia, Crawley, WA, Australia
- CSIRO Land and Water, Wembley Australia
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | | | - Chiara Sbarbati
- Dept. of Earth Sciences, “Sapienza” University of Roma, Roma, Italy
| | | | | | - James Jamieson
- School of Earth Sciences, University of Western Australia, Crawley, WA, Australia
- CSIRO Land and Water, Wembley Australia
| | | | - Yan Zheng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen (China)
| | | | - Marco Petitta
- Dept. of Earth Sciences, “Sapienza” University of Roma, Roma, Italy
| | - Henning Prommer
- School of Earth Sciences, University of Western Australia, Crawley, WA, Australia
- CSIRO Land and Water, Wembley Australia
| |
Collapse
|
15
|
Xiu W, Ke T, Lloyd JR, Shen J, Bassil NM, Song H, Polya DA, Zhao Y, Guo H. Understanding Microbial Arsenic-Mobilization in Multiple Aquifers: Insight from DNA and RNA Analyses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15181-15195. [PMID: 34706533 DOI: 10.1021/acs.est.1c04117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biogeochemical processes critically control the groundwater arsenic (As) enrichment; however, the key active As-mobilizing biogeochemical processes and associated microbes in high dissolved As and sulfate aquifers are poorly understood. To address this issue, the groundwater-sediment geochemistry, total and active microbial communities, and their potential functions in the groundwater-sediment microbiota from the western Hetao basin were determined using 16S rRNA gene (rDNA) and associated 16S rRNA (rRNA) sequencing. The relative abundances of either sediment or groundwater total and active microbial communities were positively correlated. Interestingly, groundwater active microbial communities were mainly associated with ammonium and sulfide, while sediment active communities were highly related to water-extractable nitrate. Both sediment-sourced and groundwater-sourced active microorganisms (rRNA/rDNA ratios > 1) noted Fe(III)-reducers (induced by ammonium oxidation) and As(V)-reducers, emphasizing the As mobilization via Fe(III) and/or As(V) reduction. Moreover, active cryptic sulfur cycling between groundwater and sediments was implicated in affecting As mobilization. Sediment-sourced active microorganisms were potentially involved in anaerobic pyrite oxidation (driven by denitrification), while groundwater-sourced organisms were associated with sulfur disproportionation and sulfate reduction. This study provides an extended whole-picture concept model of active As-N-S-Fe biogeochemical processes affecting As mobilization in high dissolved As and sulfate aquifers.
Collapse
Affiliation(s)
- Wei Xiu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, P.R. China
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, P.R. China
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, P.R. China
| | - Tiantian Ke
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, P.R. China
| | - Jonathan R Lloyd
- Williamson Research Centre for Molecular Environmental Science, School of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Jiaxing Shen
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, P.R. China
| | - Naji M Bassil
- Williamson Research Centre for Molecular Environmental Science, School of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Hokyung Song
- Williamson Research Centre for Molecular Environmental Science, School of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - David A Polya
- Williamson Research Centre for Molecular Environmental Science, School of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Yi Zhao
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, P.R. China
| | - Huaming Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, P.R. China
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, P.R. China
| |
Collapse
|
16
|
Zhang Z, Xiao C, Yang W, Adeyeye OA, Liang X. Effects of the natural environment and human activities on iron and manganese content in groundwater: a case study of Changchun city, Northeast China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41109-41119. [PMID: 33774796 DOI: 10.1007/s11356-021-13576-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Excessive Fe and Mn in groundwater of the Songnen Plain, northeast China, pose a threat to water security. Human activities over recent decades have had significant effects on the water quantity and quality of the Songnen Plain. By adopting the large city of Changchun in the Songnen Plain as a research area, this study analyzed the effects of the natural environment (including characteristics of soil and aquifer, climate, and groundwater level) and human activities (including groundwater salinization, groundwater exploitation, and nitrate effects) on groundwater Fe and Mn using statistical and spatial analysis methods. The results showed that the characteristics of soil and aquifer determine the source of groundwater Fe and Mn. The correlations between Fe and Mn with TDS (total dissolved solids) increased with increasing TDS from southeast to northwest in different microclimate regions. The salinization of groundwater caused by human activities will also lead to the increase of Fe content. The decrease in groundwater Fe and Mn was attributed to an increase in groundwater [Formula: see text], through the use of chemical fertilizers. The variation of Fe concentration in groundwater corresponded well with that of groundwater depth, but the excessive exploitation will lead to the continuous decrease in groundwater level and a corresponding decrease in the concentration of groundwater Fe. This study provides a reference for understanding the influence of human activities and the natural environment on groundwater hydrochemistry in the Songnen Plain.
Collapse
Affiliation(s)
- Zhihao Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
- National-Local Joint Engineering Laboratory of In-situ Conversion, Drilling and Exploitation Technology for Oil Shale, Changchun, 130021, Jilin, China
- College of New Energy and Environment, Jilin University, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, China
| | - Changlai Xiao
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
- National-Local Joint Engineering Laboratory of In-situ Conversion, Drilling and Exploitation Technology for Oil Shale, Changchun, 130021, Jilin, China
- College of New Energy and Environment, Jilin University, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, China
| | - Weifei Yang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
- National-Local Joint Engineering Laboratory of In-situ Conversion, Drilling and Exploitation Technology for Oil Shale, Changchun, 130021, Jilin, China
- College of New Energy and Environment, Jilin University, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, China
| | - Oluwafemi Adewole Adeyeye
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
- National-Local Joint Engineering Laboratory of In-situ Conversion, Drilling and Exploitation Technology for Oil Shale, Changchun, 130021, Jilin, China
- College of New Energy and Environment, Jilin University, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, China
- Global Geosolutionz, Typesetters Biz Complex, Department of Geology, Ahmadu Bello University, Zaria, Nigeria
| | - Xiujuan Liang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China.
- National-Local Joint Engineering Laboratory of In-situ Conversion, Drilling and Exploitation Technology for Oil Shale, Changchun, 130021, Jilin, China.
- College of New Energy and Environment, Jilin University, Changchun, 130021, China.
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, China.
| |
Collapse
|
17
|
Glodowska M, Schneider M, Eiche E, Kontny A, Neumann T, Straub D, Berg M, Prommer H, Bostick BC, Nghiem AA, Kleindienst S, Kappler A. Fermentation, methanotrophy and methanogenesis influence sedimentary Fe and As dynamics in As-affected aquifers in Vietnam. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146501. [PMID: 34030262 DOI: 10.1016/j.scitotenv.2021.146501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/24/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
High arsenic (As) concentrations in groundwater are a worldwide problem threatening the health of millions of people. Microbial processes are central in the (trans)formation of the As-bearing ferric and ferrous minerals, and thus regulate dissolved As levels in many aquifers. Mineralogy, microbiology and dissolved As levels can vary sharply within aquifers, making high-resolution measurements particularly valuable in understanding the linkages between them. We conducted a high spatial resolution geomicrobiological study in combination with analysis of sediment chemistry and mineralogy in an alluvial aquifer system affected by geogenic As in the Red River delta in Vietnam. Microbial community analysis revealed a dominance of fermenters, methanogens and methanotrophs whereas sediment mineralogy along a 46 m deep core showed a diversity of Fe minerals including poorly crystalline Fe (II/III) and Fe(III) (oxyhydr)oxides such as goethite, hematite, and magnetite, but also the presence of Fe(II)-bearing carbonates and sulfides which likely formed as a result of microbially driven organic carbon (OC) degradation. A potential important role of methane (CH4) as electron donor for reductive Fe mineral (trans)formation was supported by the high abundance of Candidatus Methanoperedens, a known Fe(III)-reducing methanotroph. Overall, these results imply that OC turnover including fermentation, methanogenesis and CH4 oxidation are important mechanisms leading to Fe mineral (trans)formation, dissolution and precipitation, and thus indirectly affecting As mobility by changing the Fe-mineral inventory.
Collapse
Affiliation(s)
- Martyna Glodowska
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, Germany; Microbial Ecology, Center for Applied Geosciences, University of Tübingen, Germany; Department of Microbiology, IWWR, Radboud University, the Netherlands.
| | - Magnus Schneider
- Karlsruhe Institute of Technology, Institute of Applied Geosciences, Germany
| | - Elisabeth Eiche
- Karlsruhe Institute of Technology, Institute of Applied Geosciences, Germany
| | - Agnes Kontny
- Karlsruhe Institute of Technology, Institute of Applied Geosciences, Germany
| | - Thomas Neumann
- Technical University of Berlin, Institute for Applied Geosciences, Berlin, Germany
| | - Daniel Straub
- Microbial Ecology, Center for Applied Geosciences, University of Tübingen, Germany; Quantitative Biology Center (QBiC), University of Tübingen, Germany
| | - Michael Berg
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Henning Prommer
- School of Earth Sciences, University of Western Australia, Perth, WA, Australia; CSIRO Land and Water, Floreat, WA, Australia
| | | | | | - Sara Kleindienst
- Microbial Ecology, Center for Applied Geosciences, University of Tübingen, Germany
| | - Andreas Kappler
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, Germany
| |
Collapse
|
18
|
Gao J, Zheng T, Deng Y, Jiang H. Microbially mediated mobilization of arsenic from aquifer sediments under bacterial sulfate reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144709. [PMID: 33736355 DOI: 10.1016/j.scitotenv.2020.144709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/04/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
Understanding the biogeochemical processes controlling arsenic (As) mobilization under bacterial sulfate reduction (BSR) in aquifer sediments is essential for the remediation of high As groundwater. Here, we conducted microcosm experiments with shallow aquifer sediments from the Jianghan Plain (central Yangtze River Basin) under the stimulation of exogenous sulfate. Initially, co-increases of As(III) (from 0.0 to 88.5 μg/L), Fe(II) (from 0.5 to 6.0 mg/L), and S(-II) (from 0.0 to 90.0 μg/L) indicated the concurrent occurrence of sulfate, Fe(III), and arsenate reduction. The corresponding increase of the relative abundance of OTUs classified as sulfate-reducing bacteria, Desulfomicrobium (from 0.5 to 30.6%), and dsrB gene abundance indicated the strong occurrence of BSR during the incubation. The underlying mechanisms of As mobilization could be attributed to the biotic and abiotic reduction of As-bearing iron (hydro)oxides either through the iron-reducing bacteria or the bacterially generated sulfide, which were supported by the variations in solid speciation of Fe, S, and As. As the incubation progressed, we observed a transient attenuation followed by a re-increase of aqueous As, due to the limited abundance of newly-formed Fe-sulfide minerals with a weak ability of As sequestration. Moreover, the formation of thioarsenate (H2AsS4-) during the mobilization of As from the sediments was observed, highlighting that BSR could facilitate As mobilization through multiple pathways. The present results provided new insights for the biogeochemical processes accounting for As mobilization from sediments under BSR conditions.
