1
|
Joubert O, Arnault G, Barret M, Simonin M. Sowing success: ecological insights into seedling microbial colonisation for robust plant microbiota engineering. TRENDS IN PLANT SCIENCE 2025; 30:21-34. [PMID: 39406642 DOI: 10.1016/j.tplants.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/14/2024] [Accepted: 09/11/2024] [Indexed: 01/11/2025]
Abstract
Manipulating the seedling microbiota through seed or soil inoculations has the potential to improve plant health. Mixed in-field results have been attributed to a lack of consideration for ecological processes taking place during seedling microbiota assembly. In this opinion article, we (i) assess the contribution of ecological processes at play during seedling microbiota assembly (e.g., propagule pressure and priority effects); (ii) investigate how life history theory can help us identify microbial traits involved in successful seedling colonisation; and (iii) suggest how different plant microbiota engineering methods could benefit from a greater understanding of seedling microbiota assembly processes. Finally, we propose several research hypotheses and identify outstanding questions for the plant microbiota engineering community.
Collapse
Affiliation(s)
- Oscar Joubert
- Master de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, 69342 Cedex 07 Lyon, France; Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France.
| | - Gontran Arnault
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Matthieu Barret
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Marie Simonin
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France.
| |
Collapse
|
2
|
Mousa S, Nyaruaba R, Yang H, Wei H. Engineering seed microenvironment with embedded bacteriophages and plant growth promoting rhizobacteria. BMC Microbiol 2024; 24:503. [PMID: 39604853 PMCID: PMC11600732 DOI: 10.1186/s12866-024-03657-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Engineering the seed microenvironment with embedded bacteriophages and Plant Growth Promoting Rhizobacteria (PGPR) shows promise for enhancing germination, mitigating biotic and abiotic stressors, and improving resilience under challenging environmental conditions. This study aimed to enhance potato seed germination and control bacterial wilt caused by Ralstonia solanacearum and salinity by using novel technology to encapsulate, preserve, and deliver phage therapy and rhizobacteria. RESULTS Silk fibroin and trehalose biomaterial combined with the phage P-PSG11 and Pseudomonas lalkuanensis were applied to potato seeds. A pot experiment was conducted to investigate pathogen suppression, salt tolerance, and plant growth enhancement. The combination of silk and trehalose effectively preserved both phage and bacteria for ≥ 8 weeks, maintaining both phage titers and bacterial colony counts. Seeds coated with the P-PSG11 and P. lalkuanensis mixture exhibited the highest germination rate at 93.5%, followed by P. lalkuanensis at 86.3%. In vivo evaluations showed significant increases in root length (72.7%, 61.0%, and 22.5%), plant height (71.5%, 65.1%, and 8.2%), and dry matter (129.1%, 125.7%, and 13.1%) for the P-PSG11 and P. lalkuanensis mixture, P. lalkuanensis, and P-PSG11, respectively. The incidence of wilt was significantly reduced by 88.2% and 81.2%, and salinity was mitigated by 83.3% and 79.2% for the P-PSG11 and P. lalkuanensis mixture and P. lalkuanensis treatment, respectively, compared to the control (p < 0.001). The viability of preserved P-PSG11 and P. lalkuanensis was confirmed after one year using phage titers and bacterial colonies. CONCLUSION This innovative approach enhanced plant growth, promoted seed germination, controlled wilt disease, and mitigated soil salinity.
Collapse
Grants
- ZDRW-ZS-2016-4 National Biosafety Laboratory, Wuhan Institute of Virology, Chinese Academy of Sciences, China
- ZDRW-ZS-2016-4 National Biosafety Laboratory, Wuhan Institute of Virology, Chinese Academy of Sciences, China
- ZDRW-ZS-2016-4 National Biosafety Laboratory, Wuhan Institute of Virology, Chinese Academy of Sciences, China
- ZDRW-ZS-2016-4 National Biosafety Laboratory, Wuhan Institute of Virology, Chinese Academy of Sciences, China
Collapse
Affiliation(s)
- Samar Mousa
- Center for Pathogens Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- International College, University of Chinese Academy of Sciences, Beijing, China
- Faculty of Agriculture, Agricultural Botany Department, Suez Canal University, Ismailia, Egypt
| | - Raphael Nyaruaba
- Center for Pathogens Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- International College, University of Chinese Academy of Sciences, Beijing, China
| | - Hang Yang
- Center for Pathogens Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- International College, University of Chinese Academy of Sciences, Beijing, China
| | - Hongping Wei
- Center for Pathogens Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.
- International College, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Darrasse A, Tarkowski ŁP, Briand M, Lalanne D, Chen NWG, Barret M, Verdier J. A stage-dependent seed defense response to explain efficient seed transmission of Xanthomonas citri pv. fuscans to common bean. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39038880 DOI: 10.1111/pce.15037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/14/2024] [Accepted: 06/29/2024] [Indexed: 07/24/2024]
Abstract
Although seed represents an important means of plant pathogen dispersion, the seed-pathogen dialogue remains largely unexplored. A multiomic approach was performed at different seed developmental stages of common bean (Phaseolus vulgaris L.) during asymptomatic colonization by Xanthomonas citri pv. fuscans (Xcf), At the early seed developmental stages, we observed high transcriptional changes both in seeds with bacterial recognition and defense signal transduction genes, and in bacteria with up-regulation of the bacterial type 3 secretion system. This high transcriptional activity of defense genes in Xcf-colonized seeds during maturation refutes the widely diffused assumption considering seeds as passive carriers of microbes. At later seed maturation stages, few transcriptome changes indicated a less intense molecular dialogue between the host and the pathogen, but marked by changes in DNA methylation of plant defense genes, in response to Xcf colonization. We showed examples of pathogen-specific DNA methylations in colonized seeds acting as plant defense silencing to repress plant immune response during the germination process. Finally, we propose a novel plant-pathogen interaction model, specific to the seed tissues, highlighting the existence of distinct phases during seed-pathogen interaction with seeds being actively interacting with colonizing pathogens, then both belligerents switching to more passive mode at later stages.
Collapse
Affiliation(s)
- Armelle Darrasse
- University Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | | | - Martial Briand
- University Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - David Lalanne
- University Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Nicolas W G Chen
- University Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Matthieu Barret
- University Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Jerome Verdier
- University Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| |
Collapse
|
4
|
Erdrich SH, Schurr U, Frunzke J, Arsova B. Seed coating with phages for sustainable plant biocontrol of plant pathogens and influence of the seed coat mucilage. Microb Biotechnol 2024; 17:e14507. [PMID: 38884488 PMCID: PMC11181459 DOI: 10.1111/1751-7915.14507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024] Open
Abstract
Pathogens resistant to classical control strategies pose a significant threat to crop yield, with seeds being a major transmission route. Bacteriophages, viruses targeting bacteria, offer an environmentally sustainable biocontrol solution. In this study, we isolated and characterized two novel phages, Athelas and Alfirin, which infect Pseudomonas syringae and Agrobacterium fabrum, respectively, and included the recently published Pfeifenkraut phage infecting Xanthomonas translucens. Using a simple immersion method, phages coated onto seeds successfully lysed bacteria post air-drying. The seed coat mucilage (SCM), a polysaccharide-polymer matrix exuded by seeds, plays a critical role in phage binding. Seeds with removed mucilage formed five to 10 times less lysis zones compared to those with mucilage. The podovirus Athelas showed the highest mucilage dependency. Phages from the Autographiviridae family also depended on mucilage for seed adhesion. Comparative analysis of Arabidopsis SCM mutants suggested the diffusible cellulose as a key component for phage binding. Long-term activity tests demonstrated high phage stability on seed surfaces and significantly increasing seedling survival rates in the presence of pathogens. Using non-virulent host strains enhanced phage presence on seeds but also has potential limitations. These findings highlight phage-based interventions as promising, sustainable strategies for combating pathogen resistance and improving crop yield.
Collapse
Affiliation(s)
- Sebastian H. Erdrich
- Forschungszentrum JülichDepartment for Plant Sciences (IBG‐2), Institute of Bio‐ and GeosciencesJülichGermany
- Forschungszentrum JülichDepartment for Biotechnology (IBG‐1), Institute of Bio‐ and GeosciencesJülichGermany
| | - Ulrich Schurr
- Forschungszentrum JülichDepartment for Plant Sciences (IBG‐2), Institute of Bio‐ and GeosciencesJülichGermany
| | - Julia Frunzke
- Forschungszentrum JülichDepartment for Biotechnology (IBG‐1), Institute of Bio‐ and GeosciencesJülichGermany
| | - Borjana Arsova
- Forschungszentrum JülichDepartment for Plant Sciences (IBG‐2), Institute of Bio‐ and GeosciencesJülichGermany
| |
Collapse
|
5
|
Islam T, Haque MA, Barai HR, Istiaq A, Kim JJ. Antibiotic Resistance in Plant Pathogenic Bacteria: Recent Data and Environmental Impact of Unchecked Use and the Potential of Biocontrol Agents as an Eco-Friendly Alternative. PLANTS (BASEL, SWITZERLAND) 2024; 13:1135. [PMID: 38674544 PMCID: PMC11054394 DOI: 10.3390/plants13081135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
The economic impact of phytopathogenic bacteria on agriculture is staggering, costing billions of US dollars globally. Pseudomonas syringae is the top most phytopathogenic bacteria, having more than 60 pathovars, which cause bacteria speck in tomatoes, halo blight in beans, and so on. Although antibiotics or a combination of antibiotics are used to manage infectious diseases in plants, they are employed far less in agriculture compared to human and animal populations. Moreover, the majority of antibiotics used in plants are immediately washed away, leading to environmental damage to ecosystems and food chains. Due to the serious risk of antibiotic resistance (AR) and the potential for environmental contamination with antibiotic residues and resistance genes, the use of unchecked antibiotics against phytopathogenic bacteria is not advisable. Despite the significant concern regarding AR in the world today, there are inadequate and outdated data on the AR of phytopathogenic bacteria. This review presents recent AR data on plant pathogenic bacteria (PPB), along with their environmental impact. In light of these findings, we suggest the use of biocontrol agents as a sustainable, eco-friendly, and effective alternative to controlling phytopathogenic bacteria.
Collapse
Affiliation(s)
- Tarequl Islam
- Department of Microbiology, Noakhali Science and Technology University, Sonapur, Noakhali 3814, Bangladesh;
| | - Md Azizul Haque
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| | - Hasi Rani Barai
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| | - Arif Istiaq
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine, St Louis, MO 63110-1010, USA
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| |
Collapse
|
6
|
Garin T, Brin C, Préveaux A, Brault A, Briand M, Simonin M, Barret M, Journet L, Sarniguet A. The type VI secretion system of Stenotrophomonas rhizophila CFBP13503 limits the transmission of Xanthomonas campestris pv. campestris 8004 from radish seeds to seedlings. MOLECULAR PLANT PATHOLOGY 2024; 25:e13412. [PMID: 38279854 PMCID: PMC10777753 DOI: 10.1111/mpp.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/20/2023] [Accepted: 11/27/2023] [Indexed: 01/29/2024]
Abstract
Stenotrophomonas rhizophila CFBP13503 is a seedborne commensal bacterial strain, which is efficiently transmitted to seedlings and can outcompete the phytopathogenic bacterium Xanthomonas campestris pv. campestris (Xcc8004). The type VI secretion system (T6SS), an interference contact-dependent mechanism, is a critical component of interbacterial competition. The involvement of the T6SS of S. rhizophila CFBP13503 in the inhibition of Xcc8004 growth and seed-to-seedling transmission was assessed. The T6SS cluster of S. rhizophila CFBP13503 and nine putative effectors were identified. Deletion of two T6SS structural genes, hcp and tssB, abolished the competitive advantage of S. rhizophila against Xcc8004 in vitro. The population sizes of these two bacterial species were monitored in seedlings after inoculation of radish seeds with mixtures of Xcc8004 and either S. rhizophila wild-type (wt) strain or isogenic hcp mutant. A significant decrease in the population size of Xcc8004 was observed during confrontation with the S. rhizophila wt in comparison with T6SS-deletion mutants in germinated seeds and seedlings. We found that the T6SS distribution among 835 genomes of the Stenotrophomonas genus is scarce. In contrast, in all available S. rhizophila genomes, T6SS clusters are widespread and mainly belong to the T6SS group i4. In conclusion, the T6SS of S. rhizophila CFBP13503 is involved in the antibiosis against Xcc8004 and reduces seedling transmission of Xcc8004 in radish. The distribution of this T6SS cluster in the S. rhizophila complex could make it possible to exploit these strains as biocontrol agents against X. campestris pv. campestris.
