1
|
Chang Y, Liu C, Zhang Z, Gao D. Shifts of abundance and community composition of nitrifying microbes along the Changjiang Estuary to the East China Sea. World J Microbiol Biotechnol 2025; 41:43. [PMID: 39831940 DOI: 10.1007/s11274-025-04259-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Nitrification, the oxidation of ammonium to nitrate via nitrite, links nitrogen fixation and nitrogen loss processes, playing key roles in coastal nitrogen cycle. However, few studies have simultaneously examined both ammonia-oxidizing and nitrite-oxidizing microbes. This work investigated the abundance and community structure of ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), and nitrite-oxidizing bacteria (NOB) using archaeal amoA gene, bacterial amoA gene, and NOB nxrB gene, respectively, through q-PCR and Sanger sequencing along the Changjiang Estuary salinity gradient. Results showed that ammonia oxidizers were dominated by AOB and had higher abundance than NOB. AOA had a higher diversity at high-salinity stations, and AOB diversity decreased along the estuarine salinity gradient. The communities of AOA differed among freshwater, estuarine mixing and seawater zones, indicating a narrow ecological niche. AOB compositions displayed a wide niche, changing from Nitrosomonas-like sequences dominated to Nitrosospira-like sequences dominated along the salinity gradient. The RDA showed that sand and nitrate contents had significant impacts on the AOA community compositions, while the AOB communities were governed by clay and nitrate contents. This research provides insight into the understanding of the niche of ammonia oxidizers in the estuarine zones.
Collapse
Affiliation(s)
- Yongkai Chang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China.
| | - Cheng Liu
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Shandong University of Aeronautics, Binzhou, China
| | - Zongxiao Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Dengzhou Gao
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
2
|
Cocksedge E, Stat M, Suzzi AL, Gaston TF, Huggett MJ. Spatial and environmental drivers of temperate estuarine archaeal communities. MARINE ENVIRONMENTAL RESEARCH 2024; 201:106703. [PMID: 39182434 DOI: 10.1016/j.marenvres.2024.106703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/20/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
Archaea play a crucial role in the global biogeochemical cycling of elements and nutrients, helping to maintain the functional stability of estuarine systems. This study characterised the abundance and diversity of archaeal communities and identified the environmental conditions shaping these microbial communities within six temperate estuaries along approximately 500 km of the New South Wales coastline, Australia. Estuarine sediments were found to exhibit significantly higher species richness than planktonic communities, with representative sequences from the Crenarchaeota phylum characterising each environment. Ordinate analyses revealed catchment characteristics as the strongest drivers of community variability. Our results also provide evidence supporting distance-decay patterns of archaeal biogeography across intermediate scales within and between temperate estuaries, contributing to a growing body of evidence revealing the extent spatial scales play in shaping microbial communities. This study expands our understanding of microbial diversity in temperate estuaries, with a specific focus on archaeal community structure and their role in maintaining ecosystem stability.
Collapse
Affiliation(s)
- Emily Cocksedge
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW, 2258, Australia.
| | - Michael Stat
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW, 2258, Australia
| | - Alessandra L Suzzi
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW, 2258, Australia
| | - Troy F Gaston
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW, 2258, Australia
| | - Megan J Huggett
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW, 2258, Australia; Centre for Marine Ecosystems Research, School of Science, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
3
|
Yang D, Wang L. Molybdenum-mediated nitrogen accumulation and assimilation in legumes stepwise boosted by the coexistence of arbuscular mycorrhizal fungi and earthworms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171840. [PMID: 38522544 DOI: 10.1016/j.scitotenv.2024.171840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Molybdenum (Mo) is a critical micronutrient for nitrogen (N) metabolism in legumes, yet the impact of Mo on legume N metabolism in the context of natural coexistence with soil microorganisms remains poorly understood. This study investigated the dose-dependent effect of Mo on soil N biogeochemical cycling, N accumulation, and assimilation in alfalfa under conditions simulating the coexistence of arbuscular mycorrhizal fungi (AMF) and earthworms. The findings indicated that Mo exerted a hormetic effect on alfalfa N accumulation, facilitating it at low concentrations (below 29.98 mg/kg) and inhibiting it at higher levels. This inhibition was attributed to Mo-induced constraints on C supply for nitrogen fixation. Concurrently, AMF colonization enhanced C assimilation in Mo-treated alfalfas by promoting nutrients uptake, particularly Mg, which is crucial for chlorophyll synthesis. This effect was further amplified by earthworms, which improved AMF colonization (p < 0.05). In the soil N cycle, these organisms exerted opposing effects: AMF enhanced soil nitrification and earthworms reduced soil nitrate (NO3--N) reduction to jointly increase soil phyto-available N content (p < 0.05). Their combined action improved alfalfa N assimilation by restoring the protein synthesis pathway that is compromised by high Mo concentrations, specifically the activity of glutamine synthetase. These findings underscored the potential for soil microorganisms to mitigate N metabolic stress in legumes exposed to elevated Mo levels.
Collapse
Affiliation(s)
- Dongguang Yang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Li Wang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
4
|
Ren M, Wang J. Phylogenetic divergence and adaptation of Nitrososphaeria across lake depths and freshwater ecosystems. THE ISME JOURNAL 2022; 16:1491-1501. [PMID: 35091647 PMCID: PMC9123079 DOI: 10.1038/s41396-022-01199-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 01/05/2022] [Accepted: 01/17/2022] [Indexed: 04/29/2023]
Abstract
Thaumarchaeota (now the class Nitrososphaeria in the phylum Thermoproteota in GTDB taxonomy) are abundant across marine and soil habitats; however, their genomic diversity and evolutionary history in freshwater environments remain elusive. Here, we reconstructed 17 high-quality metagenome-assembled genomes of Nitrososphaeria from a deep lake and two great rivers, and compared all available genomes between freshwater and marine habitats regarding their phylogenetic positions, relative abundance, and genomic content. We found that freshwater Nitrososphaeria were dominated by the family Nitrosopumilaceae and could be grouped into three distinct clades closely related to the genera Nitrosopumilus, Nitrosoarchaeum, and Nitrosotenuis. The Nitrosopumilus-like clade was exclusively from deep lakes, while the Nitrosoarchaeum-like clade was dominated by species from deep lakes and rivers, and the Nitrosotenuis-like clade was mainly from rivers, deep lakes, and estuaries. Interestingly, there was vertical niche separation between two clades in deep lakes, showing that the Nitrosopumilus-like species dominated shallow layers, whereas the relative abundance of the Nitrosoarchaeum-like clade increased toward deep waters. Phylogenetic clustering patterns in the Nitrosopumilaceae supported at least one freshwater-to-marine and two marine-to-freshwater transitions, the former of which refined the potential terrestrial-to-marine evolutionary path as previously proposed. The occurrence of the two marine-to-freshwater transitions were accompanied by horizontal transfer of the genes involved in nutrition regulation, osmoregulation, and cell motility during their colonization to freshwater habitats. Specifically, the Nitrosopumilus-like clade showed losses of genes encoding flagella assembly and ion transport, whereas the Nitrosoarchaeum-like clade had losses of intact genes involved in urea uptake and utilization and gains of genes encoding osmolarity-mediated mechanosensitive channels. Collectively, our results reveal for the first time the high genomic diversity of the class Nitrososphaeria across freshwater ecosystems and provide novel insights into their adaptive mechanisms and evolutionary histories.
Collapse
Affiliation(s)
- Minglei Ren
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Ammonia-Oxidizing Bacterial Communities in Tilapia Pond Systems and the Influencing Factors. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study investigated ammonia-oxidizing bacterial communities in water and surface sediments of three tilapia ponds and their relationship with differences in the ponds, monthly variations in the water, and the physico-chemical parameters. Samples were collected from ponds with different stocking densities, after which DNA was extracted, 16S rRNA genes were amplified, the Illumina high-throughput sequencing was performed, and then the Silva and FunGene databases were used to investigate the ammonia-oxidizing bacterial communities. In total, 308,488 valid reads (144,931 in water and 163,517 in sediment) and 240 operational taxonomic units (207 in water and 225 in sediment) were obtained. Further analysis showed that the five genera of Nitrosospira, Nitrosococcus, Nitrosomonas, Proteobacteria_unclassified, and Nitrosomonadaceae_unclassified were distributed not only in the water, but also in surface sediments of all three ponds. Further, not only the abundance of these five genera, but also their diversities were affected by monthly variations in the water and by sediment differences among the ponds. Moreover, the total nitrogen (TN), nitrate, total phosphorus (TP), and sulphate were the main factors influencing the ammonia-oxidizing bacterial communities in the water, whereas TP was the main influencing factor in the sediments. Moreover, the parameter changes, especially those caused by differences in the ponds, were closely related to the cultivation management (stocking density and feed coefficients).
Collapse
|
6
|
Wang YF, Gu JD, Dick RP, Han W, Yang HX, Liao HQ, Zhou Y, Meng H. Distribution of ammonia-oxidizing archaea and bacteria along an engineered coastal ecosystem in subtropical China. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1769-1779. [PMID: 33432457 DOI: 10.1007/s10646-020-02327-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Ammonia-oxidizing archaea (AOA) and bacteria (AOB) are the crucial players in nitrogen cycle. Both AOA and AOB were examined along a gradient of human activity in a coastal ecosystem from intertidal zone, grassland, and Casuarina equisetifolia forest to farmland. Results showed that the farmland soils had noticeably higher nitrate-N, available P than soils in the other three sites. Generally, AOA and AOB community structures varied across sites. The farmland mainly had Nitrosotalea-like AOA, intertidal zone was dominated by Nitrosopumilus AOA, while grassland and C. equisetifolia forest primarily harbored Nitrososphaera-like AOA. The farmland and C. equisetifolia forest owned Nitrosospira-like AOB, intertidal zone possessed Nitrosomonas-like AOB, and no AOB was detected in the grassland. AOA abundance was significantly greater than AOB in this coastal ecosystem (p < 0.05, n = 8). AOB diversity and abundance in the farmland were significantly higher than those in the other three sites (p < 0.05, n = 2). The biodiversity and abundance of AOA were not significantly correlated with any soil property (p < 0.05, n = 8). However, the diversity of AOB was significantly correlated with pH, available P and total P (p < 0.05, n = 6). The abundance of AOB was significantly correlated with pH, nitrite, available N, available P and total P (p < 0.05, n = 6). This study suggested that the community structures of AOA and AOB vary in the different parts in the bio-engineered coastal ecosystem and agricultural activity appears to influence these nitrifiers.
Collapse
Affiliation(s)
- Yong-Feng Wang
- Institute of Environment and Ecology, Institute of Environmental Health and Ecological Security, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, PR China.
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, 233 Guangshan 1st Road, Guangzhou, PR China.
| | - Ji-Dong Gu
- Environmental Engineering, Guangdong Technion Israel Institute of Technology, 241 Daxue Road, Shantou, 515063, PR China
| | - Richard P Dick
- School of Environment and Natural Resources, The Ohio State University, 2021 Coffey Road, Columbus, OH, 43210-1085, USA
| | - Wei Han
- Agro-Technical Station of Shandong Province, Jinan, PR China
| | - Hui-Xiao Yang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, 233 Guangshan 1st Road, Guangzhou, PR China
| | - Huan-Qin Liao
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, 233 Guangshan 1st Road, Guangzhou, PR China
| | - Yi Zhou
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, 233 Guangshan 1st Road, Guangzhou, PR China.
| | - Han Meng
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China
| |
Collapse
|
7
|
Wei H, Lin X. Shifts in the relative abundance and potential rates of sediment ammonia-oxidizing archaea and bacteria along environmental gradients of an urban river-estuary-adjacent sea continuum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144824. [PMID: 33545473 DOI: 10.1016/j.scitotenv.2020.144824] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Ammonia-oxidizing archaea (AOA) and bacteria (AOB) play important roles in N cycling in sediments globally. However, little is known about their ammonia oxidation rates along a river-estuary-sea continuum. In this study, we investigated how the potential ammonia oxidation rates (PARs) of AOA and AOB changed spatially along a continuum comprising three habitats: the Shanghai urban river network, the Yangtze Estuary, and the adjacent East China Sea, in summer and winter. The AOA and AOB PARs (0.53 ± 0.49 and 0.72 ± 0.69 μg N g-1 d-1, mean ± SD, respectively) and their amoA gene abundance (0.47 ± 0.85 × 106 and 2.4 ± 3.54 × 106 copies g-1, respectively) decreased along the continuum, particularly from the urban river to the estuary, driven by decreasing sediment total organic C and N and other correlated inorganic nutrients (e.g., NH4+) along the gradient of anthropogenic influences. These spatial patterns were consistent between the seasons. The urban river network, where the anthropogenic influences were strongest, saw the largest seasonal differences, as both AOA and AOB had higher PARs and abundance in summer than in winter. The ratios between AOA and AOB PARs (~0.87 ± 0.51) and gene abundances (~0.25 ± 0.24), however, were predominantly <1, indicating an AOB-dominated community. Comparing the different NH4+ consumption pathways, total aerobic oxidation accounted for 12-26% of the total consumption, with the largest proportion in the estuary, where the system was well oxygenated, and the lowest in the adjacent sea, where inorganic N was highly depleted. This study revealed the spatiotemporal patterns of AOA and AOB potential rates and gene abundance along gradients of human influences and identified organic matter and nutrients as key environmental factors that shaped the variation of AOA and AOB along the continuum.
