1
|
Yi Q, You F, Li Z, Wu S, Chan TS, Lu YR, Thomsen L, Wang J, Ma Y, Liu Y, Robertson L, Southam G, Huang L. Elemental Sulfur and Organic Matter Amendment Drive Alkaline pH Neutralization and Mineral Weathering in Iron Ore Tailings Through Inducing Sulfur Oxidizing Bacteria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21744-21756. [PMID: 38085882 DOI: 10.1021/acs.est.3c05749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Mineral weathering and alkaline pH neutralization are prerequisites to the ecoengineering of alkaline Fe-ore tailings into soil-like growth media (i.e., Technosols). These processes can be accelerated by the growth and physiological functions of tolerant sulfur oxidizing bacteria (SOB) in tailings. The present study characterized an indigenous SOB community enriched in the tailings, in response to the addition of elemental sulfur (S0) and organic matter (OM), as well as resultant S0oxidation, pH neutralization, and mineral weathering in a glasshouse experiment. The addition of S0 was found to have stimulated the growth of indigenous SOB, such as acidophilic Alicyclobacillaceae, Bacillaceae, and Hydrogenophilaceae in tailings. The OM amendment favored the growth of heterotrophic/mixotrophic SOB (e.g., class Alphaproteobacteria and Gammaproteobacteria). The resultant S0 oxidation neutralized the alkaline pH and enhanced the weathering of biotite-like minerals and formation of secondary minerals, such as ferrihydrite- and jarosite-like minerals. The improved physicochemical properties and secondary mineral formation facilitated organo-mineral associations that are critical to soil aggregate formation. From these findings, co-amendments of S0 and plant biomass (OM) can be applied to enhance the abundance of the indigenous SOB community in tailings and accelerate mineral weathering and geochemical changes for eco-engineered soil formation, as a sustainable option for rehabilitation of Fe ore tailings.
Collapse
Affiliation(s)
- Qing Yi
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane 4072, Australia
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen 361021, China
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
| | - Fang You
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane 4072, Australia
| | - Zhen Li
- College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| | - Songlin Wu
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane 4072, Australia
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 30092, Taiwan
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 30092, Taiwan
| | - Lars Thomsen
- Australian Synchrotron, ANSTO, Melbourne, Victoria 3168, Australia
| | - Jian Wang
- Canadian Light Source Inc., University of Saskatchewan, Saskatoon, Saskatchewan S7N 2 V3, Canada
| | - Yuanying Ma
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane 4072, Australia
| | - Yunjia Liu
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane 4072, Australia
- College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lachlan Robertson
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane 4072, Australia
| | - Gordon Southam
- School of the Environment, The University of Queensland, Brisbane 4072, Australia
| | - Longbin Huang
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
2
|
Bao Y, Ma Y, Liu W, Li X, Li Y, Zhou P, Feng Y, Delgado-Baquerizo M. Innovative strategy for the conservation of a millennial mausoleum from biodeterioration through artificial light management. NPJ Biofilms Microbiomes 2023; 9:69. [PMID: 37739940 PMCID: PMC10516906 DOI: 10.1038/s41522-023-00438-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023] Open
Abstract
Artificial lights can cause critical microbial biodeterioration of heritage monuments by promoting the outbreak of phototrophic microbiomes when they are used for touristic viewing. Here, with the ultimate aim of providing innovative solutions for the conservation and visiting of such monuments, we conducted a pioneering two-year in situ manipulative experiment to evaluate the impacts of different artificial light wavelengths (i.e., blue, green and red lights compared to white light) on the phototrophic microbiome of a millennial Chinese imperial mausoleum. Our results show that artificial light can shape the ecophysiological features of the phototrophic bacteriome in this monument and reduce its potential for further biodeterioration. In general, Cyanobacteria dominated (42.0% of the total relative abundance) the phototrophic bacteriome of this cultural relic; however, they were also very sensitive to the choice of artificial light. Compared to white light, monochromatic light, especially green light, reduced Cyanobacteria abundances (18.6%) by decreasing photosynthetic pigment abundances (42.9%); decreased the abundances of heterotrophic species belonging to Proteobacteria (4.5%) and the proportion of genes (6.1%) associated with carbon (i.e., carbon fixation), nitrogen (i.e., denitrification), and sulfur (i.e., dissimilatory sulfate reduction) cycling; and further decreased organic acid (10.1-14.1%) production of the phototrophic bacteriome, which is known to be involved in biodeterioration. Taken together, our findings constitute a major advancement in understanding how light wavelengths influence the phototrophic microbiome in cultural relics, and we found that artificial lights with certain wavelengths (e.g., green light) can help long-term conservation while allowing tourism activities.
Collapse
Affiliation(s)
- Yuanyuan Bao
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, 210037, Nanjing, PR China
| | - Yan Ma
- School of Architecture, Southeast University, 210096, Nanjing, PR China
| | - Wenjing Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, 266237, Qingdao, PR China
| | - Xin Li
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, 210037, Nanjing, PR China
| | - Yonghui Li
- School of Architecture, Southeast University, 210096, Nanjing, PR China.
| | - Peng Zhou
- Jiangning Cultural Heritage Protection Center, 211100, Nanjing, PR China
| | - Youzhi Feng
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, 210037, Nanjing, PR China.
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, Jiangsu, PR China.
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, 210095, Nanjing, China.
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, E-41012, Sevilla, Spain
| |
Collapse
|
3
|
Wu S, Liu Y, Southam G, Nguyen TA, Konhauser KO, You F, Bougoure JJ, Paterson D, Chan TS, Lu YR, Haw SC, Yi Q, Li Z, Robertson LM, Hall M, Saha N, Ok YS, Huang L. Ecological engineering of iron ore tailings into useable soils for sustainable rehabilitation. iScience 2023; 26:107102. [PMID: 37485366 PMCID: PMC10359879 DOI: 10.1016/j.isci.2023.107102] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/20/2023] [Accepted: 06/08/2023] [Indexed: 07/25/2023] Open
Abstract
Ecological engineering of soil formation in tailings is an emerging technology toward sustainable rehabilitation of iron (Fe) ore tailings landscapes worldwide, which requires the formation of well-organized and stable soil aggregates in finely textured tailings. Here, we demonstrate an approach using microbial and rhizosphere processes to progressively drive aggregate formation and development in Fe ore tailings. The aggregates were initially formed through the agglomeration of mineral particles by organic cements derived from microbial decomposition of exogenous organic matter. The aggregate stability was consolidated by colloidal nanosized Fe(III)-Si minerals formed during Fe-bearing primary mineral weathering driven by rhizosphere biogeochemical processes of pioneer plants. From these findings, we proposed a conceptual model for progressive aggregate structure development in the tailings with Fe(III)-Si rich cements as core nuclei. This renewable resource dependent eco-engineering approach opens a sustainable pathway to achieve resilient tailings rehabilitation without resorting to excavating natural soil resources.
Collapse
Affiliation(s)
- Songlin Wu
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yunjia Liu
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Gordon Southam
- School of Earth & Environmental Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Tuan A.H. Nguyen
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kurt O. Konhauser
- Department of Earth & Atmospheric Sciences, University of Alberta, Edmonton, AB T6G 2E3, Canada
| | - Fang You
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jeremy J. Bougoure
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, 35 Stirling Hwy, Crawley, Perth, WA 6009, Australia
| | | | - Ting-Shan Chan
- National Synchrotron Radiation Research Centre, Hsinchu Science Park, Hsinchu 30092, Taiwan
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Centre, Hsinchu Science Park, Hsinchu 30092, Taiwan
| | - Shu-Chih Haw
- National Synchrotron Radiation Research Centre, Hsinchu Science Park, Hsinchu 30092, Taiwan
| | - Qing Yi
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zhen Li
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lachlan M. Robertson
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Merinda Hall
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Narottam Saha
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yong Sik Ok
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD 4072, Australia
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Korea
| | - Longbin Huang
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
4
|
Ma Y, You F, Parry D, Urban A, Huang L. Adaptive growth and acidogenic fermentation performance of haloalkaliphilic bacterial communities enriched from biofilms colonising strongly alkaline and saline bauxite residue. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159131. [PMID: 36183768 DOI: 10.1016/j.scitotenv.2022.159131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The present study aimed to characterise the adaptive growth and acidogenic fermentation performance of haloalkaliphilic bacteria sourced from field biofilms colonising seawater-treated bauxite residue, under moderate and extremely alkaline pH conditions (8.5 to 10.8) and coupled saline (EC ≈ 50 mS/cm) conditions. The haloalkaliphilic bacterial communities demonstrated strong adaptiveness to the increasing pH from 8.5 to 10.8. The dominant groups were Exiguobacterales and Bacillales at pH 8.5 and 10, but Lactobacillales and Bacillales at pH 10.8. The exposure to pH 10.8 initially delayed bacterial growth in the first 24 h, but which rapidly recovered to a peak rate at 48 h similar to that in the pH 10 treatment. Correspondingly, lactic acid concentration at pH 10.8 rapidly rose to as high as >2000 mg/L at 48 h. Bacterial growth and organic acid production were positively related to carbohydrate supply. Overall, these bacterial groups fermented glucose to produce mainly lactic acid (>80 %) and other acids (such as acetic acid, formic acid, and succinic acid), leading to 0.5-2.0 units of pH reduction, despite the strong buffering capacity in the culture solution. The bacteria could up-regulate their phosphatase activity to mineralise the organic P in the basal nutrient broth, but increasing soluble phosphate-P at a 1:10 of glucose-C was beneficial. The biofilm-sourced bacteria communities contained redundant fermentative haloalkaliphilic groups which were adaptive to strongly alkaline pH and saline conditions.
Collapse
Affiliation(s)
- Yuanying Ma
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Fang You
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - David Parry
- Rio Tinto, Brisbane, Queensland 4000, Australia
| | - Anja Urban
- Queensland Alumina Limited, Gladstone, Queensland 4680, Australia
| | - Longbin Huang
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
5
|
A Metagenomic Investigation of Spatial and Temporal Changes in Sewage Microbiomes across a University Campus. mSystems 2022; 7:e0065122. [PMID: 36121163 PMCID: PMC9599454 DOI: 10.1128/msystems.00651-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Wastewater microbial communities are not static and can vary significantly across time and space, but this variation and the factors driving the observed spatiotemporal variation often remain undetermined. We used a shotgun metagenomic approach to investigate changes in wastewater microbial communities across 17 locations in a sewer network, with samples collected from each location over a 3-week period. Fecal material-derived bacteria constituted a relatively small fraction of the taxa found in the collected samples, highlighting the importance of environmental sources to the sewage microbiome. The prokaryotic communities were highly variable in composition depending on the location within the sampling network, and this spatial variation was most strongly associated with location-specific differences in sewage pH. However, we also observed substantial temporal variation in the composition of the prokaryotic communities at individual locations. This temporal variation was asynchronous across sampling locations, emphasizing the importance of independently considering both spatial and temporal variation when assessing the wastewater microbiome. The spatiotemporal patterns in viral community composition closely tracked those of the prokaryotic communities, allowing us to putatively identify the bacterial hosts of some of the dominant viruses in these systems. Finally, we found that antibiotic resistance gene profiles also exhibit a high degree of spatiotemporal variability, with most of these genes unlikely to be derived from fecal bacteria. Together, these results emphasize the dynamic nature of the wastewater microbiome, the challenges associated with studying these systems, and the utility of metagenomic approaches for building a multifaceted understanding of these microbial communities and their functional attributes. IMPORTANCE Sewage systems harbor extensive microbial diversity, including microbes derived from both human and environmental sources. Studies of the sewage microbiome are useful for monitoring public health and the health of our infrastructure, but the sewage microbiome can be highly variable in ways that are often unresolved. We sequenced DNA recovered from wastewater samples collected over a 3-week period at 17 locations in a single sewer system to determine how these communities vary across time and space. Most of the wastewater bacteria, and the antibiotic resistance genes they harbor, were not derived from human feces, but human usage patterns did impact how the amounts and types of bacteria and bacterial genes we found in these systems varied over time. Likewise, the wastewater communities, including both bacteria and their viruses, varied depending on location within the sewage network, highlighting the challenges and opportunities in efforts to monitor and understand the sewage microbiome.