Collapse
Affiliation(s)
- Tiffany Garin
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAVAngersFrance
| | - Chrystelle Brin
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAVAngersFrance
| | - Anne Préveaux
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAVAngersFrance
| | - Agathe Brault
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAVAngersFrance
| | - Martial Briand
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAVAngersFrance
| | - Marie Simonin
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAVAngersFrance
| | - Matthieu Barret
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAVAngersFrance
| | - Laure Journet
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Institut de Microbiologie de la MéditerranéeAix‐Marseille Université‐CNRS, UMR 7255MarseilleFrance
| | - Alain Sarniguet
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAVAngersFrance
| |
Collapse
|
7
|
Wicaksono WA, Semler B, Pöltl M, Berg C, Berg G, Cernava T. The microbiome of Riccia liverworts is an important reservoir for microbial diversity in temporary agricultural crusts. ENVIRONMENTAL MICROBIOME 2023; 18:46. [PMID: 37264474 DOI: 10.1186/s40793-023-00501-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/10/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND The microbiota of liverworts provides an interesting model for plant symbioses; however, their microbiome assembly is not yet understood. Here, we assessed specific factors that shape microbial communities associated with Riccia temporary agricultural crusts in harvested fields by investigating bacterial, fungal and archaeal communities in thalli and adhering soil from different field sites in Styria and Burgenland, Austria combining qPCR analyses, amplicon sequencing and advanced microscopy. RESULTS Riccia spec. div. was colonized by a very high abundance of bacteria (1010 16S rRNA gene copies per g of thallus) as well as archaea and fungi (108 ITS copies per g of thallus). Each Riccia thallus contain approx. 1000 prokaryotic and fungal ASVs. The field type was the main driver for the enrichment of fungal taxa, likely due to an imprint on soil microbiomes by the cultivated crop plants. This was shown by a higher fungal richness and different fungal community compositions comparing liverwort samples collected from pumpkin fields, with those from corn fields. In contrast, bacterial communities linked to liverworts are highly specialized and the soil attached to them is not a significant source of these bacteria. Specifically, enriched Cyanobacteria, Bacteroidetes and Methylobacteria suggest a symbiotic interaction. Intriguingly, compared to the surrounding soil, the thallus samples were shown to enrich several well-known bacterial and fungal phytopathogens indicating an undescribed role of liverworts as potential reservoirs of crop pathogens. CONCLUSIONS Our results provide evidence that a stable bacterial community but varying fungal communities are colonizing liverwort thalli. Post-harvest, temporary agricultural biocrusts are important reservoirs for microbial biodiversity but they have to be considered as potential reservoirs for pathogens as well.
Collapse
Affiliation(s)
- Wisnu Adi Wicaksono
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, 8010, Austria
| | - Bettina Semler
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, 8010, Austria
| | - Martina Pöltl
- Institute of Biology, University of Graz, Graz, 8010, Austria
| | - Christian Berg
- Institute of Biology, University of Graz, Graz, 8010, Austria
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, 8010, Austria
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, 8010, Austria.
- Graz University of Technology, Graz, Austria.
| |
Collapse
|
8
|
Bergmann GE, Leveau JHJ. A metacommunity ecology approach to understanding microbial community assembly in developing plant seeds. Front Microbiol 2022; 13:877519. [PMID: 35935241 PMCID: PMC9355165 DOI: 10.3389/fmicb.2022.877519] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Microorganisms have the potential to affect plant seed germination and seedling fitness, ultimately impacting plant health and community dynamics. Because seed-associated microbiota are highly variable across individual plants, plant species, and environments, it is challenging to identify the dominant processes that underlie the assembly, composition, and influence of these communities. We propose here that metacommunity ecology provides a conceptually useful framework for studying the microbiota of developing seeds, by the application of metacommunity principles of filtering, species interactions, and dispersal at multiple scales. Many studies in seed microbial ecology already describe individual assembly processes in a pattern-based manner, such as correlating seed microbiome composition with genotype or tracking diversity metrics across treatments in dispersal limitation experiments. But we see a lot of opportunities to examine understudied aspects of seed microbiology, including trait-based research on mechanisms of filtering and dispersal at the micro-scale, the use of pollination exclusion experiments in macro-scale seed studies, and an in-depth evaluation of how these processes interact via priority effect experiments and joint species distribution modeling.
Collapse
Affiliation(s)
| | - Johan H. J. Leveau
- Department of Plant Pathology, University of California-Davis, Davis, CA, United States
| |
Collapse
|
9
|
Ortega-Cuadros M, De Souza TL, Berruyer R, Aligon S, Pelletier S, Renou JP, Arias T, Campion C, Guillemette T, Verdier J, Grappin P. Seed Transmission of Pathogens: Non-Canonical Immune Response in Arabidopsis Germinating Seeds Compared to Early Seedlings against the Necrotrophic Fungus Alternaria brassicicola. PLANTS (BASEL, SWITZERLAND) 2022; 11:1708. [PMID: 35807659 PMCID: PMC9269218 DOI: 10.3390/plants11131708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022]
Abstract
The transmission of seed-borne pathogens by the germinating seed is responsible for major crop diseases. The immune responses of the seed facing biotic invaders are poorly documented so far. The Arabidopsis thaliana/Alternaria brassicicola patho-system was used to describe at the transcription level the responses of germinating seeds and young seedling stages to infection by the necrotrophic fungus. RNA-seq analyses of healthy versus inoculated seeds at 3 days after sowing (DAS), stage of radicle emergence, and at 6 and 10 DAS, two stages of seedling establishment, identified thousands of differentially expressed genes by Alternaria infection. Response to hypoxia, ethylene and indole pathways were found to be induced by Alternaria in the germinating seeds. However, surprisingly, the defense responses, namely the salicylic acid (SA) pathway, the response to reactive oxygen species (ROS), the endoplasmic reticulum-associated protein degradation (ERAD) and programmed cell death, were found to be strongly induced only during the latter post-germination stages. We propose that this non-canonical immune response in early germinating seeds compared to early seedling establishment was potentially due to the seed-to-seedling transition phase. Phenotypic analyses of about 14 mutants altered in the main defense pathways illustrated these specific defense responses. The unexpected germination deficiency and insensitivity to Alternaria in the glucosinolate deficient mutants allow hypothesis of a trade-off between seed germination, necrosis induction and Alternaria transmission to the seedling. The imbalance of the SA and jasmonic acid (JA) pathways to the detriment of the JA also illustrated a non-canonical immune response at the first stages of the seedling.
Collapse
Affiliation(s)
- Mailen Ortega-Cuadros
- Faculty of Exact and Natural Sciences, Institute of Biology, University City Campus, University of Antioquia, Calle 67 N°53-108, Medellín 050010, Colombia;
- Institut Agro, University Angers, INRAE, IRHS, SFR 4207 QuaSaV, F-49000 Angers, France; (T.L.D.S.); (R.B.); (S.A.); (S.P.); (J.-P.R.); (C.C.); (T.G.); (J.V.)
| | - Tiago Lodi De Souza
- Institut Agro, University Angers, INRAE, IRHS, SFR 4207 QuaSaV, F-49000 Angers, France; (T.L.D.S.); (R.B.); (S.A.); (S.P.); (J.-P.R.); (C.C.); (T.G.); (J.V.)
| | - Romain Berruyer
- Institut Agro, University Angers, INRAE, IRHS, SFR 4207 QuaSaV, F-49000 Angers, France; (T.L.D.S.); (R.B.); (S.A.); (S.P.); (J.-P.R.); (C.C.); (T.G.); (J.V.)
| | - Sophie Aligon
- Institut Agro, University Angers, INRAE, IRHS, SFR 4207 QuaSaV, F-49000 Angers, France; (T.L.D.S.); (R.B.); (S.A.); (S.P.); (J.-P.R.); (C.C.); (T.G.); (J.V.)
| | - Sandra Pelletier
- Institut Agro, University Angers, INRAE, IRHS, SFR 4207 QuaSaV, F-49000 Angers, France; (T.L.D.S.); (R.B.); (S.A.); (S.P.); (J.-P.R.); (C.C.); (T.G.); (J.V.)
| | - Jean-Pierre Renou
- Institut Agro, University Angers, INRAE, IRHS, SFR 4207 QuaSaV, F-49000 Angers, France; (T.L.D.S.); (R.B.); (S.A.); (S.P.); (J.-P.R.); (C.C.); (T.G.); (J.V.)
| | - Tatiana Arias
- Marie Selby Botanical Gardens, Downtown Sarasota Campus, 1534 Mound Street, Sarasota, FL 34236, USA;
| | - Claire Campion
- Institut Agro, University Angers, INRAE, IRHS, SFR 4207 QuaSaV, F-49000 Angers, France; (T.L.D.S.); (R.B.); (S.A.); (S.P.); (J.-P.R.); (C.C.); (T.G.); (J.V.)
| | - Thomas Guillemette
- Institut Agro, University Angers, INRAE, IRHS, SFR 4207 QuaSaV, F-49000 Angers, France; (T.L.D.S.); (R.B.); (S.A.); (S.P.); (J.-P.R.); (C.C.); (T.G.); (J.V.)
| | - Jérome Verdier
- Institut Agro, University Angers, INRAE, IRHS, SFR 4207 QuaSaV, F-49000 Angers, France; (T.L.D.S.); (R.B.); (S.A.); (S.P.); (J.-P.R.); (C.C.); (T.G.); (J.V.)
| | - Philippe Grappin
- Institut Agro, University Angers, INRAE, IRHS, SFR 4207 QuaSaV, F-49000 Angers, France; (T.L.D.S.); (R.B.); (S.A.); (S.P.); (J.-P.R.); (C.C.); (T.G.); (J.V.)
| |
Collapse
|
10
|
Simonin M, Briand M, Chesneau G, Rochefort A, Marais C, Sarniguet A, Barret M. Seed microbiota revealed by a large-scale meta-analysis including 50 plant species. THE NEW PHYTOLOGIST 2022; 234:1448-1463. [PMID: 35175621 DOI: 10.1111/nph.18037] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/03/2022] [Indexed: 05/15/2023]
Abstract
Seed microbiota constitutes a primary inoculum for plants that is gaining attention owing to its role for plant health and productivity. Here, we performed a meta-analysis on 63 seed microbiota studies covering 50 plant species to synthesize knowledge on the diversity of this habitat. Seed microbiota are diverse and extremely variable, with taxa richness varying from one to thousands of taxa. Hence, seed microbiota presents a variable (i.e. flexible) microbial fraction but we also identified a stable (i.e. core) fraction across samples. Around 30 bacterial and fungal taxa are present in most plant species and in samples from all over the world. Core taxa, such as Pantoea agglomerans, Pseudomonas viridiflava, P. fluorescens, Cladosporium perangustum and Alternaria sp., are dominant seed taxa. The characterization of the core and flexible seed microbiota provided here will help uncover seed microbiota roles for plant health and design effective microbiome engineering.