Collapse
Affiliation(s)
- Hengchen Wei
- The University of Texas at Austin Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA
| | - Xianbiao Lin
- Laboratory of Microbial Ecology and Matter Cycles, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China; School of Geographic Sciences, Key Laboratory of Geographic Information Science of the Ministry of Education, East China Normal University, Shanghai 200241, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China.
| |
Collapse
|
8
|
Molecular characterization of bacteria and archaea in a bioaugmented zero-water exchange shrimp pond. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04392-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
AbstractIn the zero-water exchange shrimp culture pond maintained with the application of indigenous bioaugmentor, low levels of total ammonia–nitrogen were reported, indicating the relevance of indigenous microbial communities. Sediments (0–5 cm layer) were sampled from the pond (85th day) and the bacterial and archaeal communities; specifically, the ammonia oxidizers (ammonia-oxidizing bacteria, ammonia-oxidizing archaea, and anaerobic ammonia-oxidizing bacteria) in the sediment metagenome of the pond were analysed using the 16S rRNA and functional genes. Bacterial and archaeal 16S rRNA genes showed the relative abundance of Delta-Proteobacteria and Bacteroidetes groups performing sulphur respiration and organic matter degradation, archaeal groups of anaerobic sulphur respiring Crenarchaeotae, and chemolithoautotrophic ammonia oxidizers belonging to Thaumarchaeota. The presence of these diverse bacterial and archaeal communities denotes their significant roles in the cycling the carbon, nitrogen, and sulphur thereby bringing out efficient bioremediation in the bioaugmented zero-water exchange shrimp culture pond. Similarly, the functional gene-specific study showed the predominance of Nitrosomonas sp. (ammonia-oxidizing bacteria), Nitrosopumilus maritimus (ammonia-oxidizing archaea), and Candidatus Kuenenia (anaerobic ammonia-oxidizing bacteria) in the system, which points to their importance in the removal of accumulated ammonia. Thus, this study paves the way for understanding the microbial communities, specifically the ammonia oxidizers responsible for maintaining healthy and optimal environmental conditions in the bioaugmented zero-water exchange shrimp culture pond.
Collapse
|
9
|
He Y, Zhou Y, Weng R, Wang J, Chen J, Huang M. Responses of Ammonia-Oxidizing Archaea and Bacteria in Malodorous River Sediments to Different Remediation Techniques. MICROBIAL ECOLOGY 2021; 81:314-322. [PMID: 32935184 DOI: 10.1007/s00248-020-01597-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
In this study, the joint use of high throughput sequencing, real-time quantitative PCR, and ammonia-oxidizing bacteria (AOB)-inhibiting allylthiourea was used to differentiate between the contributions of ammonia-oxidizing archaea (AOA) vs AOB to ammonia oxidation and ascertain how AOA and AOB responded to two widely used river remediation techniques (aeration and Ca(NO3)2 injection). Results showed that ammonia oxidation was largely attributed to ATU-sensitive AOB rather than AOA and Nitrosomonas was the predominant AOB-related genus (53.86%) in the malodorous river. The contribution of AOB to ammonia oxidation in the context of aeration and Ca(NO3)2 injection was 75.51 ± 2.77% and 60.19 ± 10.44%, respectively. The peak of AOB/AOA ratio and the marked increase of relative abundances of Nitrosomonas and Nitrosospira in aeration runs further demonstrated aeration favored the ammonia oxidation of AOB. Comparatively, Ca(NO3)2 injection could increase the ammonia oxidation contribution of AOA from 31.32 ± 6.06 to 39.81 ± 10.44% and was significantly correlated with Nitrosococcus of AOB (r = 0.796, p < 0.05), Candidatus_Nitrosopelagicus of AOA (r = 0.986, p < 0.01), and AOA Simpson diversity (r = - 0.791, p < 0.05). Moreover, Candidatus_Nitrosopelagicus was only present in Ca(NO3)2 runs. Taken together, Ca(NO3)2 was recognized as an important factor in mediating the growth and ecological niches of ammonia oxidizers.Graphical abstract.
Collapse
Affiliation(s)
- Yan He
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, East China Normal University, Shanghai, 200241, China.
| | - Yunchang Zhou
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, East China Normal University, Shanghai, 200241, China
| | - Rui Weng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, East China Normal University, Shanghai, 200241, China
| | - Jianhua Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, East China Normal University, Shanghai, 200241, China
| | - Jinghan Chen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, East China Normal University, Shanghai, 200241, China
| | - Minsheng Huang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
10
|
Monthly distribution of ammonia-oxidizing microbes in a tropical bay. J Microbiol 2020; 59:10-19. [PMID: 33201437 DOI: 10.1007/s12275-021-0287-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 10/23/2022]
Abstract
Ammonia oxidation, performed by ammonia-oxidizing archaea (AOA) and bacteria (AOB), plays a critical role in the cycle of nitrogen in the ocean. For now, environmental variables controlling distribution of ammonia-oxidizing microbes are still largely unknown in oceanic environments. In this study, we used real-time quantitative PCR and high-throughput sequencing methods to investigate the abundance and diversity of AOA and AOB from sediment and water in Zhanjiang Bay. Phylogenic analysis revealed that the majority of AOA amoA sequences in water and sediment were affiliated with the genus Nitrosopumilus, whereas the Nitrosotalea cluster was only detected with low abundance in water. Nitrosomonas and Nitrosospira dominated AOB amoA sequences in water and sediment, respectively. The amoA copy numbers of both AOA and AOB varied significantly with month for both sediment and water. When water and sediment temperature dropped to 17-20°C in December and February, respectively, the copy number of AOB amoA genes increased markedly and was much higher than for AOA amoA genes. Also, AOA abundance in water peaked in December when water temperature was lowest (17-20°C). Stepwise multiple regression analyses revealed that temperature was the most key factor driving monthly changes of AOA or AOB abundance. It is inferred that low water temperature may inhibit growth of phytoplankton and other microbes and so reduce competition for a common substrate, ammonium.
Collapse
|
11
|
Zou D, Liu H, Li M. Community, Distribution, and Ecological Roles of Estuarine Archaea. Front Microbiol 2020; 11:2060. [PMID: 32983044 PMCID: PMC7484942 DOI: 10.3389/fmicb.2020.02060] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/05/2020] [Indexed: 12/04/2022] Open
Abstract
Archaea are diverse and ubiquitous prokaryotes present in both extreme and moderate environments. Estuaries, serving as links between the land and ocean, harbor numerous microbes that are relatively highly active because of massive terrigenous input of nutrients. Archaea account for a considerable portion of the estuarine microbial community. They are diverse and play key roles in the estuarine biogeochemical cycles. Ammonia-oxidizing archaea (AOA) are an abundant aquatic archaeal group in estuaries, greatly contributing estuarine ammonia oxidation. Bathyarchaeota are abundant in sediments, and they may involve in sedimentary organic matter degradation, acetogenesis, and, potentially, methane metabolism, based on genomics. Other archaeal groups are also commonly detected in estuaries worldwide. They include Euryarchaeota, and members of the DPANN and Asgard archaea. Based on biodiversity surveys of the 16S rRNA gene and some functional genes, the distribution and abundance of estuarine archaea are driven by physicochemical factors, such as salinity and oxygen concentration. Currently, increasing amount of genomic information for estuarine archaea is becoming available because of the advances in sequencing technologies, especially for AOA and Bathyarchaeota, leading to a better understanding of their functions and environmental adaptations. Here, we summarized the current knowledge on the community composition and major archaeal groups in estuaries, focusing on AOA and Bathyarchaeota. We also highlighted the unique genomic features and potential adaptation strategies of estuarine archaea, pointing out major unknowns in the field and scope for future research.
Collapse
Affiliation(s)
- Dayu Zou
- SZU-HKUST Joint Ph.D. Program in Marine Environmental Science, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Branch of Southern Marine Science & Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Meng Li
- SZU-HKUST Joint Ph.D. Program in Marine Environmental Science, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|
12
|
Hampel JJ, McCarthy MJ, Aalto SL, Newell SE. Hurricane Disturbance Stimulated Nitrification and Altered Ammonia Oxidizer Community Structure in Lake Okeechobee and St. Lucie Estuary (Florida). Front Microbiol 2020; 11:1541. [PMID: 32754132 PMCID: PMC7366250 DOI: 10.3389/fmicb.2020.01541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/12/2020] [Indexed: 01/01/2023] Open
Abstract
Nitrification is an important biological link between oxidized and reduced forms of nitrogen (N). The efficiency of nitrification plays a key role in mitigating excess N in eutrophic systems, including those with cyanobacterial harmful algal blooms (cyanoHABs), since it can be closely coupled with denitrification and removal of excess N. Recent work suggests that competition for ammonium (NH4+) between ammonia oxidizers and cyanoHABs can help determine microbial community structure. Nitrification rates and ammonia-oxidizing archaeal (AOA) and bacterial (AOB) community composition and gene abundances were quantified in Lake Okeechobee and St. Lucie Estuary in southern Florida (United States). We sampled during cyanobacterial (Microcystis) blooms in July 2016 and August 2017 (2 weeks before Hurricane Irma) and 10 days after Hurricane Irma made landfall. Nitrification rates were low during cyanobacterial blooms in Lake Okeechobee and St. Lucie Estuary, while low bloom conditions in St. Lucie Estuary coincided with greater nitrification rates. Nitrification rates in the lake were correlated (R2 = 0.94; p = 0.006) with AOA amoA abundance. Following the hurricane, nitrification rates increased by an order of magnitude, suggesting that nitrifiers outcompeted cyanobacteria for NH4+ under turbid, poor light conditions. After Irma, AOA and AOB abundances increased in St. Lucie Estuary, while only AOB increased in Lake Okeechobee. AOA sequences clustered into three major lineages: Nitrosopumilales (NP), Nitrososphaerales (NS), and Nitrosotaleales (NT). Many of the lake OTUs placed within the uncultured and uncharacterized NS δ and NT β clades, suggesting that these taxa are ecologically important along this eutrophic, lacustrine to estuarine continuum. After the hurricane, the AOA community shifted toward dominance by freshwater clades in St. Lucie Estuary and terrestrial genera in Lake Okeechobee, likely due to high rainfall and subsequent increased turbidity and freshwater loading from the lake into the estuary. AOB community structure was not affected by the disturbance. AOA communities were consistently more diverse than AOB, despite fewer sequences recovered, including new, unclassified, eutrophic ecotypes, suggesting a wider ecological biogeography than the oligotrophic niche originally posited. These results and other recent reports contradict the early hypothesis that AOB dominate ammonia oxidation in high-nutrient or terrestrial-influenced systems.