Collapse
Affiliation(s)
- Jie Gao
- Geological Survey, China University of Geosciences, Wuhan, China
| | - Tianliang Zheng
- Geological Survey, China University of Geosciences, Wuhan, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu, China
| | - Yamin Deng
- School of Environmental Studies, China University of Geosciences, Wuhan, China.
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| |
Collapse
|
19
|
Effects of Ferrihydrite-Impregnated Powdered Activated Carbon on Phosphate Removal and Biofouling of Ultrafiltration Membrane. WATER 2021. [DOI: 10.3390/w13091178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The presence of multiple contaminant species in surface waters makes surface water treatment difficult to accomplish through a single process. Herein, we evaluated the ability of an integrated adsorption/ultrafiltration (UF) membrane filtration system to simultaneously remove phosphates and dissolved organic matter (DOM). When bare powdered activated carbon (PAC) and PAC impregnated with amorphous ferrihydrite (FHPAC) adsorbents were compared, FHPAC showed a greater adsorption rate and capacity for phosphate. FHPAC had a phosphate adsorption capacity of 2.32 mg PO43−/g FHPAC, even when DOM was present as a competing adsorbate. In a lab-scale hybrid FHPAC-UF system (i.e. integrated adsorption by FHPAC with UF membrane filtration), irreversible membrane fouling was ca. three times lower than that in a PAC-UF system. When membrane fouling in the PAC-UF system was described with pore blockage models, we found that the main cause of fouling was bacterial deposition on the membrane surface. CLSM analysis determined that the chemical composition of foulants in the PAC-UF system included higher proportions of proteins, nucleic acids, and alpha-polysaccharides than that in the FHPAC-UF system. Overall, FHPAC’s ability to undergo ligand exchanges with DOM helped to reduce the nutrients and bacteria that cause biofouling to accumulate on the membrane surface.
Collapse
|
20
|
Maity JP, Chen CY, Bhattacharya P, Sharma RK, Ahmad A, Patnaik S, Bundschuh J. Advanced application of nano-technological and biological processes as well as mitigation options for arsenic removal. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:123885. [PMID: 33183836 DOI: 10.1016/j.jhazmat.2020.123885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/19/2020] [Accepted: 08/30/2020] [Indexed: 05/04/2023]
Abstract
Arsenic (As) removal is a huge challenge, since several million people are potentially exposed (>10 μg/L World Health Organization guideline limit) through As contaminated drinking water worldwide. Review attempts to address the present situation of As removal, considering key topics on nano-technological and biological process and current progress and future perspectives of possible mitigation options have been evaluated. Different physical, chemical and biological methods are available to remove As from contaminated water/soil/wastes, where removal efficiency mainly depends on absorbent type, initial adsorbate concentration, speciation and interfering species. Oxidation is an important pretreatment step in As removal, which is generally achieved by several media such as O2/O3, HClO, KMnO4 and H2O2. The Fe-based-nanomaterials (α/β/γ-FeOOH, Fe2O3/Fe3O4-γ-Fe2O3), Fe-based-composite-compounds, activated-Al2O3, HFO, Fe-Al2O3, Fe2O3-impregnated-graphene-aerogel, iron-doped-TiO2, aerogel-based- CeTiO2, and iron-oxide-coated-manganese are effective to remove As from contaminated water. Biological processes (phytoremediation/microbiological) are effective and ecofriendly for As removal from water and/or soil environment. Microorganisms remove As from water, sediments and soil by metabolism, detoxification, oxidation-reduction, bio-adsorption, bio-precipitation, and volatilization processes. Ecofriendly As mitigation options can be achieved by utilizing an alternative As-safe-aquifer, surface-water or rainwater-harvesting. Application of hybrid (biological with chemical and physical process) and Best-Available-Technologies (BAT) can be the most effective As removal strategy to remediate As contaminated environments.
Collapse
Affiliation(s)
- Jyoti Prakash Maity
- Department of Earth and Environmental Sciences, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, 168 University Road, Min- Hsiung, Chiayi County 62102, Taiwan; School of Applied Science, KIIT University, Bhubaneswar, 751024, India
| | - Chien-Yen Chen
- Department of Earth and Environmental Sciences, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, 168 University Road, Min- Hsiung, Chiayi County 62102, Taiwan.
| | - Prosun Bhattacharya
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 76, SE-100 44 Stockholm, Sweden; UNESCO Chair on Groundwater Arsenic Within the 2030 Agenda for Sustainable Development, University of Southern Queensland (USQ), West Street, Toowoomba, QLD 4350, Australia
| | - Raju Kumar Sharma
- Department of Earth and Environmental Sciences, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, 168 University Road, Min- Hsiung, Chiayi County 62102, Taiwan; Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Arslan Ahmad
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 76, SE-100 44 Stockholm, Sweden; KWR Water Research Institute, Groningenhaven 7 3433 PE Nieuwegein, The Netherlands; Department of Environmental Technology, Wageningen University and Research (WUR), Wageningen, The Netherlands; SIBELCO Ankerpoort NV, Op de Bos 300, 6223 EP Maastricht, The Netherlands
| | - Sneha Patnaik
- School of Public Health, KIMS Medical College, KIIT University, Bhubaneswar, 751024, India
| | - Jochen Bundschuh
- UNESCO Chair on Groundwater Arsenic Within the 2030 Agenda for Sustainable Development, University of Southern Queensland (USQ), West Street, Toowoomba, QLD 4350, Australia.
| |
Collapse
|
21
|
Wang J, Zhang W. Evaluating the adsorption of Shanghai silty clay to Cd(II), Pb(II), As(V), and Cr(VI): kinetic, equilibrium, and thermodynamic studies. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:131. [PMID: 33590376 DOI: 10.1007/s10661-021-08904-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
The adsorption properties of Shanghai silty clay (SSC) towards heavy metal ions Cd(II), Pb(II), As(V), and Cr(VI) were investigated by batch experiments. The effects of solid-solution ratio, pH, temperature, reaction time, and metal concentration on sorption were analyzed. In order to better understand the adsorption mechanisms, X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray fluorescence (XRF) were used to analyze the soil specimen before and after sorption. Three adsorption kinetic models and three adsorption isotherm models were used to analyze the adsorption characteristics. Thermodynamic parameters including changes in the Gibbs free energy (ΔG0), enthalpy (ΔH0), and entropy (ΔS0) were also calculated. Sorption capacity of SSC was compared with other clay minerals reported in the literatures. The results show that the selectivity sequence is Pb(II) > Cd(II) > As(V) > Cr(VI), with equilibrium sorption capacities of 26.46, 8.90, 2.80, and 1.85 mg g-1, respectively. Adsorption is largely effective on the clay surface rather than on the crystals. The clay surface turns to be flat and slippery after adsorption. The Langmuir model shows the best fit for Cd(II) and Pb(II) data, while Freundlich model is more suitable for As(V) and Cr(VI). The optimum solid-solution ratios for sorption of Cd(II), Pb(II), As(V), and Cr(VI) are 15, 6, 40, and 40 g L-1, respectively. The optimum pHs for Cd(II), Pb(II), As(V), and Cr(VI) adsorption are 9.0, 6.0, 7.0, and 2.0, respectively. The pseudo-second-order kinetic is found to be the dominant sorption mechanism of these four ions on SSC. For Cd(II) and Pb(II), both particle diffusion and film diffusion are rate-limiting factors, whereas for As(V) and Cr(VI), intraparticle diffusion is the rate-controlling factor. The thermodynamic analysis reveals that the adsorption of Cd(II) and Pb(II) is spontaneous and endothermic and the system disorder increases, while adsorption of As(V) and Cr(VI) is exothermic and the system disorder decreases. Compared with most clay minerals, natural SSC exhibits comparable adsorption capacity and thus can potentially be used as a landfill liner material to retard the migration of heavy metals.
Collapse
Affiliation(s)
- Jinxin Wang
- Department of Civil Engineering, Shanghai University, Shanghai, 200444, China
| | - Wenjie Zhang
- Department of Civil Engineering, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
22
|
Li R, Guan M, Wang W. Simultaneous arsenite and nitrate removal from simulated groundwater based on pyrrhotite autotrophic denitrification. WATER RESEARCH 2021; 189:116662. [PMID: 33271414 DOI: 10.1016/j.watres.2020.116662] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/30/2020] [Accepted: 11/20/2020] [Indexed: 05/14/2023]
Abstract
In this study, pyrrhotite is applied to remove arsenite (As(III)) and NO3- from groundwater simultaneously. Batch experiments find that sulfur autotrophic denitrifiers are not inhibited by As(III) with concentration up to 70 mg·L-1, and pyrrhotite autotrophic denitrification (PAD) can effectively remove As(III), NO3- and PO43- simultaneously. Treating water with As(III) 874.50±32.76 µg·L-1, NO3--N 30 mg·L-1, and PO43--P 0.5 mg·L-1, the pyrrhotite-sulfur-limestone autotrophic denitrification (PSLAD) biofilter can achieve effluent with total Arsenic (As) 7.84±7.29 µg·L-1, NO3--N 3.78±1.14 mg·L-1, and PO43--P below detection limit at hydraulic retention time 6 h. In the PSLAD biofilter, Thiobacillus is the most abundant bacterium, and it uses pyrrhotite and sulfur as electron donor to reduce NO3-, and basically Fe2+ and As(III) are oxidized to Fe3+ and arsenate, respectively. As and PO43- were mainly removed through precipitates FeAsO4 and FePO4, respectively. Technology based on the PAD is a simple, cost-effective and efficient way for remediation of As(III) and NO3- co-contaminated groundwater, and avoiding contaminants transference between groundwater and surface water.