Collapse
|
6
|
Roguet A, Newton RJ, Eren AM, McLellan SL. Guts of the Urban Ecosystem: Microbial Ecology of Sewer Infrastructure. mSystems 2022; 7:e0011822. [PMID: 35762794 PMCID: PMC9426572 DOI: 10.1128/msystems.00118-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/25/2022] [Indexed: 11/20/2022] Open
Abstract
Microbes have inhabited the oceans and soils for millions of years and are uniquely adapted to their habitat. In contrast, sewer infrastructure in modern cities dates back only ~150 years. Sewer pipes transport human waste and provide a view into public health, but the resident organisms that likely modulate these features are relatively unexplored. Here, we show that the bacterial assemblages sequenced from untreated wastewater in 71 U.S. cities were highly coherent at a fine sequence level, suggesting that urban infrastructure separated by great spatial distances can give rise to strikingly similar communities. Within the overall microbial community structure, temperature had a discernible impact on the distribution patterns of closely related amplicon sequence variants, resulting in warm and cold ecotypes. Two bacterial genera were dominant in most cities regardless of their size or geographic location; on average, Arcobacter accounted for 11% and Acinetobacter 10% of the entire community. Metagenomic analysis of six cities revealed these highly abundant resident organisms carry clinically important antibiotic resistant genes blaCTX-M, blaOXA, and blaTEM. In contrast, human fecal bacteria account for only ~13% of the community; therefore, antibiotic resistance gene inputs from human sources to the sewer system could be comparatively small, which will impact measurement capabilities when monitoring human populations using wastewater. With growing awareness of the metabolic potential of microbes within these vast networks of pipes and the ability to examine the health of human populations, it is timely to increase our understanding of the ecology of these systems. IMPORTANCE Sewer infrastructure is a relatively new habitat comprised of thousands of kilometers of pipes beneath cities. These wastewater conveyance systems contain large reservoirs of microbial biomass with a wide range of metabolic potential and are significant reservoirs of antibiotic resistant organisms; however, we lack an adequate understanding of the ecology or activity of these communities beyond wastewater treatment plants. The striking coherence of the sewer microbiome across the United States demonstrates that the sewer environment is highly selective for a particular microbial community composition. Therefore, results from more in-depth studies or proven engineering controls in one system could be extrapolated more broadly. Understanding the complex ecology of sewer infrastructure is critical for not only improving our ability to treat human waste and increasing the sustainability of our cities but also to create scalable and effective sewage microbial observatories, which are inevitable investments of the future to monitor health in human populations.
Collapse
Affiliation(s)
- Adélaïde Roguet
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Ryan J. Newton
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - A. Murat Eren
- Helmholtz Institute for Functional Marine Biodiversity, Oldenburg, Germany
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Sandra L. McLellan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
7
|
You F, Ma Y, Huang L. Pre-culturing soil microbial inoculum in plant residues enhanced the resilience of tolerant bacteria and bioneutralization efficacy in alkaline bauxite residues. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153627. [PMID: 35124060 DOI: 10.1016/j.scitotenv.2022.153627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Bioneutralization of alkaline bauxite residues (BR) may be achieved through in situ organic acids produced from fermentative decomposition of carbohydrates-rich organic matters (e.g., plant residues), which are driven by organophilic and heterotrophic prokaryotes tolerant of extremely saline and alkaline conditions. The present study investigated if the resilience of tolerant prokaryotes in soil microbial inoculums could be improved by pre-culturing them in carbohydrate-rich plant residues, leading to enhanced bioneutralization efficacy in strongly alkaline BR. In a 2-week microcosm experiment with BR (pH ~ 10.5), it was found that the resilience of prokaryotic communities and their functional modules and bioneutralization efficacy were significantly boosted in BR admixed with plant residues (i.e., SM: sugarcane mulch, LH: Lucerne hay) pre-cultured with soil microbial inoculum. The results showed that 10-20% of the initially inoculated soil prokaryotic features were recovered in treatments with pre-cultured plant residues. Besides, the enriched diverse prokaryotes formed highly clustered networks in the amended BR. These modules actively drove C and N mineralization and sustained 0.8-2.0 units of pH reduction, despite the buffering effects of alkaline minerals in BR solid phase. In contrast, soil microbial inoculation cultured in the growth medium lost >99% of the original prokaryotic features in soil inoculums, resulting in merely 0.2-0.7 unit pH reduction in the treated BR. Therefore, pre-culturing soil inoculum in plant residues would be preferred as an integral system to treat BR for effective bioneutralization.
Collapse
Affiliation(s)
- Fang You
- Ecological Engineering of Mine Wastes, Sustainable Minerals Institute, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Yuanying Ma
- Ecological Engineering of Mine Wastes, Sustainable Minerals Institute, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Longbin Huang
- Ecological Engineering of Mine Wastes, Sustainable Minerals Institute, The University of Queensland, Brisbane, Qld 4072, Australia.
| |
Collapse
|
8
|
You F, Lu P, Huang L. Characteristics of prokaryotic and fungal communities emerged in eco-engineered waste rock - Eucalyptus open woodlands at Ranger uranium mine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151571. [PMID: 34767894 DOI: 10.1016/j.scitotenv.2021.151571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Diverse prokaryotic and fungal communities in soil and litters are the structural basis for driving tree litter decomposition and inherent nutrient cycling in infertile Eucalyptus open woodlands. The present investigation characterized the composition and co-occurrence network of prokaryotic and fungal communities in litter and surface soil layers in 9-year old revegetated trial landforms at Ranger uranium mine, Northern Territory, Australia. The revegetated landforms consisted of soil-subsystems engineered from waste rocks and plant-subsystems of young, novel and native Eucalyptus open woodlands. The analysis of litters and surface soil layer revealed highly diverse microbial communities in the young Eucalyptus open woodland systems, which were composed of an average 1155 prokaryotic and 236 fungal OTUs. In the microbial communities, abundant bacterial communities were affiliated to Actinobacteria (30.2%), Proteobacteria (25.3%) and Chloroflexi (16.9%); and fungal communities were highly dominated by Ascomycota (63.4%) and Basidiomycota (23.6%). These OTUs were highly connected, forming microbial modules with >50% of predicted genes associated with metabolism of organics in the open woodland. Soil microbial communities present in the wet season contained a relatively high abundance of ammonium oxidizing archaea, plant associated bacteria, and fungal groups adapted to higher N availability, particularly those from the laterite + waste rock site. The elevated microbial activities in the litters and surface soil of lateritic soil + waste rock landform were attributed to the improved water and nutrient availability by increased fine fraction of laterites. Our study provides evidence that the features of prokaryotic and fungal communities in this eco-engineered and young waste rock - open Eucalyptus woodland systems are consistent with characteristics of microbial communities of native Eucalyptus woodlands to drive the decomposition of low N tree litters.
Collapse
Affiliation(s)
- Fang You
- Sustainable Minerals Institute, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Ping Lu
- Sustainable Minerals Institute, The University of Queensland, Brisbane, Qld 4072, Australia; Energy Resources of Australia, Darwin, NT 0800, Australia
| | - Longbin Huang
- Sustainable Minerals Institute, The University of Queensland, Brisbane, Qld 4072, Australia.
| |
Collapse
|
9
|
Song Y, Chetty K, Garbe U, Wei J, Bu H, O'moore L, Li X, Yuan Z, McCarthy T, Jiang G. A novel granular sludge-based and highly corrosion-resistant bio-concrete in sewers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148270. [PMID: 34119799 DOI: 10.1016/j.scitotenv.2021.148270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
Bio-concrete is known for its self-healing capacity although the corrosion resistance was not investigated previously. This study presents an innovative bio-concrete by mixing anaerobic granular sludge into concrete to mitigate sewer corrosion. The control concrete and bio-concrete (with granular sludge at 1% and 2% of the cement weight) were partially submerged in a corrosion chamber for 6 months, simulating the tidal-region corrosion in sewers. The corrosion rates of 1% and 2% bio-concrete were about 17.2% and 42.8% less than that of the control concrete, together with 14.6% and 35.0% less sulfide uptake rates, 15.3% and 55.6% less sulfate concentrations, and higher surface pH (up to 1.8 units). Gypsum and ettringite were major corrosion products but in smaller sizes on bio-concrete than that of control concrete. The total relative abundance of corrosion-causing microorganisms, i.e. sulfide-oxidizing bacteria, was significantly reduced on bio-concrete, while more sulfate-reducing bacteria (SRB) was detected. The corrosion-resistance of bio-concrete was mainly attributed to activities of SRB derived from the granular sludge, which supported the sulfur cycle between the aerobic and anaerobic corrosion sub-layers. This significantly reduced the net production of biogenic sulfuric acid and thus corrosion. The results suggested that the novel granular sludge-based bio-concrete provides a highly potential solution to reduce sewer corrosion.
