1
|
Akter S, Mahmud U, Shoumik BAA, Khan MZ. Although invisible, fungi are recognized as the engines of a microbial powerhouse that drives soil ecosystem services. Arch Microbiol 2025; 207:79. [PMID: 40047912 DOI: 10.1007/s00203-025-04285-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025]
Abstract
Soil ecosystem services (SES) are the benefits that humans derive from soil. These services emerge from the complex interactions between biotic and abiotic processes within soil systems. They are vital for maintaining ecosystem resilience and ensuring long-term sustainability. Soil hosts a diverse group of biota, among them fungi play a crucial role in supporting and enhancing SES due to their remarkable adaptability and ability to thrive under unfavorable conditions. This review explores the multifaceted roles of fungi in SES, emphasizing their growing importance in strengthening ecosystem resilience and climate change adaptation. Fungi significantly contribute to the key ecosystem processes such as soil aggregation, organic matter (OM) decomposition, nutrients cycling, plant productivity, and carbon (C) sequestration. However, potential threats to fungal abundance and diversity could undermine these critical functions, highlighting the need for proactive measures to preserve fungal communities. The pivotal role of fungi in SES, including agricultural production and climate regulation, tailor them as indispensable microbial engines that shape and maintain ecosystem resilience. Emerging evidence suggests that soil fungal communities may become increasingly prominent under the future climate scenarios. Thus, understanding how fungal functional roles evolve in response to climate change is emergent for safeguarding SES and ensuring environmental sustainability. Furthermore, the co-occurrance of fungi with other soil organisms in supporting SES highlights the need to integrate diverse soil biota alongside fungi to promote sustainable SES. Collaborative efforts to comprehend and manage soil microbial communities are imperative for maintaining the long-term ecological stability of ecosystems.
Collapse
Affiliation(s)
- Shova Akter
- Department of Soil Science and Plant Nutrition, Ondokuz Mayis University, Samsun, 55139, Turkey
| | - Upoma Mahmud
- Department of Soil Science and Agrophysics, University of Agriculture in Krakow, Krakow, 30-120, Poland
| | | | - Md Zulfikar Khan
- French National Research Institute for Agriculture, Food and Environment (INRAE), Poitou-Charentes, Lusignan, URP3F, 86600, France.
| |
Collapse
|
2
|
Wang X, Chi Y, Song S. Important soil microbiota's effects on plants and soils: a comprehensive 30-year systematic literature review. Front Microbiol 2024; 15:1347745. [PMID: 38591030 PMCID: PMC10999704 DOI: 10.3389/fmicb.2024.1347745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
Clarifying the relationship between soil microorganisms and the plant-soil system is crucial for encouraging the sustainable development of ecosystems, as soil microorganisms serve a variety of functional roles in the plant-soil system. In this work, the influence mechanisms of significant soil microbial groups on the plant-soil system and their applications in environmental remediation over the previous 30 years were reviewed using a systematic literature review (SLR) methodology. The findings demonstrated that: (1) There has been a general upward trend in the number of publications on significant microorganisms, including bacteria, fungi, and archaea. (2) Bacteria and fungi influence soil development and plant growth through organic matter decomposition, nitrogen, phosphorus, and potassium element dissolution, symbiotic relationships, plant growth hormone production, pathogen inhibition, and plant resistance induction. Archaea aid in the growth of plants by breaking down low-molecular-weight organic matter, participating in element cycles, producing plant growth hormones, and suppressing infections. (3) Microorganism principles are utilized in soil remediation, biofertilizer production, denitrification, and phosphorus removal, effectively reducing environmental pollution, preventing soil pathogen invasion, protecting vegetation health, and promoting plant growth. The three important microbial groups collectively regulate the plant-soil ecosystem and help maintain its relative stability. This work systematically summarizes the principles of important microbial groups influence plant-soil systems, providing a theoretical reference for how to control soil microbes in order to restore damaged ecosystems and enhance ecosystem resilience in the future.
Collapse
Affiliation(s)
| | - Yongkuan Chi
- School of Karst Science, State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, China
| | | |
Collapse
|
3
|
Putkinen A, Siljanen HMP, Laihonen A, Paasisalo I, Porkka K, Tiirola M, Haikarainen I, Tenhovirta S, Pihlatie M. New insight to the role of microbes in the methane exchange in trees: evidence from metagenomic sequencing. THE NEW PHYTOLOGIST 2021; 231:524-536. [PMID: 33780002 DOI: 10.1111/nph.17365] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
Methane (CH4 ) exchange in tree stems and canopies and the processes involved are among the least understood components of the global CH4 cycle. Recent studies have focused on quantifying tree stems as sources of CH4 and understanding abiotic CH4 emissions in plant canopies, with the role of microbial in situ CH4 formation receiving less attention. Moreover, despite initial reports revealing CH4 consumption, studies have not adequately evaluated the potential of microbial CH4 oxidation within trees. In this paper, we discuss the current level of understanding on these processes. Further, we demonstrate the potential of novel metagenomic tools in revealing the involvement of microbes in the CH4 exchange of plants, and particularly in boreal trees. We detected CH4 -producing methanogens and novel monooxygenases, potentially involved in CH4 consumption, in coniferous plants. In addition, our field flux measurements from Norway spruce (Picea abies) canopies demonstrate both net CH4 emissions and uptake, giving further evidence that both production and consumption are relevant to the net CH4 exchange. Our findings, together with the emerging diversity of novel CH4 -producing microbial groups, strongly suggest microbial analyses should be integrated in the studies aiming to reveal the processes and drivers behind plant CH4 exchange.