Collapse
Affiliation(s)
- Ruihua Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163# Xianlin Ave., Nanjing 210023, China.
| | - Mengsha Guan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163# Xianlin Ave., Nanjing 210023, China
| | - Wei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163# Xianlin Ave., Nanjing 210023, China; Hubei Acadamy of Environmental Sciences, Wuhan 430072, China
| |
Collapse
|
23
|
Abstract
Freshwater iron mats are dynamic geochemical environments with broad ecological diversity, primarily formed by the iron-oxidizing bacteria. The community features functional groups involved in biogeochemical cycles for iron, sulfur, carbon, and nitrogen. Despite this complexity, iron mat communities provide an excellent model system for exploring microbial ecological interactions and ecological theories in situ Syntrophies and competition between the functional groups in iron mats, how they connect cycles, and the maintenance of these communities by taxons outside bacteria (the eukaryota, archaea, and viruses) have been largely unstudied. Here, we review what is currently known about freshwater iron mat communities, the taxa that reside there, and the interactions between these organisms, and we propose ways in which future studies may uncover exciting new discoveries. For example, the archaea in these mats may play a greater role than previously thought as they are diverse and widespread in iron mats based on 16S rRNA genes and include methanogenic taxa. Studies with a holistic view of the iron mat community members focusing on their diverse interactions will expand our understanding of community functions, such as those involved in pollution removal. To begin addressing questions regarding the fundamental interactions and to identify the conditions in which they occur, more laboratory culturing techniques and coculture studies, more network and keystone species analyses, and the expansion of studies to more freshwater iron mat systems are necessary. Increasingly accessible bioinformatic, geochemical, and culturing tools now open avenues to address the questions that we pose herein.
Collapse
Affiliation(s)
- Chequita N Brooks
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| | - Erin K Field
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
24
|
Iron-assisted biological wastewater treatment: Synergistic effect between iron and microbes. Biotechnol Adv 2020; 44:107610. [DOI: 10.1016/j.biotechadv.2020.107610] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 12/21/2022]
|
25
|
Pi K, Xie X, Ma T, Su C, Li J, Wang Y. Arsenic immobilization by in-situ iron coating for managed aquifer rehabilitation. WATER RESEARCH 2020; 181:115859. [PMID: 32438118 DOI: 10.1016/j.watres.2020.115859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
A long-lasting challenge in eliminating the worldwide impact of geogenic arsenic (As)-contaminated groundwater is the development of efficient, in-situ treatment technologies that are applicable in decentralized and rural areas. Here we present a managed aquifer rehabilitation (MAR) approach based on the in-situ creation of Fe-oxide scavengers for remediating As-contaminated groundwater. The Fe-oxide coatings on sediment surfaces were generated via periodic injection of Fe2+ and ClO- solutions into an As-affected sandy aquifer at the Datong Basin, northern China for 25 days. This treatment prompted the buildup of weakly alkaline/circumneutral and oxidizing conditions to enhance As(III) oxidation in the target aquifer. Dissolved As concentrations decreased from the initial average 78.0 to 9.8 μg/L over the 25-d amendment. Sediment imaging by scanning electron microscope-X-ray energy dispersive spectroscopy confirms the deposition of Fe-rich precipitates on sediment surfaces with the simultaneous retention of As, and high density electrical tomography suggests the occurrence of such a process throughout the target zone. Further X-ray diffraction analysis and sequential chemical extraction reveal that the neo-formed Fe minerals comprised both poorly crystalline (e.g., ferrihydrite) and better crystalline (e.g., goethite) Fe oxides. The process-based reactive-transport modeling for the variations of As species in the treated groundwater supports that the new Fe-oxide minerals, most probably goethite, acted as efficient removers of aqueous As. The low As level of ∼10 μg/L was maintained during the following 215-d monitoring, demonstrating the long effectiveness of the MAR approach. This study highlights the feasibility of As immobilization by manipulating in-situ Fe-oxide coating on sandy sediments at the pilot scale. The MAR technology may be applicable for As-affected aquifers with controlled oxidizing conditions in the Datong Basin and likely other high-As regions with similar hydrogeochemical settings.
Collapse
Affiliation(s)
- Kunfu Pi
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China
| | - Xianjun Xie
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China
| | - Teng Ma
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China
| | - Chunli Su
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China
| | - Junxia Li
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China
| | - Yanxin Wang
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China.
| |
Collapse
|
26
|
Ghosh S, Sar P. Microcosm based analysis of arsenic release potential of Bacillus sp. strain IIIJ3-1 under varying redox conditions. World J Microbiol Biotechnol 2020; 36:87. [DOI: 10.1007/s11274-020-02860-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 05/18/2020] [Indexed: 10/24/2022]
|
27
|
Xiu W, Lloyd J, Guo H, Dai W, Nixon S, Bassil NM, Ren C, Zhang C, Ke T, Polya D. Linking microbial community composition to hydrogeochemistry in the western Hetao Basin: Potential importance of ammonium as an electron donor during arsenic mobilization. ENVIRONMENT INTERNATIONAL 2020; 136:105489. [PMID: 31991235 DOI: 10.1016/j.envint.2020.105489] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/06/2020] [Accepted: 01/12/2020] [Indexed: 05/25/2023]
Abstract
Various functional groups of microorganisms and related biogeochemical processes are likely to control arsenic (As) mobilization in groundwater systems. However, spatially-dependent correlations between microbial community composition and geochemical zonation along groundwater flow paths are not fully understood, especially with respect to arsenic mobility. The western Hetao Basin was selected as the study area to address this limitation, where groundwater flows from a proximal fan (geochemical-group I: low As, oxidizing), through a transition area (geochemical-group II: moderate As, moderately-reducing) and then to a flat plain (geochemical-group III: high As, reducing). High-throughput Illumina 16S rRNA gene sequencing showed that the microbial community structure in the proximal fan included bacteria affiliated with organic carbon degradation and nitrate-reduction or even nitrate-dependant Fe(II)-oxidation, mainly resulting in As immobilization. In contrast, for the flat plain, high As groundwater contained Fe(III)- and As(V)-reducing bacteria, consistent with current models on As mobilization driven via reductive dissolution of Fe(III)/As(V) mineral assemblages. However, Spearman correlations between hydrogeochemical data and microbial community compositions indicated that ammonium as a possible electron donor induced reduction of Fe oxide minerals, suggesting a wider range of metabolic pathways (including ammonium oxidation coupled with Fe(III) reduction) driving As mobilization in high As groundwater systems.
Collapse
Affiliation(s)
- Wei Xiu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China; Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Jonathan Lloyd
- Williamson Research Centre for Molecular Environmental Science, School of Earth and Environmental Sciences, the University of Manchester, Manchester, United Kingdom
| | - Huaming Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Wei Dai
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Sophie Nixon
- Williamson Research Centre for Molecular Environmental Science, School of Earth and Environmental Sciences, the University of Manchester, Manchester, United Kingdom
| | - Naji M Bassil
- Williamson Research Centre for Molecular Environmental Science, School of Earth and Environmental Sciences, the University of Manchester, Manchester, United Kingdom
| | - Cui Ren
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Chaoran Zhang
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Tiantian Ke
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - David Polya
- Williamson Research Centre for Molecular Environmental Science, School of Earth and Environmental Sciences, the University of Manchester, Manchester, United Kingdom
| |
Collapse
|
28
|
Zacarías-Estrada OL, Ballinas-Casarrubias L, Montero-Cabrera ME, Loredo-Portales R, Orrantia-Borunda E, Luna-Velasco A. Arsenic removal and activity of a sulfate reducing bacteria-enriched anaerobic sludge using zero valent iron as electron donor. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121392. [PMID: 31704117 DOI: 10.1016/j.jhazmat.2019.121392] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/27/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
Arsenic (As) removal from water, subject to sulfate-reducing conditions has been shown to result in safe As levels. We evaluated sulfate-reducing activity and arsenic removal by an anaerobic sludge enriched with sulfate-reducing bacteria (SRB), using zero valent iron (ZVI) as electron donor and different concentrations of AsV or AsIII (up to 5 mg/L). Sulfate and As removal were monitored in aqueous samples of batch assays. Likewise, precipitates resulting from As removal were characterized in solids. Sulfate-reducing activity on the part of anaerobic sludge was slightly decreased by AsIII and it was 50% decreased, particularly at 5 mg/L AsV, for which arsenic removal equaled 98%. At all other As concentrations assayed, 100% As was removed. The co-existence of S, As and Fe in solids from assays with As, was demonstrated by scanning electron microscopy (SEM-EDS) and by micro-X-ray fluorescence, corroborating the possible formation of Fe-As-S type minerals for As precipitation. Pharmacosiderite and scorodite minerals were identified by micro-X-ray absorption near edge structure and confirmed by extended X-ray adsorption fine structure, and these were related to the oxidation of arsenopyrite during analysis. Results indicate the suitability of the anaerobic sludge for bioremediating arsenic-contaminated groundwater under sulfidogenic conditions with ZVI as electron donor.
Collapse
Affiliation(s)
- Olga Lidia Zacarías-Estrada
- Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Miguel de Cervantes 120, Complejo Industrial Chihuahua, 31136 Chihuahua, Chih., Mexico
| | - Lourdes Ballinas-Casarrubias
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario s/n, 31125 Chihuahua, Chih., Mexico
| | - María Elena Montero-Cabrera
- Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Miguel de Cervantes 120, Complejo Industrial Chihuahua, 31136 Chihuahua, Chih., Mexico
| | - Rene Loredo-Portales
- Instituto de Geología, CONACyT-Universidad Nacional Autónoma de México, Campus UNISON, Av. Luis Donaldo Colosio s/n, 1030, 83000 Hermosillo Sonora, Mexico
| | - Erasmo Orrantia-Borunda
- Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Miguel de Cervantes 120, Complejo Industrial Chihuahua, 31136 Chihuahua, Chih., Mexico
| | - Antonia Luna-Velasco
- Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Miguel de Cervantes 120, Complejo Industrial Chihuahua, 31136 Chihuahua, Chih., Mexico.