Collapse
Affiliation(s)
- Yarong Song
- Advanced Water Management Centre, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Kirthi Chetty
- School of Civil, Mining & Environmental Engineering, The University of Wollongong, Wollongong, NSW 2522, Australia; Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organization, Lucas Heights, NSW 2234, Australia
| | - Ulf Garbe
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organization, Lucas Heights, NSW 2234, Australia
| | - Jing Wei
- Advanced Water Management Centre, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Hao Bu
- Advanced Water Management Centre, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Liza O'moore
- School of Civil Engineering, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Xuan Li
- School of Civil, Mining & Environmental Engineering, The University of Wollongong, Wollongong, NSW 2522, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Timothy McCarthy
- School of Civil, Mining & Environmental Engineering, The University of Wollongong, Wollongong, NSW 2522, Australia; Sustainable Buildings Research Centre, University of Wollongong, Wollongong, Australia
| | - Guangming Jiang
- Advanced Water Management Centre, The University of Queensland, St. Lucia, QLD 4072, Australia; School of Civil, Mining & Environmental Engineering, The University of Wollongong, Wollongong, NSW 2522, Australia.
| |
Collapse
|
10
|
Wu S, You F, Boughton B, Liu Y, Nguyen TAH, Wykes J, Southam G, Robertson LM, Chan TS, Lu YR, Lutz A, Yu D, Yi Q, Saha N, Huang L. Chemodiversity of Dissolved Organic Matter and Its Molecular Changes Driven by Rhizosphere Activities in Fe Ore Tailings Undergoing Eco-Engineered Pedogenesis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13045-13060. [PMID: 34565140 DOI: 10.1021/acs.est.1c04527] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Dissolved organic matter (DOM) plays an important role in soil structure and biogeochemical function development, which are fundamental for the eco-engineering of tailings-soil formation to underpin sustainable tailings rehabilitation. In the present study, we have characterized the DOM composition and its molecular changes in an alkaline Fe ore tailing primed with organic matter (OM) amendment and plant colonization. The results demonstrated that microbial OM decomposition dramatically increased DOM richness and average molecular weight, as well as its degree of unsaturation, aromaticity, and oxidation in the tailings. Plant colonization drove molecular shifts of DOM by depleting the unsaturated compounds with a high value of nominal oxidation state of carbon (NOSC), such as tannin-like and carboxyl-rich polycyclic-like compounds. This may be partially related to their sequestration by secondary Fe-Si minerals formed from rhizosphere-driven mineral weathering. Furthermore, the molecular shifts of DOM may have also resulted from plant-regulated microbial community changes, which further influenced DOM molecules through microbial-DOM interactions. These findings contribute to the understanding of DOM biogeochemistry and ecofunctionality in the tailings during early pedogenesis driven by OM input and pioneer plant/microbial colonization, providing an important basis for the development of strategies and technologies toward the eco-engineering of tailings-soil formation.
Collapse
Affiliation(s)
- Songlin Wu
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Fang You
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Berin Boughton
- Metabolomics Australia, School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
- Australian National Phenome Centre, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Yunjia Liu
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Tuan A H Nguyen
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jeremy Wykes
- Australian Synchrotron, Melbourne, Victoria 3168, Australia
| | - Gordon Southam
- School of Earth & Environmental Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Lachlan M Robertson
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Centre, Hsinchu Science Park, Hsinchu 300, Taiwan
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Centre, Hsinchu Science Park, Hsinchu 300, Taiwan
| | - Adrian Lutz
- Metabolomics Australia, School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Dingyi Yu
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Qing Yi
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Narottam Saha
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Longbin Huang
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
11
|
Rathnayake D, Bal Krishna KC, Kastl G, Sathasivan A. The role of pH on sewer corrosion processes and control methods: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146616. [PMID: 33838374 DOI: 10.1016/j.scitotenv.2021.146616] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/20/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
The production and emission of hydrogen sulfide (H2S) in sewer systems is associated with the corrosion of sewer structures and harmful odour. Numerous studies have been conducted to find the best solution to overcome this issue. The pH plays a critical role not only on microbial and chemical processes that are responsible for all processes of corrosion but also on the efficiency of several control methods. This paper first critically reviews the literature on the interplay between pH and various chemical and microbial in-sewer processes, followed by a review of the control methods that depend on pH or indirectly alter pH. The paper argues that proper evaluation of each method should include the impact the control method has on downstream processes. This paper concludes the raising of pH has several benefits but is operationally difficult to implement. It also emphasises single control method may not be as efficient as combination of one or two methods in controlling the production and emission of H2S. Finally, the research requirements and future directions in relation to emerging and potential methods that are not heavily reliant on pH control are discussed.
Collapse
Affiliation(s)
- Dileepa Rathnayake
- School of Engineering, Western Sydney University, Kingswood, NSW 2747, Australia.
| | - K C Bal Krishna
- School of Engineering, Western Sydney University, Kingswood, NSW 2747, Australia.
| | - George Kastl
- School of Engineering, Western Sydney University, Kingswood, NSW 2747, Australia.
| | - Arumugam Sathasivan
- School of Engineering, Western Sydney University, Kingswood, NSW 2747, Australia.
| |
Collapse
|
12
|
LaMartina EL, Mohaimani AA, Newton RJ. Urban wastewater bacterial communities assemble into seasonal steady states. MICROBIOME 2021; 9:116. [PMID: 34016155 PMCID: PMC8139061 DOI: 10.1186/s40168-021-01038-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Microorganisms in urban sanitary sewers exhibit community properties that suggest sewers are a novel ecosystem. Sewer microorganisms present both an opportunity as a control point for wastewater treatment and a risk to human health. If treatment processes are to be improved and health risks quantified, then it is necessary to understand microbial distributions and dynamics within this community. Here, we use 16S rRNA gene sequencing to characterize raw influent wastewater bacterial communities in a 5-year time series from two wastewater treatment plants in Milwaukee, WI; influent wastewater from 77 treatment plants across the USA; and wastewater in 12 Milwaukee residential sewers. RESULTS In Milwaukee, we find that in transit from residences to treatment plants, the human bacterial component of wastewater decreases in proportion and exhibits stochastic temporal variation. In contrast, the resident sewer community increases in abundance during transit and cycles seasonally according to changes in wastewater temperature. The result is a bacterial community that assembles into two distinct community states each year according to the extremes in wastewater temperature. Wastewater bacterial communities from other northern US cities follow temporal trends that mirror those in Milwaukee, but southern US cities have distinct community compositions and differ in their seasonal patterns. CONCLUSIONS Our findings provide evidence that environmental conditions associated with seasonal change and climatic differences related to geography predictably structure the bacterial communities residing in below-ground sewer pipes. Video abstract.
Collapse
Affiliation(s)
- Emily Lou LaMartina
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53204, USA
| | - Aurash A Mohaimani
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53204, USA
- Present Address: Analytical Technologies, Biogen, 5000 Davis Dr, Morrisville, NC, USA
| | - Ryan J Newton
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53204, USA.
| |
Collapse
|
13
|
Wu S, You F, Hall M, Huang L. Native plant Maireana brevifolia drives prokaryotic microbial community development in alkaline Fe ore tailings under semi-arid climatic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:144019. [PMID: 33341617 DOI: 10.1016/j.scitotenv.2020.144019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/10/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
Native pioneer plants of high environmental tolerance may be exploited as early colonisers in alkaline Fe-ore tailings to drive the development of functional prokaryotic microbial communities, which is one of the critical pedogenic processes leading to in situ soil formation in the tailings. The present study deployed high throughput Illumina Miseq sequencing, to characterise the diversity and potential functionality of prokaryotic microbial communities in the aged Fe-ore tailings and topsoils colonised by native plant species Maireana brevifolia at an Fe ore mine in Western Australia, in comparison with those in the tailings/topsoils without plants. The composition of prokaryotic microbial communities differed between the aged tailings (AT) and topsoil sites (TS). Aged tailings (AT1-AT3) contained more bacteria tolerant of alkaline/saline conditions (e.g., Alkalilimnicola sp.) and those related to Fe biogeochemical cycling (e.g., Acidiferrobacter sp., Aciditerrimonas sp.). In comparison, the prokaryotic microbial communities in the topsoil (TS) contained abundant bacteria related to N cycling (e.g., Rhizobium sp., Frankia sp.). The presence of M. brevifolia plants significantly increased the diversity of prokaryotic microbial communities in tailings and topsoil, particularly favouring the development of bacteria related to N cycling and OM degradations (e.g., Mesorhizobium sp. Paracoccus sp., Oxalicibacterium horti, and Microbacterium sp.). The variation of microbial community were mainly explained by pH, amorphous Fe, and total N, which were regulated by M. brevifolia colonisation. The beneficial roles of pioneer plants M. brevifolia in the development of prokaryotic microbial community in the alkaline Fe ore tailings may be integrated as a key factor when designing and scaling up the process of eco-engineering Fe-ore tailings into soil under semi-arid climatic conditions.
Collapse
Affiliation(s)
- Songlin Wu
- Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Fang You
- Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Merinda Hall
- Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Longbin Huang
- Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
14
|
Song Y, Wightman E, Kulandaivelu J, Bu H, Wang Z, Yuan Z, Jiang G. Rebar corrosion and its interaction with concrete degradation in reinforced concrete sewers. WATER RESEARCH 2020; 182:115961. [PMID: 32622125 DOI: 10.1016/j.watres.2020.115961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/17/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
Concrete corrosion, as a major issue in sewer management, has attracted considerable research. In comparison, the corrosion of reinforcing steel bar (rebar) is not well understood. Particularly, fundamental knowledge of rebar corrosion and its interactions with concrete corrosion/cracking is largely lacking. This study investigated rebar corrosion and concrete degradation using reinforced concrete coupons exposed in a pilot sewer system. The physical-chemical corrosion characteristics were investigated in local regions; the nature of rebar rusts was analyzed using the advanced mineral analytical techniques, including Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS) and X-ray Diffraction (XRD); further, the interactions between rebar corrosion and concrete corrosion/cracking were elucidated by characterizing the microstructure and element distribution in interfacial areas using Mineral Liberation Analysis (MLA). The rebar corrosion products were found to be iron oxides, oxyhydroxides, chlorides, sulfides and sulfates. The predominant rebar corrosion reactions varied with exposure time and the development of concrete corrosion. When concrete corrosion reached rebar surface, the cracking of the concrete cover was influenced by multiple effects, including the macro-cracking induced by the corrosion products expansion, and the micro-cracking accelerated by the dissolution, diffusion and deposition of Fe derived from rebar rusts at the concrete corrosion front. A conceptual model elucidating rebar corrosion and the complex interactions between rebar corrosion and concrete degradation is proposed to support the development of corrosion prevention and refurbishment strategies for reinforced concrete sewers.