Collapse
Affiliation(s)
- Marie Simonin
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université d'Angers, F-49000, Angers, France
| | - Martial Briand
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université d'Angers, F-49000, Angers, France
| | - Guillaume Chesneau
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université d'Angers, F-49000, Angers, France
| | - Aude Rochefort
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université d'Angers, F-49000, Angers, France
| | - Coralie Marais
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université d'Angers, F-49000, Angers, France
| | - Alain Sarniguet
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université d'Angers, F-49000, Angers, France
| | - Matthieu Barret
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université d'Angers, F-49000, Angers, France
| |
Collapse
|
11
|
Cervantes K, Hilton AE, Stamler RA, Heerema RJ, Bock C, Wang X, Jo YK, Grauke LJ, Randall JJ. Evidence for Seed Transmission of Xylella fastidiosa in Pecan ( Carya illinoinensis). FRONTIERS IN PLANT SCIENCE 2022; 13:780335. [PMID: 35463450 PMCID: PMC9024359 DOI: 10.3389/fpls.2022.780335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Pecan bacterial leaf scorch, caused by Xylella fastidiosa subsp. multiplex, is an economically significant disease of pecan with known detrimental effects on the yield of susceptible cultivars. In this study, endosperm was harvested from developing pecan seeds, and direct qPCR and sequencing were used to detect and confirm the presence of X. fastidiosa. DNA was isolated from mature seeds originating from seven trees, revealing a positivity rate up to 90%, and transmission of X. fastidiosa from infected seed to the germinated seedlings was found to be over 80%. Further epidemiological analyses were performed to determine where X. fastidiosa localizes in mature seed and seedlings. The highest concentrations of X. fastidiosa DNA were found in the hilum and outer integument of the seeds and the petioles, respectively. High-, medium-, and low-density seeds were harvested to determine the impact of the bacterium on seed density and seedling growth rate. The growth rate of seedlings originating from low-density seeds was significantly reduced compared to the medium- and high-density seeds. Despite the increased growth and germination rates, the high-density seed group had a greater proportion of samples that tested positive for the presence of X. fastidiosa by qPCR. The results demonstrate the ability of X. fastidiosa to colonize developing seeds and be efficiently transmitted from well-developed seeds to germinated seedlings. Continued research is needed to understand the plant-microbe interactions involved in the colonization of pecan seeds by X. fastidiosa and to develop effective phytosanitary approaches to reduce the risks posed by seed transmission.
Collapse
Affiliation(s)
- Kimberly Cervantes
- Molecular Biology and Interdisciplinary Life Sciences, New Mexico State University, Las Cruces, NM, United States
| | - Angelyn E. Hilton
- United States Department of Agriculture, Southern Plains Agricultural Research Center, Pecan Breeding and Genetics, Somerville, TX, United States
| | - Rio A. Stamler
- Entomology, Plant Pathology, and Weed Science, New Mexico State University, Las Cruces, NM, United States
| | - Richard J. Heerema
- Extension Plant Sciences, New Mexico State University, Las Cruces, NM, United States
| | - Clive Bock
- United States Department of Agriculture, Southeastern Fruit and Tree Nut Research Laboratory, Byron, GA, United States
| | - Xinwang Wang
- United States Department of Agriculture, Southern Plains Agricultural Research Center, Pecan Breeding and Genetics, Somerville, TX, United States
| | - Young-Ki Jo
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| | - L. J. Grauke
- United States Department of Agriculture, Southern Plains Agricultural Research Center, Pecan Breeding and Genetics, Somerville, TX, United States
| | - Jennifer J. Randall
- Molecular Biology and Interdisciplinary Life Sciences, New Mexico State University, Las Cruces, NM, United States
- Entomology, Plant Pathology, and Weed Science, New Mexico State University, Las Cruces, NM, United States
| |
Collapse
|
12
|
Mijatović J, Severns PM, Kemerait RC, Walcott RR, Kvitko BH. Patterns of Seed-to-Seedling Transmission of Xanthomonas citri pv. malvacearum, the Causal Agent of Cotton Bacterial Blight. PHYTOPATHOLOGY 2021; 111:2176-2184. [PMID: 34032522 DOI: 10.1094/phyto-02-21-0057-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cotton bacterial blight (CBB), caused by Xanthomonas citri pv. malvacearum, was a major disease of cotton in the United States in the early part of the twentieth century. The reemergence of CBB revealed many gaps in our understanding of this important disease. In this study, we employed a wild-type (WT) field isolate of X. citri pv. malvacearum from Georgia (U.S.A.) to generate a nonpathogenic hrcV mutant lacking a functional type-III secretion system (T3SS-). We tagged the WT and T3SS- strains with an auto-bioluminescent Tn7 reporter and compared colonization patterns of CBB-susceptible and CBB-resistant cotton seedlings using macroscopic image analysis and bacterial load enumeration. WT and T3SS- X. citri pv. malvacearum strains colonized cotton cotyledons of CBB-resistant and CBB-susceptible cotton cultivars. However, X. citri pv. malvacearum populations were significantly higher in CBB-susceptible seedlings inoculated with the WT strain. Additionally, WT and T3SS- X. citri pv. malvacearum strains systemically colonized true leaves, although at different rates. Finally, we observed that seed-to-seedling transmission of X. citri pv. malvacearum may involve systemic spread through the vascular tissue of cotton plants. These findings yield novel insights into potential X. citri pv. malvacearum reservoirs for CBB outbreaks.
Collapse
Affiliation(s)
- Jovana Mijatović
- Department of Plant Pathology, University of Georgia, Athens, GA 30602
| | - Paul M Severns
- Department of Plant Pathology, University of Georgia, Athens, GA 30602
| | - Robert C Kemerait
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793
| | - Ron R Walcott
- Department of Plant Pathology, University of Georgia, Athens, GA 30602
| | - Brian H Kvitko
- Department of Plant Pathology, University of Georgia, Athens, GA 30602
| |
Collapse
|
13
|
Chen NWG, Ruh M, Darrasse A, Foucher J, Briand M, Costa J, Studholme DJ, Jacques M. Common bacterial blight of bean: a model of seed transmission and pathological convergence. MOLECULAR PLANT PATHOLOGY 2021; 22:1464-1480. [PMID: 33942466 PMCID: PMC8578827 DOI: 10.1111/mpp.13067] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 05/31/2023]
Abstract
BACKGROUND Xanthomonas citri pv. fuscans (Xcf) and Xanthomonas phaseoli pv. phaseoli (Xpp) are the causal agents of common bacterial blight of bean (CBB), an important disease worldwide that remains difficult to control. These pathogens belong to distinct species within the Xanthomonas genus and have undergone a dynamic evolutionary history including the horizontal transfer of genes encoding factors probably involved in adaptation to and pathogenicity on common bean. Seed transmission is a key point of the CBB disease cycle, favouring both vertical transmission of the pathogen and worldwide distribution of the disease through global seed trade. TAXONOMY Kingdom: Bacteria; phylum: Proteobacteria; class: Gammaproteobacteria; order: Lysobacterales (also known as Xanthomonadales); family: Lysobacteraceae (also known as Xanthomonadaceae); genus: Xanthomonas; species: X. citri pv. fuscans and X. phaseoli pv. phaseoli (Xcf-Xpp). HOST RANGE The main host of Xcf-Xpp is the common bean (Phaseolus vulgaris). Lima bean (Phaseolus lunatus) and members of the Vigna genus (Vigna aconitifolia, Vigna angularis, Vigna mungo, Vigna radiata, and Vigna umbellata) are also natural hosts of Xcf-Xpp. Natural occurrence of Xcf-Xpp has been reported for a handful of other legumes such as Calopogonium sp., Pueraria sp., pea (Pisum sativum), Lablab purpureus, Macroptilium lathyroides, and Strophostyles helvola. There are conflicting reports concerning the natural occurrence of CBB agents on tepary bean (Phaseolus acutifolius) and cowpea (Vigna unguiculata subsp. unguiculata). SYMPTOMS CBB symptoms occur on all aerial parts of beans, that is, seedlings, leaves, stems, pods, and seeds. Symptoms initially appear as water-soaked spots evolving into necrosis on leaves, pustules on pods, and cankers on twigs. In severe infections, defoliation and wilting may occur. DISTRIBUTION CBB is distributed worldwide, meaning that it is frequently encountered in most places where bean is cultivated in the Americas, Asia, Africa, and Oceania, except for arid tropical areas. Xcf-Xpp are regulated nonquarantine pathogens in Europe and are listed in the A2 list by the European and Mediterranean Plant Protection Organization (EPPO). GENOME The genome consists of a single circular chromosome plus one to four extrachromosomal plasmids of various sizes, for a total mean size of 5.27 Mb with 64.7% GC content and an average predicted number of 4,181 coding sequences. DISEASE CONTROL Management of CBB is based on integrated approaches that comprise measures aimed at avoiding Xcf-Xpp introduction through infected seeds, cultural practices to limit Xcf-Xpp survival between host crops, whenever possible the use of tolerant or resistant bean genotypes, and chemical treatments, mainly restricted to copper compounds. The use of pathogen-free seeds is essential in an effective management strategy and requires appropriate sampling, detection, and identification methods. USEFUL WEBSITES: https://gd.eppo.int/taxon/XANTPH, https://gd.eppo.int/taxon/XANTFF, and http://www.cost.eu/COST_Actions/ca/CA16107.
Collapse
Affiliation(s)
- Nicolas W. G. Chen
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F‐49000 Angers, France
| | - Mylène Ruh
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F‐49000 Angers, France
| | - Armelle Darrasse
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F‐49000 Angers, France
| | - Justine Foucher
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F‐49000 Angers, France
| | - Martial Briand
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F‐49000 Angers, France
| | - Joana Costa
- University of Coimbra, Centre for Functional Ecology ‐ Science for People & the Planet, Department of Life SciencesCoimbraPortugal
| | - David J. Studholme
- Biosciences, College of Life and Environmental SciencesUniversity of ExeterExeterUK
| | | |
Collapse
|
14
|
Abstract
The seed microbial community constitutes an initial inoculum for plant microbiota assembly. Still, the persistence of seed microbiota when seeds encounter soil during plant emergence and early growth is barely documented. We characterized the encounter event of seed and soil microbiota and how it structured seedling bacterial and fungal communities by using amplicon sequencing. We performed eight contrasting encounter events to identify drivers influencing seedling microbiota assembly. To do so, four contrasting seed lots of two Brassica napus genotypes were sown in two soils whose microbial diversity levels were manipulated by serial dilution and recolonization. Seedling root and stem microbiota were influenced by soil but not by initial seed microbiota composition or by plant genotype. A strong selection on the seed and soil communities occurred during microbiota assembly, with only 8% to 32% of soil taxa and 0.8% to 1.4% of seed-borne taxa colonizing seedlings. The recruitment of seedling microbiota came mainly from soil (35% to 72% of diversity) and not from seeds (0.3% to 15%). Soil microbiota transmission success was higher for the bacterial community than for the fungal community. Interestingly, seedling microbiota was primarily composed of initially rare taxa (from seed, soil, or unknown origin) and intermediate-abundance soil taxa. IMPORTANCE Seed microbiota can have a crucial role for crop installation by modulating dormancy, germination, seedling development, and recruitment of plant symbionts. Little knowledge is available on the fraction of the plant microbiota that is acquired through seeds. We characterize the encounter between seed and soil communities and how they colonize the seedling together. Transmission success and seedling community assemblage can be influenced by the variation of initial microbial pools, i.e., plant genotype and cropping year for seeds and diversity level for soils. Despite a supposed resident advantage of the seed microbiota, we show that transmission success is in favor of the soil microbiota. Our results also suggest that successful plant-microbiome engineering based on native seed or soil microbiota must include rare taxa.