| |
Collapse
|
29
|
Syam Babu D, Nidheesh PV. A review on electrochemical treatment of arsenic from aqueous medium. CHEM ENG COMMUN 2020. [DOI: 10.1080/00986445.2020.1715956] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- D. Syam Babu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - P. V. Nidheesh
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| |
Collapse
|
30
|
Chakraborty A, DasGupta CK, Bhadury P. Diversity of Betaproteobacteria revealed by novel primers suggests their role in arsenic cycling. Heliyon 2020; 6:e03089. [PMID: 31922045 PMCID: PMC6948241 DOI: 10.1016/j.heliyon.2019.e03089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 12/01/2019] [Accepted: 12/17/2019] [Indexed: 11/13/2022] Open
Abstract
High arsenic concentration in groundwater is a severe environmental problem affecting human health, particularly in countries of South and South-East Asia. The Bengal Delta Plain (BDP) distributed within India and Bangladesh is a major arsenic-affected region where groundwater is the primary source of drinking water. Previous studies have indicated that members of the bacterial class Betaproteobacteria constitute a major fraction of the microbial community in many of the aquifers within this region. Bacteria belonging to this class are known to be involved in redox cycling of arsenic as well as other metals such iron and manganese, thereby impacting arsenic mobilization and immobilization. While microbial diversity in arsenic-contaminated environments is generally assessed using universal 16S rRNA gene primers, targeted evaluation of Betaproteobacteria diversity remains poorly constrained. In this study, bacterial diversity was investigated in the groundwater from two shallow aquifers (West Bengal, India) based on 16S rRNA gene clone libraries and sequencing using a custom-designed pair of primers specific to Betaproteobacteria. Specificity of the primers was confirmed in silico as well as by the absence of PCR amplification of other bacterial classes. Four major families (Burkholderiaceae, Comamonadaceae, Gallionellaceae and Rhodocyclaceae) were detected among which members of Burkholderiaceae represented 59% and 71% of the total community in each aquifer. The four OTUs (operational taxonomic units; 97% sequence identity) within Burkholderiaceae were close phylogenetic relatives of bacteria within the genus Burkholderia known to solubilize phosphate minerals. Additionally, the OTUs belonging to Gallionellaceae were closely related to the members of the genera Gallionella and Sideroxydans, known to oxidize iron under microaerophilic conditions. These results suggest that members of Betaproteobacteria can potentially influence iron and phosphorus cycling which can influence biogeochemistry in arsenic-contaminated aquifers of the BDP.
Collapse
Affiliation(s)
- Anirban Chakraborty
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Chanchal K DasGupta
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Punyasloke Bhadury
- Integrative Taxonomy and Microbial Ecology Research Group, Department of Biological Sciences and Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, West Bengal, India
| |
Collapse
|
31
|
Barakan S, Aghazadeh V. Structural modification of nano bentonite by aluminum, iron pillarization and 3D growth of silica mesoporous framework for arsenic removal from gold mine wastewater. JOURNAL OF HAZARDOUS MATERIALS 2019; 378:120779. [PMID: 31226589 DOI: 10.1016/j.jhazmat.2019.120779] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 06/09/2023]
Abstract
The elevated contamination of arsenic species emitted from gold mine activities causes serious environmental problems. The modification of natural bentonite clay to obtain the adsorbent with high porosity, large surface area, and high adsorption capacity creates a new group of porous and heterostructure materials for immobilization of arsenic species from gold mine wastewater under alkaline condition, owing to the gold cyanidation process. There is a limited approach in alkaline mine wastewater, because of the negative surface charge of most adsorbents. In this research, the adsorbability of arsenic under synthetic and real alkaline wastewater was investigated for the first time. The Visual MINTEQ geochemical modeling software was applied to simulate the arsenic species under different pH, temperature and co-existing ions in mine wastewater obtained from dewatering unit in Zarshuran gold mine. Optimized parameters and better adsorbent were initially determined from synthetic alkaline wastewater, then the efficiency of the adsorption process in real alkaline mine wastewater was measured. In real wastewater treatment, the obtained adsorption efficiency higher than 70% with high reusability in the alkaline condition is an appropriated for only one step process. The major mechanism for adsorption was chemical with complexation in rapid and slow diffusion into the active sites.
Collapse
Affiliation(s)
- Shima Barakan
- Department of Mineral Processing, Faculty of Mining Engineering, Sahand University of Technology, Tabriz, Iran
| | - Valeh Aghazadeh
- Department of Mineral Processing, Faculty of Mining Engineering, Sahand University of Technology, Tabriz, Iran.
| |
Collapse
|
32
|
Pi K, Markelova E, Zhang P, Van Cappellen P. Arsenic Oxidation by Flavin-Derived Reactive Species under Oxic and Anoxic Conditions: Oxidant Formation and pH Dependence. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10897-10905. [PMID: 31419125 DOI: 10.1021/acs.est.9b03188] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Flavins are ubiquitous redox-active compounds capable of producing reactive oxygen (O2•-, •OH, and H2O2) and flavin radical species in natural environments, yet their roles in the redox transformations of environmental contaminants, such as arsenic (As), remain to be investigated. Here, we show that reduced flavins can be a source of effective oxidants for As(III) under both oxic and anoxic conditions. For instance, in the presence of 15 μM reduced riboflavin (RBFH2), 22% of 30 μM As(III) is oxidized in aerated solution at pH 7.0. The co-oxidation of As(III) with RBFH2 is pH-dependent, with a faster reaction rate under mildly acidic relative to alkaline conditions. Quencher tests with 2-propanol (for •OH) and catalase (for H2O2) indicate that As(III) oxidation under oxic conditions is likely controlled by flavin-derived •OH at pH 5.2 and 7.0, and by H2O2 at pH 9.0. Kinetic modeling further implies that flavin-derived reactive oxygen species are mainly responsible for As(III) oxidation under oxic conditions, whereas oxidation of As(III) under anoxic conditions at pH 9.0 is attributed to riboflavin radicals (RBFH•) generated from co-existing oxidized and reduced riboflavin. The demonstrated ability of flavins to catalyze As(III) oxidation has potential implications for As redox cycling in the environment.
Collapse
Affiliation(s)
- Kunfu Pi
- Ecohydrology Research Group, Department of Earth and Environmental Sciences & Water Institute , University of Waterloo , N2L 3G1 Waterloo , Canada
| | | | - Peng Zhang
- State Key Laboratory of Biogeology and Environmental Geology , China University of Geosciences , 430074 Wuhan , China
| | - Philippe Van Cappellen
- Ecohydrology Research Group, Department of Earth and Environmental Sciences & Water Institute , University of Waterloo , N2L 3G1 Waterloo , Canada
| |
Collapse
|
33
|
Cavalca L, Zecchin S, Zaccheo P, Abbas B, Rotiroti M, Bonomi T, Muyzer G. Exploring Biodiversity and Arsenic Metabolism of Microbiota Inhabiting Arsenic-Rich Groundwaters in Northern Italy. Front Microbiol 2019; 10:1480. [PMID: 31312188 PMCID: PMC6614289 DOI: 10.3389/fmicb.2019.01480] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/13/2019] [Indexed: 11/13/2022] Open
Abstract
Arsenic contamination of groundwater aquifers is an issue of global concern. Among the affected sites, in several Italian groundwater aquifers arsenic levels above the WHO limits for drinking water are present, with consequent issues of public concern. In this study, for the first time, the role of microbial communities in metalloid cycling in groundwater samples from Northern Italy lying on Pleistocene sediments deriving from Alps mountains has been investigated combining environmental genomics and cultivation approaches. 16S rRNA gene libraries revealed a high number of yet uncultured species, which in some of the study sites accounted for more of the 50% of the total community. Sequences related to arsenic-resistant bacteria (arsenate-reducing and arsenite-oxidizing) were abundant in most of the sites, while arsenate-respiring bacteria were negligible. In some of the sites, sulfur-oxidizing bacteria of the genus Sulfuricurvum accounted for more than 50% of the microbial community, whereas iron-cycling bacteria were less represented. In some aquifers, arsenotrophy, growth coupled to autotrophic arsenite oxidation, was suggested by detection of arsenite monooxygenase (aioA) and 1,5-ribulose bisphosphate carboxylase (RuBisCO) cbbL genes of microorganisms belonging to Rhizobiales and Burkholderiales. Enrichment cultures established from sampled groundwaters in laboratory conditions with 1.5 mmol L-1 of arsenite as sole electron donor were able to oxidize up to 100% of arsenite, suggesting that this metabolism is active in groundwaters. The presence of heterotrophic arsenic resistant bacteria was confirmed by enrichment cultures in most of the sites. The overall results provided a first overview of the microorganisms inhabiting arsenic-contaminated aquifers in Northern Italy and suggested the importance of sulfur-cycling bacteria in the biogeochemistry of arsenic in these ecosystems. The presence of active arsenite-oxidizing bacteria indicates that biological oxidation of arsenite, in combination with arsenate-adsorbing materials, could be employed for metalloid removal.
Collapse
Affiliation(s)
- Lucia Cavalca
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Sarah Zecchin
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Patrizia Zaccheo
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli Studi di Milano, Milan, Italy
| | - Ben Abbas
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Marco Rotiroti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Tullia Bonomi
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
34
|
Falteisek L, Duchoslav V, Drahota P. Realgar (As 4S 4) bioprecipitation in microcosm fed by a natural groundwater and organic matter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:18766-18776. [PMID: 31062237 DOI: 10.1007/s11356-019-05237-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/22/2019] [Indexed: 05/27/2023]
Abstract
Sequestration of arsenic to biogenic sulfide minerals is known from As-contaminated anoxic environments. Despite numerous successful laboratory experiments, the process remains difficult to predict in moderate arsenic conditions. We performed microcosm experiments using naturally contaminated groundwater (containing ca. 6 mg/L As) and natural organic matter (NOM) particles both collected from wetland soil. Macroscopic realgar precipitates, occasionally accompanied by bonazziite, a FeS phase, elementary S, calcite, and whewellite, appeared after 4 to 18 months. Realgar only precipitated in microcosms moderately poisoned by azide or antibiotics and those in which oxidation of hydrogen sulfide to sulfur took place. The biomineralization process was not affected by the presence of additional carbon sources or the diversity, community structure, and functional composition of the microbial community. Hydrogen sulfide concentration was greater in the realgar-free microcosms, suggesting that arsenic thiolation prevented precipitation of realgar. We compared our data to available microbial community data from soils with different rates of realgar precipitation, and found that the communities from realgar-encrusted NOM particles usually showed limited sulfate reduction and the presence of fermentative metabolisms, whereas communities from realgar-free NOM particles were strongly dominated by sulfate reducers. We argue that the limited sulfate supply and intensive fermentation amplify reducing conditions, which make arsenic sulfide precipitation plausible in high-sulfate, low-arsenic groundwaters.