Collapse
Affiliation(s)
- Yarong Song
- Advanced Water Management Centre, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Elaine Wightman
- Sustainable Minerals Institute, Julius Kruttschnitt Mineral Research Centre, The University of Queensland, Indooroopilly, QLD, 4068, Australia
| | | | - Hao Bu
- Advanced Water Management Centre, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Zhiyao Wang
- Advanced Water Management Centre, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Guangming Jiang
- Advanced Water Management Centre, The University of Queensland, St. Lucia, QLD, 4072, Australia; School of Civil, Mining & Environmental Engineering, The University of Wollongong, Northfields Ave Wollongong, NSW, 2522, Australia.
| |
Collapse
|
15
|
Robertson LM, Wu S, You F, Huang L, Southam G, Chan TS, Lu YR, Bond PL. Geochemical and mineralogical changes in magnetite Fe-ore tailings induced by biomass organic matter amendment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138196. [PMID: 32272405 DOI: 10.1016/j.scitotenv.2020.138196] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Direct phytostabilization of alkaline and finely textured Fe-ore tailings is a key challenge for sustainable rehabilitation of tailings landscapes, due to limited topsoil resources available for constructing functional root-zones. The eco-engineering of soils (i.e. technosol) from tailings through the deliberate combination of technic materials with ecological inputs (e.g. biomass, water, topsoil and organisms) may provide a cost-effecctive and sustainable alternative to topsoil-based option for tailings rehabilitation. This approach purposefully accelerates in situ mineral weathering and the development of soil-like physicochemical and biological properties and functions in the tailings. The present study aimed to characterize mineralogical and geochemical changes associated with soil formation in Fe-ore tailings, by admixing biomass organic matter (BOM) and soil inoculum under well-watered conditions. Magnetite Fe-ore tailings (pH ~9.5) were amended with 3% (w/w) BOM (Lucerne hay) and natural soil microbial communities and incubated for 68 days in a microcosm study. BOM amendment with soil inoculum resulted in a rapid neutralization of alkaline pH conditions in the tailings. The weathering of magnetite and biotite-like phyllosilicates were accelerated, resulting in increased concentrations of soluble Mg, K, Fe, Ca, and Si in porewater. Evidence of the accelerated weathering was verified by synchrotron-based Fe K-edge X-ray absorption fine structure (XAFS) spectroscopy analysis, showing the presence of possibly Fe (III)-oxalates. The weathering resulted in eroded morphological surfaces of Fe-bearing minerals in the BOM treated tailings. This study confirmed the expected geochemical and mineralogical changes in the magnetite Fe-ore tailings induced by BOM amendment, providing a fundamental basis for eco-engineering tailings into soil-like technosol.
Collapse
Affiliation(s)
- Lachlan M Robertson
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Songlin Wu
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Fang You
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Longbin Huang
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Gordon Southam
- School of Earth & Environmental Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Centre, Hsinchu Science Park, Hsinchu 300, Taiwan
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Centre, Hsinchu Science Park, Hsinchu 300, Taiwan
| | - Phillip L Bond
- Formerly Advanced Water Management Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
16
|
Duan H, Gao S, Li X, Ab Hamid NH, Jiang G, Zheng M, Bai X, Bond PL, Lu X, Chislett MM, Hu S, Ye L, Yuan Z. Improving wastewater management using free nitrous acid (FNA). WATER RESEARCH 2020; 171:115382. [PMID: 31855696 DOI: 10.1016/j.watres.2019.115382] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 05/06/2023]
Abstract
Free nitrous acid (FNA), the protonated form of nitrite, has historically been an unwanted substance in wastewater systems due to its inhibition on a wide range of microorganisms. However, in recent years, advanced understanding of FNA inhibitory and biocidal effects on microorganisms has led to the development of a series of FNA-based applications that improve wastewater management practices. FNA has been used in sewer systems to control sewer corrosion and odor; in wastewater treatment to achieve carbon and energy efficient nitrogen removal; in sludge management to improve the sludge reduction and energy recovery; in membrane systems to address membrane fouling; and in wastewater algae systems to facilitate algae harvesting. This paper aims to comprehensively and critically review the current status of FNA-based applications in improving wastewater management. The underlying mechanisms of FNA inhibitory and biocidal effects are also reviewed and discussed. Knowledge gaps and current limitations of the FNA-based applications are identified; and perspectives on the development of FNA-based applications are discussed. We conclude that the FNA-based technologies have great potential for enhancing the performance of wastewater systems; however, further development and demonstration at larger scales are still required for their wider applications.
Collapse
Affiliation(s)
- Haoran Duan
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia; School of Chemical Engineering, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Shuhong Gao
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, United States
| | - Xuan Li
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Nur Hafizah Ab Hamid
- School of Chemical Engineering, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Min Zheng
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Xue Bai
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Philip L Bond
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Xuanyu Lu
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia; School of Chemical Engineering, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Mariella M Chislett
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Shihu Hu
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Liu Ye
- School of Chemical Engineering, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
17
|
Li W, Zheng T, Ma Y, Liu J. Current status and future prospects of sewer biofilms: Their structure, influencing factors, and substance transformations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133815. [PMID: 31416035 DOI: 10.1016/j.scitotenv.2019.133815] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
With rapid urbanization, sewer systems are extensively being constructed for the collection and transportation of sewage to minimize the severe environmental and health issues, especially relating to the spread diseases. The existence of abundant biofilms on the inner walls of sewers could lead to potential risks such as sewer explosions, poisonous gas leaks, and pipe corrosions with the transformations of various kinds of pollutants. Therefore, it is urgent to clarify their inner mechanisms to safely govern sewer systems. In this study, the characteristics of sewer biofilms including their structure, influencing factors, and substance transformations were analyzed in-depth. The results reveal that sewer biofilms (1.0 mm depth approximately) consist of large quantities of inorganic and some organic substances, while the abundant functional genus of the bacteria and archaea are summarized. Sewer biofilms influencing factors were determined to be sewer operation mode, sewage characteristics, and shear stress. Further, the transformation of organics, sulfur, and nitrogen as well as emerging micropollutants (such as, biomarkers, antibiotic resistance genes, and engineered nanoparticles) was investigated to guarantee sewer security and public health. Therefore, the current review could be considered as guidance for researchers and decision-makers.
Collapse
Affiliation(s)
- Wenkai Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, 19 (A) Yuquan Road, Shijingshan District, Beijing 100049, China.
| | - Tianlong Zheng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, 19 (A) Yuquan Road, Shijingshan District, Beijing 100049, China.
| | - Yingqun Ma
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore.
| | - Junxin Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, 19 (A) Yuquan Road, Shijingshan District, Beijing 100049, China.
| |
Collapse
|
18
|
Luo JH, Wu M, Liu J, Qian G, Yuan Z, Guo J. Microbial chromate reduction coupled with anaerobic oxidation of methane in a membrane biofilm reactor. ENVIRONMENT INTERNATIONAL 2019; 130:104926. [PMID: 31228790 DOI: 10.1016/j.envint.2019.104926] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/02/2019] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
It has been reported that microbial reduction of sulfate, nitrite/nitrate and iron/manganese could be coupled with anaerobic oxidation of methane (AOM), which plays a significant role in controlling methane emission from anoxic niches. However, little is known about microbial chromate (Cr(VI)) reduction coupling with AOM. In this study, a microbial consortium was enriched via switching nitrate dosing to chromate feeding as the sole electron acceptor under anaerobic condition in a membrane biofilm reactor (MBfR), in which methane was continuously provided as the electron donor through bubble-less hollow fiber membranes. According to long-term reactor operation and chromium speciation analysis, soluble chromate could be reduced into Cr(III) compounds by using methane as electron donor. Fluorescence in situ hybridization and high-throughput 16S rRNA gene amplicon profiling further indicated that after feeding chromate Candidatus 'Methanoperedens' (a known nitrate-dependent anaerobic methane oxidation archaeon) became sole anaerobic methanotroph in the biofilm, potentially responsible for the chromate bio-reduction driven by methane. Two potential pathways of the microbial AOM-coupled chromate reduction were proposed: (i) Candidatus 'Methanoperedens' independently utilizes chromate as electron acceptor to form Cr(III) compounds, or (ii) Candidatus 'Methanoperedens' oxidizes methane to generate intermediates or electrons, which will be utilized to reduce chromate to Cr(III) compounds by unknown chromate reducers synergistically. Our findings suggest a possible link between the biogeochemical chromium and methane cycles.
Collapse
Affiliation(s)
- Jing-Huan Luo
- Advanced Water Management Centre, The University of Queensland, St Lucia, Queensland 4072, Australia; School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, PR China
| | - Mengxiong Wu
- Advanced Water Management Centre, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, PR China
| | - Guangren Qian
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, PR China
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, St Lucia, Queensland 4072, Australia.
| |
Collapse
|
19
|
Sun X, Jiang G, Bond PL, Keller J. Periodic deprivation of gaseous hydrogen sulfide affects the activity of the concrete corrosion layer in sewers. WATER RESEARCH 2019; 157:463-471. [PMID: 30981977 DOI: 10.1016/j.watres.2019.03.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/26/2019] [Accepted: 03/02/2019] [Indexed: 06/09/2023]
Abstract
Sulfide induced concrete corrosion significantly reduces the service life of the sewer systems. Gaseous hydrogen sulfide (H2S) levels are a key factor affecting the corrosion rate and these fluctuate due to the diurnal flow pattern of sewers. Currently, there is little known about how such fluctuations, in particular the periodic deprivation of H2S, may affect the corrosion activity. This study investigated the impact of the deprivation of H2S on the sulfide uptake rate (SUR) of concrete coupons incubated in laboratory corrosion chambers. After systematic evaluation of the gaseous H2S concentration profiles of two sewer systems, two types of profiles, i.e. short- (1 h) and long- (12 h) term deprivation of H2S, were applied to the concrete coupons. In comparison to the baseline SUR, exposing the concrete coupon to 0 ppm of H2S for 1 h consistently caused a temporary increase of the SUR (i.e. 3.2%-12.5%) following re-supply of H2S at baseline levels. With the continuous re-supply of H2S, there was gradual and steady decrease of SUR to the level close to the baseline SUR. However, for the case after deprivation of H2S for 12 h, the SUR was 5.1% lower than baseline SUR and gradually increased to a level similar to the baseline SUR during the 20-30 min of continuous re-supply of H2S. In addition, the simultaneous deprivation of H2S and O2 for 1 h had negligible impact on the SUR. Further analysis suggests that the historically accumulated intermediates of sulfide oxidation could act as electron donors for sulfide oxidizing bacteria (SOB). The replenishment of the intermediates upon the re-supply of H2S could play a key role in the increase of SUR after short-term deprivation of H2S. However, the activity of SOB could be diminished after long-term deprivation of H2S, although the sulfur intermediates still could be available. Estimating the sulfide uptake by concrete using the SUR of the average H2S concentration could lead to overestimation of the sulfide uptake. There could be more significant overestimation for the case with longer deprivation of H2S.
Collapse
Affiliation(s)
- Xiaoyan Sun
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guangming Jiang
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia; School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Philip L Bond
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Jurg Keller
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
20
|
You F, Zhang L, Ye J, Huang L. Microbial decomposition of biomass residues mitigated hydrogeochemical dynamics in strongly alkaline bauxite residues. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 663:216-226. [PMID: 30711588 DOI: 10.1016/j.scitotenv.2019.01.317] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/24/2019] [Accepted: 01/24/2019] [Indexed: 05/27/2023]
Abstract
Effective neutralization of strongly alkaline conditions in bauxite residues (BR) is the fundamental step to initiate the process of eco-engineering BR into growth substrate (or soil-like medium) for direct phytostabilization with pioneer plant species. The present study aimed to evaluate the effectiveness of microbial decomposition of organic matter (OM) (i.e., biomass residues) in neutralizing the strong alkalinity of residues under saturated conditions, together with the regulatory role of calcium sulfate (CaSO4) addition. Admixing OM (i.e., sugarcane mulch, Lucerne hay) alone in the BR significantly lowered the porewater pH from 11.4 to around 9.0 by Day 7, which persisted until the end of incubation (Day 28). The pH reduction in the porewater of OM-amended BR coincided with the production of acidic organic compounds (mainly acetic acid). Diverse species of organotrophic bacteria (e.g., Enterobacteriales, Pasteurellales, Lactobacillales, and Streptophyta) were found to have colonized in the OM-amended BR, but which were dominated by haloalkaliphilic bacteria (e.g., Halomonas and Bacillaceae). The CaSO4 addition in the OM-amended BR further lowered pH to 8.3 in the porewater. Besides, the bioneutralization effects resulted in dramatic reduction (>90%) of soluble Al in the porewater, which is a prerequisite to lowering Al toxicity in plants. At the same time, the levels of major cations (i.e., K, Ca, Mg) in the porewater were elevated by the OM + CaSO4 amendment, which would facilitate subsequent leaching of these soluble salts to lower the salinity in the BR, and improve the diversity of organotrophic bacterial communities in the amended BR.