Collapse
Affiliation(s)
- Anuliina Putkinen
- Department of Agricultural Sciences, University of Helsinki, PO Box 56, Helsinki, 00014, Finland
- Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, University of Helsinki, Helsinki, 00560, Finland
| | - Henri M P Siljanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, 70200, Finland
- Department of Ecogenomics and Archaea Biology, University of Vienna, Vienna, A-1090, Austria
| | - Antti Laihonen
- Department of Biological and Environmental Science, University of Jyväskylä, PO Box 35, Jyväskylä, FI-40014, Finland
| | - Inga Paasisalo
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, 70200, Finland
| | - Kaija Porkka
- Department of Agricultural Sciences, University of Helsinki, PO Box 56, Helsinki, 00014, Finland
- Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, University of Helsinki, Helsinki, 00560, Finland
- Natural Resources Institute Finland, Savonlinna, FI-57200, Finland
| | - Marja Tiirola
- Department of Biological and Environmental Science, University of Jyväskylä, PO Box 35, Jyväskylä, FI-40014, Finland
| | - Iikka Haikarainen
- Department of Agricultural Sciences, University of Helsinki, PO Box 56, Helsinki, 00014, Finland
- Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, University of Helsinki, Helsinki, 00560, Finland
| | - Salla Tenhovirta
- Department of Agricultural Sciences, University of Helsinki, PO Box 56, Helsinki, 00014, Finland
- Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, University of Helsinki, Helsinki, 00560, Finland
| | - Mari Pihlatie
- Department of Agricultural Sciences, University of Helsinki, PO Box 56, Helsinki, 00014, Finland
- Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, University of Helsinki, Helsinki, 00560, Finland
- Department of Agricultural Sciences, Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, 00014, Finland
| |
Collapse
|
4
|
Xing XY, Tang YF, Xu HF, Qin HL, Liu Y, Zhang WZ, Chen AL, Zhu BL. Warming Shapes nirS- and nosZ-Type Denitrifier Communities and Stimulates N 2O Emission in Acidic Paddy Soil. Appl Environ Microbiol 2021; 87:e0296520. [PMID: 33837014 PMCID: PMC8174758 DOI: 10.1128/aem.02965-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/13/2021] [Indexed: 11/20/2022] Open
Abstract
Warming strongly stimulates soil nitrous oxide (N2O) emission, contributing to the global warming trend. Submerged paddy soils exhibit huge N2O emission potential; however, the N2O emission pathway and underlying mechanisms for warming are not clearly understood. We conducted an incubation experiment using 15N to investigate the dynamics of N2O emission at controlled temperatures (5, 15, 25, and 35°C) in 125% water-filled pore space. The community structures of nitrifiers and denitrifiers were determined via high-throughput sequencing of functional genes. Our results showed that elevated temperature sharply enhanced soil N2O emission from submerged paddy soil. Denitrification was the main contributor, accounting for more than 90% of total N2O emission at all treatment temperatures. N2O flux was coordinatively regulated by nirK-, nirS-, and nosZ-containing denitrifiers but not ammonia-oxidizing archaea or ammonia-oxidizing bacteria. The nirS-containing denitrifiers were more sensitive to temperature shifts, especially at a lower temperature range (5 to 25°C), and showed a stronger correlation with N2O flux than that of nirK-containing denitrifiers. In contrast, nosZ-containing denitrifiers exhibited substantial variation at higher temperatures (15 to 35°C), thereby playing an important role in N2O consumption. Certain taxa of nirS- and nosZ-containing denitrifiers regulated N2O flux, including nirS-containing denitrifiers affiliated with Rhodanobacter and Cupriavidus as well as nosZ-containing denitrifiers affiliated with Azoarcus and Azospirillum. Together, these findings suggest that elevated temperature can significantly increase N2O emission from denitrification in submerged paddy soils by shifting the overall community structures and enriching some indigenous taxa of nirS- and nosZ-containing denitrifiers. IMPORTANCE The interdependence between global warming and greenhouse gas N2O has always been the hot spot. However, information on factors contributing to N2O and temperature-dependent community structure changes is scarce. This study demonstrated high-temperature-induced N2O emission from submerged paddy soils, mainly via stimulating denitrification. Further, we speculate that key functional denitrifiers drive N2O emission. This study showed that denitrifiers were more sensitive to temperature rise than nitrifiers, and the temperature sensitivity differed among denitrifier communities. N2O-consuming denitrifiers (nosZ-containing denitrifiers) were more sensitive at a higher temperature range than N2O-producing denitrifiers (nirS-containing denitrifiers). This study's findings help predict N2O fluxes under different degrees of warming and develop strategies to mitigate N2O emissions from paddy fields based on microbial community regulation.