Collapse
Affiliation(s)
- Lukáš Falteisek
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague 2, Czech Republic.
| | - Vojtěch Duchoslav
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague 2, Czech Republic
| | - Petr Drahota
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 43, Prague 2, Czech Republic
| |
Collapse
|
35
|
Kulkarni HV, Mladenov N, Datta S, Chatterjee D. Influence of monsoonal recharge on arsenic and dissolved organic matter in the Holocene and Pleistocene aquifers of the Bengal Basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 637-638:588-599. [PMID: 29754092 DOI: 10.1016/j.scitotenv.2018.05.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 04/19/2018] [Accepted: 05/01/2018] [Indexed: 06/08/2023]
Abstract
Arsenic (As) mobilization in the Bengal Basin aquifers has been studied for several decades due to the complex redox bio-geochemistry, dynamic hydrogeology and complex nature of dissolved organic matter (DOM). Earlier studies have examined the changes in groundwater As in the dry season before monsoon and during the wet season after monsoonal recharge. To investigate the more immediate influence of recharge during the active monsoon period on As mobilization and DOM character, groundwater samples were analyzed in the pre-monsoon and during the active monsoon period. Groundwater samples were collected from shallow (<40 m) and deep (>40 m) tube-wells in West Bengal, India. Dissolved AsT in shallow groundwater ranged from 50 to 315 μg/L exceeding the WHO guideline of 10 μg/L. Shallow groundwater also showed high total dissolved nitrogen, carbon to nitrogen (C:N) <1, and humic-like DOM with a humic:protein ratio >1. By contrast, deep groundwaters contained AsT between 0.5 and 11 μg/L with carbonaceous and protein-like DOM, C:N >1, and humic:protein <1. Stable isotopes of δ18O and δ2H and Cl/Br results indicated three recharge scenarios in the shallow aquifer including direct recharge of dilute rainwater, evaporated surface water, and anthropogenically impacted surface water. Monsoonal recharge did not cause notable changes in AsT in deep or shallow groundwater, including two As hotspots in the Pleistocene aquifer. However, the monsoon did result in a two-fold decrease in SUVA254, increase in nitrite and nitrate in the shallow groundwater. The DOM in the deep groundwater at the two As hotspots (with AsT 132 and 715 μg/L) had optical properties with much greater humic-like DOM than the surrounding groundwater, which had low AsT and highly protein-like DOM. Overall, these results support that protein-like DOM associated with low groundwater As concentrations and suggest that the monsoonal influence on nitrate and nitrite is limited to shallow aquifers.
Collapse
Affiliation(s)
- Harshad V Kulkarni
- 2118 Fiedler Hall, Department of Civil Engineering, Kansas State University, Manhattan, KS, USA.
| | - Natalie Mladenov
- Department of Civil, Construction and Environmental Engineering, San Diego State University, San Diego, CA, USA
| | - Saugata Datta
- Department of Geology, Kansas State University, Manhattan, KS, USA
| | - Debashis Chatterjee
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal, India
| |
Collapse
|
36
|
Park S, Lee JH, Shin TJ, Hur HG, Kim MG. Adsorption and Incorporation of Arsenic to Biogenic Lepidocrocite Formed in the Presence of Ferrous Iron during Denitrification by Paracoccus denitrificans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:9983-9991. [PMID: 30111094 DOI: 10.1021/acs.est.8b02101] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We demonstrate adsorption and partial incorporation of arsenic, in its soluble form, either as arsenite or arsenate into lepidocrocite (γ-FeOOH), which was formed through nitrite-driven Fe(II) oxidation by Paracoccus denitrificans under nitrate-reducing conditions. Fe and As K-edge XANES and radial distribution functions of Fourier-transformed EXAFS spectra showed that portions of As were found to be incorporated in the biogenic lepidocrocite, in addition to higher portions of adsorbed As. We suggest that denitrifying bacteria such as Paracoccus denitrificans, studied here, could facilitate decrease of aqueous arsenic As(III) and/or As(V) through indirect Fe(II) oxidation to solid phase iron minerals, here as lepidocrocite, by the denitrification product nitrite in the presence of nitrate, ferrous iron, and arsenic, under certain environmental conditions where these materials could be found, such as in As-contaminated paddy soils and wetlands.
Collapse
Affiliation(s)
- Sunhwa Park
- School of Earth Sciences and Environmental Engineering , Gwangju Institute of Science and Technology (GIST) , 123 Cheomdan-gwagiro , Buk-gu, Gwangju 61005 , Republic of Korea
| | - Ji-Hoon Lee
- Department of Bioenvironmental Chemistry , Chonbuk National University , Jeonju 54896 , Republic of Korea
| | - Tae Joo Shin
- UNIST Central Research Facilities & School of Natural Science , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| | - Hor-Gil Hur
- School of Earth Sciences and Environmental Engineering , Gwangju Institute of Science and Technology (GIST) , 123 Cheomdan-gwagiro , Buk-gu, Gwangju 61005 , Republic of Korea
| | - Min Gyu Kim
- Pohang Accelerator Laboratory (PAL) , Pohang University of Science and Technology , Pohang 37673 , Republic of Korea
| |
Collapse
|
37
|
Sun J, Frommer H, Siade AJ, Chillrud SN, Mailloux BJ, Bostick BC. Model-Based Analysis of Arsenic Immobilization via Iron Mineral Transformation under Advective Flows. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:9243-9253. [PMID: 30039966 PMCID: PMC6429028 DOI: 10.1021/acs.est.8b01762] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Recent laboratory studies have demonstrated that coinjection of nitrate and Fe(II) (as ferrous sulfate) to As-bearing sediments can produce an Fe mineral assemblage containing magnetite capable of immobilizing advected As under a relatively wide range of aquifer conditions. This study combined laboratory findings with process-based numerical modeling approaches, to quantify the observed Fe mineral (trans)formation and concomitant As partitioning dynamics and to assess potential nitrate-Fe(II) remediation strategies for field implementation. The model development was guided by detailed solution and sediment data from our well-controlled column experiment. The modeling results demonstrated that the fate of As during the experiment was primarily driven by ferrihydrite formation and reductive transformation and that different site densities were identified for natural and neoformed ferrihydrite to explain the observations both before and after nitrate-Fe(II) injection. Our results also highlighted that when ferrihydrite was nearing depletion, As immobilization ultimately relied on the presence of magnetite. On the basis of the column model, field-scale predictive simulations were conducted to illustrate the feasibility of the nitrate-Fe(II) strategy for intercepting advected As from a plume. The predictive simulations, which suggested that long-term As immobilization was feasible, favored a scenario that maintains high dissolved Fe(II) concentration during injection periods and thereby converts ferrihydrite to magnetite.
Collapse
Affiliation(s)
- Jing Sun
- School of Earth Sciences, University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia
- CSIRO Land and Water, Private Bag No. 5, Wembley, Western Australia 6913, Australia
- Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, New York 10964, United States
| | - Henning Frommer
- School of Earth Sciences, University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia
- CSIRO Land and Water, Private Bag No. 5, Wembley, Western Australia 6913, Australia
- National Centre for Groundwater Research and Training, Adelaide, South Australia 5001, Australia
- Corresponding Author Phone: +61 8 93336272; Fax: +61 8 9333 6499;
| | - Adam J. Siade
- School of Earth Sciences, University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia
- CSIRO Land and Water, Private Bag No. 5, Wembley, Western Australia 6913, Australia
- National Centre for Groundwater Research and Training, Adelaide, South Australia 5001, Australia
| | - Steven N. Chillrud
- Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, New York 10964, United States
| | - Brian J. Mailloux
- Department of Environmental Sciences, Barnard College, 3009 Broadway, New York, New York 10027, United States
| | - Benjamin C. Bostick
- Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, New York 10964, United States
| |
Collapse
|
38
|
Gustave W, Yuan ZF, Sekar R, Chang HC, Zhang J, Wells M, Ren YX, Chen Z. Arsenic mitigation in paddy soils by using microbial fuel cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:647-655. [PMID: 29614474 DOI: 10.1016/j.envpol.2018.03.085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/06/2018] [Accepted: 03/24/2018] [Indexed: 05/10/2023]
Abstract
Arsenic (As) behavior in paddy soils couples with the redox process of iron (Fe) minerals. When soil is flooded, Fe oxides are transformed to soluble ferrous ions by accepting the electrons from Fe reducers. This process can significantly affect the fate of As in paddy fields. In this study, we show a novel technique to manipulate the Fe redox processes in paddy soils by deploying soil microbial fuel cells (sMFC). The results showed that the sMFC bioanode can significantly decrease the release of Fe and As into soil porewater. Iron and As contents around sMFC anode were 65.0% and 47.0% of the control respectively at day 50. The observed phenomenon would be explained by a competition for organic substrate between sMFC bioanode and the iron- and arsenic-reducing bacteria in the soils. In the vicinity of bioanode, organic matter removal efficiencies were 10.3% and 14.0% higher than the control for lost on ignition carbon and total organic carbon respectively. Sequencing of the 16S rRNA genes suggested that the influence of bioanodes on bulk soil bacterial community structure was minimal. Moreover, during the experiment a maximum current and power density of 0.31 mA and 12.0 mWm-2 were obtained, respectively. This study shows a novel way to limit the release of Fe and As in soils porewater and simultaneously generate electricity.