Collapse
|
15
|
Marwal A, Gaur RK. Host Plant Strategies to Combat Against Viruses Effector Proteins. Curr Genomics 2020; 21:401-410. [PMID: 33093803 PMCID: PMC7536791 DOI: 10.2174/1389202921999200712135131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 02/02/2023] Open
Abstract
Viruses are obligate parasites that exist in an inactive state until they enter the host body. Upon entry, viruses become active and start replicating by using the host cell machinery. All plant viruses can augment their transmission, thus powering their detrimental effects on the host plant. To diminish infection and diseases caused by viruses, the plant has a defence mechanism known as pathogenesis-related biochemicals, which are metabolites and proteins. Proteins that ultimately prevent pathogenic diseases are called R proteins. Several plant R genes (that confirm resistance) and avirulence protein (Avr) (pathogen Avr gene-encoded proteins [effector/elicitor proteins involved in pathogenicity]) molecules have been identified. The recognition of such a factor results in the plant defence mechanism. During plant viral infection, the replication and expression of a viral molecule lead to a series of a hypersensitive response (HR) and affect the host plant's immunity (pathogen-associated molecular pattern-triggered immunity and effector-triggered immunity). Avr protein renders the host RNA silencing mechanism and its innate immunity, chiefly known as silencing suppressors towards the plant defensive machinery. This is a strong reply to the plant defensive machinery by harmful plant viruses. In this review, we describe the plant pathogen resistance protein and how these proteins regulate host immunity during plant-virus interactions. Furthermore, we have discussed regarding ribosome-inactivating proteins, ubiquitin proteasome system, translation repression (nuclear shuttle protein interacting kinase 1), DNA methylation, dominant resistance genes, and autophagy-mediated protein degradation, which are crucial in antiviral defences.
Collapse
Affiliation(s)
- Avinash Marwal
- 1Department of Biotechnology, Vigyan Bhawan - Block B, New Campus, Mohanlal Sukhadia University, Udaipur, Rajasthan - 313001, India; 2Department of Biotechnology, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh - 273009, India
| | - Rajarshi Kumar Gaur
- 1Department of Biotechnology, Vigyan Bhawan - Block B, New Campus, Mohanlal Sukhadia University, Udaipur, Rajasthan - 313001, India; 2Department of Biotechnology, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh - 273009, India
| |
Collapse
|
16
|
Alfonzo A, Sicard D, Di Miceli G, Guezenec S, Settanni L. Ecology of yeasts associated with kernels of several durum wheat genotypes and their role in co-culture with Saccharomyces cerevisiae during dough leavening. Food Microbiol 2020; 94:103666. [PMID: 33279089 DOI: 10.1016/j.fm.2020.103666] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 10/23/2022]
Abstract
This work was performed to investigate on the yeast ecology of durum wheat to evaluate the interaction between kernel yeasts and the commercial baker's yeast Saccharomyces cerevisiae during dough leavening. Yeast populations were studied in 39 genotypes of durum wheat cultivated in Sicily. The highest level of kernel yeasts was 2.9 Log CFU/g. A total of 413 isolates was collected and subjected to phenotypic and genotypic characterization. Twenty-three yeast species belonging to 11 genera have been identified. Filobasidium oeirense, Sporobolomyces roseus and Aureobasidium pullulans were the species most commonly found in durum wheat kernels. Doughs were co-inoculated with yeasts isolated from wheat kernels and commercial Saccharomyces cerevisiae, in order to evaluate the interactions between yeasts and the leavening performance. Yeast populations of all doughs have been monitored as well as dough volume increase and weight loss (as CO2) measured after 2 h of fermentation. The doughs whose final volume was higher than control dough (inoculated exclusively with S. cerevisiae) were those inoculated with Naganishia albida, Vishniacozyma dimennae (118 mL each), and Candida parapsilosis (102 mL). The weight losses were variable, depending on the co-culture used with S. cerevisiae and the values were in the range of 0.08-1.00 g CO2/100 g. The kernel yeasts species C. parapsilosis, N. albida, P. terrestris, R. mucilaginosa and V. dimennae deserves future attention to be co-inoculated with the commercial starter S. cerevisiae in order to improve the sensory characteristics of bread.
Collapse
Affiliation(s)
- Antonio Alfonzo
- Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128, Palermo, Italy.
| | - Delphine Sicard
- SPO, University Montpellier, INRAE, Montpellier Supagro, 34060, Montpellier, France
| | - Giuseppe Di Miceli
- Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128, Palermo, Italy
| | - Stéphane Guezenec
- SPO, University Montpellier, INRAE, Montpellier Supagro, 34060, Montpellier, France
| | - Luca Settanni
- Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128, Palermo, Italy
| |
Collapse
|
17
|
Wang M, Eyre AW, Thon MR, Oh Y, Dean RA. Dynamic Changes in the Microbiome of Rice During Shoot and Root Growth Derived From Seeds. Front Microbiol 2020; 11:559728. [PMID: 33013792 PMCID: PMC7506108 DOI: 10.3389/fmicb.2020.559728] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/17/2020] [Indexed: 12/26/2022] Open
Abstract
Microbes form close associations with host plants including rice as both surface (epiphytes) and internal (endophytes) inhabitants. Yet despite rice being one of the most important cereal crops agriculturally and economically, knowledge of its microbiome, particularly core inhabitants and any functional properties bestowed is limited. In this study, the microbiome in rice seedlings derived directly from seeds was identified, characterized and compared to the microbiome of the seed. Rice seeds were sourced from two different locations in Arkansas, USA of two different rice genotypes (Katy, M202) from two different harvest years (2013, 2014). Seeds were planted in sterile media and bacterial as well as fungal communities were identified through 16S and ITS sequencing, respectively, for four seedling compartments (root surface, root endosphere, shoot surface, shoot endosphere). Overall, 966 bacterial and 280 fungal ASVs were found in seedlings. Greater abundance and diversity were detected for the microbiome associated with roots compared to shoots and with more epiphytes than endophytes. The seedling compartments were the driving factor for microbial community composition rather than other factors such as rice genotype, location and harvest year. Comparison with datasets from seeds revealed that 91 (out of 296) bacterial and 11 (out of 341) fungal ASVs were shared with seedlings with the majority being retained within root tissues. Core bacterial and fungal microbiome shared across seedling samples were identified. Core bacteria genera identified in this study such as Rhizobium, Pantoea, Sphingomonas, and Paenibacillus have been reported as plant growth promoting bacteria while core fungi such as Pleosporales, Alternaria and Occultifur have potential as biocontrol agents.
Collapse
Affiliation(s)
- Mengying Wang
- Fungal Genomics Laboratory, Department of Entomology and Plant Pathology, Center for Integrated Fungal Research, North Carolina State University, Raleigh, NC, United States
| | - Alexander W Eyre
- Fungal Genomics Laboratory, Department of Entomology and Plant Pathology, Center for Integrated Fungal Research, North Carolina State University, Raleigh, NC, United States
| | - Michael R Thon
- Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Villamayor, Spain
| | - Yeonyee Oh
- Fungal Genomics Laboratory, Department of Entomology and Plant Pathology, Center for Integrated Fungal Research, North Carolina State University, Raleigh, NC, United States
| | - Ralph A Dean
- Fungal Genomics Laboratory, Department of Entomology and Plant Pathology, Center for Integrated Fungal Research, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
18
|
Torres-Cortés G, Garcia BJ, Compant S, Rezki S, Jones P, Préveaux A, Briand M, Roulet A, Bouchez O, Jacobson D, Barret M. Differences in resource use lead to coexistence of seed-transmitted microbial populations. Sci Rep 2019; 9:6648. [PMID: 31040301 PMCID: PMC6491768 DOI: 10.1038/s41598-019-42865-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/15/2019] [Indexed: 11/18/2022] Open
Abstract
Seeds are involved in the vertical transmission of microorganisms in plants and act as reservoirs for the plant microbiome. They could serve as carriers of pathogens, making the study of microbial interactions on seeds important in the emergence of plant diseases. We studied the influence of biological disturbances caused by seed transmission of two phytopathogenic agents, Alternaria brassicicola Abra43 (Abra43) and Xanthomonas campestris pv. campestris 8004 (Xcc8004), on the structure and function of radish seed microbial assemblages, as well as the nutritional overlap between Xcc8004 and the seed microbiome, to find seed microbial residents capable of outcompeting this pathogen. According to taxonomic and functional inference performed on metagenomics reads, no shift in structure and function of the seed microbiome was observed following Abra43 and Xcc8004 transmission. This lack of impact derives from a limited overlap in nutritional resources between Xcc8004 and the major bacterial populations of radish seeds. However, two native seed-associated bacterial strains belonging to Stenotrophomonas rhizophila displayed a high overlap with Xcc8004 regarding the use of resources; they might therefore limit its transmission. The strategy we used may serve as a foundation for the selection of seed indigenous bacterial strains that could limit seed transmission of pathogens.
Collapse
Affiliation(s)
- G Torres-Cortés
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR4207 QuaSaV, 49071, Beaucouzé, France.
| | - B J Garcia
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - S Compant
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Bioresources Unit, Konrad Lorenz Straße 24, A-3430, Tulln, Austria
| | - S Rezki
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR4207 QuaSaV, 49071, Beaucouzé, France
| | - P Jones
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - A Préveaux
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR4207 QuaSaV, 49071, Beaucouzé, France
| | - M Briand
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR4207 QuaSaV, 49071, Beaucouzé, France
| | - A Roulet
- INRA, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - O Bouchez
- INRA, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - D Jacobson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - M Barret
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR4207 QuaSaV, 49071, Beaucouzé, France
| |
Collapse
|
19
|
Torres-Cortés G, Bonneau S, Bouchez O, Genthon C, Briand M, Jacques MA, Barret M. Functional Microbial Features Driving Community Assembly During Seed Germination and Emergence. FRONTIERS IN PLANT SCIENCE 2018; 9:902. [PMID: 30008730 PMCID: PMC6034153 DOI: 10.3389/fpls.2018.00902] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/07/2018] [Indexed: 05/03/2023]
Abstract
Microbial interactions occurring on and around seeds are especially important for plant fitness since seed-borne microorganisms are the initial source of inoculum for the plant microbiota. In this study, we analyze structural and functional changes occurring within the plant microbiota at these early stages of the plant cycle, namely germination and emergence. To this purpose, we performed shotgun DNA sequencing of microbial assemblages associated to seeds, germinating seeds and seedlings of two plant species: bean and radish. We observed an enrichment of Enterobacteriales and Pseudomonadales during emergence and a set of functional traits linked to copiotrophy that could be responsible for this selection as a result of an increase of nutrient availability after germination. Representative bacterial isolates of taxa that are selected in seedlings showed indeed faster bacterial growth rate in comparison to seed-associated bacteria isolates. Finally, binning of metagenomics contigs results in the reconstruction of population genomes of the major bacterial taxa associated to the samples. Together, our results demonstrate that, although seed microbiota varied across plant species, nutrient availability during germination elicits changes of the composition of microbial communities by potentially selecting microbial groups with functional traits linked to copiotrophy. The data presented here represents the first attempts to empirically assess changes in the microbial community during plant emergence and moves us toward a more holistic understanding of the plant microbiome.