Collapse
Affiliation(s)
- Xiao-Yi Xing
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Taoyuan Agroecosystem Research Station, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Urban Construction College, Shaoyang University, Shaoyang, China
| | - Ya-Fang Tang
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan, China
| | - Hui-Fang Xu
- School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Hong-Ling Qin
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Taoyuan Agroecosystem Research Station, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yi Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Taoyuan Agroecosystem Research Station, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Wen-Zhao Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Taoyuan Agroecosystem Research Station, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - An-Lei Chen
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Taoyuan Agroecosystem Research Station, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Bao-Li Zhu
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Taoyuan Agroecosystem Research Station, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
5
|
Gonzalez-Escobedo R, Briones-Roblero CI, López MF, Rivera-Orduña FN, Zúñiga G. Changes in the Microbial Community of Pinus arizonica Saplings After Being Colonized by the Bark Beetle Dendroctonus rhizophagus (Curculionidae: Scolytinae). MICROBIAL ECOLOGY 2019; 78:102-112. [PMID: 30349964 DOI: 10.1007/s00248-018-1274-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/09/2018] [Indexed: 06/08/2023]
Abstract
The death of trees is an ecological process that promotes regeneration, organic matter recycling, and the structure of communities. However, diverse biotic and abiotic factors can disturb this process. Dendroctonus bark beetles (Curculionidae: Scolytinae) are natural inhabitants of pine forests, some of which produce periodic outbreaks, killing thousands of trees in the process. These insects spend almost their entire life cycle under tree bark, where they reproduce and feed on phloem. Tunneling and feeding of the beetles result in the death of the tree and an alteration of the resident microbiota as well as the introduction of microbes that the beetles vector. To understand how microbial communities in subcortical tissues of pines change after they are colonized by the bark beetle Dendroctonus rhizophagus, we compare both the bacterial and fungal community structures in two colonization stages of Pinus arizonica (Arizona pine) employing Illumina MiSeq. Our findings showed significant differences in diversity and the dominance of bacterial community in the two colonization stages with Shannon (P = 0.004) and Simpson (P = 0.0006) indices, respectively, but not in species richness with Chao1 (P = 0.19). In contrast, fungal communities in both stages showed significant differences in species richness with Chao1 (P = 0.0003) and a diversity with Shannon index (P = 0.038), but not in the dominance with the Simpson index (P = 0.12). The β-diversity also showed significant changes in the structure of bacterial and fungal communities along the colonization stages, maintaining the dominant members in both cases. Our results suggest that microbial communities present in the Arizona pine at the tree early colonization stage by bark beetle change predictably over time.
Collapse
Affiliation(s)
- Roman Gonzalez-Escobedo
- Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n. Delegación Miguel Hidalgo, CP 11340, Mexico City, Mexico
| | - Carlos I Briones-Roblero
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n. Delegación Miguel Hidalgo, CP 11340, Mexico City, Mexico
| | - María Fernanda López
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n. Delegación Miguel Hidalgo, CP 11340, Mexico City, Mexico
| | - Flor N Rivera-Orduña
- Laboratorio de Ecología Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n. Delegación Miguel Hidalgo, CP 11340, Mexico City, Mexico
| | - Gerardo Zúñiga
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n. Delegación Miguel Hidalgo, CP 11340, Mexico City, Mexico.
| |
Collapse
|
6
|
Liu J, Yu Z, Yao Q, Sui Y, Shi Y, Chu H, Tang C, Franks AE, Jin J, Liu X, Wang G. Biogeographic Distribution Patterns of the Archaeal Communities Across the Black Soil Zone of Northeast China. Front Microbiol 2019; 10:23. [PMID: 30740093 PMCID: PMC6355713 DOI: 10.3389/fmicb.2019.00023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/09/2019] [Indexed: 11/18/2022] Open
Abstract
Although archaea are ubiquitous in various environments, the knowledge gaps still exist regarding the biogeographical distribution of archaeal communities at regional scales in agricultural soils compared with bacteria and fungi. To provide a broader biogeographical context of archaeal diversity, this study quantified the abundance and community composition of archaea across the black soil zone in northeast China using real-time PCR and high-throughput sequencing (HTS) methods. Archaeal abundances across all soil samples ranged from 4.04 × 107 to 26.18 × 107 16S rRNA gene copies per gram of dry soil. Several soil factors were positively correlated with the abundances including soil pH, concentrations of total C, N, and P, and available K in soil, and soil water content. Approximately 94.2, 5.7, and 0.3% of archaeal sequences, and 31, 151, and 3 OTUs aligned within the phyla Thaumarchaeota, Euryarchaeota, and Crenarchaeota, respectively. Within the phylum of Thaumarchaeota, group 1.1b was a dominating genus accounting for an average of 87% archaeal sequences and phylogenetically classified as Nitrososphaera, a genus of ammonia oxidizing archaea. The response of dominating OTUs to environmental factors differed greatly, suggesting the physiological characteristics of different archaeal members is diversified in the black soils. Although the number of OTUs was not related with any particular soil parameters, the number of OTUs within Thaumarchaeota and Euryarchaeota was marginally related with soil pH. Archaeal community compositions differed between samples, and a Canonical correspondence analysis (CCA) analysis indicated that soil pH and the latitude of sampling locations were two dominating factors in shifting community structures. A variance partitioning analysis (VPA) analysis showed that the selected soil parameters (32%) were the largest drivers of community variation, in particular soil pH (21%), followed by geographic distances (19%). These findings suggest that archaeal communities have distinct biogeographic distribution pattern in the black soil zone and soil pH was the key edaphic factor in structuring the community compositions.