Collapse
Affiliation(s)
- Fang You
- Sustainable Minerals Institute, Environment Centres (CMLR), University of Queensland, Brisbane, QLD 4072, Australia
| | - Liping Zhang
- Sustainable Minerals Institute, Environment Centres (CMLR), University of Queensland, Brisbane, QLD 4072, Australia; College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jun Ye
- Australian Centre for Ecogenomics, Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Longbin Huang
- Sustainable Minerals Institute, Environment Centres (CMLR), University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
21
|
Zhang G, Li B, Liu J, Luan M, Yue L, Jiang XT, Yu K, Guan Y. The bacterial community significantly promotes cast iron corrosion in reclaimed wastewater distribution systems. MICROBIOME 2018; 6:222. [PMID: 30545419 PMCID: PMC6292113 DOI: 10.1186/s40168-018-0610-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/28/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Currently, the effect of the bacterial community on cast iron corrosion process does not reach consensus. Moreover, some studies have produced contrasting results, suggesting that bacteria can either accelerate or inhibit corrosion. RESULTS The long-term effects of the bacterial community on cast iron corrosion in reclaimed wastewater distribution systems were investigated from both spatial (yellow layer vs. black layer) and temporal (1-year dynamic process) dimensions of the iron coupon-reclaimed wastewater microcosm using high-throughput sequencing and flow cytometry approaches. Cast iron coupons in the NONdisinfection and UVdisinfection reactors suffered more severe corrosion than did those in the NaClOdisinfection reactor. The bacterial community significantly promoted cast iron corrosion, which was quantified for the first time in the practical reclaimed wastewater and found to account for at least 30.5% ± 9.7% of the total weight loss. The partition of yellow and black layers of cast iron corrosion provided more accurate information on morphology and crystal structures for corrosion scales. The black layer was dense, and the particles looked fusiform, while the yellow layer was loose, and the particles were ellipse or spherical. Goethite was the predominant crystalline phase in black layers, while corrosion products mainly existed as an amorphous phase in yellow layers. The bacterial community compositions of black layers were distinctly separated from yellow layers regardless of disinfection methods. The NONdisinfection and UVdisinfection reactors had a more similar microbial composition and variation tendency for the same layer type than did the NaClOdisinfection reactor. Biofilm development can be divided into the initial start-up stage, mid-term development stage, and terminal stable stage. In total, 12 potential functional genera were selected to establish a cycle model for Fe, N, and S metabolism. Desulfovibrio was considered to accelerate the transfer of Fe0 to Fe2+ and speed up weight loss. CONCLUSION The long-term effect of disinfection processes on corrosion behaviors of cast iron in reclaimed wastewater distribution systems and the hidden mechanisms were deciphered for the first time. This study established a cycle model for Fe, N, and S metabolism that involved 12 functional genera and discovered the significant contribution of Desulfovibrio in promoting corrosion.
Collapse
Affiliation(s)
- Guijuan Zhang
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, China
| | - Bing Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, China
| | - Jie Liu
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, China
| | - Mingqiang Luan
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, China
| | - Long Yue
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, China
| | - Xiao-Tao Jiang
- Microbiome Research Centre, St George and Sutherland Clinical School, Department of Medicine, University of New South Wales, Sydney, Australia
| | - Ke Yu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Yuntao Guan
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, China
| |
Collapse
|
22
|
Cayford BI, Jiang G, Keller J, Tyson G, Bond PL. Comparison of microbial communities across sections of a corroding sewer pipe and the effects of wastewater flooding. BIOFOULING 2017; 33:780-792. [PMID: 28956470 DOI: 10.1080/08927014.2017.1369050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 08/11/2017] [Indexed: 06/07/2023]
Abstract
This study investigated the variation in microbially induced concrete corrosion communities at different circumferential locations of a real sewer pipe and the effects of a wastewater flooding event on the community. Three distinct microbial community groups were found in different corrosion samples. The physico-chemical properties of the corrosion layers and the microbial communities were distinct for the cross-sectional positions within the pipe, ie ceiling, wall and tidal zones. The microbial communities detected from the same positions in the pipe were consistent over the length of the pipe, as well as being consistent between the replicate pipes. The dominating ceiling communities were members of the bacterial orders Rhodospirillales, Acidithiobacillales, Actinomycetales, Xanthomonadales and Acidobacteriales. The wall communities were composed of members of the Xanthomonadales, Hydrogenophilales, Chromatiales and Sphingobacteriales. The tidal zones were dominated by eight bacterial and one archaeal order, with the common physiological trait of anaerobic metabolism. Sewage flooding within the sewer system did not change the tidal and wall communities, although the corrosion communities in ceiling samples were notably different, becoming more similar to the wall and tidal samples. This suggests that sewage flooding has a significant impact on the corrosion community in sewers.
Collapse
Affiliation(s)
- Barry I Cayford
- a Advanced Water Management Centre , The University of Queensland , St Lucia , Australia
| | - Guangming Jiang
- a Advanced Water Management Centre , The University of Queensland , St Lucia , Australia
| | - Jurg Keller
- a Advanced Water Management Centre , The University of Queensland , St Lucia , Australia
| | - Gene Tyson
- b Australian Centre for Ecogenomics , The University of Queensland , St Lucia , Australia
| | - Philip L Bond
- a Advanced Water Management Centre , The University of Queensland , St Lucia , Australia
| |
Collapse
|
23
|
Li X, Kappler U, Jiang G, Bond PL. The Ecology of Acidophilic Microorganisms in the Corroding Concrete Sewer Environment. Front Microbiol 2017; 8:683. [PMID: 28473816 PMCID: PMC5397505 DOI: 10.3389/fmicb.2017.00683] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/04/2017] [Indexed: 12/19/2022] Open
Abstract
Concrete corrosion is one of the most significant problems affecting valuable sewer infrastructure on a global scale. This problem occurs in the aerobic zone of the sewer, where a layer of surface corrosion develops on the exposed concrete and the surface pH is typically lowered from around 11–10 (pristine concrete) to pH 2–4. Acidophilic microorganisms become established as biofilms within the concrete corrosion layer and enhance the loss of concrete mass. Until recently, the acidophilic community was considered to comprise relatively few species of microorganisms, however, the biodiversity of the corrosion community is now recognized as being extensive and varying from different sewer environmental conditions. The diversity of acidophiles in the corrosion communities includes chemolithoautotrophs, chemolithoheterotrophs, and chemoorganoheterotrophs. The activity of these microorganisms is strongly affected by H2S levels in the sewer gas phase, although CO2, organic matter, and iron in the corrosion layer influence this acidic ecosystem. This paper briefly presents the conditions within the sewer that lead to the development of concrete corrosion in that environment. The review focuses on the acidophilic microorganisms detected in sewer corrosion environments, and then summarizes their proposed functions and physiology, especially in relation to the corrosion process. To our knowledge, this is the first review of acidophilic corrosion microbial communities, in which, the ecology and the environmental conditions (when available) are considered. Ecological studies of sewer corrosion are limited, however, where possible, we summarize the important metabolic functions of the different acidophilic species detected in sewer concrete corrosion layers. It is evident that microbial functions in the acidic sewer corrosion environment can be linked to those occurring in the analogous acidic environments of acid mine drainage and bioleaching.
Collapse
Affiliation(s)
- Xuan Li
- Advanced Water Management Centre, The University of Queensland, BrisbaneQLD, Australia
| | - Ulrike Kappler
- Centre for Metals in Biology, School of Chemistry and Molecular Biosciences, The University of Queensland, BrisbaneQLD, Australia
| | - Guangming Jiang
- Advanced Water Management Centre, The University of Queensland, BrisbaneQLD, Australia
| | - Philip L Bond
- Advanced Water Management Centre, The University of Queensland, BrisbaneQLD, Australia
| |
Collapse
|
24
|
Dong Q, Shi H, Liu Y. Microbial Character Related Sulfur Cycle under Dynamic Environmental Factors Based on the Microbial Population Analysis in Sewerage System. Front Microbiol 2017; 8:64. [PMID: 28261160 PMCID: PMC5306501 DOI: 10.3389/fmicb.2017.00064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/10/2017] [Indexed: 11/22/2022] Open
Abstract
The undesired sulfur cycle derived by microbial population can ultimately causes the serious problems of sewerage systems. However, the microbial community characters under dynamic environment factors in actual sewerage system is still not enough. This current study aimed to character the distributions and compositions of microbial communities that participate in the sulfur cycle under the dynamic environmental conditions in a local sewerage system. To accomplish this, microbial community compositions were assessed using 454 high-throughput sequencing (16S rDNA) combined with dsrB gene-based denaturing gradient gel electrophoresis. The results indicated that a higher diversity of microbial species was present at locations in sewers with high concentrations of H2S. Actinobacteria and Proteobacteria were dominant in the sewerage system, while Actinobacteria alone were dominant in regions with high concentrations of H2S. Specifically, the unique operational taxonomic units could aid to characterize the distinct microbial communities within a sewerage manhole. The proportion of sulfate-reducing bacteria, each sulfur-oxidizing bacteria (SOB) were strongly correlated with the liquid parameters (DO, ORP, COD, Sulfide, NH3-N), while the Mycobacterium and Acidophilic SOB (M&A) was strongly correlated with gaseous factors within the sewer, such as H2S, CH4, and CO. Identifying the distributions and proportions of critical microbial communities within sewerage systems could provide insights into how the microbial sulfur cycle is affected by the dynamic environmental conditions that exist in sewers and might be useful for explaining the potential sewerage problems.