Collapse
Affiliation(s)
| | - Sophie Bonneau
- IRHS, INRA, Agrocampus Ouest, Université d’Angers, Beaucouzé, France
| | | | | | - Martial Briand
- IRHS, INRA, Agrocampus Ouest, Université d’Angers, Beaucouzé, France
| | | | - Matthieu Barret
- IRHS, INRA, Agrocampus Ouest, Université d’Angers, Beaucouzé, France
| |
Collapse
|
20
|
Nandi M, Macdonald J, Liu P, Weselowski B, Yuan Z. Clavibacter michiganensis ssp. michiganensis: bacterial canker of tomato, molecular interactions and disease management. MOLECULAR PLANT PATHOLOGY 2018; 19:2036-2050. [PMID: 29528201 PMCID: PMC6638088 DOI: 10.1111/mpp.12678] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 05/11/2023]
Abstract
Bacterial canker disease is considered to be one of the most destructive diseases of tomato (Solanum lycopersicum), and is caused by the seed-borne Gram-positive bacterium Clavibacter michiganensis ssp. michiganensis (Cmm). This vascular pathogen generally invades and proliferates in the xylem through natural openings or wounds, causing wilt and canker symptoms. The incidence of symptomless latent infections and the invasion of tomato seeds by Cmm are widespread. Pathogenicity is mediated by virulence factors and transcriptional regulators encoded by the chromosome and two natural plasmids. The virulence factors include serine proteases, cell wall-degrading enzymes (cellulases, xylanases, pectinases) and others. Mutational analyses of these genes and gene expression profiling (via quantitative reverse transcription-polymerase chain reaction, transcriptomics and proteomics) have begun to shed light on their roles in colonization and virulence, whereas the expression of tomato genes in response to Cmm infection suggests plant factors involved in the defence response. These findings may aid in the generation of target-specific bactericides or new resistant varieties of tomato. Meanwhile, various chemical and biological controls have been researched to control Cmm. This review presents a detailed investigation regarding the pathogen Cmm, bacterial canker infection, molecular interactions between Cmm and tomato, and current perspectives on improved disease management.
Collapse
Affiliation(s)
- Munmun Nandi
- Department of Microbiology & Immunology, Schulich School of Medicine & DentistryUniversity of Western OntarioLondonONCanada, N6A 5C1
| | - Jacqueline Macdonald
- Department of Microbiology & Immunology, Schulich School of Medicine & DentistryUniversity of Western OntarioLondonONCanada, N6A 5C1
| | - Peng Liu
- Department of Microbiology & Immunology, Schulich School of Medicine & DentistryUniversity of Western OntarioLondonONCanada, N6A 5C1
| | - Brian Weselowski
- London Research and Development Centre, Agriculture & Agri‐Food CanadaLondonONCanada, N5V 4T3
| | - Ze‐Chun Yuan
- Department of Microbiology & Immunology, Schulich School of Medicine & DentistryUniversity of Western OntarioLondonONCanada, N6A 5C1
- London Research and Development Centre, Agriculture & Agri‐Food CanadaLondonONCanada, N5V 4T3
| |
Collapse
|
21
|
Makarovsky D, Fadeev L, Salam BB, Zelinger E, Matan O, Inbar J, Jurkevitch E, Gozin M, Burdman S. Silver Nanoparticles Complexed with Bovine Submaxillary Mucin Possess Strong Antibacterial Activity and Protect against Seedling Infection. Appl Environ Microbiol 2018; 84:e02212-17. [PMID: 29180363 PMCID: PMC5795074 DOI: 10.1128/aem.02212-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/17/2017] [Indexed: 11/20/2022] Open
Abstract
A simple method for the synthesis of nanoparticles (NPs) of silver (Ag) in a matrix of bovine submaxillary mucin (BSM) was reported previously by some of the authors of this study. Based on mucin characteristics such as long-lasting stability, water solubility, and surfactant and adhesive characteristics, we hypothesized that these compounds, named BSM-Ag NPs, may possess favorable properties as potent antimicrobial agents. The goal of this study was to assess whether BSM-Ag NPs possess antibacterial activity, focusing on important plant-pathogenic bacterial strains representing both Gram-negative (Acidovorax and Xanthomonas) and Gram-positive (Clavibacter) genera. Growth inhibition and bactericidal assays, as well as electron microscopic observations, demonstrate that BSM-Ag NPs, at relatively low concentrations of silver, exert strong antimicrobial effects. Moreover, we show that treatment of melon seeds with BSM-Ag NPs effectively prevents seed-to-seedling transmission of Acidovorax citrulli, one of the most threatening pathogens of cucurbit production worldwide. Overall, our findings demonstrate strong antimicrobial activity of BSM-Ag NPs and their potential application for reducing the spread and establishment of devastating bacterial plant diseases in agriculture.IMPORTANCE Bacterial plant diseases challenge agricultural production, and the means available to manage them are limited. Importantly, many plant-pathogenic bacteria have the ability to colonize seeds, and seed-to-seedling transmission is a critical route by which bacterial plant diseases spread to new regions and countries. The significance of our study resides in the following aspects: (i) the simplicity of the method of BSM-Ag NP synthesis, (ii) the advantageous chemical properties of BSM-Ag NPs, (iii) the strong antibacterial activity of BSM-Ag NPs at relatively low concentrations of silver, and (iv) the fact that, in contrast to most studies on the effects of metal NPs on plant pathogens, the proof of concept for the novel compound is supported by in planta assays. Application of this technology is not limited to agriculture; BSM-Ag NPs potentially could be exploited as a potent antimicrobial agent in a wide range of industrial areas, including medicine, veterinary medicine, cosmetics, textiles, and household products.
Collapse
Affiliation(s)
- Daria Makarovsky
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ludmila Fadeev
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Bolaji Babajide Salam
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Einat Zelinger
- Interdepartmental Core Facility, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ofra Matan
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Jacob Inbar
- Department of Economics and Business Management, Faculty of Social Sciences and Humanities, Ariel University, Ariel, Israel
| | - Edouard Jurkevitch
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Michael Gozin
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Saul Burdman
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
22
|
Liu D, Cui Y, Walcott R, Chen J. Fate of Salmonella enterica and Enterohemorrhagic Escherichia coli Cells Artificially Internalized into Vegetable Seeds during Germination. Appl Environ Microbiol 2018; 84:e01888-17. [PMID: 29079622 PMCID: PMC5734032 DOI: 10.1128/aem.01888-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/24/2017] [Indexed: 11/20/2022] Open
Abstract
Vegetable seeds contaminated with bacterial pathogens have been linked to fresh-produce-associated outbreaks of gastrointestinal infections. This study was undertaken to observe the physiological behavior of Salmonella enterica and enterohemorrhagic Escherichia coli (EHEC) cells artificially internalized into vegetable seeds during the germination process. Surface-decontaminated seeds of alfalfa, fenugreek, lettuce, and tomato were vacuum-infiltrated with four individual strains of Salmonella or EHEC. Contaminated seeds were germinated at 25°C for 9 days, and different sprout/seedling tissues were microbiologically analyzed every other day. The internalization of Salmonella and EHEC cells into vegetable seeds was confirmed by the absence of pathogens in seed-rinsing water and the presence of pathogens in seed homogenates after postinternalization seed surface decontamination. Results show that 317 (62%) and 343 (67%) of the 512 collected sprout/seedling tissue samples were positive for Salmonella and EHEC, respectively. The average Salmonella populations were significantly larger (P < 0.05) than the EHEC populations. Significantly larger Salmonella populations were recovered from the cotyledon and seed coat tissues, followed by the root tissues, but the mean EHEC populations from all sampled tissue sections were statistically similar, except in pregerminated seeds. Three Salmonella and two EHEC strains had significantly larger cell populations on sprout/seedling tissues than other strains used in the study. Salmonella and EHEC populations from fenugreek and alfalfa tissues were significantly larger than those from tomato and lettuce tissues. The study showed the fate of internalized human pathogens on germinating vegetable seeds and sprout/seedling tissues and emphasized the importance of using pathogen-free seeds for sprout production.IMPORTANCE The internalization of microorganisms into vegetable seeds could occur naturally and represents a possible pathway of vegetable seed contamination by human pathogens. The present study investigated the ability of two important bacterial pathogens, Salmonella and enterohemorrhagic Escherichia coli (EHEC), when artificially internalized into vegetable seeds, to grow and disseminate along vegetable sprouts/seedlings during germination. The data from the study revealed that the pathogen cells artificially internalized into vegetable seeds caused the contamination of different tissues of sprouts/seedlings and that pathogen growth on germinating seeds is bacterial species and vegetable seed-type dependent. These results further stress the necessity of using pathogen-free vegetable seeds for edible sprout production.
Collapse
Affiliation(s)
- Da Liu
- Department of Food Science and Technology, The University of Georgia, Griffin, Georgia, USA
| | - Yue Cui
- Department of Food Science and Technology, The University of Georgia, Griffin, Georgia, USA
| | - Ronald Walcott
- Department of Plant Pathology, The University of Georgia, Athens, Georgia, USA
| | - Jinru Chen
- Department of Food Science and Technology, The University of Georgia, Griffin, Georgia, USA
| |
Collapse
|
23
|
Physico-chemistry of bacterial transmission versus adhesion. Adv Colloid Interface Sci 2017; 250:15-24. [PMID: 29129313 DOI: 10.1016/j.cis.2017.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 12/11/2022]
Abstract
Bacterial adhesion is a main problem in many biomedical, domestic, natural and industrial environments and forms the onset of the formation of a biofilm, in which adhering bacteria grow into a multi-layered film while embedding themselves in a matrix of extracellular polymeric substances. It is usually assumed that bacterial adhesion occurs from air or by convective-diffusion from a liquid suspension, but often bacteria adhere by transmission from a bacterially contaminated donor to a receiver surface. Therewith bacterial transmission is mechanistically different from adhesion, as it involves bacterial detachment from a donor surface followed by adhesion to a receiver one. Transmission is further complicated when the donor surface is not covered with a single layer of adhering bacteria but with a multi-layered biofilm, in which case bacteria can be transmitted either by interfacial failure at the biofilm-donor surface or through cohesive failure in the biofilm. Transmission through cohesive failure in a biofilm is more common than interfacial failure. The aim of this review is to oppose surface thermodynamics and adhesion force analyses, as can both be applied towards bacterial adhesion, with their appropriate extensions towards transmission. Opposition of surface thermodynamics and adhesion force analyses, will allow to distinguish between transmission of bacteria from a donor covered with a (sub)monolayer of adhering bacteria or a multi-layered biofilm. Contact angle measurements required for surface thermodynamic analyses of transmission are of an entirely different nature than analyses of adhesion forces, usually measured through atomic force microscopy. Nevertheless, transmission probabilities based on Weibull analyses of adhesion forces between bacteria and donor and receiver surfaces, correspond with the surface thermodynamic preferences of bacteria for either the donor or receiver surface. Surfaces with low adhesion forces such as polymer-brush coated or nanostructured surfaces are thus preferable for use as non-adhesive receiver surfaces, but at the same time should be avoided for use as a donor surface. Since bacterial transmission occurs under a contact pressure between two surfaces, followed by their separation under tensile or shear pressure and ultimately detachment, this will affect biofilm structure. During the compression phase of transmission, biofilms are compacted into a more dense film. After transmission, and depending on the ability of the bacterial strain involved to produce extracellular polymeric substances, biofilm left-behind on a donor or transmitted to a receiver surface will relax to its original, pre-transmission structure owing to the viscoelasticity of the extracellular polymeric substances matrix, when present. Apart from mechanistic differences between bacterial adhesion and transmission, the low numbers of bacteria generally transmitted require careful selection of suitably sensitive enumeration methods, for which culturing and optical coherence tomography are suggested. Opposing adhesion and transmission as done in this review, not only yields a better understanding of bacterial transmission, but may stimulate researchers to more carefully consider whether an adhesion or transmission model is most appropriate in the specific area of application aimed for, rather than routinely relying on adhesion models.