Collapse
Affiliation(s)
- Junjie Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Zhenhua Yu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Qin Yao
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Yueyu Sui
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Yu Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Caixian Tang
- Department of Animal, Plant and Soil Sciences, AgriBio Centre for AgriBiosciences, La Trobe University, Bundoora, VIC, Australia
| | - Ashley E Franks
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia.,Research Centre for Future Landscapes, La Trobe University, Melbourne, VIC, Australia
| | - Jian Jin
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Xiaobing Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Guanghua Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| |
Collapse
|
7
|
Deveau A, Bonito G, Uehling J, Paoletti M, Becker M, Bindschedler S, Hacquard S, Hervé V, Labbé J, Lastovetsky OA, Mieszkin S, Millet LJ, Vajna B, Junier P, Bonfante P, Krom BP, Olsson S, van Elsas JD, Wick LY. Bacterial-fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol Rev 2018; 42:335-352. [PMID: 29471481 DOI: 10.1093/femsre/fuy008] [Citation(s) in RCA: 381] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 02/16/2018] [Indexed: 12/14/2022] Open
Abstract
Fungi and bacteria are found living together in a wide variety of environments. Their interactions are significant drivers of many ecosystem functions and are important for the health of plants and animals. A large number of fungal and bacterial families engage in complex interactions that lead to critical behavioural shifts of the microorganisms ranging from mutualism to antagonism. The importance of bacterial-fungal interactions (BFI) in environmental science, medicine and biotechnology has led to the emergence of a dynamic and multidisciplinary research field that combines highly diverse approaches including molecular biology, genomics, geochemistry, chemical and microbial ecology, biophysics and ecological modelling. In this review, we discuss recent advances that underscore the roles of BFI across relevant habitats and ecosystems. A particular focus is placed on the understanding of BFI within complex microbial communities and in regard of the metaorganism concept. We also discuss recent discoveries that clarify the (molecular) mechanisms involved in bacterial-fungal relationships, and the contribution of new technologies to decipher generic principles of BFI in terms of physical associations and molecular dialogues. Finally, we discuss future directions for research in order to stimulate synergy within the BFI research area and to resolve outstanding questions.
Collapse
Affiliation(s)
- Aurélie Deveau
- Université de Lorraine, INRA, UMR IAM, 54280 Champenoux, France
| | - Gregory Bonito
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Jessie Uehling
- Biology Department, Duke University, Box 90338, Durham, NC 27705, USA.,Plant and Microbial Biology, University of California, Berkeley, CA 94703, USA
| | - Mathieu Paoletti
- Institut de Biologie et Génétique Cellulaire, UMR 5095 CNRS et Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077 Bordeaux cedex, France
| | - Matthias Becker
- IGZ, Leibniz-Institute of Vegetable and Ornamental Crops, 14979 Großbeeren, Germany
| | - Saskia Bindschedler
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Stéphane Hacquard
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Vincent Hervé
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland.,Laboratory of Biogeosciences, Institute of Earth Surface Dynamics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Jessy Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.,Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Olga A Lastovetsky
- Graduate Field of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Sophie Mieszkin
- Université de Lorraine, INRA, UMR IAM, 54280 Champenoux, France
| | - Larry J Millet
- Joint Institute for Biological Science, University of Tennessee, and the Biosciences Division of Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Balázs Vajna
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Paola Bonfante
- Department of Life Science and Systems Biology, University of Torino, 10125 Torino, Italy
| | - Bastiaan P Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry, G. Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Stefan Olsson
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China
| | - Jan Dirk van Elsas
- Microbial Ecology group, GELIFES, University of Groningen, 9747 Groningen, The Netherlands
| | - Lukas Y Wick
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
8
|
Rinta-Kanto J, Pehkonen K, Sinkko H, Tamminen M, Timonen S. Archaeaare prominent members of the prokaryotic communities colonizing common forest mushrooms. Can J Microbiol 2018; 64:716-726. [DOI: 10.1139/cjm-2018-0035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, the abundance and composition of prokaryotic communities associated with the inner tissue of fruiting bodies of Suillus bovinus, Boletus pinophilus, Cantharellus cibarius, Agaricus arvensis, Lycoperdon perlatum, and Piptoporus betulinus were analyzed using culture-independent methods. Our findings indicate that archaea and bacteria colonize the internal tissues of all investigated specimens and that archaea are prominent members of the prokaryotic community. The ratio of archaeal 16S rRNA gene copy numbers to those of bacteria was >1 in the fruiting bodies of four out of six fungal species included in the study. The largest proportion of archaeal 16S rRNA gene sequences belonged to thaumarchaeotal classes Terrestrial group, Miscellaneous Crenarchaeotic Group (MCG), and Thermoplasmata. Bacterial communities showed characteristic compositions in each fungal species. Bacterial classes Gammaproteobacteria, Actinobacteria, Bacilli, and Clostridia were prominent among communities in fruiting body tissues. Bacterial populations in each fungal species had different characteristics. The results of this study imply that fruiting body tissues are an important habitat for abundant and diverse populations of archaea and bacteria.
Collapse
Affiliation(s)
- J.M. Rinta-Kanto
- University of Helsinki, Department of Microbiology, Viikinkaari 9, 00014 Helsinki, Finland
| | - K. Pehkonen
- University of Helsinki, Department of Microbiology, Viikinkaari 9, 00014 Helsinki, Finland
| | - H. Sinkko
- University of Helsinki, Department of Microbiology, Viikinkaari 9, 00014 Helsinki, Finland
| | - M.V. Tamminen
- Department of Biology, University Hill, 20014 University of Turku, Finland
| | - S. Timonen
- University of Helsinki, Department of Microbiology, Viikinkaari 9, 00014 Helsinki, Finland
| |
Collapse
|
9
|
Uroz S, Oger P, Tisserand E, Cébron A, Turpault MP, Buée M, De Boer W, Leveau JHJ, Frey-Klett P. Specific impacts of beech and Norway spruce on the structure and diversity of the rhizosphere and soil microbial communities. Sci Rep 2016; 6:27756. [PMID: 27302652 PMCID: PMC4908602 DOI: 10.1038/srep27756] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 05/25/2016] [Indexed: 11/09/2022] Open
Abstract
The impacts of plant species on the microbial communities and physico-chemical characteristics of soil are well documented for many herbs, grasses and legumes but much less so for tree species. Here, we investigate by rRNA and ITS amplicon sequencing the diversity of microorganisms from the three domains of life (Archaea, Bacteria and Eukaryota:Fungi) in soil samples taken from the forest experimental site of Breuil-Chenue (France). We discovered significant differences in the abundance, composition and structure of the microbial communities associated with two phylogenetically distant tree species of the same age, deciduous European beech (Fagus sylvatica) and coniferous Norway spruce (Picea abies Karst), planted in the same soil. Our results suggest a significant effect of tree species on soil microbiota though in different ways for each of the three microbial groups. Fungal and archaeal community structures and compositions are mainly determined according to tree species, whereas bacterial communities differ to a great degree between rhizosphere and bulk soils, regardless of the tree species. These results were confirmed by quantitative PCR, which revealed significant enrichment of specific bacterial genera, such as Burkholderia and Collimonas, known for their ability to weather minerals within the tree root vicinity.