Collapse
Affiliation(s)
- Qian Dong
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University Beijing, China
| | - Hanchang Shi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University Beijing, China
| | - Yanchen Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University Beijing, China
| |
Collapse
|
25
|
Jiang G, Zhou M, Chiu TH, Sun X, Keller J, Bond PL. Wastewater-Enhanced Microbial Corrosion of Concrete Sewers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:8084-8092. [PMID: 27390870 DOI: 10.1021/acs.est.6b02093] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Microbial corrosion of concrete in sewers is known to be caused by hydrogen sulfide, although the role of wastewater in regulating the corrosion processes is poorly understood. Flooding and splashing of wastewater in sewers periodically inoculates the concrete surface in sewer pipes. No study has systematically investigated the impacts of wastewater inoculation on the corrosion of concrete in sewers. This study investigated the development of the microbial community, sulfide uptake activity, and the change of the concrete properties for coupons subjected to periodic wastewater inoculation. The concrete coupons were exposed to different levels of hydrogen sulfide under well-controlled conditions in laboratory-scale corrosion chambers simulating real sewers. It was evident that the periodic inoculation induced higher corrosion losses of the concrete in comparison to noninoculated coupons. Instantaneous measurements such as surface pH did not reflect the cumulative corrosion losses caused by long-term microbial activity. Analysis of the long-term profiles of the sulfide uptake rate using a Gompertz model supported the enhanced corrosion activity and greater corrosion loss. The enhanced corrosion rate was due to the higher sulfide uptake rates induced by wastewater inoculation, although the increasing trend of sulfide uptake rates was slower with wastewater. Increased diversity in the corrosion-layer microbial communities was detected when the corrosion rates were higher. This coincided with the environmental conditions of increased levels of gaseous H2S and the concrete type.
Collapse
Affiliation(s)
- Guangming Jiang
- Advanced Water Management Centre, The University of Queensland , St. Lucia, Queensland 4072, Australia
| | - Mi Zhou
- Advanced Water Management Centre, The University of Queensland , St. Lucia, Queensland 4072, Australia
| | - Tsz Ho Chiu
- Advanced Water Management Centre, The University of Queensland , St. Lucia, Queensland 4072, Australia
| | - Xiaoyan Sun
- Advanced Water Management Centre, The University of Queensland , St. Lucia, Queensland 4072, Australia
| | - Jurg Keller
- Advanced Water Management Centre, The University of Queensland , St. Lucia, Queensland 4072, Australia
| | - Philip L Bond
- Advanced Water Management Centre, The University of Queensland , St. Lucia, Queensland 4072, Australia
| |
Collapse
|
26
|
Huber B, Herzog B, Drewes JE, Koch K, Müller E. Characterization of sulfur oxidizing bacteria related to biogenic sulfuric acid corrosion in sludge digesters. BMC Microbiol 2016; 16:153. [PMID: 27430211 PMCID: PMC4950637 DOI: 10.1186/s12866-016-0767-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 07/08/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biogenic sulfuric acid (BSA) corrosion damages sewerage and wastewater treatment facilities but is not well investigated in sludge digesters. Sulfur/sulfide oxidizing bacteria (SOB) oxidize sulfur compounds to sulfuric acid, inducing BSA corrosion. To obtain more information on BSA corrosion in sludge digesters, microbial communities from six different, BSA-damaged, digesters were analyzed using culture dependent methods and subsequent polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE). BSA production was determined in laboratory scale systems with mixed and pure cultures, and in-situ with concrete specimens from the digester headspace and sludge zones. RESULTS The SOB Acidithiobacillus thiooxidans, Thiomonas intermedia, and Thiomonas perometabolis were cultivated and compared to PCR-DGGE results, revealing the presence of additional acidophilic and neutrophilic SOB. Sulfate concentrations of 10-87 mmol/L after 6-21 days of incubation (final pH 1.0-2.0) in mixed cultures, and up to 433 mmol/L after 42 days (final pH <1.0) in pure A. thiooxidans cultures showed huge sulfuric acid production potentials. Additionally, elevated sulfate concentrations in the corroded concrete of the digester headspace in contrast to the concrete of the sludge zone indicated biological sulfur/sulfide oxidation. CONCLUSIONS The presence of SOB and confirmation of their sulfuric acid production under laboratory conditions reveal that these organisms might contribute to BSA corrosion within sludge digesters. Elevated sulfate concentrations on the corroded concrete wall in the digester headspace (compared to the sludge zone) further indicate biological sulfur/sulfide oxidation in-situ. For the first time, SOB presence and activity is directly relatable to BSA corrosion in sludge digesters.
Collapse
Affiliation(s)
- Bettina Huber
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748, Garching, Germany
| | - Bastian Herzog
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748, Garching, Germany
| | - Jörg E Drewes
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748, Garching, Germany.
| | - Konrad Koch
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748, Garching, Germany
| | - Elisabeth Müller
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748, Garching, Germany
| |
Collapse
|
27
|
Jiang G, Keller J, Bond PL, Yuan Z. Predicting concrete corrosion of sewers using artificial neural network. WATER RESEARCH 2016; 92:52-60. [PMID: 26841228 DOI: 10.1016/j.watres.2016.01.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/04/2016] [Accepted: 01/13/2016] [Indexed: 06/05/2023]
Abstract
Corrosion is often a major failure mechanism for concrete sewers and under such circumstances the sewer service life is largely determined by the progression of microbially induced concrete corrosion. The modelling of sewer processes has become possible due to the improved understanding of in-sewer transformation. Recent systematic studies about the correlation between the corrosion processes and sewer environment factors should be utilized to improve the prediction capability of service life by sewer models. This paper presents an artificial neural network (ANN)-based approach for modelling the concrete corrosion processes in sewers. The approach included predicting the time for the corrosion to initiate and then predicting the corrosion rate after the initiation period. The ANN model was trained and validated with long-term (4.5 years) corrosion data obtained in laboratory corrosion chambers, and further verified with field measurements in real sewers across Australia. The trained model estimated the corrosion initiation time and corrosion rates very close to those measured in Australian sewers. The ANN model performed better than a multiple regression model also developed on the same dataset. Additionally, the ANN model can serve as a prediction framework for sewer service life, which can be progressively improved and expanded by including corrosion rates measured in different sewer conditions. Furthermore, the proposed methodology holds promise to facilitate the construction of analytical models associated with corrosion processes of concrete sewers.
Collapse
Affiliation(s)
- Guangming Jiang
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| | - Jurg Keller
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| | - Philip L Bond
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| |
Collapse
|
28
|
Cheng L, House MW, Weiss WJ, Banks MK. Monitoring sulfide-oxidizing biofilm activity on cement surfaces using non-invasive self-referencing microsensors. WATER RESEARCH 2016; 89:321-329. [PMID: 26707733 DOI: 10.1016/j.watres.2015.11.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/15/2015] [Accepted: 11/28/2015] [Indexed: 06/05/2023]
Abstract
Microbially influenced corrosion (MIC) in concrete results in significant cost for infrastructure maintenance. Prior studies have employed molecular techniques to identify microbial community species in corroded concrete, but failed to explore bacterial activity and functionality during deterioration. In this study, biofilms of different sulfur-oxidizing bacteria compositions were developed on the surface of cement paste samples to simulate the natural ecological succession of microbial communities during MIC processes. Noninvasive, self-referencing (SR) microsensors were used to quantify real time changes of oxygen, hydrogen ion and calcium ion flux for the biofilm to provide more information about bacterial behavior during deterioration. Results showed higher transport rates in oxygen consumption, and hydrogen ion at 4 weeks than 2 weeks, indicating increased bacterial activity over time. Samples with five species biofilm had the highest hydrogen ion and calcium ion transport rates, confirming attribution of acidophilic sulfur-oxidizing microorganisms (ASOM). Differences in transport rates between three species samples and two species samples confirmed the diversity between Thiomonas intermedia and Starkeya novella. The limitations of SR sensors in corrosion application could be improved in future studies when combined with molecular techniques to identify the roles of major bacterial species in the deterioration process.
Collapse
Affiliation(s)
- Liqiu Cheng
- Zachry Department of Civil Engineering, Texas A&M University, 3136 TAMU, College Station, TX 77843-3136, USA.
| | - Mitch W House
- Lyles School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907-2051, USA
| | - W Jason Weiss
- Lyles School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907-2051, USA; Bindley Bioscience Center, Physiological Sensing Facility, Discovery Park, Purdue University, 1203 W. State Street, West Lafayette, IN 47907-2057, USA
| | - M Katherine Banks
- Zachry Department of Civil Engineering, Texas A&M University, 3136 TAMU, College Station, TX 77843-3136, USA
| |
Collapse
|
29
|
Sun X, Jiang G, Bond PL, Keller J. Impact of fluctuations in gaseous H2S concentrations on sulfide uptake by sewer concrete: The effect of high H2S loads. WATER RESEARCH 2015; 81:84-91. [PMID: 26043374 DOI: 10.1016/j.watres.2015.05.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/07/2015] [Accepted: 05/22/2015] [Indexed: 06/04/2023]
Abstract
The acid production from the oxidation of hydrogen sulfide (H2S) in sewer air results in serious corrosion of exposed concrete surfaces in sewers. Large fluctuations of gaseous H2S concentrations occur in sewers due to the diurnal profiles of sewage flow and retention times and the necessity of intermittent pumping of sewage from pressure pipes into gravity pipes. How the high concentrations of H2S due to these events may affect H2S uptake and subsequent corrosion by concrete sewers is largely unknown. This study determined the effect of short- and long-term increases in H2S levels on the sulfide uptake rate (SUR) of concrete surfaces with an active corrosion layer. The results showed that during the high load situation the SUR increased significantly but then decreased (compared to the baseline SUR) by about 7-14% and 41-50% immediately after short- and long-term H2S high-load periods, respectively. For both exposure conditions, the SUR gradually (over several hours) recovered to approximately 90% of the baseline SUR. Further tests suggest multiple factors may contribute to the observed decrease of SUR directly after the high H2S load. This includes the temporary storage of elemental sulfur in the corrosion layer and inhibition of sulfide oxidizing bacteria (SOB) due to high H2S level and temporary acid surge. Additionally, the delay of the corrosion layer to fully recover the SUR after the high H2S load suggests that there is a longer-term inhibitive effect of the high H2S levels on the activity of the SOB in the corrosion layer. Due to the observed activity reductions, concrete exposed to occasional short-term high H2S load periods had an overall lower H2S uptake compared to concrete exposed to constant H2S levels at the same average concentration. To accurately predict H2S uptake by sewer concrete and hence the likely maximum corrosion rates, a correction factor should be adopted for the H2S fluctuations when average H2S levels are used in the prediction.