Collapse
Affiliation(s)
- Justyna J Hampel
- School of Ocean Science and Engineering, The University of Southern Mississippi, Ocean Springs, MS, United States.,Department of Earth and Environmental Sciences, Wright State University, Dayton, OH, United States
| | - Mark J McCarthy
- Department of Earth and Environmental Sciences, Wright State University, Dayton, OH, United States
| | - Sanni L Aalto
- Section for Aquaculture, The North Sea Research Centre, DTU Aqua, Technical University of Denmark, Hirtshals, Denmark
| | - Silvia E Newell
- Department of Earth and Environmental Sciences, Wright State University, Dayton, OH, United States
| |
Collapse
|
13
|
Abstract
The role of archaeal ammonia oxidizers often exceeds that of bacterial ammonia oxidizers in marine and terrestrial environments but has been understudied in permafrost, where thawing has the potential to release ammonia. Here, three thaumarchaea genomes were assembled and annotated from metagenomic data sets from carbon-poor Canadian High Arctic active-layer cryosols. The role of archaeal ammonia oxidizers often exceeds that of bacterial ammonia oxidizers in marine and terrestrial environments but has been understudied in permafrost, where thawing has the potential to release ammonia. Here, three thaumarchaea genomes were assembled and annotated from metagenomic data sets from carbon-poor Canadian High Arctic active-layer cryosols.
Collapse
|
14
|
He X, Ji G. Responses of AOA and AOB activity and DNA/cDNA community structure to allylthiourea exposure in the water level fluctuation zone soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:15233-15244. [PMID: 32072408 DOI: 10.1007/s11356-020-07952-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
Ammonia oxidation is mainly performed by ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). Allylthiourea (ATU) has been found to specifically inhibit ammonia oxidation. However, the effect of ATU on AOA and AOB transcription has been infrequently studied. In the present study, we examined the responses of AOA and AOB activity and DNA/cDNA community structure to ATU exposure. The ammonia oxidation activity in the 100-mg/L ATU group was 4.3% of that in the control group after 7 days. When exposed to ATU, the gene abundance of AOA was favored compared with that of AOB, and there were no statistically significant differences in the abundance of AOB amoA in DNA and cDNA between the two groups. Compared with the control group, the gene abundance of AOA significantly increased by 5.23 times, while the transcription of AOA significantly decreased by 0.70 times. Moreover, the transcriptional ratio of AOA in the ATU group was only 0.05 times as high as that in the control group. ATU selectively affected AOB and completely inhibited Nitrosomonas europaea and Bacterium amoA.22.HaldeII.kultur at the genetic level. Under ATU exposure, all AOA clusters were transcribed, but three AOB clusters were not transcribed. Our results indicated that the ammonia oxidation potential of the soil of water level fluctuation areas, based on ATU inhibition, was associated mainly with AOA amoA gene abundance and AOB community shifts in DNA and cDNA.
Collapse
Affiliation(s)
- Xiangjun He
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
15
|
Ammonia- and Methane-Oxidizing Bacteria: The Abundance, Niches and Compositional Differences for Diverse Soil Layers in Three Flooded Paddy Fields. SUSTAINABILITY 2020. [DOI: 10.3390/su12030953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ammonia oxidizing bacteria (AOB), Ammonia oxidizing archaea (AOA) and methane oxidizing bacteria (MOB) play cogent roles in oxidation and nitrification processes, and hence have important ecological functions in several ecosystems. However, their distribution and compositional differences in different long-term flooded paddy fields (FPFs) management at different soil depths remains under-investigated. Using qPCR and phylogenetic analysis, this study investigated the abundance, niches, and compositional differences of AOA, AOB, and MOB along with their potential nitrification and oxidation rate in three soil layers from three FPFs (ShaPingBa (SPB), HeChuan (HC), and JiDi (JD)) in Chongqing, China. In all the FPFs, CH4 oxidation occurred mainly in the surface (0–3 cm) and subsurface layers (3–5 cm). A significant difference in potential methane oxidation and nitrification rates was observed among the three FPFs, in which SPB had the highest. The higher amoA genes are the marker for abundance of AOA compared to AOB while pmoA genes, which is the marker for MOB abundance and diversity, indicated their significant role in the nitrification process across the three FPFs. The phylogenetic analysis revealed that AOA were mainly composed of Nitrososphaera, Nitrosospumilus, and Nitrosotalea, while the genus Nitrosomonas accounted for the greatest proportion of AOB in the three soil layers. MOB were mainly composed of Methylocaldum and Methylocystis genera. Overall, this finding pointed to niche differences as well as suitability of the surface and subsurface soil environments for the co-occurrence of ammonia oxidation and methane oxidation in FPFs.
Collapse
|
16
|
Response of ammonia-oxidizing Bacteria and Archaea to long-term saline water irrigation in alluvial grey desert soils. Sci Rep 2020; 10:489. [PMID: 31949227 PMCID: PMC6965641 DOI: 10.1038/s41598-019-57402-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/30/2019] [Indexed: 11/16/2022] Open
Abstract
Soil nitrification via ammonia oxidation is a key ecosystem process in terrestrial environments, but little is known of how increasing irrigation of farmland soils with saline waters effects these processes. We investigated the effects of long-term irrigation with saline water on the abundances and community structures of ammonia-oxidizing bacteria (AOB) and archaea (AOA). Irrigation with brackish or saline water increased soil salinity (EC1:5) and NH4-N compared to irrigation with freshwater, while NO3-N, potential nitrification rates (PNR) and amoA gene copy numbers of AOA and AOB decreased markedly under irrigation regimes with saline waters. Moreover, irrigation with brackish water lowered AOA/AOB ratios. PNR was positively correlated with AOA and AOB amoA gene copy numbers across treatments. Saline and brackish water irrigation significantly increased the diversity of AOA, as noted by Shannon index values, while saline water irrigation markedly reduced AOB diversity. In addition, irrigation with brackish or fresh waters resulted in higher proportions of unclassified taxa in the AOB communities. However, irrigation with saline water led to higher proportions of unclassified taxa in the AOA communities along with the Candidatus Nitrosocaldus genus, as compared to soils irrigated with freshwater. AOA community structures were closely associated with soil salinity, NO3−N, and pH, while AOB communities were only significantly associated with NO3−N and pH. These results suggest that salinity was the dominant factor affecting the growth of ammonia-oxidizing microorganisms and community structure. These results can provide a scientific basis for further exploring the response mechanism of ammonia-oxidizing microorganisms and their roles in nitrogen transformation in alluvial grey desert soils of arid areas.
Collapse
|
17
|
Hu J, Liu S, Yang W, He Z, Wang J, Liu H, Zheng P, Xi C, Ma F, Hu B. Ecological Success of the Nitrosopumilus and Nitrosospira Clusters in the Intertidal Zone. MICROBIAL ECOLOGY 2019; 78:555-564. [PMID: 30903203 DOI: 10.1007/s00248-019-01359-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
The intertidal zone is an important buffer and a nitrogen sink between land and sea. Ammonia oxidation is the rate-limiting step of nitrification, conducted by ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). However, it remains a debatable issue regarding dominant ammonia oxidizers in this region, and environmental factors driving their spatiotemporal niche differentiation have yet to be identified. In this study, intertidal and subtidal zones of Zhoushan Islands were selected for seasonal sampling. Ammonia-oxidizing activity, quantitative PCR, and 454 high-throughput sequencing were performed to study the nitrification potential, abundance, and community structure of ammonia-oxidizing archaea and bacteria. AOA and AOB amoA abundance (107-108amoA gene copies/g dry weight sediment) varied spatiotemporally independently of environmental factors. AOA surpassed AOB in most samples, driven by sediment temperature, moisture, and total nitrogen. The diversity of both AOA and AOB differed spatiotemporally. The Nitrosopumilus and Nitrosospira clusters accounted for an absolutely dominant percentage of AOA (> 99%) and AOB (> 99%) respectively, indicating a negligible contribution of other clusters to ammonia oxidation. However, there was no significant correlation between nitrification potential and the abundance of AOA or AOB. Overall, the present study showed that AOA dominated over AOB spatiotemporally in the intertidal zone of Zhoushan Islands due to fluctuations in environmental factors, and the Nitrosopumilus and Nitrosospira clusters ecologically succeeded in the intertidal zone of Zhoushan Islands.
Collapse
Affiliation(s)
- Jiajie Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Shuai Liu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Weiling Yang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Zhanfei He
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Jiaqi Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Huan Liu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Ping Zheng
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Chuanwu Xi
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China.
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China.
| |
Collapse
|
18
|
New Microbial Lineages Capable of Carbon Fixation and Nutrient Cycling in Deep-Sea Sediments of the Northern South China Sea. Appl Environ Microbiol 2019; 85:AEM.00523-19. [PMID: 31126943 DOI: 10.1128/aem.00523-19] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/15/2019] [Indexed: 12/18/2022] Open
Abstract
Metagenomics of marine sediments has uncovered a broad diversity of new uncultured taxa and provided insights into their metabolic capabilities. Here, we detected microbial lineages from a sediment core near the Jiulong methane reef of the northern South China Sea (at 1,100-m depth). Assembly and binning of the metagenomes resulted in 11 genomes (>85% complete) that represented nine distinct phyla, including candidate phyla TA06 and LCP-89, Lokiarchaeota, Heimdallarchaeota, and a newly described globally distributed phylum (B38). The genome of LCP-89 has pathways for nitrate, selenate, and sulfate reduction, suggesting that they may be involved in mediating these important processes. B38 are able to participate in the cycling of hydrogen and selenocompounds. Many of these uncultured microbes may also be capable of autotrophic CO2 fixation, as exemplified by identification of the Wood-Ljungdahl (W-L) pathway. Genes encoding carbohydrate degradation, W-L pathway, Rnf-dependent energy conservation, and Ni/Fe hydrogenases were detected in the transcriptomes of these novel members. Characterization of these new lineages provides insight to the undescribed branches in the tree of life.IMPORTANCE Sedimentary microorganisms in the South China Sea (SCS) remain largely unknown due to the complexity of sediment communities impacted by continent rifting and extension. Distinct geochemical environments may breed special microbial communities including microbes that are still enigmatic. Functional inference of their metabolisms and transcriptional activity provides insight in the ecological roles and substrate-based interactivity of these uncultured Archaea and Bacteria These microorganisms play different roles in utilizing inorganic carbon and scavenging diverse organic compounds involved in the deep-sea carbon cycle. The genomes recovered here contributed undescribed species to the tree of life and laid the foundation for future study on these novel phyla persisting in marginal sediments of the SCS.
Collapse
|
19
|
Cai X, Yao L, Hu Y, Jiang H, Shen M, Hu Q, Wang Z, Dahlgren RA. Particle-attached microorganism oxidation of ammonia in a hypereutrophic urban river. J Basic Microbiol 2019; 59:511-524. [PMID: 30900742 DOI: 10.1002/jobm.201800599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/27/2019] [Accepted: 02/17/2019] [Indexed: 11/06/2022]
Abstract
To elucidate the importance and mechanisms of particle-attached microorganisms on ammonia oxidation, we conducted a controlled simulation experiment with samples collected from the Shunao River, an ammonia-rich hypereutrophic urban river in eastern China. The effects of particle concentration, ammonia concentration, organic carbon source and concentration, dissolved oxygen concentration, and pH were investigated on ammonia transformation rate (ammonia removal rate and NO2 - + NO3 - accumulation rate) and abundance of particle-attached ammonia-oxidizing bacteria (AOB) and archaea (AOA). All these factors significantly influenced ammonia transformation rates. Our results provided direct evidence that microorganisms attached on riverine suspended particles were associated with ammonia oxidation. Sequencing revealed that the AOA genus Nitrososphaera, and the AOB genus Nitrosomonas were the most dominant in particle-attached ammonia-oxidizing microbial communities. Further analysis showed that AOB communities had higher species richness and diversity compared with AOA communities. Additionally, AOB amoA genes were ~10-100 times more abundant than AOA amoA genes, and AOB abundance was more strongly correlated with ammonia transformation rates than AOA abundance in most experiments, indicating that particle-attached AOB were more important than AOA in the hypereutrophic urban river. This study adds to our knowledge of particle-attached microorganism oxidation of ammonia.