Collapse
Affiliation(s)
- S Uroz
- INRA-Université de Lorraine , UMR1136 « Interactions Arbres-Microorganismes », F-54280 Champenoux, France.,INRA UR 1138 "Biogéochimie des Ecosystèmes Forestiers", Centre INRA de Nancy, Champenoux, France
| | - P Oger
- UMR5276 Laboratoire de Géologie de Lyon, Ecole Normale de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | - E Tisserand
- INRA-Université de Lorraine , UMR1136 « Interactions Arbres-Microorganismes », F-54280 Champenoux, France
| | - A Cébron
- CNRS, LIEC UMR7360 Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France.,Université de Lorraine, LIEC UMR7360 Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France
| | - M-P Turpault
- INRA UR 1138 "Biogéochimie des Ecosystèmes Forestiers", Centre INRA de Nancy, Champenoux, France
| | - M Buée
- INRA-Université de Lorraine , UMR1136 « Interactions Arbres-Microorganismes », F-54280 Champenoux, France
| | - W De Boer
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, Wageningen, The Netherlands
| | - J H J Leveau
- Department of Plant Pathology, University of California, Davis CA 95616, USA
| | - P Frey-Klett
- INRA-Université de Lorraine , UMR1136 « Interactions Arbres-Microorganismes », F-54280 Champenoux, France
| |
Collapse
|
10
|
Rinta-Kanto JM, Sinkko H, Rajala T, Al-Soud WA, Sørensen SJ, Tamminen MV, Timonen S. Natural decay process affects the abundance and community structure of Bacteria and Archaea in Picea abies logs. FEMS Microbiol Ecol 2016; 92:fiw087. [PMID: 27127195 DOI: 10.1093/femsec/fiw087] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2016] [Indexed: 11/14/2022] Open
Abstract
Prokaryotes colonize decaying wood and contribute to the degradation process, but the dynamics of prokaryotic communities during wood decay is still poorly understood. We studied the abundance and community composition of Bacteria and Archaea inhabiting naturally decaying Picea abies logs and tested the hypothesis that the variations in archaeal and bacterial abundances and community composition are coupled with environmental parameters related to the decay process. The data set comprises >500 logs at different decay stages from five geographical locations in south and central Finland. The results show that Bacteria and Archaea are an integral and dynamic component of decaying wood biota. The abundances of bacterial and archaeal 16S rRNA genes increase as wood decay progresses. Changes in bacterial community composition are clearly linked to the loss of density of wood, while specific fungal-bacterial interactions may also affect the distribution of bacterial taxa in decaying wood. Thaumarchaeota were prominent members of the archaeal populations colonizing decaying wood, providing further evidence of the versatility and cosmopolitan nature of this phylum in the environment. The composition and dynamics of the prokaryotic community suggest that they are an active component of biota that are involved in processing substrates in decaying wood material.
Collapse
Affiliation(s)
- J M Rinta-Kanto
- University of Helsinki, Department of Food and Environmental Sciences, Division of Microbiology, Viikinkaari 9, 00014 Helsinki, Finland
| | - H Sinkko
- University of Helsinki, Department of Food and Environmental Sciences, Division of Microbiology, Viikinkaari 9, 00014 Helsinki, Finland
| | - T Rajala
- Natural Resources Institute Finland, Jokiniemenkuja 1, 01370 Vantaa, Finland
| | - W A Al-Soud
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark
| | - S J Sørensen
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark
| | - M V Tamminen
- Swiss Federal Institute of Technology Zurich, Universitätstrasse 8-22, 8006 Zurich, Switzerland
| | - S Timonen
- University of Helsinki, Department of Food and Environmental Sciences, Division of Microbiology, Viikinkaari 9, 00014 Helsinki, Finland
| |
Collapse
|
11
|
Singh D, Takahashi K, Park J, Adams JM. Similarities and Contrasts in the Archaeal Community of Two Japanese Mountains: Mt. Norikura Compared to Mt. Fuji. MICROBIAL ECOLOGY 2016; 71:428-441. [PMID: 26424434 DOI: 10.1007/s00248-015-0681-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/15/2015] [Indexed: 06/05/2023]
Abstract
The community ecology, abundance, and diversity patterns of soil archaea are poorly understood-despite the fact that they are a major branch of life that is ubiquitous and important in nitrogen cycling in terrestrial ecosystems. We set out to investigate the elevational patterns of archaeal ecology, and how these compare with other groups of organisms. Many studies of different groups of organisms (plants, birds, etc.) have shown a series of distinct communities with elevation, and often a diversity maximum in mid-elevations. We investigated the soil archaeal communities on Mt. Norikura, Japan, using 454 pyrosequencing of the 16S ribosomal RNA (rRNA) gene. There was a strong mid-elevation maximum in diversity, and a mid-elevation maximum in abundance of soil archaea 16S rRNA and amoA genes. These diversity and abundance maximums could not be correlated with any identifiable soil parameter, nor plant diversity. Discrete, predictable communities of archaea occurred at each elevational level, also not explicable in terms of pH or major nutrients. When we compared the archaeal community and diversity patterns with those found in an earlier study of Mt Fuji, both mountains showed mid-elevation maximums in diversity and abundance of archaea, possibly a result of some common environmental factor such as soil disturbance frequency. However, they showed distinct sets of archaeal communities at similar elevational sampling points. Presumably, the difference reflects their distinct geology (Norikura being andesitic, while Fuji is basaltic) and the resulting combinations of soil chemistry and environmental conditions, although no explanatory variable was found. Clearly, many soil archaea have strongly defined niches and will only occur in a narrow subset of the range of possible climate and soil conditions. The findings of a mid-elevation diversity maximum on Norikura provides a further instance of how widespread this unexplained pattern is in nature, in a wide variety of groups of organisms.