Collapse
Affiliation(s)
- Xiaoyan Sun
- Advanced Water Management Centre, Gehrmann Building, Research Road, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| | - Guangming Jiang
- Advanced Water Management Centre, Gehrmann Building, Research Road, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| | - Philip L Bond
- Advanced Water Management Centre, Gehrmann Building, Research Road, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| | - Jurg Keller
- Advanced Water Management Centre, Gehrmann Building, Research Road, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| |
Collapse
|
30
|
Jiang G, Sun X, Keller J, Bond PL. Identification of controlling factors for the initiation of corrosion of fresh concrete sewers. WATER RESEARCH 2015; 80:30-40. [PMID: 25992907 DOI: 10.1016/j.watres.2015.04.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 06/04/2023]
Abstract
The development of concrete corrosion in new sewer pipes undergoes an initiation process before reaching an active corrosion stage. This initiation period is assumed to last several months to years but the key factors affecting the process, and its duration, are not well understood. This study is therefore focused on this initial stage of the corrosion process and the effect of key environmental factors. Such knowledge is important for the effective management of corrosion in new sewers, as every year of life extension of such systems has a very high financial benefit. This long-term (4.5 year) study has been conducted in purpose-built corrosion chambers that closely simulated the sewer environment, but with control of three key environmental factors being hydrogen sulfide (H2S) gas phase concentration, relative humidity and air temperature. Fresh concrete coupons, cut from an industry-standard sewer pipe, were exposed to the corrosive conditions in the chambers, both in the gas phase and partially submerged in wastewater. A total of 36 exposure conditions were investigated to determine the controlling factors by regular retrieval of concrete coupons for detailed analysis of surface pH, sulfur compounds (elemental sulfur and sulfate) and concrete mass loss. Corrosion initiation times were thus determined for different exposure conditions. It was found that the corrosion initiation time of both gas-phase and partially-submerged coupons was positively correlated with the gas phase H2S concentration, but only at levels of 10 ppm or below, indicating that sulfide oxidation rate rather than the H2S concentration was the limiting factor during the initiation stage. Relative humidity also played a role for the corrosion initiation of the gas-phase coupons. However, the partially-submerged coupons were not affected by humidity as these coupons were in direct contact with the sewage and hence did have sufficient moisture to enable the microbial processes to proceed. The corrosion initiation time was also shortened by higher gas temperature due to its positive impact on reaction kinetics. These findings provide real opportunities for pro-active sewer asset management with the aim to delay the on-set of the corrosion processes, and hence extend the service life of sewers, through improved prediction and optimization capacity.
Collapse
Affiliation(s)
- Guangming Jiang
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Xiaoyan Sun
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jurg Keller
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Philip L Bond
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| |
Collapse
|
31
|
Liu Y, Ni BJ, Sharma KR, Yuan Z. Methane emission from sewers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 524-525:40-51. [PMID: 25889543 DOI: 10.1016/j.scitotenv.2015.04.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/03/2015] [Accepted: 04/03/2015] [Indexed: 05/12/2023]
Abstract
Recent studies have shown that sewer systems produce and emit a significant amount of methane. Methanogens produce methane under anaerobic conditions in sewer biofilms and sediments, and the stratification of methanogens and sulfate-reducing bacteria may explain the simultaneous production of methane and sulfide in sewers. No significant methane sinks or methanotrophic activities have been identified in sewers to date. Therefore, most of the methane would be emitted at the interface between sewage and atmosphere in gravity sewers, pumping stations, and inlets of wastewater treatment plants, although oxidation of methane in the aeration basin of a wastewater treatment plant has been reported recently. Online measurements have also revealed highly dynamic temporal and spatial variations in methane production caused by factors such as hydraulic retention time, area-to-volume ratio, temperature, and concentration of organic matter in sewage. Both mechanistic and empirical models have been proposed to predict methane production in sewers. Due to the sensitivity of methanogens to environmental conditions, most of the chemicals effective in controlling sulfide in sewers also suppress or diminish methane production. In this paper, we review the recent studies on methane emission from sewers, including the production mechanisms, quantification, modeling, and mitigation.
Collapse
Affiliation(s)
- Yiwen Liu
- Advanced Water Management Centre, The University of Queensland, QLD, Australia
| | - Bing-Jie Ni
- Advanced Water Management Centre, The University of Queensland, QLD, Australia
| | - Keshab R Sharma
- Advanced Water Management Centre, The University of Queensland, QLD, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, QLD, Australia.
| |
Collapse
|
32
|
From lithotroph- to organotroph-dominant: directional shift of microbial community in sulphidic tailings during phytostabilization. Sci Rep 2015; 5:12978. [PMID: 26268667 PMCID: PMC4534789 DOI: 10.1038/srep12978] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/16/2015] [Indexed: 12/02/2022] Open
Abstract
Engineering microbial diversity to enhance soil functions may improve the success of direct revegetation in sulphidic mine tailings. Therefore, it is essential to explore how remediation and initial plant establishment can alter microbial communities, and, which edaphic factors control these changes under field conditions. A long-term revegetation trial was established at a Pb-Zn-Cu tailings impoundment in northwest Queensland. The control and amended and/or revegetated treatments were sampled from the 3-year-old trial. In total, 24 samples were examined using pyrosequencing of 16S rRNA genes and various chemical properties. The results showed that the microbial diversity was positively controlled by soil soluble Si and negatively controlled by soluble S, total Fe and total As, implying that pyrite weathering posed a substantial stress on microbial development in the tailings. All treatments were dominated by typical extremophiles and lithotrophs, typically Truepera, Thiobacillus, Rubrobacter; significant increases in microbial diversity, biomass and frequency of organotrophic genera (typically Nocardioides and Altererythrobacter) were detected in the revegetated and amended treatment. We concluded that appropriate phytostabilization options have the potential to drive the microbial diversity and community structure in the tailings toward those of natural soils, however, inherent environmental stressors may limit such changes.
Collapse
|
33
|
Jiang G, Sun J, Sharma KR, Yuan Z. Corrosion and odor management in sewer systems. Curr Opin Biotechnol 2015; 33:192-7. [DOI: 10.1016/j.copbio.2015.03.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 03/06/2015] [Accepted: 03/11/2015] [Indexed: 10/23/2022]
|
34
|
Zhou M, Freguia S, Dennis PG, Keller J, Rabaey K. Development of bioelectrocatalytic activity stimulates mixed-culture reduction of glycerol in a bioelectrochemical system. Microb Biotechnol 2015; 8:483-9. [PMID: 25817314 PMCID: PMC4408180 DOI: 10.1111/1751-7915.12240] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 10/12/2014] [Indexed: 11/30/2022] Open
Abstract
In a microbial bioelectrochemical system (BES), organic substrate such as glycerol can be reductively converted to 1,3-propanediol (1,3-PDO) by a mixed population biofilm growing on the cathode. Here, we show that 1,3-PDO yields positively correlated to the electrons supplied, increasing from 0.27 ± 0.13 to 0.57 ± 0.09 mol PDO mol−1 glycerol when the cathodic current switched from 1 A m−2 to 10 A m−2. Electrochemical measurements with linear sweep voltammetry (LSV) demonstrated that the biofilm was bioelectrocatalytically active and that the cathodic current was greatly enhanced only in the presence of both biofilm and glycerol, with an onset potential of −0.46 V. This indicates that glycerol or its degradation products effectively served as cathodic electron acceptor. During long-term operation (> 150 days), however, the yield decreased gradually to 0.13 ± 0.02 mol PDO mol−1 glycerol, and the current–product correlation disappeared. The onset potentials for cathodic current decreased to −0.58 V in the LSV tests at this stage, irrespective of the presence or absence of glycerol, with electrons from the cathode almost exclusively used for hydrogen evolution (accounted for 99.9% and 89.5% of the electrons transferred at glycerol and glycerol-free conditions respectively). Community analysis evidenced a decreasing relative abundance of Citrobacter in the biofilm, indicating a community succession leading to cathode independent processes relative to the glycerol. It is thus shown here that in processes where substrate conversion can occur independently of the electrode, electroactive microorganisms can be outcompeted and effectively disconnected from the substrate.
Collapse
Affiliation(s)
- Mi Zhou
- Advanced Water Management Centre, The University of Queensland, Brisbane; Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | | | | | | | | |
Collapse
|
35
|
Ling AL, Robertson CE, Harris JK, Frank DN, Kotter CV, Stevens MJ, Pace NR, Hernandez MT. High-resolution microbial community succession of microbially induced concrete corrosion in working sanitary manholes. PLoS One 2015; 10:e0116400. [PMID: 25748024 PMCID: PMC4352008 DOI: 10.1371/journal.pone.0116400] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 12/09/2014] [Indexed: 12/19/2022] Open
Abstract
Microbially-induced concrete corrosion in headspaces threatens wastewater infrastructure worldwide. Models for predicting corrosion rates in sewer pipe networks rely largely on information from culture-based investigations. In this study, the succession of microbes associated with corroding concrete was characterized over a one-year monitoring campaign using rRNA sequence-based phylogenetic methods. New concrete specimens were exposed in two highly corrosive manholes (high concentrations of hydrogen sulfide and carbon dioxide gas) on the Colorado Front Range for up to a year. Community succession on corroding surfaces was assessed using Illumina MiSeq sequencing of 16S bacterial rRNA amplicons and Sanger sequencing of 16S universal rRNA clones. Microbial communities associated with corrosion fronts presented distinct succession patterns which converged to markedly low α-diversity levels (< 10 taxa) in conjunction with decreasing pH. The microbial community succession pattern observed in this study agreed with culture-based models that implicate acidophilic sulfur-oxidizer Acidithiobacillus spp. in advanced communities, with two notable exceptions. Early communities exposed to alkaline surface pH presented relatively high α-diversity, including heterotrophic, nitrogen-fixing, and sulfur-oxidizing genera, and one community exposed to neutral surface pH presented a diverse transition community comprised of less than 20% sulfur-oxidizers.
Collapse
Affiliation(s)
- Alison L. Ling
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO, 80309, United States of America
| | - Charles E. Robertson
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309, United States of America
| | - J. Kirk Harris
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, United States of America
| | - Daniel N. Frank
- Department of Infectious Diseases, University of Colorado School of Medicine, Aurora, CO, 80045, United States of America
| | - Cassandra V. Kotter
- Department of Infectious Diseases, University of Colorado School of Medicine, Aurora, CO, 80045, United States of America
| | - Mark J. Stevens
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, United States of America
| | - Norman R. Pace
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309, United States of America
| | - Mark T. Hernandez
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO, 80309, United States of America
- * E-mail:
| |
Collapse
|
36
|
Jiang G, Keller J, Bond PL. Determining the long-term effects of H₂S concentration, relative humidity and air temperature on concrete sewer corrosion. WATER RESEARCH 2014; 65:157-169. [PMID: 25108169 DOI: 10.1016/j.watres.2014.07.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 06/03/2023]
Abstract
Many studies of sewer corrosion are performed in accelerated conditions that are not representing the actual corrosion processes. This study investigated the effects of various factors over 3.5 years under controlled conditions simulating the sewer environment. Concrete coupons prepared from precorroded sewers were exposed, both in the gas phase and partially submerged in wastewater, in laboratory controlled corrosion chambers. Over the 45 month exposure period, three environmental factors of H2S concentration, relative humidity and air temperature were controlled at different levels in the corrosion chambers. A total of 36 exposure conditions were investigated to determine the long term effects of these factors by regular retrieval of concrete coupons for detailed analysis of surface pH, corrosion layer sulfate levels and concrete loss. Corrosion rates were also determined for different exposure periods. It was found that the corrosion rate of both gas-phase and partially-submerged coupons was positively correlated with the H2S concentration in the gas phase. Relative humidity played also a role for the corrosion activity of the gas-phase coupons. However, the partially-submerged coupons were not affected by humidity as the surfaces of these coupons were saturated due to capillary suction of sewage on the coupon surface. The effect of temperature on corrosion activity varied and possibly the acclimation of corrosion-inducing microbes to temperature mitigated effects of that factor. It was apparent that biological sulfide oxidation was not the limiting step of the overall corrosion process. These findings provide real insights into the long-term effects of these key environmental factors on the sewer corrosion processes.