Collapse
Affiliation(s)
- Xianlei Cai
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, Wenzhou Medical University, Wenzhou, China.,Southern Zhejiang Water Research Institute, Wenzhou, China
| | - Ling Yao
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, Wenzhou Medical University, Wenzhou, China
| | - Yuanyuan Hu
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, Wenzhou Medical University, Wenzhou, China.,Southern Zhejiang Water Research Institute, Wenzhou, China
| | - Hui Jiang
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, Wenzhou Medical University, Wenzhou, China
| | - Mingdi Shen
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, Wenzhou Medical University, Wenzhou, China
| | - Quanman Hu
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, Wenzhou Medical University, Wenzhou, China
| | - Zixia Wang
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, Wenzhou Medical University, Wenzhou, China
| | - Randy A Dahlgren
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, Wenzhou Medical University, Wenzhou, China.,Department of Land, Air, and Water Resources, University of California, Davis, California
| |
Collapse
|
20
|
Functional dominance and community compositions of ammonia-oxidizing archaea in extremely acidic soils of natural forests. Appl Microbiol Biotechnol 2019; 103:4229-4240. [PMID: 30923872 DOI: 10.1007/s00253-019-09721-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/18/2019] [Accepted: 02/23/2019] [Indexed: 10/27/2022]
Abstract
Extremely acidic soils of natural forests in Nanling National Nature Reserve have been previously investigated and revisited in two successive years to reveal the active ammonia oxidizers. Ammonia-oxidizing archaea (AOA) rather than ammonia-oxidizing bacteria (AOB) were found more functionally important in the extremely acidic soils of the natural forests in Nanling National Nature Reserve. The relative abundances of Nitrosotalea, Nitrososphaera sister group, and Nitrososphaera lineages recovered by ammonia monooxygenase subunit A (amoA) transcripts were reassessed and compared to AOA communities formerly detected by genomic DNA. Nitrosotalea, previously found the most abundant AOA, were the second-most-active lineage after Nitrososphaera sister group. Our field study results, therefore, propose the acidophilic AOA, Nitrosotalea, can better reside in extremely acidic soils while they may not contribute to nitrification proportionately according to their abundances or they are less functionally active. In contrast, the functional importance of Nitrososphaera sister group may be previously underestimated and the functional dominance further extends their ecological distribution as little has been reported. Nitrososphaera gargensis-like AOA, the third abundant lineage, were more active in summer. The analyses of AOA community composition and its correlation with environmental parameters support the previous observations of the potential impact of organic matter on AOA composition. Al3+, however, did not show a strong adverse correlation with the abundances of functional AOA unlike in the DNA-based study. The new data further emphasize the functional dominance of AOA in extremely acidic soils, and unveil the relative contributions of AOA lineages to nitrification and their community transitions under the environmental influences.
Collapse
|
21
|
Szukics U, Grigulis K, Legay N, Kastl EM, Baxendale C, Bardgett RD, Clément JC, Lavorel S, Schloter M, Bahn M. Management versus site effects on the abundance of nitrifiers and denitrifiers in European mountain grasslands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:745-753. [PMID: 30134212 DOI: 10.1016/j.scitotenv.2018.08.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
It is well established that the abundances of nitrogen (N) transforming microbes are strongly influenced by land-use intensity in lowland grasslands. However, their responses to management change in less productive and less fertilized mountain grasslands are largely unknown. We studied eight mountain grasslands, positioned along gradients of management intensity in Austria, the UK, and France, which differed in their historical management trajectories. We measured the abundance of ammonia-oxidizing bacteria (AOB) and archaea (AOA) as well as nitrite-reducing bacteria using specific marker genes. We found that management affected the abundance of these microbial groups along each transect, though the specific responses differed between sites, due to different management histories and resulting variations in environmental parameters. In Austria, cessation of management caused an increase in nirK and nirS gene abundances. In the UK, intensification of grassland management led to 10-fold increases in the abundances of AOA and AOB and doubling of nirK gene abundance. In France, ploughing of previously mown grassland caused a 20-fold increase in AOA abundance. Across sites the abundance of AOB was most strongly related to soil NO3--N availability, and AOA were favored by higher soil pH. Among the nitrite reducers, nirS abundance correlated most strongly with N parameters, such as soil NO3--N, microbial N, leachate NH4+-N, while the abundance of nirK-denitrifiers was affected by soil total N, organic matter (SOM) and water content. We conclude that alteration of soil environmental conditions is the dominant mechanism by which land management practices influence the abundance of each group of ammonia oxidizers and nitrite reducers.
Collapse
Affiliation(s)
- Ute Szukics
- Universität Innsbruck, Institut für Ökologie, Sternwartestr. 15, Innsbruck, Austria
| | - Karl Grigulis
- Laboratoire d'Ecologie Alpine, UMR 5553 CNRS, Université Joseph Fourier, Grenoble, France
| | - Nicolas Legay
- École de la Nature et du Paysage, INSA Centre Val de Loire, 9 Rue Chocolaterie, 41000 Blois, France; CNRS, CITERES, UMR 7324, 37200 Tours, France
| | - Eva-Maria Kastl
- Helmholtz Zentrum München GmbH, Research Unit for Comparative Microbiome Analysis, 85758 Oberschleissheim, Germany
| | | | - Richard D Bardgett
- School of Earth and Environmental Sciences, Michael Smith Building, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | - Sandra Lavorel
- Laboratoire d'Ecologie Alpine, UMR 5553 CNRS, Université Joseph Fourier, Grenoble, France
| | - Michael Schloter
- Helmholtz Zentrum München GmbH, Research Unit for Comparative Microbiome Analysis, 85758 Oberschleissheim, Germany
| | - Michael Bahn
- Universität Innsbruck, Institut für Ökologie, Sternwartestr. 15, Innsbruck, Austria.
| |
Collapse
|
22
|
Dai L, Liu C, Yu L, Song C, Peng L, Li X, Tao L, Li G. Organic Matter Regulates Ammonia-Oxidizing Bacterial and Archaeal Communities in the Surface Sediments of Ctenopharyngodon idellus Aquaculture Ponds. Front Microbiol 2018; 9:2290. [PMID: 30319588 PMCID: PMC6165866 DOI: 10.3389/fmicb.2018.02290] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/07/2018] [Indexed: 01/28/2023] Open
Abstract
Ammonia-oxidizing bacteria (AOB) and archaea (AOA) play important roles in nitrogen removal in aquaculture ponds, but their distribution and the environmental factors that drive their distribution are largely unknown. In this study, we collected surface sediment samples from Ctenopharyngodon idellus ponds in three different areas in China that practice aquaculture. The community structure of AOB and AOA and physicochemical characteristics in the ponds were investigated. The results showed that AOA were more abundant than AOB in all sampling ponds except one, but sediment AOB and AOA numbers varied greatly between ponds. Correlation analyses indicated a significant correlation between the abundance of AOB and arylsulfatase, as well as the abundance of AOA and total nitrogen (TN) and arylsulfatase. In addition, AOB/AOA ratio was found to be significantly correlated with the microbial biomass carbon. AOB were grouped into seven clusters affiliated to Nitrosospira and Nitrosomonas, and AOA were grouped into six clusters affiliated to Nitrososphaera, Nitrososphaera sister group, and Nitrosopumilus. AOB/AOA diversity in the surface sediments of aquaculture ponds varied according to the levels of total organic carbon (TOC), and AOB and AOA diversity was significantly correlated with arylsulfatase and β-glucosidase, respectively. The compositions of the AOB communities were also found to be significantly influenced by sediment eutrophic status (TOC and TN levels), and pH. In addition, concentrations of acid phosphatase and arylsulfatase in surface sediments were significantly correlated with the prominent bacterial amoA genotypes, and concentrations of TOC and urease were found to be significantly correlated with the prominent archaeal amoA genotype compositions. Taken together, our results indicated that AOB and AOA communities in the surface sediments of Ctenopharyngodon idellus aquaculture ponds are regulated by organic matter and its availability to the microorganisms.
Collapse
Affiliation(s)
- Lili Dai
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.,College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Chengqing Liu
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.,College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Liqin Yu
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Chaofeng Song
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Liang Peng
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Xiaoli Li
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Ling Tao
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Gu Li
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| |
Collapse
|
23
|
Yin X, Liu G, Peng L, Hua Y, Wan X, Zhou W, Zhao J, Zhu D. Microbial community of nitrogen cycle-related genes in aquatic plant rhizospheres of Lake Liangzi in winter. J Basic Microbiol 2018; 58:998-1006. [DOI: 10.1002/jobm.201800220] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/18/2018] [Accepted: 07/31/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Xingjia Yin
- Laboratory of Eco-Environmental Engineering Research; Huazhong Agricultural University; Wuhan P. R. China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River); Ministry of Agriculture; Wuhan China
| | - Guanglong Liu
- Laboratory of Eco-Environmental Engineering Research; Huazhong Agricultural University; Wuhan P. R. China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River); Ministry of Agriculture; Wuhan China
| | - Lei Peng
- Laboratory of Eco-Environmental Engineering Research; Huazhong Agricultural University; Wuhan P. R. China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River); Ministry of Agriculture; Wuhan China
| | - Yumei Hua
- Laboratory of Eco-Environmental Engineering Research; Huazhong Agricultural University; Wuhan P. R. China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River); Ministry of Agriculture; Wuhan China
| | - Xiaoqiong Wan
- Laboratory of Eco-Environmental Engineering Research; Huazhong Agricultural University; Wuhan P. R. China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River); Ministry of Agriculture; Wuhan China
| | - Wenbing Zhou
- Laboratory of Eco-Environmental Engineering Research; Huazhong Agricultural University; Wuhan P. R. China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River); Ministry of Agriculture; Wuhan China
| | - Jianwei Zhao
- Laboratory of Eco-Environmental Engineering Research; Huazhong Agricultural University; Wuhan P. R. China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River); Ministry of Agriculture; Wuhan China
| | - Duanwei Zhu
- Laboratory of Eco-Environmental Engineering Research; Huazhong Agricultural University; Wuhan P. R. China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River); Ministry of Agriculture; Wuhan China
| |
Collapse
|
24
|
Lee KH, Wang YF, Wang Y, Gu JD, Jiao JJ. Abundance and Diversity of Aerobic/Anaerobic Ammonia/Ammonium-Oxidizing Microorganisms in an Ammonium-Rich Aquitard in the Pearl River Delta of South China. MICROBIAL ECOLOGY 2018; 76:81-91. [PMID: 27448106 DOI: 10.1007/s00248-016-0815-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 07/04/2016] [Indexed: 06/06/2023]
Abstract
Natural occurring groundwater with abnormally high ammonium concentrations was discovered in the aquifer-aquitard system in the Pearl River Delta, South China. The community composition and abundance of aerobic/anaerobic ammonia/ammonium-oxidizing microorganisms (AOM) in the aquitard were investigated in this study. The alpha subunit of ammonia monooxygenase gene (amoA) was used as the biomarker for the detection of aerobic ammonia-oxidizing archaea (AOA) and bacteria (AOB), and also partial 16S rRNA gene for Plantomycetes and anaerobic ammonium-oxidizing (anammox) bacteria. Phylogenetic analysis showed that AOA in this aquitard were affiliated with those from water columns and wastewater treatment plants; and AOB were dominated by sequences among the Nitrosomonas marina/Nitrosomonas oligotropha lineage, which were affiliated with environmental sequences from coastal eutrophic bay and subtropical estuary. The richness and diversity of both AOA and AOB communities had very little variations with the depth. Candidatus Scalindua-related sequences dominated the anammox bacterial community. AOB amoA gene abundances were always higher than those of AOA at different depths in this aquitard. The Pearson moment correlation analysis showed that AOA amoA gene abundance positively correlated with pH and ammonium concentration, whereas AOB amoA gene abundance negatively correlated with C/N ratio. This is the first report that highlights the presence with low diversity of AOM communities in natural aquitard of rich ammonium.