Collapse
Affiliation(s)
- Dharmesh Singh
- Environmental Genomics Division, CSIR-NEERI, Nehru Marg, Nagpur, 440020, India
| | - Koichi Takahashi
- Department of Biology, Faculty of Science, Shinshu University, Asahi 3-1-1, Matsumoto, 390-8621, Japan
- Institute of Mountain Science, Shinshu University, Asahi 3-1-1, Matsumoto, 390-8621, Japan
| | - Jungok Park
- Environmental Genomics Division, CSIR-NEERI, Nehru Marg, Nagpur, 440020, India
| | - Jonathan M Adams
- Environmental Genomics Division, CSIR-NEERI, Nehru Marg, Nagpur, 440020, India.
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 151-742, South Korea.
| |
Collapse
|
12
|
Abundance and potential metabolic activity of methanogens in well-aerated forest and grassland soils of an alpine region. FEMS Microbiol Ecol 2015; 92:fiv171. [DOI: 10.1093/femsec/fiv171] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2015] [Indexed: 11/12/2022] Open
|
13
|
Lee SH, Kim SY, Ding W, Kang H. Impact of elevated CO2 and N addition on bacteria, fungi, and archaea in a marsh ecosystem with various types of plants. Appl Microbiol Biotechnol 2015; 99:5295-305. [DOI: 10.1007/s00253-015-6385-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/02/2015] [Accepted: 01/04/2015] [Indexed: 10/24/2022]
|
14
|
Weber EB, Lehtovirta-Morley LE, Prosser JI, Gubry-Rangin C. Ammonia oxidation is not required for growth of Group 1.1c soil Thaumarchaeota. FEMS Microbiol Ecol 2015; 91:fiv001. [PMID: 25764563 PMCID: PMC4399444 DOI: 10.1093/femsec/fiv001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Thaumarchaeota are among the most abundant organisms on Earth and are ubiquitous. Within this phylum, all cultivated representatives of Group 1.1a and Group 1.1b Thaumarchaeota are ammonia oxidizers, and play a key role in the nitrogen cycle. While Group 1.1c is phylogenetically closely related to the ammonia-oxidizing Thaumarchaeota and is abundant in acidic forest soils, nothing is known about its physiology or ecosystem function. The goal of this study was to perform in situ physiological characterization of Group 1.1c Thaumarchaeota by determining conditions that favour their growth in soil. Several acidic grassland, birch and pine tree forest soils were sampled and those with the highest Group 1.1c 16S rRNA gene abundance were incubated in microcosms to determine optimal growth temperature, ammonia oxidation and growth on several organic compounds. Growth of Group 1.1c Thaumarchaeota, assessed by qPCR of Group 1.1c 16S rRNA genes, occurred in soil, optimally at 30°C, but was not associated with ammonia oxidation and the functional gene amoA could not be detected. Growth was also stimulated by addition of organic nitrogen compounds (glutamate and casamino acids) but not when supplemented with organic carbon alone. This is the first evidence for non-ammonia oxidation associated growth of Thaumarchaeota in soil. Uncultivated soil Group 1.1c Thaumarchaeota are abundant, but have no known function. We report their growth without ammonia oxidation, unlike thaumarchaeal relatives, and stimulation by organic C.
Collapse
Affiliation(s)
- Eva B Weber
- Institute of Biological and Environmental Sciences, Cruickshank Building, St Machar Drive, University of Aberdeen, Aberdeen, AB24 3UU, UK
| | - Laura E Lehtovirta-Morley
- Institute of Biological and Environmental Sciences, Cruickshank Building, St Machar Drive, University of Aberdeen, Aberdeen, AB24 3UU, UK
| | - James I Prosser
- Institute of Biological and Environmental Sciences, Cruickshank Building, St Machar Drive, University of Aberdeen, Aberdeen, AB24 3UU, UK
| | - Cécile Gubry-Rangin
- Institute of Biological and Environmental Sciences, Cruickshank Building, St Machar Drive, University of Aberdeen, Aberdeen, AB24 3UU, UK
| |
Collapse
|
15
|
Churchland C, Grayston SJ. Specificity of plant-microbe interactions in the tree mycorrhizosphere biome and consequences for soil C cycling. Front Microbiol 2014; 5:261. [PMID: 24917855 PMCID: PMC4042908 DOI: 10.3389/fmicb.2014.00261] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 05/13/2014] [Indexed: 01/22/2023] Open
Abstract
Mycorrhizal associations are ubiquitous and form a substantial component of the microbial biomass in forest ecosystems and fluxes of C to these belowground organisms account for a substantial portion of carbon assimilated by forest vegetation. Climate change has been predicted to alter belowground plant-allocated C which may cause compositional shifts in soil microbial communities, and it has been hypothesized that this community change will influence C mitigation in forest ecosystems. Some 10,000 species of ectomycorrhizal fungi are currently recognized, some of which are host specific and will only associate with a single tree species, for example, Suillus grevillei with larch. Mycorrhizae are a strong sink for plant C, differences in mycorrhizal anatomy, particularly the presence and extent of emanating hyphae, can affect the amount of plant C allocated to these assemblages. Mycorrhizal morphology affects not only spatial distribution of C in forests, but also differences in the longevity of these diverse structures may have important consequences for C sequestration in soil. Mycorrhizal growth form has been used to group fungi into distinctive functional groups that vary qualitatively and spatially in their foraging and nutrient acquiring potential. Through new genomic techniques we are beginning to understand the mechanisms involved in the specificity and selection of ectomycorrhizal associations though much less is known about arbuscular mycorrhizal associations. In this review we examine evidence for tree species- mycorrhizal specificity, and the mechanisms involved (e.g., signal compounds). We also explore what is known about the effects of these associations and interactions with other soil organisms on the quality and quantity of C flow into the mycorrhizosphere (the area under the influence of mycorrhizal root tips), including spatial and seasonal variations. The enormity of the mycorrhizosphere biome in forests and its potential to sequester substantial C belowground highlights the vital importance of increasing our knowledge of the dynamics of the different mycorrhizal functional groups in diverse forests.