Collapse
Affiliation(s)
- Williamson Gustave
- Department of Environmental Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China; Department of Environmental Science, University of Liverpool, Brownlow Hill, Liverpool, L69 7ZX, United Kingdom
| | - Zhao-Feng Yuan
- Department of Environmental Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China; Department of Environmental Science, University of Liverpool, Brownlow Hill, Liverpool, L69 7ZX, United Kingdom
| | - Raju Sekar
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Hu-Cheng Chang
- Department of Environmental Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
| | - Jun Zhang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mona Wells
- Department of Environmental Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
| | - Yu-Xiang Ren
- Department of Environmental Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
| | - Zheng Chen
- Department of Environmental Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
39
|
Zhang J, Ma T, Yan Y, Xie X, Abass OK, Liu C, Zhao Z, Wang Z. Effects of Fe-S-As coupled redox processes on arsenic mobilization in shallow aquifers of Datong Basin, northern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:28-38. [PMID: 29466772 DOI: 10.1016/j.envpol.2018.01.092] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/09/2018] [Accepted: 01/28/2018] [Indexed: 06/08/2023]
Abstract
High arsenic groundwater generally coexists with elevated Fe2+ concentrations (mg L-1 levels) under reducing conditions, but an explanation for the extremely high arsenic (up to ∼2690) concentrations at very low Fe2+ (i.e., μg L-1 levels) in groundwater of Datong Basin remains elusive. Field groundwater investigation and laboratory microcosm experiments were implemented in this study. The field groundwater was characterized by weakly alkaline (pH 7.69 to 8.34) and reducing conditions (Eh -221.7 to -31.9 mV) and arsenic concentration averages at 697 μg L-1. Acinetobacter (5.9-51.3%), Desulfosporosinus (4.6-30.2%), Brevundimonas (3.9-19%) and Pseudomonas (3.2-14.6%) were identified as the dominant genera in the bacterial communities. Bacterially mediated arsenate reduction, Fe(III) reduction, and sulfate reduction are processes occurring (or having previously occurred) in the groundwater. Results from incubation experiment (27 d) revealed that nitrate, arsenate, and Fe(III)/sulfate reduced sequentially with time under anoxic conditions, while Fe(III) and sulfate reduction processes had no obvious differences, occurring almost simultaneously. Moreover, low Fe2+ concentrations were attributed to initially high pH conditions, which relatively retarded Fe(III) reduction. In addition, arsenic behavior in relation to groundwater redox conditions, matrices, and solution chemistry were elaborated. Bacterial arsenate reduction process proceeded before Fe(III) and sulfate reduction in the incubation experiment, and the total arsenic concentration (dominated by arsenite) gradually increased from ∼7 to 115 μg L-1 as arsenate was reduced. Accordingly, bacterially mediated reductive desorption of arsenate is identified as the main process controlling arsenic mobility, while Fe(III) reduction coupled with sulfate reduction are secondary processes that have also contributed to arsenic enrichment in the study site. Overall, this study provide important insights into the mechanism controlling arsenic mobility under weakly alkaline and reducing conditions, and furnishes that arsenate reduction by bacteria play a major role leading to high accumulation of desorbed arsenite in groundwater.
Collapse
Affiliation(s)
- Junwen Zhang
- School of Environmental Studies, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430071, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002, China
| | - Teng Ma
- School of Environmental Studies, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430071, China.
| | - Yani Yan
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Xianjun Xie
- School of Environmental Studies, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430071, China
| | - Olusegun K Abass
- University of Chinese Academy of Sciences, Beijing 100049, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Congqiang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002, China
| | - Zhiqi Zhao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002, China
| | - Zhizhen Wang
- School of Environmental Studies, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430071, China
| |
Collapse
|
40
|
Jamieson J, Prommer H, Kaksonen AH, Sun J, Siade AJ, Yusov A, Bostick B. Identifying and Quantifying the Intermediate Processes during Nitrate-Dependent Iron(II) Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5771-5781. [PMID: 29676145 PMCID: PMC6427828 DOI: 10.1021/acs.est.8b01122] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Microbially driven nitrate-dependent iron (Fe) oxidation (NDFO) in subsurface environments has been intensively studied. However, the extent to which Fe(II) oxidation is biologically catalyzed remains unclear because no neutrophilic iron-oxidizing and nitrate reducing autotroph has been isolated to confirm the existence of an enzymatic pathway. While mixotrophic NDFO bacteria have been isolated, understanding the process is complicated by simultaneous abiotic oxidation due to nitrite produced during denitrification. In this study, the relative contributions of biotic and abiotic processes during NDFO were quantified through the compilation and model-based interpretation of previously published experimental data. The kinetics of chemical denitrification by Fe(II) (chemodenitrification) were assessed, and compelling evidence was found for the importance of organic ligands, specifically exopolymeric substances secreted by bacteria, in enhancing abiotic oxidation of Fe(II). However, nitrite alone could not explain the observed magnitude of Fe(II) oxidation, with 60-75% of overall Fe(II) oxidation attributed to an enzymatic pathway for investigated strains: Acidovorax ( A.) strain BoFeN1, 2AN, A. ebreus strain TPSY, Paracoccus denitrificans Pd 1222, and Pseudogulbenkiania sp. strain 2002. By rigorously quantifying the intermediate processes, this study eliminated the potential for abiotic Fe(II) oxidation to be exclusively responsible for NDFO and verified the key contribution from an additional, biological Fe(II) oxidation process catalyzed by NDFO bacteria.
Collapse
Affiliation(s)
- James Jamieson
- School of Earth Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
- CSIRO Land and Water, Private Bag No. 5, Wembley, Western Australia 6913, Australia
| | - Henning Prommer
- School of Earth Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
- National Centre for Groundwater Research and Training, Adelaide, South Australia 5001, Australia
- CSIRO Land and Water, Private Bag No. 5, Wembley, Western Australia 6913, Australia
- Corresponding Author: .
| | - Anna H. Kaksonen
- CSIRO Land and Water, Private Bag No. 5, Wembley, Western Australia 6913, Australia
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Jing Sun
- School of Earth Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
- CSIRO Land and Water, Private Bag No. 5, Wembley, Western Australia 6913, Australia
| | - Adam J. Siade
- School of Earth Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
- National Centre for Groundwater Research and Training, Adelaide, South Australia 5001, Australia
- CSIRO Land and Water, Private Bag No. 5, Wembley, Western Australia 6913, Australia
| | - Anna Yusov
- Department of Chemistry, Barnard College, 3009 Broadway, New York, New York 10027, United States
| | - Benjamin Bostick
- Lamont-Doherty Earth Observatory, PO Box 1000, 61 Route 9W, Palisades, New York 10964, United States
| |
Collapse
|
41
|
Shakoor MB, Bibi I, Niazi NK, Shahid M, Nawaz MF, Farooqi A, Naidu R, Rahman MM, Murtaza G, Lüttge A. The evaluation of arsenic contamination potential, speciation and hydrogeochemical behaviour in aquifers of Punjab, Pakistan. CHEMOSPHERE 2018; 199:737-746. [PMID: 29475162 DOI: 10.1016/j.chemosphere.2018.02.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/13/2018] [Accepted: 02/01/2018] [Indexed: 06/08/2023]
Abstract
In this study, we tested 123 groundwater wells from five different areas of Punjab, Pakistan for arsenic (As) contamination level and species, as well as delineated hydrogeochemical behaviour of As in aquifers. Results revealed that 75% and 41% of the groundwater wells exceeded the safe As limit of World Health Organisation (WHO, 10 μg L-1) and Pakistan-EPA (50 μg L-1), respectively. Arsenite (As(III)) and arsenate (As(V)) spanned 0-80% and 20-100% of total As (1.2-206 μg L-1), respectively. The mean As content (5.2 μg L-1) of shallow wells at 9-40 m depth did not exceed the WHO safe limit, representing a safe aquifer zone for pumping of groundwater compared to deeper wells at 41-90 m (51 μg L-1) and >90 m (23 μg L-1) depths. Piper-plot elucidated that the aqueous chemistry was dominated with Na-SO4, Na-Ca-SO4, Na-Mg-SO4 type saline water. Principal component analysis grouped As concentration with well depth, pH, salinity, Fe and CO3, exhibiting that these hydrogeochemical factors could have potential role in controlling As release/sequestration into the aquifers of study area. Geochemical modeling showed positive saturation indices only for iron (Fe) oxide-phases, indicating Fe oxides as the major carriers of As. Overall, this study provides insights to tackle emerging As threat to the communities in Punjab, Pakistan, as well as help develop suitable management/mitigation strategies - based on the baseline knowledge of As levels/species and factors governing As contamination in the study area.
Collapse
Affiliation(s)
- Muhammad Bilal Shakoor
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan; Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan; MARUM and Department of Geosciences, University of Bremen, Bremen, D-28359, Germany
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan; MARUM and Department of Geosciences, University of Bremen, Bremen, D-28359, Germany; Southern Cross GeoScience, Southern Cross University, Lismore, 2480, NSW, Australia.
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, Pakistan
| | - Muhammad Farrakh Nawaz
- Department of Forestry and Range Management, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Abida Farooqi
- Environmental Geochemistry Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ghulam Murtaza
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Andreas Lüttge
- MARUM and Department of Geosciences, University of Bremen, Bremen, D-28359, Germany
| |
Collapse
|
42
|
Plewniak F, Crognale S, Rossetti S, Bertin PN. A Genomic Outlook on Bioremediation: The Case of Arsenic Removal. Front Microbiol 2018; 9:820. [PMID: 29755441 PMCID: PMC5932151 DOI: 10.3389/fmicb.2018.00820] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/10/2018] [Indexed: 01/07/2023] Open
Abstract
Microorganisms play a major role in biogeochemical cycles. As such they are attractive candidates for developing new or improving existing biotechnological applications, in order to deal with the accumulation and pollution of organic and inorganic compounds. Their ability to participate in bioremediation processes mainly depends on their capacity to metabolize toxic elements and catalyze reactions resulting in, for example, precipitation, biotransformation, dissolution, or sequestration. The contribution of genomics may be of prime importance to a thorough understanding of these metabolisms and the interactions of microorganisms with pollutants at the level of both single species and microbial communities. Such approaches should pave the way for the utilization of microorganisms to design new, efficient and environmentally sound remediation strategies, as exemplified by the case of arsenic contamination, which has been declared as a major risk for human health in various parts of the world.
Collapse
Affiliation(s)
- Frédéric Plewniak
- Génétique Moléculaire, Génomique et Microbiologie, UMR7156 CNRS, Université de Strasbourg, Strasbourg, France
| | - Simona Crognale
- Istituto di Ricerca sulle Acque, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Simona Rossetti
- Istituto di Ricerca sulle Acque, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Philippe N Bertin
- Génétique Moléculaire, Génomique et Microbiologie, UMR7156 CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
43
|
Luong VT, Cañas Kurz EE, Hellriegel U, Luu TL, Hoinkis J, Bundschuh J. Iron-based subsurface arsenic removal technologies by aeration: A review of the current state and future prospects. WATER RESEARCH 2018; 133:110-122. [PMID: 29367047 DOI: 10.1016/j.watres.2018.01.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 01/03/2018] [Accepted: 01/03/2018] [Indexed: 06/07/2023]
Abstract
Arsenic contamination in groundwater is a critical issue and one that raises great concern around the world as the cause of many negative health impacts on the human body, including internal and external cancers. There are many ways to remove or immobilize arsenic, including membrane technologies, adsorption, sand filtration, ion exchange, and capacitive deionization. These exhibit many different advantages and disadvantages. Among these methods, in-situ subsurface arsenic immobilization by aeration and the subsequent removal of arsenic from the aqueous phase has shown to be very a promising, convenient technology with high treatment efficiency. In contrast to most of other As remediation technologies, in-situ subsurface immobilization offers the advantage of negligible waste production and hence has the potential of being a sustainable treatment option. This paper reviews the application of subsurface arsenic removal (SAR) technologies as well as current modeling approaches. Unlike subsurface iron removal (SIR), which has proven to be technically feasible in a variety of hydrogeochemical settings for many years, SAR is not yet an established solution since it shows vulnerability to diverse geochemical conditions such as pH, Fe:As ratio, and the presence of co-ions. In some situations, this makes it difficult to comply with the stringent guideline value for drinking water recommended by the WHO (10 μg L-1). In order to overcome its limitations, more theoretical and experimental studies are needed to show long-term application achievements and help the development of SAR processes into state-of-the-art technology.