Collapse
Affiliation(s)
- Kwok-Ho Lee
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| | - Yong-Feng Wang
- Guangdong Provincial Key Laboratory of Bio-control for the Forest Disease and Pest, Guangdong Academy of Forestry, No. 233 Guangshan 1st Road, Guangzhou, People's Republic of China
| | - Ya Wang
- School of Earth Science and Geological Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Ji-Dong Gu
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China.
| | - Jiu Jimmy Jiao
- Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| |
Collapse
|
25
|
He R, Zhao D, Xu H, Huang R. Abundance and community structure of ammonia-oxidizing bacteria in activated sludge from different geographic regions in China. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 77:1698-1705. [PMID: 29595172 DOI: 10.2166/wst.2018.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Detailed ecological information on ammonia-oxidizing bacteria (AOB) in activated sludge of wastewater treatment plants (WWTPs) is very important to improve the efficiency of wastewater treatment. In this study, activated sludge samples were collected from seven municipal WWTPs located in seven cities in China, and real-time quantitative polymerase chain reaction (qPCR), as well as construction of clone libraries combined with correlation-based data analysis was performed. Further, the effect of geographic distribution and some water quality parameters on the ecological distribution of AOB in activated sludge from WWTPs were investigated. The geographic distribution, the influent concentration of total nitrogen (TN) and ammonia nitrogen (NH4+-N) had significant effects on the abundance of AOB (P < 0.05). However, the community structure of AOB were not significantly affected by geographic distribution, but by water quality parameters including the concentrations of TN and NH4+-N. N. oligotropha lineage was the dominant AOB group in the wastewater treatment systems. The results obtained in this study provide useful information to understand some aspects of the ecological information and influencing factors of AOB in geographically distributed WWTPs.
Collapse
Affiliation(s)
- Rujia He
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China and College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China E-mail:
| | - Dayong Zhao
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China and College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China E-mail:
| | - Huimin Xu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China and College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China E-mail:
| | - Rui Huang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China and College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China E-mail:
| |
Collapse
|
26
|
Distinct distribution patterns of ammonia-oxidizing archaea and bacteria in sediment and water column of the Yellow River estuary. Sci Rep 2018; 8:1584. [PMID: 29371667 PMCID: PMC5785527 DOI: 10.1038/s41598-018-20044-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/12/2018] [Indexed: 11/20/2022] Open
Abstract
Ammonia oxidation is a critical process of estuarine nitrogen cycling involving ammonia-oxidizing archaea (AOA) and bacteria (AOB). However, the distribution patterns of ammonia-oxidizing microorganisms (AOMs) between different habitats in the same area remain unclear. The present study investigated the AOMs’ abundance and community compositions in both sediment and water habitats of the Yellow River estuary. Quantitative PCR (qPCR) revealed that AOA showed significant higher abundance than AOB both in sediment and water samples. AOA and AOB abundance distribution trends were consistent in sediment but distinct in water along the sampling sites. Clone library-based analyses showed that AOA sequences were affiliated with Nitrososphaera, Nitrosopumilus and Nitrosotalea clusters. Generally, Nitrososphaera was predominant in sediment, while Nitrosopumilus and Nitrosotalea dominated in water column. AOB sequences were classified into genera Nitrosospira and Nitrosomonas, and Nitrosospira dominated in both habitats. Principal coordinate analysis (PCoA) also indicated AOA community structures exhibited significant differences between two habitats, while AOB were not. Ammonium and carbon contents were the potential key factors to influence AOMs’ abundance and compositions in sediment, while no measured variables were determined to have major influences on communities in water habitat. These findings increase the understanding of the AOMs’ distribution patterns in estuarine ecosystems.
Collapse
|
27
|
Zhu W, Wang C, Sun F, Zhao L, Dou W, Mao Z, Wu W. Overall bacterial community composition and abundance of nitrifiers and denitrifiers in a typical macrotidal estuary. MARINE POLLUTION BULLETIN 2018; 126:540-548. [PMID: 28978406 DOI: 10.1016/j.marpolbul.2017.09.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/23/2017] [Accepted: 09/26/2017] [Indexed: 06/07/2023]
Abstract
Coupled nitrogen cycling processes can alleviate the negative effects of eutrophication caused by excessive nitrogen load in estuarine ecosystems. The abundance and diversity of nitrifiers and denitrifiers across different environmental gradients were examined in the sediment of Hangzhou Bay. Quantitative PCR and Pearson's correlation analyses suggested that the bacterial ammonia-oxidizers (AOB) were the dominant phylotypes capable of ammonia oxidation, while the nirS-encoding denitrifiers predominated in the denitrification process. Simultaneously, nitrite and pH were found to be the two major factors influencing amoA and nir gene abundances, and the distribution of bacterial communities. Moreover, the ratio of nirS/AOB amoA gene abundance showed negative correlation with nitrite concentration. Fluorescence in situ hybridization further demonstrated that AOB and acetate-denitrifying cells were closely connected and formed obvious aggregates in the sediment. Together, all these results provided us a preliminary insight for coupled nitrification-denitrification processes in the sediment of Hangzhou Bay.
Collapse
Affiliation(s)
- Weijing Zhu
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Institute of Environmental Science and Technology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Cheng Wang
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Institute of Environmental Science and Technology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Faqian Sun
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Institute of Environmental Science and Technology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Liancheng Zhao
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, 36 Baochu North Road, Hangzhou 310012, China
| | - Wenjie Dou
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, 36 Baochu North Road, Hangzhou 310012, China
| | - Zhihua Mao
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, 36 Baochu North Road, Hangzhou 310012, China
| | - Weixiang Wu
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Institute of Environmental Science and Technology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
28
|
Kataoka T, Suzuki K, Irino T, Yamamoto M, Higashi S, Liu H. Phylogenetic diversity and distribution of bacterial and archaeal amoA genes in the East China Sea during spring. Arch Microbiol 2017; 200:329-342. [PMID: 29143851 DOI: 10.1007/s00203-017-1442-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/28/2017] [Accepted: 10/19/2017] [Indexed: 10/18/2022]
Abstract
Microbial nitrification is a key process in the nitrogen cycle in the continental shelf ecosystems. The genotype compositions and abundance of the ammonia monooxygenase gene, amoA, derived from ammonia-oxidizing archaea (AOA) and bacteria (AOB) in two size fractions (2-10 and 0.2-2 µm), were investigated in the East China Sea (ECS) in May 2008 using PCR-denaturing gradient gel electrophoresis (DGGE) and quantitative PCR (qPCR). Four sites were selected across the continental shelf edge: continental shelf water (CSW), Kuroshio branch water (KBW), transition between CSW and KBW (TCSKB) and coastal KBW (CKBW). The gene copy numbers of AOA-amoA were higher than those of AOB-amoA in ECS. The relative abundance of amoA to the total 16S rRNA gene level reached approximately 15% in KBW and CKBW for the free-living fraction of AOA, whereas the level was less than 0.01% throughout ECS for the AOB. A cluster analysis of the AOA-amoA-DGGE band pattern showed distinct genotype compositions in CSW in both the size fractions and in the surface of the TCSKB and KBW. Sequences of the DGGE bands were assigned to two clades. One of the clades exclusively consisted of sequences derived from the 2-10-µm fraction. This study revealed that AOA-amoA abundance dominated over AOB-amoA throughout the ECS, whereas the genotype composition of AOA-amoA were distributed heterogeneously across the water masses. Additionally, this is the first report showing the distribution of AOA-amoA genotypes characteristic to particle-associated AOA in the offshore of the East China Sea.
Collapse
Affiliation(s)
- Takafumi Kataoka
- Department of Biology, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, Hong Kong. .,Faculty of Environmental Earth Science, Hokkaido University, Kita-ku, Sapporo, 060-0810, Japan. .,Faculty of Marine Science and Technology, Fukui Prefectural University, Gakuen-cho 1-1, Obama, 917-0003, Japan.
| | - Koji Suzuki
- Faculty of Environmental Earth Science, Hokkaido University, Kita-ku, Sapporo, 060-0810, Japan
| | - Tomohisa Irino
- Faculty of Environmental Earth Science, Hokkaido University, Kita-ku, Sapporo, 060-0810, Japan
| | - Masanobu Yamamoto
- Faculty of Environmental Earth Science, Hokkaido University, Kita-ku, Sapporo, 060-0810, Japan
| | - Seigo Higashi
- Faculty of Environmental Earth Science, Hokkaido University, Kita-ku, Sapporo, 060-0810, Japan
| | - Hongbin Liu
- Department of Biology, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, Hong Kong
| |
Collapse
|
29
|
Wu RN, Meng H, Wang YF, Lan W, Gu JD. A More Comprehensive Community of Ammonia-Oxidizing Archaea (AOA) Revealed by Genomic DNA and RNA Analyses of amoA Gene in Subtropical Acidic Forest Soils. MICROBIAL ECOLOGY 2017; 74:910-922. [PMID: 28808742 DOI: 10.1007/s00248-017-1045-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/13/2017] [Indexed: 05/20/2023]
Abstract
Ammonia-oxidizing bacteria (AOB) and archaea (AOA) are the main nitrifiers which are well studied in natural environments, and AOA frequently outnumber AOB by orders especially in acidic conditions, making AOA the most promising ammonia oxidizers. The phylogeny of AOA revealed in related studies, however, often varied and hardly reach a consensus on functional phylotypes. The objective of this study was to compare ammonia-oxidizing communities by amoA gene and transcript based on both genomic DNA and RNA in extremely acidic forest soils (pH <4.5). Our results support the numerical and functional dominance of AOA over AOB in acidic soils as bacterial amoA gene and transcript were both under detection limits and archaeal amoA, in contrast, were abundant and responded to the fluctuations of environmental factors. Organic matter from tree residues was proposed as the main source of microbial available nitrogen, and the potential co-precipitation of dissolved organic matter (DOM) with soluble Al3+ species in acidic soil matrix may further restrict the amount of nitrogen sources required by AOB besides NH3/NH4+ equilibrium. Although AOA were better adapted to oligotrophic environments, they were susceptible to the toxicity of exchangeable Al3+. Phylotypes affiliated to Nitrososphaera, Nitrososphaera sister group, and Nitrosotalea were detected by amoA gene and transcript. Nitrosotalea devantaerra and Nitrososphaera sister group were the major AOA. Compared to the genomic DNA data, higher relative abundances of Nitrososphaera and Nitrososphaera sister group were recognized in amoA transcript inferred AOA communities, where Nitrosotalea relative abundance was found lower, implying the functional activities of Nitrososphaera sister group and Nitrososphaera were easily underestimated and Nitrosotalea did not attribute proportionally to nitrification in extremely acidic soils. Further comparison of the different AOA community compositions and relative abundance of each phylotypes revealed by amoA genes and transcripts make it possible to identify the functional AOA species and assess their ecological role in extremely acidic soils.
Collapse
Affiliation(s)
- Ruo-Nan Wu
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, People's Republic of China
| | - Han Meng
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, People's Republic of China
| | - Yong-Feng Wang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, People's Republic of China
- Laboratory of Microbial Ecology and Toxicology, Guangdong Academy of Forestry, Guangzhou, People's Republic of China
| | - Wensheng Lan
- Shenzhen R&D Key Laboratory of Alien Pest Detection Technology, Shenzhen Entry-Exit Inspection and Quarantine Bureau, Shenzhen, People's Republic of China
| | - Ji-Dong Gu
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, People's Republic of China.
| |
Collapse
|
30
|
Chen J, Ying GG, Liu YS, Wei XD, Liu SS, He LY, Yang YQ, Chen FR. Nitrogen removal and its relationship with the nitrogen-cycle genes and microorganisms in the horizontal subsurface flow constructed wetlands with different design parameters. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2017; 52:804-818. [PMID: 28394701 DOI: 10.1080/10934529.2017.1305181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This study aims to investigate nitrogen removal and its relationship with the nitrogen-cycle genes and microorganisms in the horizontal subsurface flow constructed wetlands (CWs) with different design parameters. Twelve mesocosm-scale CWs with four substrates and three hydraulic loading rates were set up in the outdoor. The result showed the CWs with zeolite as substrate and HLR of 20 cm/d were selected as the best choice for the TN and NH3-N removal. It was found that the single-stage mesocosm-scale CWs were incapable to achieve high removals of TN and NH3-N due to inefficient nitrification process in the systems. This was demonstrated by the lower abundance of the nitrification genes (AOA and AOB) than the denitrification genes (nirK and nirS), and the less diverse nitrification microorganisms than the denitrification microorganisms in the CWs. The results also show that microorganism community structure including nitrogen-cycle microorganisms in the constructed wetland systems was affected by the design parameters especially the substrate type. These findings show that nitrification is a limiting factor for the nitrogen removal by CWs.