Collapse
Affiliation(s)
| | - Sue J. Grayston
- Belowground Ecosystem Group, Department of Forest and Conservation Sciences, University of British ColumbiaVancouver, BC, Canada
| |
Collapse
|
16
|
Oliveira MNV, Santos TMA, Vale HMM, Delvaux JC, Cordero AP, Ferreira AB, Miguel PSB, Tótola MR, Costa MD, Moraes CA, Borges AC. Endophytic microbial diversity in coffee cherries of Coffea arabica from southeastern Brazil. Can J Microbiol 2013; 59:221-30. [PMID: 23586745 DOI: 10.1139/cjm-2012-0674] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The microbiota associated with coffee plants may play a critical role in the final expression of coffee quality. However, the microbial diversity in coffee cherries is still poorly characterized. Here, we investigated the endophytic diversity in cherries of Coffea arabica by using culture-independent approaches to identify the associated microbes, ultimately to better understand their ecology and potential role in determining coffee quality. Group-specific 16S rRNA and 26S rRNA genes polymerase chain reaction - denaturing gradient gel electrophoresis and clone library sequencing showed that the endophytic community is composed of members of the 3 domains of life. Bacterial sequences showing high similarity with cultured and uncultured bacteria belonged to the Betaproteobacteria, Gammaproteobacteria, and Firmicutes phyla. Phylogenetic analyses of cloned sequences from Firmicutes revealed that most sequences fell into 3 major genera: Bacillus, Staphylococcus, and Paenibacillus. Archaeal sequences revealed the presence of operational taxonomic units belonging to Euryarchaeota and Crenarchaeota phyla. Sequences from endophytic yeast were not recovered, but various distinct sequences showing high identity with filamentous fungi were found. There was no obvious correlation between the microbial composition and cultivar or geographic location of the coffee plant. To the best of our knowledge, this is the first report demonstrating internal tissue colonization of plant fruits by members of the Archaea domain. The finding of archaeal small-subunit rRNA in coffee cherries, although not sufficient to indicate their role as active endophytes, certainly expands our perspectives toward considering members of this domain as potential endophytic microbes.
Collapse
Affiliation(s)
- Marcelo N V Oliveira
- Departamento de Microbiologia/Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil - 36570-000
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Karlsson AE, Johansson T, Bengtson P. Archaeal abundance in relation to root and fungal exudation rates. FEMS Microbiol Ecol 2012; 80:305-11. [PMID: 22611550 DOI: 10.1111/j.1574-6941.2012.01298.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Archaea are ubiquitous in forest soils, but little is known about the factors regulating their abundance and distribution. Low molecular weight organic compounds represent an important energy source for archaea in marine environments, and it is reasonable to suspect that archaeal abundance is dependent on such compounds in soils as well, represented by, for example, plant and fungal exudates. To test this hypothesis, we designed a microcosm experiment in which we grew ponderosa pine, sitka spruce, and western hemlock in forest soil. Root and mycorrhizal exudation rates were estimated in a 13C pulse-chase experiment, and the number of archaeal and bacterial 16S rRNA genes was determined by qPCR. Archaeal abundance differed among plant species, and the number of archaeal 16S rRNA genes was generally lower in soil receiving high concentration of exudates. The mycorrhizal fungi of ponderosa pine seemed to favor archaea, while no such effect was found for mycorrhized sitka spruce or western hemlock. The low abundance of archaea in the proximity of roots and mycorrhiza may be a result of slow growth rates and poor competitive ability of archaea vs. bacteria and does not necessarily reflect a lack of heterotrophic abilities of the archaeal community.