Collapse
Affiliation(s)
- Guangming Jiang
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jurg Keller
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Philip L Bond
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| |
Collapse
|
37
|
Vanwonterghem I, Jensen PD, Dennis PG, Hugenholtz P, Rabaey K, Tyson GW. Deterministic processes guide long-term synchronised population dynamics in replicate anaerobic digesters. THE ISME JOURNAL 2014; 8:2015-28. [PMID: 24739627 PMCID: PMC4184015 DOI: 10.1038/ismej.2014.50] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 02/26/2014] [Accepted: 03/01/2014] [Indexed: 02/01/2023]
Abstract
A replicate long-term experiment was conducted using anaerobic digestion (AD) as a model process to determine the relative role of niche and neutral theory on microbial community assembly, and to link community dynamics to system performance. AD is performed by a complex network of microorganisms and process stability relies entirely on the synergistic interactions between populations belonging to different functional guilds. In this study, three independent replicate anaerobic digesters were seeded with the same diverse inoculum, supplied with a model substrate, α-cellulose, and operated for 362 days at a 10-day hydraulic residence time under mesophilic conditions. Selective pressure imposed by the operational conditions and model substrate caused large reproducible changes in community composition including an overall decrease in richness in the first month of operation, followed by synchronised population dynamics that correlated with changes in reactor performance. This included the synchronised emergence and decline of distinct Ruminococcus phylotypes at day 148, and emergence of a Clostridium and Methanosaeta phylotype at day 178, when performance became stable in all reactors. These data suggest that many dynamic functional niches are predictably filled by phylogenetically coherent populations over long time scales. Neutral theory would predict that a complex community with a high degree of recognised functional redundancy would lead to stochastic changes in populations and community divergence over time. We conclude that deterministic processes may play a larger role in microbial community dynamics than currently appreciated, and under controlled conditions it may be possible to reliably predict community structural and functional changes over time.
Collapse
Affiliation(s)
- Inka Vanwonterghem
- Advanced Water Management Centre (AWMC), University of Queensland, St Lucia, Queensland, Australia
- Australian Centre for Ecogenomics (ACE), School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Paul D Jensen
- Advanced Water Management Centre (AWMC), University of Queensland, St Lucia, Queensland, Australia
| | - Paul G Dennis
- Advanced Water Management Centre (AWMC), University of Queensland, St Lucia, Queensland, Australia
- Australian Centre for Ecogenomics (ACE), School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
- School of Agriculture and Food Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics (ACE), School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Korneel Rabaey
- Advanced Water Management Centre (AWMC), University of Queensland, St Lucia, Queensland, Australia
- Laboratory for Microbial Ecology and Technology (LabMET), Ghent University, Ghent, Belgium
| | - Gene W Tyson
- Advanced Water Management Centre (AWMC), University of Queensland, St Lucia, Queensland, Australia
- Australian Centre for Ecogenomics (ACE), School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
38
|
Sun X, Jiang G, Bond PL, Wells T, Keller J. A rapid, non-destructive methodology to monitor activity of sulfide-induced corrosion of concrete based on H2S uptake rate. WATER RESEARCH 2014; 59:229-238. [PMID: 24810739 DOI: 10.1016/j.watres.2014.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/06/2014] [Accepted: 04/08/2014] [Indexed: 06/03/2023]
Abstract
Many existing methods to monitor the corrosion of concrete in sewers are either very slow or destructive measurements. To overcome these limitations, a rapid, non-invasive methodology was developed to monitor the sulfide-induced corrosion process on concrete through the measurement of the H2S uptake rates of concrete at various corrosion stages. The H2S uptake rate for a concrete coupon was determined by measuring the gaseous H2S concentrations over time in a temperature- and humidity-controlled gas-tight reactor. The reliability of this method was evaluated by carrying out repeated tests on different concrete coupons previously exposed to 50 ppm of H2S, at 30 °C and 100% relative humidity for over 32 months. The H2S uptake measurements showed good reproducibility. It was also shown that a severely corroded coupon exhibited higher sulfide uptake rates than a less corroded coupon. This could be explained by the corrosion layer in the more corroded coupon having a higher biological sulfide oxidation activity than the less corroded coupon. Additionally, temperature changes had a stronger effect on the uptake rate of the heavily corroded coupon compared to the less corroded coupon. A corrosion rate of 8.9 ± 0.5 mm/year, estimated from the H2S uptake results, agreed well with the corrosion rate observed in real sewers under similar conditions. The method could be applied to investigate important factors affecting sulfide-induced concrete corrosion, particularly temperature, fluctuating gaseous H2S concentrations, oxygen concentrations, surface pH and relative humidity.
Collapse
Affiliation(s)
- Xiaoyan Sun
- Advanced Water Management Centre, Gehrmann Building, Research Road, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| | - Guangming Jiang
- Advanced Water Management Centre, Gehrmann Building, Research Road, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| | - Philip L Bond
- Advanced Water Management Centre, Gehrmann Building, Research Road, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| | - Tony Wells
- Centre for Infrastructure Performance and Reliability, The University of Newcastle, Australia.
| | - Jurg Keller
- Advanced Water Management Centre, Gehrmann Building, Research Road, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| |
Collapse
|
39
|
Ling AL, Robertson CE, Harris JK, Frank DN, Kotter CV, Stevens MJ, Pace NR, Hernandez MT. Carbon dioxide and hydrogen sulfide associations with regional bacterial diversity patterns in microbially induced concrete corrosion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:7357-7364. [PMID: 24842376 DOI: 10.1021/es500763e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The microbial communities associated with deteriorating concrete corrosion fronts were characterized in 35 samples taken from wastewater collection and treatment systems in ten utilities. Bacterial communities were described using Illumina MiSeq sequencing of the V1V2 region of the small subunit ribosomal ribonucleic acid (SSU-rRNA) gene recovered from fresh corrosion products. Headspace gas concentrations (hydrogen sulfide, carbon dioxide, and methane), pore water pH, moisture content, and select mineralogy were tested for correlation to community outcomes and corrosion extent using pairwise linear regressions and canonical correspondence analysis. Corroding concrete was most commonly characterized by moisture contents greater than 10%, pore water pH below one, and limited richness (<10 taxa). Bacterial community composition was not correlated to geographic location when considered independently from other environmental factors. Corrosion was most severe in sites with high levels of hydrogen sulfide (>100 ppm) and carbon dioxide (>1%) gases, conditions which also were associated with low diversity biofilms dominated by members of the acidophilic sulfur-oxidizer genus Acidithiobacillus.
Collapse
Affiliation(s)
- Alison L Ling
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder , Boulder, Colorado 80309, United States
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Pagaling E, Yang K, Yan T. Pyrosequencing reveals correlations between extremely acidophilic bacterial communities with hydrogen sulphide concentrations, pH and inert polymer coatings at concrete sewer crown surfaces. J Appl Microbiol 2014; 117:50-64. [DOI: 10.1111/jam.12491] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/14/2014] [Accepted: 02/27/2014] [Indexed: 01/31/2023]
Affiliation(s)
- E. Pagaling
- Department of Civil and Environmental Engineering; University of Hawai'i at Mānoa; Honolulu HI USA
| | - K. Yang
- Department of Civil and Environmental Engineering; University of Hawai'i at Mānoa; Honolulu HI USA
| | - T. Yan
- Department of Civil and Environmental Engineering; University of Hawai'i at Mānoa; Honolulu HI USA
| |
Collapse
|
41
|
Guo K, Freguia S, Dennis PG, Chen X, Donose BC, Keller J, Gooding JJ, Rabaey K. Effects of surface charge and hydrophobicity on anodic biofilm formation, community composition, and current generation in bioelectrochemical systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:7563-7570. [PMID: 23745742 DOI: 10.1021/es400901u] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The focus of this study was to investigate the effects of surface charge and surface hydrophobicity on anodic biofilm formation, biofilm community composition, and current generation in bioelectrochemical systems (BESs). Glassy carbon surfaces were modified with -OH, -CH3, -SO3(-), or -N(+)(CH3)3 functional groups by electrochemical reduction of aryl diazonium salts and then used as anodes with poised potential of -0.2 V (vs Ag/AgCl). The average startup times and final current densities for the -N(+)(CH3)3, -OH, -SO3(-), and -CH3, electrodes were (23 d, 0.204 mA/cm(2)), (25.4 d, 0.149 mA/cm(2)), (25.9 d, 0.114 mA/cm(2)), and (37.2 d, 0.048 mA/cm(2)), respectively. Biofilms on different surfaces were analyzed by nonturnover cyclic voltammetry (CV), fluorescence in situ hybridization (FISH), and 16S rRNA gene amplicon pyrosequencing. The results demonstrated that 1) differences in the maximum current output between surface modifications was correlated with biomass quantity, and 2) all biofilms were dominated by Geobacter populations, but the composition of -CH3-associated biofilms differed from those formed on surfaces with different chemical modification. This study shows that anode surface charge and hydrophobicity influences biofilm development and can lead to significant differences in BESs performance. Positively charged and hydrophilic surfaces were more selective to electroactive microbes (e.g. Geobacter) and more conducive for electroactive biofilm formation.
Collapse
Affiliation(s)
- Kun Guo
- Centre for Microbial Electrosynthesis, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Dynamics of cathode-associated microbial communities and metabolite profiles in a glycerol-fed bioelectrochemical system. Appl Environ Microbiol 2013; 79:4008-14. [PMID: 23603684 DOI: 10.1128/aem.00569-13] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Electrical current can be used to supply reducing power to microbial metabolism. This phenomenon is typically studied in pure cultures with added redox mediators to transfer charge. Here, we investigate the development of a current-fed mixed microbial community fermenting glycerol at the cathode of a bioelectrochemical system in the absence of added mediators and identify correlations between microbial diversity and the respective product outcomes. Within 1 week of inoculation, a Citrobacter population represented 95 to 99% of the community and the metabolite profiles were dominated by 1,3-propanediol and ethanol. Over time, the Citrobacter population decreased in abundance while that of a Pectinatus population and the formation of propionate increased. After 6 weeks, several Clostridium populations and the production of valerate increased, which suggests that chain elongation was being performed. Current supply was stopped after 9 weeks and was associated with a decrease in glycerol degradation and alcohol formation. This decrease was reversed by resuming current supply; however, when hydrogen gas was bubbled through the reactor during open-circuit operation (open-circuit potential) as an alternative source of reducing power, glycerol degradation and metabolite production were unaffected. Cyclic voltammetry revealed that the community appeared to catalyze the hydrogen evolution reaction, leading to a +400-mV shift in its onset potential. Our results clearly demonstrate that current supply can alter fermentation profiles; however, further work is needed to determine the mechanisms behind this effect. In addition, operational conditions must be refined to gain greater control over community composition and metabolic outcomes.
Collapse
|