Collapse
|
24
|
Thapa SP, Pattathil S, Hahn MG, Jacques MA, Gilbertson RL, Coaker G. Genomic Analysis of Clavibacter michiganensis Reveals Insight Into Virulence Strategies and Genetic Diversity of a Gram-Positive Bacterial Pathogen. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:786-802. [PMID: 28677494 DOI: 10.1094/mpmi-06-17-0146-r] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Clavibacter michiganensis subsp. michiganensis is a gram-positive bacterial pathogen that proliferates in the xylem vessels of tomato, causing bacterial canker disease. In this study, we sequenced and assembled genomes of 11 C. michiganensis subsp. michiganensis strains isolated from infected tomato fields in California as well as five Clavibacter strains that colonize tomato endophytically but are not pathogenic in this host. The analysis of the C. michiganensis subsp. michiganensis genomes supported the monophyletic nature of this pathogen but revealed genetic diversity among strains, consistent with multiple introduction events. Two tomato endophytes that clustered phylogenetically with C. michiganensis strains capable of infecting wheat and pepper and were also able to cause disease in these plants. Plasmid profiles of the California strains were variable and supported the essential role of the pCM1-like plasmid and the CelA cellulase in virulence, whereas the absence of the pCM2-like plasmid in some pathogenic C. michiganensis subsp. michiganensis strains revealed it is not essential. A large number of secreted C. michiganensis subsp. michiganensis proteins were carbohydrate-active enzymes (CAZymes). Glycome profiling revealed that C. michiganensis subsp. michiganensis but not endophytic Clavibacter strains is able to extensively alter tomato cell-wall composition. Two secreted CAZymes found in all C. michiganensis subsp. michiganensis strains, CelA and PelA1, enhanced pathogenicity on tomato. Collectively, these results provide a deeper understanding of C. michiganensis subsp. michiganensis diversity and virulence strategies.
Collapse
Affiliation(s)
- Shree P Thapa
- 1 Department of Plant Pathology, University of California, Davis, California, U.S.A
| | - Sivakumar Pattathil
- 2 Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia, U.S.A.; and
| | - Michael G Hahn
- 2 Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia, U.S.A.; and
| | | | - Robert L Gilbertson
- 1 Department of Plant Pathology, University of California, Davis, California, U.S.A
| | - Gitta Coaker
- 1 Department of Plant Pathology, University of California, Davis, California, U.S.A
| |
Collapse
|
25
|
Ruh M, Briand M, Bonneau S, Jacques MA, Chen NWG. Xanthomonas adaptation to common bean is associated with horizontal transfers of genes encoding TAL effectors. BMC Genomics 2017; 18:670. [PMID: 28854875 PMCID: PMC5577687 DOI: 10.1186/s12864-017-4087-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/24/2017] [Indexed: 12/25/2022] Open
Abstract
Background Common bacterial blight is a devastating bacterial disease of common bean (Phaseolus vulgaris) caused by Xanthomonas citri pv. fuscans and Xanthomonas phaseoli pv. phaseoli. These phylogenetically distant strains are able to cause similar symptoms on common bean, suggesting that they have acquired common genetic determinants of adaptation to common bean. Transcription Activator-Like (TAL) effectors are bacterial type III effectors that are able to induce the expression of host genes to promote infection or resistance. Their capacity to bind to a specific host DNA sequence suggests that they are potential candidates for host adaption. Results To study the diversity of tal genes from Xanthomonas strains responsible for common bacterial blight of bean, whole genome sequences of 17 strains representing the diversity of X. citri pv. fuscans and X. phaseoli pv. phaseoli were obtained by single molecule real time sequencing. Analysis of these genomes revealed the existence of four tal genes named tal23A, tal20F, tal18G and tal18H, respectively. While tal20F and tal18G were chromosomic, tal23A and tal18H were carried on plasmids and shared between phylogenetically distant strains, therefore suggesting recent horizontal transfers of these genes between X. citri pv. fuscans and X. phaseoli pv. phaseoli strains. Strikingly, tal23A was present in all strains studied, suggesting that it played an important role in adaptation to common bean. In silico predictions of TAL effectors targets in the common bean genome suggested that TAL effectors shared by X. citri pv. fuscans and X. phaseoli pv. phaseoli strains target the promoters of genes of similar functions. This could be a trace of convergent evolution among TAL effectors from different phylogenetic groups, and comforts the hypothesis that TAL effectors have been implied in the adaptation to common bean. Conclusions Altogether, our results favour a model where plasmidic TAL effectors are able to contribute to host adaptation by being horizontally transferred between distant lineages. Electronic supplementary material The online version of this article (10.1186/s12864-017-4087-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mylène Ruh
- IRHS, INRA, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, 49071, Beaucouzé, France
| | - Martial Briand
- IRHS, INRA, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, 49071, Beaucouzé, France
| | - Sophie Bonneau
- IRHS, INRA, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, 49071, Beaucouzé, France
| | - Marie-Agnès Jacques
- IRHS, INRA, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, 49071, Beaucouzé, France
| | - Nicolas W G Chen
- IRHS, INRA, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, 49071, Beaucouzé, France.
| |
Collapse
|
26
|
Shade A, Jacques MA, Barret M. Ecological patterns of seed microbiome diversity, transmission, and assembly. Curr Opin Microbiol 2017; 37:15-22. [PMID: 28437661 DOI: 10.1016/j.mib.2017.03.010] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 03/22/2017] [Indexed: 01/08/2023]
Abstract
Seeds are involved in the transmission of microorganisms from one plant generation to another and consequently act as the initial inoculum for the plant microbiota. The purpose of this mini-review is to provide an overview of current knowledge on the diversity, structure and role of the seed microbiota. The relative importance of the mode of transmission (vertical vs horizontal) of the microbial entities composing the seed microbiota as well as the potential connections existing between seed and other plant habitats such as the anthosphere and the spermosphere is discussed. Finally the governing processes (niche vs neutral) involved in the assembly and the dynamics of the seed microbiota are examined.
Collapse
Affiliation(s)
- Ashley Shade
- Department of Microbiology and Molecular Genetics, Program in Ecology, Evolutionary Biology, and Behavior, The DOE Great Lakes Bioenergy Research Center, The Plant Resilience Institute, Michigan State University, East Lansing MI 48824, United States
| | - Marie-Agnès Jacques
- INRA, UMR1345 Institut de Recherches en Horticulture et Semences, SFR4207 QUASAV, F-49071, Beaucouzé, France
| | - Matthieu Barret
- INRA, UMR1345 Institut de Recherches en Horticulture et Semences, SFR4207 QUASAV, F-49071, Beaucouzé, France.
| |
Collapse
|
27
|
Barret M, Guimbaud JF, Darrasse A, Jacques MA. Plant microbiota affects seed transmission of phytopathogenic microorganisms. MOLECULAR PLANT PATHOLOGY 2016; 17:791-5. [PMID: 26850564 PMCID: PMC6638484 DOI: 10.1111/mpp.12382] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/18/2016] [Accepted: 02/02/2016] [Indexed: 05/19/2023]
Affiliation(s)
- Matthieu Barret
- INRA, UMR1345 Institut de Recherches en Horticulture et Semences, SFR4207 QUASAV, F-49071, Beaucouzé, France
| | - Jean-François Guimbaud
- INRA, UMR1345 Institut de Recherches en Horticulture et Semences, SFR4207 QUASAV, F-49071, Beaucouzé, France
| | - Armelle Darrasse
- INRA, UMR1345 Institut de Recherches en Horticulture et Semences, SFR4207 QUASAV, F-49071, Beaucouzé, France
| | - Marie-Agnes Jacques
- INRA, UMR1345 Institut de Recherches en Horticulture et Semences, SFR4207 QUASAV, F-49071, Beaucouzé, France
| |
Collapse
|
28
|
Wheat seed embryo excision enables the creation of axenic seedlings and Koch's postulates testing of putative bacterial endophytes. Sci Rep 2016; 6:25581. [PMID: 27151146 PMCID: PMC4858700 DOI: 10.1038/srep25581] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/20/2016] [Indexed: 01/12/2023] Open
Abstract
Early establishment of endophytes can play a role in pathogen suppression and improve seedling development. One route for establishment of endophytes in seedlings is transmission of bacteria from the parent plant to the seedling via the seed. In wheat seeds, it is not clear whether this transmission route exists, and the identities and location of bacteria within wheat seeds are unknown. We identified bacteria in the wheat (Triticum aestivum) cv. Hereward seed environment using embryo excision to determine the location of the bacterial load. Axenic wheat seedlings obtained with this method were subsequently used to screen a putative endophyte bacterial isolate library for endophytic competency. This absence of bacteria recovered from seeds indicated low bacterial abundance and/or the presence of inhibitors. Diversity of readily culturable bacteria in seeds was low with 8 genera identified, dominated by Erwinia and Paenibacillus. We propose that anatomical restrictions in wheat limit embryo associated vertical transmission, and that bacterial load is carried in the seed coat, crease tissue and endosperm. This finding facilitates the creation of axenic wheat plants to test competency of putative endophytes and also provides a platform for endophyte competition, plant growth, and gene expression studies without an indigenous bacterial background.
Collapse
|
29
|
Rezki S, Campion C, Iacomi-Vasilescu B, Preveaux A, Toualbia Y, Bonneau S, Briand M, Laurent E, Hunault G, Simoneau P, Jacques MA, Barret M. Differences in stability of seed-associated microbial assemblages in response to invasion by phytopathogenic microorganisms. PeerJ 2016; 4:e1923. [PMID: 27077013 PMCID: PMC4830237 DOI: 10.7717/peerj.1923] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/21/2016] [Indexed: 11/20/2022] Open
Abstract
Seeds are involved in the vertical transmission of microorganisms from one plant generation to another and consequently act as reservoirs for the plant microbiota. However, little is known about the structure of seed-associated microbial assemblages and the regulators of assemblage structure. In this work, we have assessed the response of seed-associated microbial assemblages of Raphanus sativus to invading phytopathogenic agents, the bacterial strain Xanthomonas campestris pv. campestris (Xcc) 8004 and the fungal strain Alternaria brassicicola Abra43. According to the indicators of bacterial (16S rRNA gene and gyrB sequences) and fungal (ITS1) diversity employed in this study, seed transmission of the bacterial strain Xcc 8004 did not change the overall composition of resident microbial assemblages. In contrast seed transmission of Abra43 strongly modified the richness and structure of fungal assemblages without affecting bacterial assemblages. The sensitivity of seed-associated fungal assemblage to Abra43 is mostly related to changes in relative abundance of closely related fungal species that belong to the Alternaria genus. Variation in stability of the seed microbiota in response to Xcc and Abra43 invasions could be explained by differences in seed transmission pathways employed by these micro-organisms, which ultimately results in divergence in spatio-temporal colonization of the seed habitat.