Collapse
Affiliation(s)
- Vu T Luong
- Vietnamese-German University, Le Lai Street, Hoa Phu Ward, Thu Dau Mot City 822096, Binh Duong Province, Viet Nam
| | - Edgardo E Cañas Kurz
- Center of Applied Research, Karlsruhe University of Applied Sciences, Moltkestr. 30, 76133 Karlsruhe, Germany
| | - Ulrich Hellriegel
- Center of Applied Research, Karlsruhe University of Applied Sciences, Moltkestr. 30, 76133 Karlsruhe, Germany
| | - Tran L Luu
- Vietnamese-German University, Le Lai Street, Hoa Phu Ward, Thu Dau Mot City 822096, Binh Duong Province, Viet Nam
| | - Jan Hoinkis
- Center of Applied Research, Karlsruhe University of Applied Sciences, Moltkestr. 30, 76133 Karlsruhe, Germany.
| | - Jochen Bundschuh
- Faculty of Health, Engineering and Sciences, University of Southern Queensland, West St, Darling Heights, 4350 Toowoomba, Australia
| |
Collapse
|
44
|
Deng Y, Zheng T, Wang Y, Liu L, Jiang H, Ma T. Effect of microbially mediated iron mineral transformation on temporal variation of arsenic in the Pleistocene aquifers of the central Yangtze River basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:1247-1258. [PMID: 29734603 DOI: 10.1016/j.scitotenv.2017.11.166] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 11/02/2017] [Accepted: 11/15/2017] [Indexed: 06/08/2023]
Abstract
Significant seasonal variation of groundwater arsenic (As) concentrations in shallow aquifers of the Jianghan Plain, central Yangtze River Basin has been reported recently, but the underlying mechanisms remain not well understood. To elaborate biogeochemical processes responsible for the observed As concentration variation, 42-day incubation experiments were done using sediment samples collected respectively from the depth of 26, 36 and 60m of the As-affected aquifer which were labeled respectively as JH26, JH36, JH60. Where JH denotes Jianghan Plain, and the number indicates the depth of the sediment sample. The results indicated that As could be mobilized from the sediments of 26m and 36m depth under the stimulation of exogenous organic carbon, with the maximum As release amount of 1.60 and 1.03mgkg-1, respectively, while the sediments at 60m depth did not show As mobilization. The microbially mediated reductive dissolution of amorphous iron oxides and reduction of As(V) to As(III) could account for the observed As mobilization. The 16S rRNA high-throughput sequencing results indicated that the variation of microbial community correlated with the released As concentration (R=0.7, P<0.05) and the iron-reducing bacteria, including Pseudomonas, Clostridium and Geobacter, were the main drivers for the As mobilization from the sediments at 26m and 36m depth. The increase of arsC gene abundance (up to 1.4×105 copies g-1) during As release suggested that As reduction was mediated by the resistant reduction mechanism. By contrast, in the 60m sediments where the Fe and As release was absent, the iron-reducing bacteria accounted for a very minor proportion and sulfate-reducing bacteria were predominant in the microbial community. In addition, after 30days of incubation, the released As in the 26m sediments was immobilized via co-precipitation with or adsorption onto the Fe-sulfide mineral newly-formed by the bacterial sulfate reduction. These results are consistent with the results of our previous field monitoring, indicating that the bacterial sulfate reduction could lead to the temporal decrease in groundwater As concentrations. This study provides insights into the mechanism for As mobilization and seasonal As concentration variation in the Pleistocene aquifers from alluvial plains.
Collapse
Affiliation(s)
- Yamin Deng
- Geological Survey, China University of Geosciences, Wuhan, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China.
| | - Tianliang Zheng
- Geological Survey, China University of Geosciences, Wuhan, China
| | - Yanxin Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China; School of Environmental Studies, China University of Geosciences, Wuhan, China.
| | - Lun Liu
- Geological Survey, China University of Geosciences, Wuhan, China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Teng Ma
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China; School of Environmental Studies, China University of Geosciences, Wuhan, China
| |
Collapse
|
45
|
Gnanaprakasam ET, Lloyd JR, Boothman C, Ahmed KM, Choudhury I, Bostick BC, van Geen A, Mailloux BJ. Microbial Community Structure and Arsenic Biogeochemistry in Two Arsenic-Impacted Aquifers in Bangladesh. mBio 2017; 8:e01326-17. [PMID: 29184025 PMCID: PMC5705915 DOI: 10.1128/mbio.01326-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/19/2017] [Indexed: 11/20/2022] Open
Abstract
Long-term exposure to trace levels of arsenic (As) in shallow groundwater used for drinking and irrigation puts millions of people at risk of chronic disease. Although microbial processes are implicated in mobilizing arsenic from aquifer sediments into groundwater, the precise mechanism remains ambiguous. The goal of this work was to target, for the first time, a comprehensive suite of state-of-the-art molecular techniques in order to better constrain the relationship between indigenous microbial communities and the iron and arsenic mineral phases present in sediments at two well-characterized arsenic-impacted aquifers in Bangladesh. At both sites, arsenate [As(V)] was the major species of As present in sediments at depths with low aqueous As concentrations, while most sediment As was arsenite [As(III)] at depths with elevated aqueous As concentrations. This is consistent with a role for the microbial As(V) reduction in mobilizing arsenic. 16S rRNA gene analysis indicates that the arsenic-rich sediments were colonized by diverse bacterial communities implicated in both dissimilatory Fe(III) and As(V) reduction, while the correlation analyses involved phylogenetic groups not normally associated with As mobilization. Findings suggest that direct As redox transformations are central to arsenic fate and transport and that there is a residual reactive pool of both As(V) and Fe(III) in deeper sediments that could be released by microbial respiration in response to hydrologic perturbation, such as increased groundwater pumping that introduces reactive organic carbon to depth.IMPORTANCE The consumption of arsenic in waters collected from tube wells threatens the lives of millions worldwide and is particularly acute in the floodplains and deltas of southern Asia. The cause of arsenic mobilization from natural sediments within these aquifers to groundwater is complex, with recent studies suggesting that sediment-dwelling microorganisms may be the cause. In the absence of oxygen at depth, specialist bacteria are thought able to use metals within the sediments to support their metabolism. Via these processes, arsenic-contaminated iron minerals are transformed, resulting in the release of arsenic into the aquifer waters. Focusing on a field site in Bangladesh, a comprehensive, multidisciplinary study using state-of-the-art geological and microbiological techniques has helped better understand the microbes that are present naturally in a high-arsenic aquifer and how they may transform the chemistry of the sediment to potentially lethal effect.
Collapse
Affiliation(s)
- Edwin T Gnanaprakasam
- School of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, the University of Manchester, Manchester, United Kingdom
| | - Jonathan R Lloyd
- School of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, the University of Manchester, Manchester, United Kingdom
| | - Christopher Boothman
- School of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, the University of Manchester, Manchester, United Kingdom
| | | | | | - Benjamin C Bostick
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, USA
| | - Alexander van Geen
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, USA
| | - Brian J Mailloux
- Environmental Science Department, Barnard College, New York, New York, USA
| |
Collapse
|
46
|
Carrel M, Beltran MA, Morales VL, Derlon N, Morgenroth E, Kaufmann R, Holzner M. Biofilm imaging in porous media by laboratory X-Ray tomography: Combining a non-destructive contrast agent with propagation-based phase-contrast imaging tools. PLoS One 2017; 12:e0180374. [PMID: 28732010 PMCID: PMC5521744 DOI: 10.1371/journal.pone.0180374] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 06/14/2017] [Indexed: 11/21/2022] Open
Abstract
X-ray tomography is a powerful tool giving access to the morphology of biofilms, in 3D porous media, at the mesoscale. Due to the high water content of biofilms, the attenuation coefficient of biofilms and water are very close, hindering the distinction between biofilms and water without the use of contrast agents. Until now, the use of contrast agents such as barium sulfate, silver-coated micro-particles or 1-chloronaphtalene added to the liquid phase allowed imaging the biofilm 3D morphology. However, these contrast agents are not passive and potentially interact with the biofilm when injected into the sample. Here, we use a natural inorganic compound, namely iron sulfate, as a contrast agent progressively bounded in dilute or colloidal form into the EPS matrix during biofilm growth. By combining a very long source-to-detector distance on a X-ray laboratory source with a Lorentzian filter implemented prior to tomographic reconstruction, we substantially increase the contrast between the biofilm and the surrounding liquid, which allows revealing the 3D biofilm morphology. A comparison of this new method with the method proposed by Davit et al (Davit et al., 2011), which uses barium sulfate as a contrast agent to mark the liquid phase was performed. Quantitative evaluations between the methods revealed substantial differences for the volumetric fractions obtained from both methods. Namely, contrast agent—biofilm interactions (e.g. biofilm detachment) occurring during barium sulfate injection caused a reduction of the biofilm volumetric fraction of more than 50% and displacement of biofilm patches elsewhere in the column. Two key advantages of the newly proposed method are that passive addition of iron sulfate maintains the integrity of the biofilm prior to imaging, and that the biofilm itself is marked by the contrast agent, rather than the liquid phase as in other available methods. The iron sulfate method presented can be applied to understand biofilm development and bioclogging mechanisms in porous materials and the obtained biofilm morphology could be an ideal basis for 3D numerical calculations of hydrodynamic conditions to investigate biofilm-flow coupling.