Collapse
Affiliation(s)
- Anna E Karlsson
- Microbial Ecology, Department of Biology, Lund University, Lund, Sweden
| | | | | |
Collapse
|
18
|
Archaeal abundance across a pH gradient in an arable soil and its relationship to bacterial and fungal growth rates. Appl Environ Microbiol 2012; 78:5906-11. [PMID: 22706045 DOI: 10.1128/aem.01476-12] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Soil pH is one of the most influential factors for the composition of bacterial and fungal communities, but the influence of soil pH on the distribution and composition of soil archaeal communities has yet to be systematically addressed. The primary aim of this study was to determine how total archaeal abundance (quantitative PCR [qPCR]-based estimates of 16S rRNA gene copy numbers) is related to soil pH across a pH gradient (pH 4.0 to 8.3). Secondarily, we wanted to assess how archaeal abundance related to bacterial and fungal growth rates across the same pH gradient. We identified two distinct and opposite effects of pH on the archaeal abundance. In the lowest pH range (pH 4.0 to 4.7), the abundance of archaea did not seem to correspond to pH. Above this pH range, there was a sharp, almost 4-fold decrease in archaeal abundance, reaching a minimum at pH 5.1 to 5.2. The low abundance of archaeal 16S rRNA gene copy numbers at this pH range then sharply increased almost 150-fold with pH, resulting in an increase in the ratio between archaeal and bacterial copy numbers from a minimum of 0.002 to more than 0.07 at pH 8. The nonuniform archaeal response to pH could reflect variation in the archaeal community composition along the gradient, with some archaea adapted to acidic conditions and others to neutral to slightly alkaline conditions. This suggestion is reinforced by observations of contrasting outcomes of the (competitive) interactions between archaea, bacteria, and fungi toward the lower and higher ends of the examined pH gradient.
Collapse
|
19
|
|
20
|
Zeglin LH, Taylor AE, Myrold DD, Bottomley PJ. Bacterial and archaeal amoA gene distribution covaries with soil nitrification properties across a range of land uses. ENVIRONMENTAL MICROBIOLOGY REPORTS 2011; 3:717-726. [PMID: 23761362 DOI: 10.1111/j.1758-2229.2011.00290.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Ammonia-oxidizing bacteria and ammonia-oxidizing archaea are commonly found together in soils, yet the factors influencing their relative distribution and activity remain unclear. We examined archaeal and bacterial amoA gene distribution, and used a novel bioassay to assess archaeal and bacterial contributions to nitrification potentials in soils spanning a range of land uses (forest, pasture, cultivated and long-term fallowed cropland) along a 10 km transect. The assay, which quantifies the extent to which acetylene-inactivated soil nitrification potential recovers (RNP) in the presence of bacterial protein synthesis inhibitors, indicated a significant archaeal contribution to the nitrification potentials of the pasture and long-term fallowed soils. Archaeal amoA gene abundance did not vary significantly among the soils, but bacterial amoA gene abundance did, resulting in archaeal : bacterial amoA abundance ratios ranging from 1.1 ± 0.8 in cultivated soils to 396 ± 176 in pasture soils. Both archaeal and bacterial amoA gene compositions were heterogeneous across the landscape, but differed in their patterns of variability. Archaeal amoA gene distributions were distinct among each of the three main land-use types: forest, pasture and cropland soils. In contrast, bacterial amoA gene composition was distinct in forest and in cultivated cropland, while pasture and long-term fallowed cropland soils were similar. In both pasture and long-term fallowed cropland soils, one phylotype of Nitrosospira cluster 3a was highly abundant. This distinct bacterial amoA gene fingerprint correlated with significant contributions of archaea to RNP of both soils, despite differences in archaeal amoA gene composition between the pasture and fallowed soils. This observation suggests that the factors driving the development of ammonia-oxidizing bacteria community composition might influence the extent of archaeal contribution to soil nitrification.
Collapse
Affiliation(s)
- Lydia H Zeglin
- Departments of Crop and Soil Science Microbiology, Oregon State University, Corvallis, OR, USA
| | | | | | | |
Collapse
|
21
|
Bomberg M, Münster U, Pumpanen J, Ilvesniemi H, Heinonsalo J. Archaeal communities in boreal forest tree rhizospheres respond to changing soil temperatures. MICROBIAL ECOLOGY 2011; 62:205-217. [PMID: 21394607 DOI: 10.1007/s00248-011-9837-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 02/20/2011] [Indexed: 05/30/2023]
Abstract
Temperature has generally great effects on both the activity and composition of microbial communities in different soils. We tested the impact of soil temperature and three different boreal forest tree species on the archaeal populations in the bulk soil, rhizosphere, and mycorrhizosphere. Scots pine, silver birch, and Norway spruce seedlings were grown in forest humus microcosms at three different temperatures, 7-11.5°C (night-day temperature), 12-16°C, and 16-22°C, of which 12-16°C represents the typical mid-summer soil temperature in Finnish forests. RNA and DNA were extracted from indigenous ectomycorrhiza, non-mycorrhizal long roots, and boreal forest humus and tested for the presence of archaea by nested PCR of the archaeal 16S rRNA gene followed by denaturing gradient gel electrophoresis (DGGE) profiling and sequencing. Methanogenic Euryarchaeota belonging to Methanolobus sp. and Methanosaeta sp. were detected on the roots and mycorrhiza. The most commonly detected archaeal 16S rRNA gene sequences belonged to group I.1c Crenarchaeota, which are typically found in boreal and alpine forest soils. Interestingly, also one sequence belonging to group I.1b Crenarchaeota was detected from Scots pine mycorrhiza although sequences of this group are usually found in agricultural and forest soils in temperate areas. Tree- and temperature-related shifts in the archaeal population structure were observed. A clear decrease in crenarchaeotal DGGE band number was seen with increasing temperature, and correspondingly, the number of euryarchaeotal DGGE bands, mostly methanogens, increased. The greatest diversity of archaeal DGGE bands was detected in Scots pine roots and mycorrhizas. No archaea were detected from humus samples from microcosms without tree seedling, indicating that the archaea found in the mycorrhizosphere and root systems were dependent on the plant host. The detection of archaeal 16S rRNA gene sequences from both RNA and DNA extractions show that the archaeal populations were living and that they may have significant contribution to the methane cycle in boreal forest soil, especially when soil temperatures rise.
Collapse
Affiliation(s)
- Malin Bomberg
- Department of Food and Environmental Sciences, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland.
| | | | | | | | | |
Collapse
|