Collapse
Affiliation(s)
- Samir Rezki
- Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique , Beaucouzé , France
| | - Claire Campion
- Institut de Recherche en Horticulture et Semences, Université d'Angers , Beaucouzé , France
| | | | - Anne Preveaux
- Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique , Beaucouzé , France
| | - Youness Toualbia
- Institut de Recherche en Horticulture et Semences, Université d'Angers , Beaucouzé , France
| | - Sophie Bonneau
- Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique , Beaucouzé , France
| | - Martial Briand
- Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique , Beaucouzé , France
| | - Emmanuelle Laurent
- Federation Nationale des Agriculteurs Multiplicateurs de Semences , Brain sur l'Authion , France
| | - Gilles Hunault
- Laboratoire d'Hémodynamique, Interaction Fibrose et Invasivité tumorale Hépatique, Université d'Angers , Angers , France
| | - Philippe Simoneau
- Institut de Recherche en Horticulture et Semences, Université d'Angers , Beaucouzé , France
| | - Marie-Agnès Jacques
- Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique , Beaucouzé , France
| | - Matthieu Barret
- Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique , Beaucouzé , France
| |
Collapse
|
30
|
Klaedtke S, Jacques MA, Raggi L, Préveaux A, Bonneau S, Negri V, Chable V, Barret M. Terroir is a key driver of seed-associated microbial assemblages. Environ Microbiol 2015; 18:1792-804. [PMID: 26171841 DOI: 10.1111/1462-2920.12977] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/01/2015] [Indexed: 12/20/2022]
Abstract
Seeds have evolved in association with diverse microbial assemblages that may influence plant growth and health. However, little is known about the composition of seed-associated microbial assemblages and the ecological processes shaping their structures. In this work, we monitored the relative influence of the host genotypes and terroir on the structure of the seed microbiota through metabarcoding analysis of different microbial assemblages associated to five different bean cultivars harvested in two distinct farms. Overall, few bacterial and fungal operational taxonomic units (OTUs) were conserved across all seed samples. The lack of shared OTUs between samples is explained by a significant effect of the farm site on the structure of microbial assemblage, which explained 12.2% and 39.7% of variance in bacterial and fungal diversity across samples. This site-specific effect is reflected by the significant enrichment of 70 OTUs in Brittany and 88 OTUs in Luxembourg that lead to differences in co-occurrence patterns. In contrast, variance in microbial assemblage structure was not explained by host genotype. Altogether, these results suggest that seed-associated microbial assemblage is determined by niche-based processes and that the terroir is a key driver of these selective forces.
Collapse
Affiliation(s)
| | - Marie-Agnès Jacques
- UMR1345 Institut de Recherches en Horticulture et Semences, INRA, SFR4207 QUASAV, F-49071, Beaucouzé, France
| | - Lorenzo Raggi
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy
| | - Anne Préveaux
- UMR1345 Institut de Recherches en Horticulture et Semences, INRA, SFR4207 QUASAV, F-49071, Beaucouzé, France
| | - Sophie Bonneau
- UMR1345 Institut de Recherches en Horticulture et Semences, INRA, SFR4207 QUASAV, F-49071, Beaucouzé, France
| | - Valeria Negri
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy
| | - Véronique Chable
- UR980, INRA SAD, 65 Rue de St. Brieuc, CS 84215, 35042, Rennes, France
| | - Matthieu Barret
- UMR1345 Institut de Recherches en Horticulture et Semences, INRA, SFR4207 QUASAV, F-49071, Beaucouzé, France
| |
Collapse
|
31
|
Terrasson E, Darrasse A, Righetti K, Buitink J, Lalanne D, Ly Vu B, Pelletier S, Bolingue W, Jacques MA, Leprince O. Identification of a molecular dialogue between developing seeds of Medicago truncatula and seedborne xanthomonads. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3737-52. [PMID: 25922487 DOI: 10.1093/jxb/erv167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plant pathogenic bacteria disseminate and survive mainly in association with seeds. This study addresses whether seeds are passive carriers or engage a molecular dialogue with pathogens during their development. We developed two pathosystems using Medicago truncatula with Xanthomonas alfalfae subsp. alfalfae (Xaa), the natural Medicago sp. pathogen and Xanthomonas campestris pv. campestris (Xcc), a Brassicaceae pathogen. Three days after flower inoculation, the transcriptome of Xcc-infected pods showed activation of an innate immune response that was strongly limited in Xcc mutated in the type three secretion system, demonstrating an incompatible interaction of Xcc with the reproductive structures. In contrast, the presence of Xaa did not result in an activation of defence genes. Transcriptome profiling during development of infected seeds exhibited time-dependent and differential responses to Xcc and Xaa. Gene network analysis revealed that the transcriptome of Xcc-infected seeds was mainly affected during seed filling whereas that of Xaa-infected seeds responded during late maturation. The Xcc-infected seed transcriptome exhibited an activation of defence response and a repression of targeted seed maturation pathways. Fifty-one percent of putative ABSCISIC ACID INSENSITIVE3 targets were deregulated by Xcc, including oleosin, cupin, legumin and chlorophyll degradation genes. At maturity, these seeds displayed decreased weight and increased chlorophyll content. In contrast, these traits were not affected by Xaa infection. These findings demonstrate the existence of a complex molecular dialogue between xanthomonads and developing seeds and provides insights into a previously unexplored trade-off between seed development and pathogen defence.
Collapse
Affiliation(s)
- Emmanuel Terrasson
- Université d'Angers, Institut de Recherche en Horticulture et Semences, UMR 1345, SFR 4207 QUASAV, 16 Boulevard Lavoisier, F-49045 Angers, France
| | - Armelle Darrasse
- Institut National de la Recherche Agronomique, Institut de Recherche en Horticulture et Semences, UMR 1345, 42 rue Georges Morel, F-49071 Beaucouzé, France
| | - Karima Righetti
- Institut National de la Recherche Agronomique, Institut de Recherche en Horticulture et Semences, UMR 1345, 16 Boulevard Lavoisier, F-49045 Angers
| | - Julia Buitink
- Institut National de la Recherche Agronomique, Institut de Recherche en Horticulture et Semences, UMR 1345, 16 Boulevard Lavoisier, F-49045 Angers
| | - David Lalanne
- Institut National de la Recherche Agronomique, Institut de Recherche en Horticulture et Semences, UMR 1345, 16 Boulevard Lavoisier, F-49045 Angers
| | - Benoit Ly Vu
- Agrocampus Ouest, Institut de Recherche en Horticulture et Semences, UMR 1345, 49045 Angers, France
| | - Sandra Pelletier
- Institut National de la Recherche Agronomique, Institut de Recherche en Horticulture et Semences, UMR 1345, 16 Boulevard Lavoisier, F-49045 Angers
| | - William Bolingue
- Institut National de la Recherche Agronomique, Institut de Recherche en Horticulture et Semences, UMR 1345, 16 Boulevard Lavoisier, F-49045 Angers
| | - Marie-Agnès Jacques
- Institut National de la Recherche Agronomique, Institut de Recherche en Horticulture et Semences, UMR 1345, 42 rue Georges Morel, F-49071 Beaucouzé, France
| | - Olivier Leprince
- Agrocampus Ouest, Institut de Recherche en Horticulture et Semences, UMR 1345, 49045 Angers, France
| |
Collapse
|
32
|
Barret M, Briand M, Bonneau S, Préveaux A, Valière S, Bouchez O, Hunault G, Simoneau P, Jacques MA. Emergence shapes the structure of the seed microbiota. Appl Environ Microbiol 2015; 81:1257-66. [PMID: 25501471 PMCID: PMC4309697 DOI: 10.1128/aem.03722-14] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 12/04/2014] [Indexed: 11/20/2022] Open
Abstract
Seeds carry complex microbial communities, which may exert beneficial or deleterious effects on plant growth and plant health. To date, the composition of microbial communities associated with seeds has been explored mainly through culture-based diversity studies and therefore remains largely unknown. In this work, we analyzed the structures of the seed microbiotas of different plants from the family Brassicaceae and their dynamics during germination and emergence through sequencing of three molecular markers: the ITS1 region of the fungal internal transcribed spacer, the V4 region of 16S rRNA gene, and a species-specific bacterial marker based on a fragment of gyrB. Sequence analyses revealed important variations in microbial community composition between seed samples. Moreover, we found that emergence strongly influences the structure of the microbiota, with a marked reduction of bacterial and fungal diversity. This shift in the microbial community composition is mostly due to an increase in the relative abundance of some bacterial and fungal taxa possessing fast-growing abilities. Altogether, our results provide an estimation of the role of the seed as a source of inoculum for the seedling, which is crucial for practical applications in developing new strategies of inoculation for disease prevention.
Collapse
Affiliation(s)
- Matthieu Barret
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France
- Agrocampus Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France
- Université d'Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Beaucouzé, France
| | - Martial Briand
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France
- Agrocampus Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France
- Université d'Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Beaucouzé, France
| | - Sophie Bonneau
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France
- Agrocampus Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France
- Université d'Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Beaucouzé, France
| | - Anne Préveaux
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France
- Agrocampus Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France
- Université d'Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Beaucouzé, France
| | - Sophie Valière
- GeT-PlaGe, Genotoul, INRA Auzeville, Castanet-Tolosan, France
- INRA, UAR1209, Département de Génétique Animale, INRA Auzeville, Castanet Tolosan, France
| | - Olivier Bouchez
- GeT-PlaGe, Genotoul, INRA Auzeville, Castanet-Tolosan, France
- UMR INRA/INPT ENSAT/INPT ENVT, Génétique, Physiologie et Systèmes d'Élevage, INRA Auzeville, Castanet Tolosan, France
| | - Gilles Hunault
- Université d'Angers, Laboratoire d'Hémodynamique, Interaction Fibrose et Invasivité Tumorale Hépatique, UPRES 3859, IFR 132, Angers, France
| | - Philippe Simoneau
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France
- Agrocampus Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France
- Université d'Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Beaucouzé, France
| | - Marie-Agnès Jacques
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France
- Agrocampus Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France
- Université d'Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Beaucouzé, France
| |
Collapse
|
33
|
Scientific Opinion on the pest categorisation ofXanthomonas axonopodispv.phaseoliandXanthomonas fuscanssubsp.fuscans. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3856] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
34
|
Dutta B, Gitaitis R, Smith S, Langston D. Interactions of seedborne bacterial pathogens with host and non-host plants in relation to seed infestation and seedling transmission. PLoS One 2014; 9:e99215. [PMID: 24936863 PMCID: PMC4061015 DOI: 10.1371/journal.pone.0099215] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/12/2014] [Indexed: 11/18/2022] Open
Abstract
The ability of seed-borne bacterial pathogens (Acidovorax citrulli, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato, Xanthomonas euvesicatoria, and Pseudomonas syringae pv. glycinea) to infest seeds of host and non-host plants (watermelon, tomato, pepper, and soybean) and subsequent pathogen transmission to seedlings was investigated. A non-pathogenic, pigmented strain of Serratia marcescens was also included to assess a null-interacting situation with the same plant species. Flowers of host and non-host plants were inoculated with 1 × 10(6) colony forming units (CFUs)/flower for each bacterial species and allowed to develop into fruits or umbels (in case of onion). Seeds harvested from each host/non-host bacterial species combination were assayed for respective bacteria by plating on semi-selective media. Additionally, seedlots for each host/non-host bacterial species combination were also assayed for pathogen transmission by seedling grow-out (SGO) assays under greenhouse conditions. The mean percentage of seedlots infested with compatible and incompatible pathogens was 31.7 and 30.9% (by plating), respectively and they were not significantly different (P = 0.67). The percentage of seedlots infested with null-interacting bacterial species was 16.8% (by plating) and it was significantly lower than the infested lots generated with compatible and incompatible bacterial pathogens (P = 0.03). None of the seedlots with incompatible/null-interacting bacteria developed symptoms on seedlings; however, when seedlings were assayed for epiphytic bacterial presence, 19.5 and 9.4% of the lots were positive, respectively. These results indicate that the seeds of non-host plants can become infested with incompatible and null-interacting bacterial species through flower colonization and they can be transmitted via epiphytic colonization of seedlings. In addition, it was also observed that flowers and seeds of non-host plants can be colonized by compatible/incompatible/null-interacting bacteria to higher populations; however, the level of colonization differed significantly depending on the type of bacterial species used.