Collapse
Affiliation(s)
- Jun Chen
- a State Key Laboratory of Organic Geochemistry, CAS Research Centre for Pearl River Delta Environmental Pollution and Control , Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou , China
| | - Guang-Guo Ying
- a State Key Laboratory of Organic Geochemistry, CAS Research Centre for Pearl River Delta Environmental Pollution and Control , Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou , China
| | - You-Sheng Liu
- a State Key Laboratory of Organic Geochemistry, CAS Research Centre for Pearl River Delta Environmental Pollution and Control , Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou , China
| | - Xiao-Dong Wei
- a State Key Laboratory of Organic Geochemistry, CAS Research Centre for Pearl River Delta Environmental Pollution and Control , Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou , China
| | - Shuang-Shuang Liu
- a State Key Laboratory of Organic Geochemistry, CAS Research Centre for Pearl River Delta Environmental Pollution and Control , Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou , China
| | - Liang-Ying He
- a State Key Laboratory of Organic Geochemistry, CAS Research Centre for Pearl River Delta Environmental Pollution and Control , Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou , China
| | - Yong-Qiang Yang
- a State Key Laboratory of Organic Geochemistry, CAS Research Centre for Pearl River Delta Environmental Pollution and Control , Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou , China
| | - Fan-Rong Chen
- a State Key Laboratory of Organic Geochemistry, CAS Research Centre for Pearl River Delta Environmental Pollution and Control , Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou , China
| |
Collapse
|
31
|
Jing H, Cheung S, Xia X, Suzuki K, Nishioka J, Liu H. Geographic Distribution of Ammonia-Oxidizing Archaea along the Kuril Islands in the Western Subarctic Pacific. Front Microbiol 2017; 8:1247. [PMID: 28713363 PMCID: PMC5492448 DOI: 10.3389/fmicb.2017.01247] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/20/2017] [Indexed: 11/17/2022] Open
Abstract
Community composition and abundance of ammonia-oxidizing archaea (AOA) in the ocean were affected by different physicochemical conditions, but their responses to physical barriers (such as a chain of islands) were largely unknown. In our study, geographic distribution of the AOA from the surface photic zone to the deep bathypelagic waters in the western subarctic Pacific adjacent to the Kuril Islands was investigated using pyrosequencing based on the ammonia monooxygenase subunit A (amoA) gene. Genotypes of clusters A and B dominated in the upper euphotic zone and the deep waters, respectively. Quantitative PCR assays revealed that the occurrence and ammonia-oxidizing activity of ammonia-oxidizing archaea (AOA) reached their maxima at the depth of 200 m, where a higher diversity and abundance of actively transcribed AOA was observed at the station located in the marginal sea exposed to more terrestrial input. Similar community composition of AOA observed at the two stations adjacent to the Kuril Islands maybe due to water exchange across the Bussol Strait. They distinct from the station located in the western subarctic gyre, where sub-cluster WCAII had a specific distribution in the surface water, and this sub-cluster seemed having a confined distribution in the western Pacific. Habitat-specific groupings of different WCB sub-clusters were observed reflecting the isolated microevolution existed in cluster WCB. The effect of the Kuril Islands on the phylogenetic composition of AOA between the Sea of Okhotsk and the western subarctic Pacific is not obvious, possibly because our sampling stations are near to the Bussol Strait, the main gateway through which water is exchanged between the Sea of Okhotsk and the Pacific. The vertical and horizontal distribution patterns of AOA communities among stations along the Kuril Islands were essentially determined by the in situ prevailing physicochemical gradients along the two dimensions.
Collapse
Affiliation(s)
- Hongmei Jing
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of SciencesSanya, China
| | - Shunyan Cheung
- Division of Life Science, The Hong Kong University of Science and TechnologyKowloon, China
| | - Xiaomin Xia
- Division of Life Science, The Hong Kong University of Science and TechnologyKowloon, China
| | - Koji Suzuki
- Faculty of Environmental Earth Science, Hokkaido UniversitySapporo, Japan
| | - Jun Nishioka
- Institute of Low Temperature Science, Hokkaido UniversitySapporo, Japan
| | - Hongbin Liu
- Division of Life Science, The Hong Kong University of Science and TechnologyKowloon, China
| |
Collapse
|
32
|
Malinich E, Lynn-Bell N, Kourtev PS. The effect of the invasiveElaeagnus umbellataon soil microbial communities depends on proximity of soils to plants. Ecosphere 2017. [DOI: 10.1002/ecs2.1827] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Elizabeth Malinich
- Biology Department; Central Michigan University; Mount Pleasant Michigan 48858 USA
| | - Nicole Lynn-Bell
- Biology Department; Central Michigan University; Mount Pleasant Michigan 48858 USA
| | - Peter S. Kourtev
- Biology Department; Central Michigan University; Mount Pleasant Michigan 48858 USA
| |
Collapse
|
33
|
Zhao D, He X, Huang R, Yan W, Yu Z. Emergent macrophytes modify the abundance and community composition of ammonia oxidizers in their rhizosphere sediments. J Basic Microbiol 2017; 57:625-632. [DOI: 10.1002/jobm.201700035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/31/2017] [Accepted: 04/30/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Dayong Zhao
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering; Hohai University; Nanjing China
- College of Hydrology and Water Resources; Hohai University; Nanjing China
| | - Xiaowei He
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering; Hohai University; Nanjing China
- College of Hydrology and Water Resources; Hohai University; Nanjing China
| | - Rui Huang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering; Hohai University; Nanjing China
- College of Hydrology and Water Resources; Hohai University; Nanjing China
| | - Wenming Yan
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering; Hohai University; Nanjing China
| | - Zhongbo Yu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering; Hohai University; Nanjing China
- College of Hydrology and Water Resources; Hohai University; Nanjing China
| |
Collapse
|
34
|
Beddow J, Stolpe B, Cole PA, Lead JR, Sapp M, Lyons BP, Colbeck I, Whitby C. Nanosilver inhibits nitrification and reduces ammonia-oxidising bacterial but not archaealamoAgene abundance in estuarine sediments. Environ Microbiol 2016; 19:500-510. [DOI: 10.1111/1462-2920.13441] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 06/30/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Jessica Beddow
- School of Biological Sciences; University of Essex; Essex CO4 3SQ UK
| | - Björn Stolpe
- School of Geography, Earth and Environmental Sciences; University of Birmingham; Birmingham B15 2TT UK
| | - Paula A. Cole
- School of Geography, Earth and Environmental Sciences; University of Birmingham; Birmingham B15 2TT UK
| | - Jamie R. Lead
- School of Geography, Earth and Environmental Sciences; University of Birmingham; Birmingham B15 2TT UK
- Center for Environmental NanoScience and Risk, University of South Carolina; Columbia SC 29028 USA
| | - Melanie Sapp
- Institute of Population Genetics, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University; Düsseldorf 40225 Germany
| | - Brett P. Lyons
- Centre for Environment, Fisheries and Aquaculture Science; The Nothe, Barrack Road Weymouth Dorset DT4 8UB UK
| | - Ian Colbeck
- School of Biological Sciences; University of Essex; Essex CO4 3SQ UK
| | - Corinne Whitby
- School of Biological Sciences; University of Essex; Essex CO4 3SQ UK
| |
Collapse
|
35
|
Bernhard AE, Sheffer R, Giblin AE, Marton JM, Roberts BJ. Population Dynamics and Community Composition of Ammonia Oxidizers in Salt Marshes after the Deepwater Horizon Oil Spill. Front Microbiol 2016; 7:854. [PMID: 27375576 PMCID: PMC4899434 DOI: 10.3389/fmicb.2016.00854] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/23/2016] [Indexed: 11/13/2022] Open
Abstract
The recent oil spill in the Gulf of Mexico had significant effects on microbial communities in the Gulf, but impacts on nitrifying communities in adjacent salt marshes have not been investigated. We studied persistent effects of oil on ammonia-oxidizing archaeal (AOA) and bacterial (AOB) communities and their relationship to nitrification rates and soil properties in Louisiana marshes impacted by the Deepwater Horizon oil spill. Soils were collected at oiled and unoiled sites from Louisiana coastal marshes in July 2012, 2 years after the spill, and analyzed for community differences based on ammonia monooxygenase genes (amoA). Terminal Restriction Fragment Polymorphism and DNA sequence analyses revealed significantly different AOA and AOB communities between the three regions, but few differences were found between oiled and unoiled sites. Community composition of nitrifiers was best explained by differences in soil moisture and nitrogen content. Despite the lack of significant oil effects on overall community composition, we identified differences in correlations of individual populations with potential nitrification rates between oiled and unoiled sites that help explain previously published correlation patterns. Our results suggest that exposure to oil, even 2 years post-spill, led to subtle changes in population dynamics. How, or if, these changes may impact ecosystem function in the marshes, however, remains uncertain.
Collapse
Affiliation(s)
| | | | - Anne E Giblin
- The Ecosystems Center, Marine Biological Laboratory Woods Hole, MA, USA
| | - John M Marton
- Louisiana Universities Marine Consortium Chauvin, LA, USA
| | | |
Collapse
|
36
|
Zhang Y, Chen L, Sun R, Dai T, Tian J, Zheng W, Wen D. Population and diversity of ammonia-oxidizing archaea and bacteria in a pollutants' receiving area in Hangzhou Bay. Appl Microbiol Biotechnol 2016; 100:6035-45. [PMID: 26960319 DOI: 10.1007/s00253-016-7421-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/20/2016] [Accepted: 02/24/2016] [Indexed: 12/19/2022]
Abstract
The community structure of ammonia-oxidizing microorganisms is sensitive to various environmental factors, including pollutions. In this study, real-time PCR and 454 pyrosequencing were adopted to investigate the population and diversity of ammonia-oxidizing archaea (AOA) and bacteria (AOB) temporally and spatially in the sediments of an industrial effluent receiving area in the Qiantang River's estuary, Hangzhou Bay. The abundances of AOA and AOB amoA genes fluctuated in 10(5)-10(7) gene copies per gram of sediment; the ratio of AOA amoA/AOB amoA ranged in 0.39-5.52. The AOA amoA/archaeal 16S rRNA, AOB amoA/bacterial 16S rRNA, and AOA amoA/AOB amoA were found to positively correlate with NH4 (+)-N concentration of the seawater. Nitrosopumilus cluster and Nitrosomonas-like cluster were the dominant AOA and AOB, respectively. The community structures of both AOA and AOB in the sediments exhibited significant seasonal differences rather than spatial changes in the effluent receiving area. The phylogenetic distribution of AOB in this area was consistent with the wastewater treatment plants (WWTPs) discharging the effluent but differed from the Qiantang River and other estuaries, which might be an outcome of long-term effluent discharge.