Collapse
Affiliation(s)
- Maxence Carrel
- Institute of Environmental Engineering, ETH Zürich, Stefano Franscini-Platz 5, 8093 Zurich, Switzerland
| | - Mario A. Beltran
- Swiss Federal Laboratories for Materials Science and Technology (EMPA), Dübendorf, Switzerland
| | - Verónica L. Morales
- Institute of Environmental Engineering, ETH Zürich, Stefano Franscini-Platz 5, 8093 Zurich, Switzerland
- Department of Civil and Environmental Engineering, University of California Davis, Davis, California, United States of America
| | - Nicolas Derlon
- Institute of Environmental Engineering, ETH Zürich, Stefano Franscini-Platz 5, 8093 Zurich, Switzerland
- Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Dübendorf, Switzerland
| | - Eberhard Morgenroth
- Institute of Environmental Engineering, ETH Zürich, Stefano Franscini-Platz 5, 8093 Zurich, Switzerland
- Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Dübendorf, Switzerland
| | - Rolf Kaufmann
- Swiss Federal Laboratories for Materials Science and Technology (EMPA), Dübendorf, Switzerland
| | - Markus Holzner
- Institute of Environmental Engineering, ETH Zürich, Stefano Franscini-Platz 5, 8093 Zurich, Switzerland
- * E-mail:
| |
Collapse
|
47
|
Zhu YG, Xue XM, Kappler A, Rosen BP, Meharg AA. Linking Genes to Microbial Biogeochemical Cycling: Lessons from Arsenic. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:7326-7339. [PMID: 28602082 PMCID: PMC5871744 DOI: 10.1021/acs.est.7b00689] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The biotransformation of arsenic is highly relevant to the arsenic biogeochemical cycle. Identification of the molecular details of microbial pathways of arsenic biotransformation coupled with analyses of microbial communities by meta-omics can provide insights into detailed aspects of the complexities of this biocycle. Arsenic transformations couple to other biogeochemical cycles, and to the fate of both nutrients and other toxic environmental contaminants. Microbial redox metabolism of iron, carbon, sulfur, and nitrogen affects the redox and bioavailability of arsenic species. In this critical review we illustrate the biogeochemical processes and genes involved in arsenic biotransformations. We discuss how current and future metagenomic-, metatranscriptomic-, metaproteomic-, and metabolomic-based methods will help to decipher individual microbial arsenic transformation processes, and their connections to other biogeochemical cycle. These insights will allow future use of microbial metabolic capabilities for new biotechnological solutions to environmental problems. To understand the complex nature of inorganic and organic arsenic species and the fate of environmental arsenic will require integrating systematic approaches with biogeochemical modeling. Finally, from the lessons learned from these studies of arsenic biogeochemistry, we will be able to predict how the environment changes arsenic, and, in response, how arsenic biotransformations change the environment.
Collapse
Affiliation(s)
- Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xi-Mei Xue
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Andreas Kappler
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, Tübingen 72076, Germany
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| | - Andrew A Meharg
- Institute for Global Food Security, Queen’s University Belfast, Belfast BT9 5HN, United Kingdom
| |
Collapse
|
48
|
Freidman BL, Northcott KA, Thiel P, Gras SL, Snape I, Stevens GW, Mumford KA. From urban municipalities to polar bioremediation: the characterisation and contribution of biogenic minerals for water treatment. JOURNAL OF WATER AND HEALTH 2017; 15:385-401. [PMID: 28598343 DOI: 10.2166/wh.2017.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Minerals of biological origin have shown significant potential for the separation of contaminants from water worldwide. This study details the contribution of biologically derived minerals to water treatment operations, with a focus on filtration media from urban municipalities and remote cold regions. The results support biofilm-embedded iron and manganese to be the building blocks of biogenic mineral development on activated carbon and nutrient-amended zeolites. The presence of similar iron and manganese oxidising bacterial species across all filter media supports the analogous morphologies of biogenic minerals between sites and suggests that biological water treatment processes may be feasible across a range of climates. This is the first time the stages of biogenic mineral formation have been aligned with comprehensive imaging of the biofilm community and bacterial identification; especially with respect to cold regions. Where biogenic mineral formation occurs on filter media, the potential exists for enhanced adsorption for a range of organic and inorganic contaminants and improved longevity of filter media beyond the adsorption or exchange capacities of the raw material.
Collapse
Affiliation(s)
- Benjamin L Freidman
- Particulate Fluids Processing Centre, Department of Chemical and Biomolecular Engineering, University of Melbourne, Building 165, Parkville 3010, VIC, Australia E-mail: ; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kathy A Northcott
- Veolia Australia and New Zealand, Kangaroo Flat, VIC 3555, Australia
| | - Peta Thiel
- Research Laboratory Services, Eltham, VIC 3095, Australia
| | - Sally L Gras
- Particulate Fluids Processing Centre, Department of Chemical and Biomolecular Engineering, University of Melbourne, Building 165, Parkville 3010, VIC, Australia E-mail: ; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia; The ARC Dairy Innovation Hub, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Ian Snape
- Australian Antarctic Division, Channel Highway, Kingston, Tasmania 7050, Australia
| | - Geoff W Stevens
- Particulate Fluids Processing Centre, Department of Chemical and Biomolecular Engineering, University of Melbourne, Building 165, Parkville 3010, VIC, Australia E-mail:
| | - Kathryn A Mumford
- Particulate Fluids Processing Centre, Department of Chemical and Biomolecular Engineering, University of Melbourne, Building 165, Parkville 3010, VIC, Australia E-mail:
| |
Collapse
|
49
|
Zhang J, Ma T, Feng L, Yan Y, Abass OK, Wang Z, Cai H. Arsenic behavior in different biogeochemical zonations approximately along the groundwater flow path in Datong Basin, northern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 584-585:458-468. [PMID: 28185734 DOI: 10.1016/j.scitotenv.2017.01.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/30/2016] [Accepted: 01/05/2017] [Indexed: 05/25/2023]
Abstract
Studies have shown that arsenic is desorbed/released into groundwater as a result of bacterial reduction of As(V) and Fe(III). However, bacterial activities like sulfate reduction process can also reduce the content of arsenic in groundwater. In this study, we examined the effects of different biogeochemical processes (e.g. NO3- and SO42- reduction) on arsenic, by investigating the chemical characteristics and bacterial community structure of groundwater in the Datong Basin, northern China. Along the groundwater flow path, arsenic concentration increased from <1 to 947.6μg/L with dominant bacteria change from aerobic (Fluviicola, Rhodococcus) to denitrifying bacteria (Thauera, Gallionella), and then to sulfate reducing bacteria (Desulfosporosinus). According to the groundwater redox sensitive indicators (Eh, NO3-, SO42-/Cl- and Fe2+) concentrations (or ratios), the sampling points were approximately divided into three zones (I, I'' and II). Variation in features of these indicators suggested that the groundwater evolved from a weakly oxidizing environment (Zone I, Eh average 93.3mV, respectively) to strong reducing environment (Zone II, Eh average -101.8mV). In Zone I, bacteria mainly consuming O2 or NO3- were found which inhibits Fe(III) and As(V) reduction reaction, resulting in a low As zone (<1 to 3.3μg/L). However, in Zone II, where O2 and NO3- have been depleted, SO42- reduction appears to be the dominant process, and the Fe(III) and As(V) reduction processes are also occurring and hence, enrichment of As in the groundwater (2.8 to 947.6μg/L, average 285.6μg/L). Besides, bacterial Fe(III) reduction process was retarded due to the weakly alkaline conditions (pH7.60-8.11, average 7.83), but abiotic Fe(III) reduction by HS- may be continued. Therefore, we conclude that the Fe(III) and As(V) reduction processes contributed to arsenic enrichment in the groundwater, and the reductive desorption of arsenate is the main occurring process especially in the weakly alkaline environment. Moreover, NO3- reduction process can significantly restrain the release of arsenic, but the process of SO42- reduction is insignificant for arsenic concentration decline in natural groundwater.
Collapse
Affiliation(s)
- Junwen Zhang
- School of Environmental Studies and State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430071 Wuhan, China
| | - Teng Ma
- School of Environmental Studies and State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430071 Wuhan, China.
| | - Liang Feng
- School of Environmental Studies and State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430071 Wuhan, China
| | - Yani Yan
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Olusegun K Abass
- School of Environmental Studies and State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430071 Wuhan, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiqiang Wang
- School of Environmental Studies and State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430071 Wuhan, China
| | - Huawei Cai
- School of Environmental Studies and State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430071 Wuhan, China
| |
Collapse
|
50
|
Pi K, Wang Y, Xie X, Ma T, Liu Y, Su C, Zhu Y, Wang Z. Remediation of arsenic-contaminated groundwater by in-situ stimulating biogenic precipitation of iron sulfides. WATER RESEARCH 2017; 109:337-346. [PMID: 27926881 DOI: 10.1016/j.watres.2016.10.056] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/24/2016] [Accepted: 10/22/2016] [Indexed: 06/06/2023]
Abstract
Severe health problems due to elevated arsenic (As) in groundwater have made it urgent to develop cost-effective technologies for As removal. This field experimental study tested the feasibility of in-situ As immobilization via As incorporation into newly formed biogenic Fe(II) sulfides in a typical As-affected strongly reducing aquifer at the central part of Datong Basin, China. After periodic supply of FeSO4 into the aquifer for 25 d to stimulate microbial sulfate reduction, dissolved sulfide concentrations increased during the experiment, but the supplied Fe(II) reacted quickly with sulfide to form Fe(II)-sulfides existing majorly as mackinawite as well as a small amount of pyrite-like minerals in sediments, thereby restricting sulfide build-up in groundwater. After the completion of field experiment, groundwater As concentration decreased from an initial average value of 593 μg/L to 159 μg/L, with an overall As removal rate of 73%, and it further declined to 136 μg/L adding the removal rate up to 77% in 30 d after the experiment. The arsenite/Astotal ratio gradually increased over time, making arsenite to be the predominant species in groundwater residual As. The good correlations between dissolved Fe(II), sulfide and As concentrations, the increased abundance of As in newly-formed Fe sulfides as well as the reactive-transport modeling results all indicate that As could have been adsorbed onto and co-precipitated with Fe(II)-sulfide coatings once microbial sulfate reduction was stimulated after FeSO4 supply. Under the strongly reducing conditions, sulfide may facilitate arsenate reduction into arsenite and promote As incorporation into pyrite or arsenopyrite. Therefore, the major mechanisms for the in-situ As-contaminated groundwater remediation can be As surface-adsorption on and co-precipitation with Fe(II) sulfides produced during the experimental period.
Collapse
Affiliation(s)
- Kunfu Pi
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China
| | - Yanxin Wang
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China.
| | - Xianjun Xie
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China.
| | - Teng Ma
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China
| | - Yaqing Liu
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China
| | - Chunli Su
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China
| | - Yapeng Zhu
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China
| | - Zhiqiang Wang
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China
| |
Collapse
|