Collapse
Affiliation(s)
- Bhabesh Dutta
- Department of Plant Pathology, University of Georgia, Coastal Plain Experiment Station, Tifton, Georgia, United States of America
| | - Ronald Gitaitis
- Department of Plant Pathology, University of Georgia, Coastal Plain Experiment Station, Tifton, Georgia, United States of America
| | - Samuel Smith
- Department of Plant Pathology, University of Georgia, Coastal Plain Experiment Station, Tifton, Georgia, United States of America
| | - David Langston
- Department of Plant Pathology, University of Georgia, Coastal Plain Experiment Station, Tifton, Georgia, United States of America
| |
Collapse
|
35
|
Dutta B, Gitaitis R, Sanders H, Booth C, Smith S, Langston DB. Role of blossom colonization in pepper seed infestation by Xanthomonas euvesicatoria. PHYTOPATHOLOGY 2014; 104:232-239. [PMID: 24111576 DOI: 10.1094/phyto-05-13-0138-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Colonization of Xanthomonas euvesicatoria was investigated in pepper blossoms and the relationship between inoculum concentrations and seed infestation was determined. Inoculation of blossoms resulted in asymptomatic pepper fruit. However, real-time polymerase chain reaction detected X. euvesicatoria in 39% of the seed lots assayed and viable colonies were recovered from 35% of them. Successful transmission occurred in 16% of the seed lots tested. In a separate experiment, X. euvesicatoria reached populations of up to 1 × 10(5) CFU/blossom on stigmas 96 h after inoculation. Bacteria colonized stylar and ovary tissues with populations ranging from 1 × 10(5) to 1 × 10(6) CFU/blossom 96 h after inoculation. A positive correlation existed between inoculum concentration and percentage of infested seedlots. Blossoms inoculated with Acidovorax citrulli also resulted in infested pepper seedlots. Furthermore, A. citrulli colonized pepper blossoms significantly better than X. euvesicatoria by 96 h postinoculation. It was concluded that pepper blossoms can be a potential site of ingress for X. euvesicatoria into seed, and blossom colonization may be involved in pepper seed infestation. Data also indicated that seed infestation via blossoms may be nonspecific because nonhost plants can be colonized by incompatible pathogens. Thus, host-pathogen interactions may not be important for bacterial ingress through blossoms.
Collapse
|
36
|
Dominant colonization and inheritance of Methylobacterium sp. strain OR01 on perilla plants. Biosci Biotechnol Biochem 2013; 77:1533-8. [PMID: 23832351 DOI: 10.1271/bbb.130207] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pink-pigmented facultative methylotrophs (PPFMs) are major inhabitants of the phyllosphere. In a preceding study, we found that perilla plants harbor a dominant population of PPFMs on their leaves and seeds, and that the closest relative of PPFMs (Methylobacterium sp. strain OR01 as representative strain) isolated from red perilla seeds was M. fujisawaense DSM5686(T). In the present study, the specific interaction between red perilla and Methylobacterium species was investigated. All the PPFMs isolated from red perilla seeds harvested in the Ohara area of Kyoto, Japan in 2009, 2010, and 2011 and the PPFMs isolated from red perilla leaves planted at four geographically different places in Japan had 16S rRNA sequences identical to that of strain OR01. Direct transmission of PPFMs from seeds to leaves and the competitiveness of strain OR01 were confirmed. This report is the first step toward understanding the species-level specificity of the interaction between perilla plants and Methylobacterium species.
Collapse
|
37
|
Mhedbi-Hajri N, Hajri A, Boureau T, Darrasse A, Durand K, Brin C, Saux MFL, Manceau C, Poussier S, Pruvost O, Lemaire C, Jacques MA. Evolutionary history of the plant pathogenic bacterium Xanthomonas axonopodis. PLoS One 2013; 8:e58474. [PMID: 23505513 PMCID: PMC3591321 DOI: 10.1371/journal.pone.0058474] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 02/05/2013] [Indexed: 01/02/2023] Open
Abstract
Deciphering mechanisms shaping bacterial diversity should help to build tools to predict the emergence of infectious diseases. Xanthomonads are plant pathogenic bacteria found worldwide. Xanthomonas axonopodis is a genetically heterogeneous species clustering, into six groups, strains that are collectively pathogenic on a large number of plants. However, each strain displays a narrow host range. We address the question of the nature of the evolutionary processes--geographical and ecological speciation--that shaped this diversity. We assembled a large collection of X. axonopodis strains that were isolated over a long period, over continents, and from various hosts. Based on the sequence analysis of seven housekeeping genes, we found that recombination occurred as frequently as point mutation in the evolutionary history of X. axonopodis. However, the impact of recombination was about three times greater than the impact of mutation on the diversity observed in the whole dataset. We then reconstructed the clonal genealogy of the strains using coalescent and genealogy approaches and we studied the diversification of the pathogen using a model of divergence with migration. The suggested scenario involves a first step of generalist diversification that spanned over the last 25,000 years. A second step of ecology-driven specialization occurred during the past two centuries. Eventually, secondary contacts between host-specialized strains probably occurred as a result of agricultural development and intensification, allowing genetic exchanges of virulence-associated genes. These transfers may have favored the emergence of novel pathotypes. Finally, we argue that the largest ecological entity within X. axonopodis is the pathovar.
Collapse
Affiliation(s)
- Nadia Mhedbi-Hajri
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France
- Université d’Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, PRES L’UNAM, Angers, France
- AgroCampus-Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, Angers, France
| | - Ahmed Hajri
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France
- Université d’Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, PRES L’UNAM, Angers, France
- AgroCampus-Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, Angers, France
| | - Tristan Boureau
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France
- Université d’Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, PRES L’UNAM, Angers, France
- AgroCampus-Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, Angers, France
| | - Armelle Darrasse
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France
- Université d’Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, PRES L’UNAM, Angers, France
- AgroCampus-Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, Angers, France
| | - Karine Durand
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France
- Université d’Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, PRES L’UNAM, Angers, France
- AgroCampus-Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, Angers, France
| | - Chrystelle Brin
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France
- Université d’Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, PRES L’UNAM, Angers, France
- AgroCampus-Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, Angers, France
| | - Marion Fischer-Le Saux
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France
- Université d’Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, PRES L’UNAM, Angers, France
- AgroCampus-Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, Angers, France
| | - Charles Manceau
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France
- Université d’Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, PRES L’UNAM, Angers, France
- AgroCampus-Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, Angers, France
| | - Stéphane Poussier
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France
- Université d’Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, PRES L’UNAM, Angers, France
- AgroCampus-Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, Angers, France
| | | | - Christophe Lemaire
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France
- Université d’Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, PRES L’UNAM, Angers, France
- AgroCampus-Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, Angers, France
| | - Marie-Agnès Jacques
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France
- Université d’Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, PRES L’UNAM, Angers, France
- AgroCampus-Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, Angers, France
| |
Collapse
|
38
|
Abstract
Our knowledge of the microbiology of the phyllosphere, or the aerial parts of plants, has historically lagged behind our knowledge of the microbiology of the rhizosphere, or the below-ground habitat of plants, particularly with respect to fundamental questions such as which microorganisms are present and what they do there. In recent years, however, this has begun to change. Cultivation-independent studies have revealed that a few bacterial phyla predominate in the phyllosphere of different plants and that plant factors are involved in shaping these phyllosphere communities, which feature specific adaptations and exhibit multipartite relationships both with host plants and among community members. Insights into the underlying structural principles of indigenous microbial phyllosphere populations will help us to develop a deeper understanding of the phyllosphere microbiota and will have applications in the promotion of plant growth and plant protection.
Collapse
Affiliation(s)
- Julia A Vorholt
- Institute of Microbiology, ETH Zurich (Swiss Federal Institute of Technology Zurich), Wolfgang-Pauli-Strasse 10, HCI F429, 8093 Zurich, Switzerland.
| |
Collapse
|
39
|
Boureau T, Kerkoud M, Chhel F, Hunault G, Darrasse A, Brin C, Durand K, Hajri A, Poussier S, Manceau C, Lardeux F, Saubion F, Jacques MA. A multiplex-PCR assay for identification of the quarantine plant pathogen Xanthomonas axonopodis pv. phaseoli. J Microbiol Methods 2012; 92:42-50. [PMID: 23142341 DOI: 10.1016/j.mimet.2012.10.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 10/25/2012] [Accepted: 10/28/2012] [Indexed: 11/26/2022]
Abstract
In this study we developed an algorithm to screen for all exact molecular signatures of the quarantine pathogen Xanthomonas axonopodis pv. phaseoli (Xap), based on available data of the presence or absence of virulence-associated genes. The simultaneous presence of genes avrBsT and xopL is specific to Xap. Therefore we developed a multiplex PCR assay targeting avrBsT and xopL for the molecular identification of Xap. The specificity of this multiplex was validated by comparison to that of other molecular identification assays aimed at Xap, on a wide collection of reference strains. This multiplex was further validated on a blind collection of Xanthomonas isolates for which pathogenicity was assayed by stem wounding and by dipping leaves into calibrated inocula. This multiplex was combined to the previously described X4c/X4e molecular identification assay for Xap. Such a combination enables the molecular identification of all strains of Xanthomonas pathogenic on bean. Results also show that assay by stem wounding does not give reliable results in the case of Xap, and that pathogenicity assays by dipping should be preferred.
Collapse
Affiliation(s)
- T Boureau
- Université d'Angers, UMR1345 IRHS, Institut de Recherches en Horticulture et Semences, SFR4207 QUASAV, PRES L'UNAM, F-49071 Beaucouze Cedex, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Detailed analysis revealed fundamental differences between bacterial association with cucumber (Cucumis sativus) seeds and seedlings roots. Seed colonization by bacteria seems to result from passive encounter between bacteria, conveyed by imbibed soil solution, and the germinating seed. In accordance, the seed-associated bacterial community composition directly reflected that of the germination medium and was characterized by low dominance. Transition from seed to root was marked by a shift in bacterial community composition and in an increase in dominance values. Furthermore, settlement of bacteria on roots was tightly controlled by the specific properties of each root segment. Size and richness of the seed-associated bacterial community were clearly determinate by the community in the germination medium. In contrast, for fully developed and active roots, the medium effect on these parameters was negligible. Perturbation of the seed environment by a pathogen (Pythium aphanidermatum) had major consequences on the seed bacterial community. However, those were mostly related to direct pathogen-bacteria rather than seed-bacteria interactions. In conclusion, simple, even passive processes may determine the initial stage of plant-microbe association during seed germination, prior to extension of the primary root. Therefore, seed germination is a unique phase in the plant life cycle, with respect to its interaction with the below-ground microbiome.
Collapse
Affiliation(s)
- Maya Ofek
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, PO Box 6, Bet Dagan, Israel
| | | | | |
Collapse
|
41
|
Ryan RP, Vorhölter FJ, Potnis N, Jones JB, Van Sluys MA, Bogdanove AJ, Dow JM. Pathogenomics of Xanthomonas: understanding bacterium-plant interactions. Nat Rev Microbiol 2011; 9:344-55. [PMID: 21478901 DOI: 10.1038/nrmicro2558] [Citation(s) in RCA: 339] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Xanthomonas is a large genus of Gram-negative bacteria that cause disease in hundreds of plant hosts, including many economically important crops. Pathogenic species and pathovars within species show a high degree of host plant specificity and many exhibit tissue specificity, invading either the vascular system or the mesophyll tissue of the host. In this Review, we discuss the insights that functional and comparative genomic studies are providing into the adaptation of this group of bacteria to exploit the extraordinary diversity of plant hosts and different host tissues.
Collapse
Affiliation(s)
- Robert P Ryan
- BIOMERIT Research Centre, Department of Microbiology, BioSciences Institute, University College Cork, Ireland
| | | | | | | | | | | | | |
Collapse
|