Collapse
Affiliation(s)
- Yan Zhang
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Lujun Chen
- School of Environment, Tsinghua University, Beijing, 100084, China.,Zhejiang Provincial Key Laboratory of Water Science and Technology, Department of Environmental Technology and Ecology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang, 314050, China
| | - Renhua Sun
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.,Rural Energy & Environment Agency, Ministry of Agriculture, Beijing, 100125, China
| | - Tianjiao Dai
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Jinping Tian
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Wei Zheng
- Zhejiang Provincial Key Laboratory of Water Science and Technology, Department of Environmental Technology and Ecology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang, 314050, China
| | - Donghui Wen
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
37
|
Vetterli A, Hietanen S, Leskinen E. Spatial and temporal dynamics of ammonia oxidizers in the sediments of the Gulf of Finland, Baltic Sea. MARINE ENVIRONMENTAL RESEARCH 2016; 113:153-63. [PMID: 26722795 DOI: 10.1016/j.marenvres.2015.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/10/2015] [Accepted: 12/12/2015] [Indexed: 05/03/2023]
Abstract
The diversity and dynamics of ammonia-oxidizing bacteria (AOB) and archaea (AOA) nitrifying communities in the sediments of the eutrophic Gulf of Finland (GoF) were investigated. Using clone libraries of ammonia monooxygenase (amoA) gene fragments and terminal restriction fragment length polymorphism (TRFLP), we found a low richness of both AOB and AOA. The AOB amoA phylogeny matched that of AOB 16S ribosomal genes from the same samples. AOA communities were characterized by strong spatial variation while AOB communities showed notable temporal patterns. At open sea sites, where transient anoxic conditions prevail, richness of both AOA and AOB was lowest and communities were dominated by organisms with gene signatures unique to the GoF. Given the importance of nitrification as a link between the fixation of nitrogen and its removal from aquatic environments, the low diversity of ammonia-oxidizing microbes across the GoF could be of relevance for ecosystem resilience in the face of rapid global environmental changes.
Collapse
Affiliation(s)
- Adrien Vetterli
- Department of Environmental Sciences, University of Helsinki, P.O. Box 65, 00014, Finland; Tvärminne Zoological Station, J.A. Palménin Tie 260, 10900, Hanko, Finland.
| | - Susanna Hietanen
- Department of Environmental Sciences, University of Helsinki, P.O. Box 65, 00014, Finland; Tvärminne Zoological Station, J.A. Palménin Tie 260, 10900, Hanko, Finland
| | - Elina Leskinen
- Department of Environmental Sciences, University of Helsinki, P.O. Box 65, 00014, Finland; Tvärminne Zoological Station, J.A. Palménin Tie 260, 10900, Hanko, Finland
| |
Collapse
|
38
|
Huang R, Zhao DY, Zeng J, Tian MY, Shen F, Jiang CL, Huang F, Yu ZB, Wu QL. Bioturbation of Tubificid worms affects the abundance and community composition of ammonia-oxidizing archaea and bacteria in surface lake sediments. ANN MICROBIOL 2016. [DOI: 10.1007/s13213-016-1192-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
39
|
Gao JF, Fan XY, Luo X, Pan KL. Insight into the short-term effect of titanium dioxide nanoparticles on active ammonia oxidizing microorganisms in a full-scale wastewater treatment plant: a DNA-stable isotope probing study. RSC Adv 2016. [DOI: 10.1039/c6ra13066f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ammonia-oxidizing bacteria (AOB) and archaea (AOA) are two distinct ammonia-oxidizing microorganisms (AOMs) responsible for nitrification in wastewater treatment plants (WWTPs).
Collapse
Affiliation(s)
- Jing-Feng Gao
- College of Environmental and Energy Engineering
- Beijing University of Technology
- Beijing 100124
- China
| | - Xiao-Yan Fan
- College of Environmental and Energy Engineering
- Beijing University of Technology
- Beijing 100124
- China
| | - Xin Luo
- College of Environmental and Energy Engineering
- Beijing University of Technology
- Beijing 100124
- China
| | - Kai-Ling Pan
- College of Environmental and Energy Engineering
- Beijing University of Technology
- Beijing 100124
- China
| |
Collapse
|
40
|
Zhang Q, Tang F, Zhou Y, Xu J, Chen H, Wang M, Laanbroek HJ. Shifts in the pelagic ammonia-oxidizing microbial communities along the eutrophic estuary of Yong River in Ningbo City, China. Front Microbiol 2015; 6:1180. [PMID: 26579089 PMCID: PMC4621301 DOI: 10.3389/fmicb.2015.01180] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 10/12/2015] [Indexed: 12/11/2022] Open
Abstract
Aerobic ammonia oxidation plays a key role in the nitrogen cycle, and the diversity of the responsible microorganisms is regulated by environmental factors. Abundance and composition of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) were investigated in the surface waters along an environmental gradient of the Yong River in Ningbo, East China. Water samples were collected from three pelagic zones: (1) freshwaters in the urban canals of Ningbo, (2) brackish waters in the downstream Yong River, and (3) coastal marine water of Hangzhou Bay. Shifts in activity and diversity of the ammonia-oxidizing microorganisms occurred simultaneously with changes in environmental factors, among which salinity and the availabilities of ammonium and oxygen. The AOA abundance was always higher than that of AOB and was related to the ammonia oxidation activity. The ratios of AOA/AOB in the brackish and marine waters were significantly higher than those found in freshwaters. Both AOA and AOB showed similar community compositions in brackish and marine waters, but only 31 and 35% similarity, respectively, between these waters and the urban inland freshwaters. Most of AOA-amoA sequences from freshwater were affiliated with sequences obtained from terrestrial environments and those collected from brackish and coastal areas were ubiquitous in marine, coastal, and terrestrial ecosystems. All AOB from freshwaters belonged to Nitrosomonas, and the AOB from brackish and marine waters mainly belonged to Nitrosospira.
Collapse
Affiliation(s)
- Qiufang Zhang
- Faculty of Architectural Civil Engineering and Environment, Ningbo University Ningbo, China
| | - Fangyuan Tang
- Faculty of Architectural Civil Engineering and Environment, Ningbo University Ningbo, China
| | - Yangjing Zhou
- Faculty of Architectural Civil Engineering and Environment, Ningbo University Ningbo, China
| | - Jirong Xu
- Faculty of Architectural Civil Engineering and Environment, Ningbo University Ningbo, China
| | - Heping Chen
- Faculty of Architectural Civil Engineering and Environment, Ningbo University Ningbo, China
| | - Mingkuang Wang
- Faculty of Architectural Civil Engineering and Environment, Ningbo University Ningbo, China
| | - Hendrikus J Laanbroek
- Department of Microbial Wetland Ecology, Netherlands Institute of Ecology (NIOO-KNAW) Wageningen, Netherlands ; Institute of Environmental Biology, Utrecht University Utrecht, Netherlands
| |
Collapse
|
41
|
Hong JK, Cho JC. Environmental Variables Shaping the Ecological Niche of Thaumarchaeota in Soil: Direct and Indirect Causal Effects. PLoS One 2015; 10:e0133763. [PMID: 26241328 PMCID: PMC4524719 DOI: 10.1371/journal.pone.0133763] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/01/2015] [Indexed: 11/18/2022] Open
Abstract
To find environmental variables (EVs) shaping the ecological niche of the archaeal phylum Thaumarchaeota in terrestrial environments, we determined the abundance of Thaumarchaeota in various soil samples using real-time PCR targeting thaumarchaeotal 16S rRNA gene sequences. We employed our previously developed primer, THAUM-494, which had greater coverage for Thaumarchaeota and lower tolerance to nonthaumarchaeotal taxa than previous Thaumarchaeota-directed primers. The relative abundance estimates (RVs) of Thaumarchaeota (RTHAUM), Archaea (RARCH), and Bacteria (RBACT) were subjected to a series of statistical analyses. Redundancy analysis (RDA) showed a significant (p < 0.05) canonical relationship between RVs and EVs. Negative causal relationships between RTHAUM and nutrient level-related EVs were observed in an RDA biplot. These negative relationships were further confirmed by correlation and regression analyses. Total nitrogen content (TN) appeared to be the EV that affected RTHAUM most strongly, and total carbon content (TC), which reflected the content of organic matter (OM), appeared to be the EV that affected it least. However, in the path analysis, a path model indicated that TN might be a mediator EV that could be controlled directly by the OM. Additionally, another path model implied that water content (WC) might also indirectly affect RTHAUM by controlling ammonium nitrogen (NH4+-N) level through ammonification. Thus, although most directly affected by NH4+-N, RTHAUM could be ultimately determined by OM content, suggesting that Thaumarchaeota could prefer low-OM or low-WC conditions, because either of these EVs could subsequently result in low levels of NH4+-N in soil.
Collapse
Affiliation(s)
- Jin-Kyung Hong
- Institute of Environmental Sciences and Department of Environmental Sciences, Hankuk University of Foreign Studies, Yong-In, Korea
| | - Jae-Chang Cho
- Institute of Environmental Sciences and Department of Environmental Sciences, Hankuk University of Foreign Studies, Yong-In, Korea
- * E-mail:
| |
Collapse
|
42
|
Bowen JL, Weisman D, Yasuda M, Jayakumar A, Morrison HG, Ward BB. Marine Oxygen-Deficient Zones Harbor Depauperate Denitrifying Communities Compared to Novel Genetic Diversity in Coastal Sediments. MICROBIAL ECOLOGY 2015; 70:311-321. [PMID: 25721726 DOI: 10.1007/s00248-015-0582-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/03/2015] [Indexed: 06/04/2023]
Abstract
Denitrification is a critically important biogeochemical pathway that removes fixed nitrogen from ecosystems and thus ultimately controls the rate of primary production in nitrogen-limited systems. We examined the community structure of bacteria containing the nirS gene, a signature gene in the denitrification pathway, from estuarine and salt marsh sediments and from the water column of two of the world's largest marine oxygen-deficient zones (ODZs). We generated over 125,000 nirS gene sequences, revealing a large degree of genetic diversity including 1,815 unique taxa, the vast majority of which formed clades that contain no cultured representatives. These results underscore how little we know about the genetic diversity of metabolisms underlying this critical biogeochemical pathway. Marine sediments yielded 1,776 unique taxa when clustered at 95 % sequence identity, and there was no single nirS denitrifier that was a competitive dominant; different samples had different highly abundant taxa. By contrast, there were only 39 unique taxa identified in samples from the two ODZs, and 99 % of the sequences belonged to 5 or fewer taxa. The ODZ samples were often dominated by nirS sequences that shared a 92 % sequence identity to a nirS found in the anaerobic ammonium-oxidizing (anammox) genus Scalindua. This sequence was abundant in both ODZs, accounting for 38 and 59 % of all sequences, but it was virtually absent in marine sediments. Our data indicate that ODZs are remarkably depauperate in nirS genes compared to the remarkable genetic richness found in coastal sediments.
Collapse
Affiliation(s)
- Jennifer L Bowen
- Department of Biology, University of Massachusetts, 100 Morrissey Blvd, Boston, MA, 02125, USA,
| | | | | | | | | | | |
Collapse
|
43
|
Hu A, Hou L, Yu CP. Biogeography of Planktonic and Benthic Archaeal Communities in a Subtropical Eutrophic Estuary of China. MICROBIAL ECOLOGY 2015; 70:322-335. [PMID: 25805214 DOI: 10.1007/s00248-015-0597-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/08/2015] [Indexed: 06/04/2023]
Abstract
Mounting evidence suggests that Archaea are widespread and abundant in aquatic and terrestrial habitats and play fundamental roles in global biogeochemical cycles, yet the pattern and its ecological drivers of biogeographic distribution of archaeal community in estuarine ecosystem are still not well understood. Here, we investigated planktonic and benthic archaeal communities in the human-impacted Jiulong River estuary (JRE), southern China by using real-time PCR (RT-PCR) and Illumina 16S ribosomal RNA (rRNA) amplicon sequencing. RT-PCR analysis indicated that Archaea accounted for an average of 0.79 and 5.31 % of prokaryotic biomass in water and sediment samples of the JRE, respectively. The diversity of planktonic archaeal community decreased gradually from the river runoff to seawater, whereas that of benthic community did not show the similar pattern. The results of taxonomic assignments indicated that Thaumarchaeota (Nitrosopumilus and Cenarchaeum), Methanocorpusculum, and Methanospirillum were significantly more abundant in planktonic than benthic communities, whereas the relative abundances of Miscellaneous Crenarchaeotic Group, Marine Benthic Group-B/-D, anaerobic methane-oxidizing Archaea -1/-2D, and South Africa Gold Mine Euryarchaeotic Group 1 were higher in sediments than in surface waters. Moreover, planktonic archaeal community composition varied significantly at broad and finer-scale taxonomic levels along the salinity gradient. Multivariate statistical analyses revealed that salinity is the main factor structuring the JRE planktonic but not benthic archaeal community at both total community and population level. SourceTrakcer analysis indicated that river might be a major source of archaea in the freshwater zone of the JRE. Overall, this study advances our understanding of the biogeographic patterns and its ecological drivers of estuarine archaeal communities.
Collapse
Affiliation(s)
- Anyi Hu
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China
| | | | | |
Collapse
|
44
|
Yazdani Foshtomi M, Braeckman U, Derycke S, Sapp M, Van Gansbeke D, Sabbe K, Willems A, Vincx M, Vanaverbeke J. The Link between Microbial Diversity and Nitrogen Cycling in Marine Sediments Is Modulated by Macrofaunal Bioturbation. PLoS One 2015; 10:e0130116. [PMID: 26102286 PMCID: PMC4477903 DOI: 10.1371/journal.pone.0130116] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/18/2015] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES The marine benthic nitrogen cycle is affected by both the presence and activity of macrofauna and the diversity of N-cycling microbes. However, integrated research simultaneously investigating macrofauna, microbes and N-cycling is lacking. We investigated spatio-temporal patterns in microbial community composition and diversity, macrofaunal abundance and their sediment reworking activity, and N-cycling in seven subtidal stations in the Southern North Sea. SPATIO-TEMPORAL PATTERNS OF THE MICROBIAL COMMUNITIES Our results indicated that bacteria (total and β-AOB) showed more spatio-temporal variation than archaea (total and AOA) as sedimentation of organic matter and the subsequent changes in the environment had a stronger impact on their community composition and diversity indices in our study area. However, spatio-temporal patterns of total bacterial and β-AOB communities were different and related to the availability of ammonium for the autotrophic β-AOB. Highest bacterial richness and diversity were observed in June at the timing of the phytoplankton bloom deposition, while richness of β-AOB as well as AOA peaked in September. Total archaeal community showed no temporal variation in diversity indices. MACROFAUNA, MICROBES AND THE BENTHIC N-CYCLE Distance based linear models revealed that, independent from the effect of grain size and the quality and quantity of sediment organic matter, nitrification and N-mineralization were affected by respectively the diversity of metabolically active β-AOB and AOA, and the total bacteria, near the sediment-water interface. Separate models demonstrated a significant and independent effect of macrofaunal activities on community composition and richness of total bacteria, and diversity indices of metabolically active AOA. Diversity of β-AOB was significantly affected by macrofaunal abundance. Our results support the link between microbial biodiversity and ecosystem functioning in marine sediments, and provided broad correlative support for the hypothesis that this relationship is modulated by macrofaunal activity. We hypothesized that the latter effect can be explained by their bioturbating and bio-irrigating activities, increasing the spatial complexity of the biogeochemical environment.
Collapse
Affiliation(s)
- Maryam Yazdani Foshtomi
- Marine Biology Research Group, Biology Department, Ghent University, Ghent, Belgium
- CeMoFE, Ghent University, Ghent, Belgium
- * E-mail:
| | - Ulrike Braeckman
- Marine Biology Research Group, Biology Department, Ghent University, Ghent, Belgium
| | - Sofie Derycke
- Marine Biology Research Group, Biology Department, Ghent University, Ghent, Belgium
| | - Melanie Sapp
- The Food and Environment Research Agency, Sand Hutton, York, United Kingdom
| | - Dirk Van Gansbeke
- Marine Biology Research Group, Biology Department, Ghent University, Ghent, Belgium
| | - Koen Sabbe
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Ghent, Belgium
| | - Anne Willems
- CeMoFE, Ghent University, Ghent, Belgium
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Magda Vincx
- Marine Biology Research Group, Biology Department, Ghent University, Ghent, Belgium
| | - Jan Vanaverbeke
- Marine Biology Research Group, Biology Department, Ghent University, Ghent, Belgium
| |
Collapse
|
45
|
Xia F, Zeleke J, Sheng Q, Wu JH, Quan ZX. Communities of ammonia oxidizers at different stages of Spartina alterniflora invasion in salt marshes of Yangtze River estuary. J Microbiol 2015; 53:311-20. [DOI: 10.1007/s12275-015-4660-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 03/26/2015] [Accepted: 04/15/2015] [Indexed: 12/30/2022]
|
46
|
Damashek J, Smith JM, Mosier AC, Francis CA. Benthic ammonia oxidizers differ in community structure and biogeochemical potential across a riverine delta. Front Microbiol 2015; 5:743. [PMID: 25620958 PMCID: PMC4287051 DOI: 10.3389/fmicb.2014.00743] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 12/08/2014] [Indexed: 11/17/2022] Open
Abstract
Nitrogen pollution in coastal zones is a widespread issue, particularly in ecosystems with urban or agricultural watersheds. California's Sacramento-San Joaquin Delta, at the landward reaches of San Francisco Bay, is highly impacted by both agricultural runoff and sewage effluent, leading to chronically high nutrient loadings. In particular, the extensive discharge of ammonium into the Sacramento River has altered this ecosystem by vastly increasing ammonium concentrations and thus changing the stoichiometry of inorganic nitrogen stocks, with potential effects throughout the food web. This debate surrounding ammonium inputs highlights the importance of understanding the rates of, and controls on, nitrogen (N) cycling processes across the delta. To date, however, there has been little research examining N biogeochemistry or N-cycling microbial communities in this system. We report the first data on benthic ammonia-oxidizing microbial communities and potential nitrification rates for the Sacramento-San Joaquin Delta, focusing on the functional gene amoA (which codes for the α-subunit of ammonia monooxygenase). There were stark regional differences in ammonia-oxidizing communities, with ammonia-oxidizing bacteria (AOB) outnumbering ammonia-oxidizing archaea (AOA) only in the ammonium-rich Sacramento River. High potential nitrification rates in the Sacramento River suggested these communities may be capable of oxidizing significant amounts of ammonium, compared to the San Joaquin River and the upper reaches of San Francisco Bay. Gene diversity also showed regional patterns, as well as phylogenetically unique ammonia oxidizers in the Sacramento River. The benthic ammonia oxidizers in this nutrient-rich aquatic ecosystem may be important players in its overall nutrient cycling, and their community structure and biogeochemical function appear related to nutrient loadings. Unraveling the microbial ecology and biogeochemistry of N cycling pathways, including benthic nitrification, is a critical step toward understanding how such ecosystems respond to the changing environmental conditions wrought by human development and climate change.
Collapse
Affiliation(s)
- Julian Damashek
- Department of Environmental Earth System Science, Stanford University Stanford, CA, USA
| | - Jason M Smith
- Department of Environmental Earth System Science, Stanford University Stanford, CA, USA
| | - Annika C Mosier
- Department of Environmental Earth System Science, Stanford University Stanford, CA, USA
| | - Christopher A Francis
- Department of Environmental Earth System Science, Stanford University Stanford, CA, USA
| |
Collapse
|
47
|
Flood M, Frabutt D, Floyd D, Powers A, Ezegwe U, Devol A, Tiquia-Arashiro SM. Ammonia-oxidizing bacteria and archaea in sediments of the Gulf of Mexico. ENVIRONMENTAL TECHNOLOGY 2015; 36:124-135. [PMID: 25409591 DOI: 10.1080/09593330.2014.942385] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The diversity (richness and community composition) of ammonia-oxidizing archaea (AOA) and bacteria (AOB) within sediments of the Gulf of Mexico was examined. Using polymerase chain reaction primers designed to specifically target the archaeal ammonia monooxygenase-subunit (amoA) gene and bacterial amoA gene, we found AOA and AOB to be present in all three sampling sites. Archaeal amoA libraries were dominated by a few widely distributed Nitrosopumilus-like sequence types, whereas AOB diversity showed significant variation in both richness and community composition. Majority of the bacterial amoA sequences recovered belong to Betaproteobacteria and very few belong to Gammaproteobacteria. Results suggest that water depth and nutrient availability were identified as potential drivers that affected the selection of the AOA and AOB communities. Besides influencing the abundance of individual taxa, these environmental factors also had an impact on the overall richness of the overall AOA and AOB communities. The richness and diversity of AOA and AOB genes were higher at the shallowest sediments (100 m depth) and the deepest sediments (1300 m depth). The reduced diversity in the deepest sediments could be explained by much lower nutrient availability.
Collapse
Affiliation(s)
- Matthew Flood
- a Department of Natural Sciences , The University of Michigan , 115F Science Building, Dearborn , MI 48128 , USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Yan L, Li Z, Bao J, Wang G, Wang C, Wang W. Diversity of ammonia-oxidizing bacteria and ammonia-oxidizing archaea during composting of municipal sludge. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-1012-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
49
|
Lee KH, Wang YF, Li H, Gu JD. Niche specificity of ammonia-oxidizing archaeal and bacterial communities in a freshwater wetland receiving municipal wastewater in Daqing, Northeast China. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:2081-2091. [PMID: 25163821 DOI: 10.1007/s10646-014-1334-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/09/2014] [Indexed: 06/03/2023]
Abstract
Ecophysiological differences between ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) enable them to adapt to different niches in complex freshwater wetland ecosystems. The community characters of AOA and AOB in the different niches in a freshwater wetland receiving municipal wastewater, as well as the physicochemical parameters of sediment/soil samples, were investigated in this study. AOA community structures varied and separated from each other among four different niches. Wetland vegetation including aquatic macrophytes and terrestrial plants affected the AOA community composition but less for AOB, whereas sediment depths might contribute to the AOB community shift. The diversity of AOA communities was higher than that of AOB across all four niches. Archaeal and bacterial amoA genes (encoding for the alpha-subunit of ammonia monooxygenases) were most diverse in the dry-land niche, indicating O2 availability might favor ammonia oxidation. The majority of AOA amoA sequences belonged to the Soil/sediment Cluster B in the freshwater wetland ecosystems, while the dominant AOB amoA sequences were affiliated with Nitrosospira-like cluster. In the Nitrosospira-like cluster, AOB amoA gene sequences affiliated with the uncultured ammonia-oxidizing beta-proteobacteria constituted the largest portion (99%). Moreover, independent methods for phylogenetic tree analysis supported high parsimony bootstrap values. As a consequence, it is proposed that Nitrosospira-like amoA gene sequences recovered in this study represent a potentially novel cluster, grouping with the sequences from Gulf of Mexico deposited in the public databases.
Collapse
Affiliation(s)
- Kwok-Ho Lee
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| | | | | | | |
Collapse
|
50
|
Zhao D, Luo J, Wang J, Huang R, Guo K, Li Y, Wu QL. The influence of land use on the abundance and diversity of ammonia oxidizers. Curr Microbiol 2014; 70:282-9. [PMID: 25331793 DOI: 10.1007/s00284-014-0714-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 09/06/2014] [Indexed: 11/30/2022]
Abstract
Nitrification plays a significant role in soil nitrogen cycling, a process in which the first step can be catalyzed by ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). In this study, six soil samples with distinct land-use regimes (forestland soil, paddy soil, wheat-planted soil, fruit-planted soil, grassland soil, and rape-planted soil) were collected from Chuzhou city in the Anhui province to elucidate the effects of land use on the abundance and diversity of AOA and AOB. The abundance of the archaeal amoA gene ranged from 2.12 × 10(4) copies per gram of dry soil to 2.57 × 10(5) copies per gram of dry soil, while the abundance of the bacterial amoA gene ranged from 5.58 × 10(4) copies per gram of dry soil to 1.59 × 10(8) copies per gram of dry soil. The grassland and the rape-planted soil samples maintained the highest abundance of the bacterial and archaeal amoA genes, respectively. The abundance of the archaeal amoA gene was positively correlated with the pH (P < 0.05). The ammonia concentrations exhibited a significantly positive relation with the abundance of the bacterial amoA gene (P < 0.01) and the number of OTUs of AOB (P < 0.05). The community composition of AOB was more sensitive to the land-use regimes than that of AOA. The data obtained in this study may be useful to better understand the nitrification process in soils with different land-use regimes.
Collapse
Affiliation(s)
- Dayong Zhao
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China,
| | | | | | | | | | | | | |
Collapse
|