1
|
Zhang B, Sun W, Wang X, Ren H, Wang Y, Hu S, Li C, Wang Y, Hou J, Hu X, Shi R, Li Y, Lu S, Lu Q, Liu Z, Hu P. Exploration of the biodiversity and mining novel target genes of Listeria monocytogenes strains isolated from beef through comparative genomics analysis. Front Microbiol 2025; 16:1560974. [PMID: 40356651 PMCID: PMC12066634 DOI: 10.3389/fmicb.2025.1560974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 04/11/2025] [Indexed: 05/15/2025] Open
Abstract
L. monocytogenes is a significant foodborne pathogen. This study aims to explore the biodiversity and evolutionary characteristics of L. monocytogenes isolated from beef through pan-genome analysis, and to provide important reference value for its specific molecular detection. This study conducted an in-depth analysis of the virulence genes, antimicrobial resistance genes, and environmental resistance genes of 344 L. monocytogenes strains isolated from beef. Pan-genomic analysis revealed that L. monocytogenes from beef have open genomes, providing a solid genetic basis for adaptation to different environments. MLST analysis revealed that the most prevalent types of L. monocytogenes isolated from beef were ST9 and CC9. A total of 50 virulence genes were detected in these strains, with 26 virulence genes such as inlA, inlB, plcA, plcB, and prfA, present in all L. monocytogenes strains. The four most prevalent antibiotic resistance genes in L. monocytogenes were norB, lin, mprF, and FosX, indicating high resistance to fluoroquinolones, lincosamides, peptides, and phosphonic acid antibiotics. A total of 416 potential target genes were identified through pan-genomic screening, which were then further filtered using a hub gene selection method to mining novel target genes. Ultimately, 10 highly connected hub genes were selected: bglF_2, tilS, group_2105, group_2431, oleD, ndk, flgG, purB, pbpB, and fni. These genes play a crucial role in the pathogenesis of L. monocytogenes. The PCR results demonstrated the excellent specificity of the bglF_2 gene for L. monocytogenes. Moreover, in the artificial contamination experiment, the bglF_2 gene was able to effectively detect L. monocytogenes in beef samples. Therefore, the bglF_2 gene holds potential as a specific molecular target for the detection of L. monocytogenes strains in beef samples.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenjie Sun
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaoxu Wang
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
| | - Honglin Ren
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yang Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shaohui Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chengwei Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yuzhu Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jiaqi Hou
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xueyu Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ruoran Shi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yansong Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shiying Lu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Qiang Lu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zengshan Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Pan Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
2
|
Gutiérrez AV, Matthews M, Diaz M, Le Viet T, de Oliveira Martins L, Jørgensen F, Aird H, Painset A, Som N, Omelchenko O, Adriaenssens EM, Kingsley RA, Gilmour MW. Population structure and gene flux of Listeria monocytogenes ST121 reveal prophages as a candidate driver of adaptation and persistence in food production environments. Microb Genom 2025; 11:001397. [PMID: 40243587 PMCID: PMC12006667 DOI: 10.1099/mgen.0.001397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
Listeria monocytogenes is a bacterial pathogen found in an increasing number of food categories, potentially reflecting an expanding niche and food safety risk profile. In the UK, Listeria monocytogenes sequence type (ST) 121 is more frequently isolated from foods and food environments than from cases of clinical listeriosis, consistent with a relatively low pathogenicity. In this study, we determined the evolution associated with the environmental persistence of a Listeria monocytogenes clone by investigating clone-specific genome features in the context of the ST121 population structure from international sources. To enable unambiguous comparative genomic analysis of ST121 strains, we constructed 16 new high-quality genome assemblies from Listeria monocytogenes isolated from foods, food environments and human clinical sources in the UK from 1987 to 2019. Our dataset was supplemented with additional UK and international genomes from databases held by the Institut Pasteur and the UK Health Security Agency. Time-scaled phylogenetic reconstruction revealed that clade-specific microevolution correlated with key characteristics that may confer adaptations important for success in the environmental niche. For example, a prophage designated LP-13-6 unique to a clade is associated with multi-year persistence in a food production setting. This prophage, observed in a strain that persisted for over a decade, may encode mechanisms facilitating environmental persistence, including the exclusion of other bacteriophages. Pangenome analysis provided insights into other candidate genetic elements associated with persistence and biocide tolerance. The comparative genomic dataset compiled in this study includes an international collection of 482 genome sequences that serve as a valuable resource for future studies to explore conserved genes, regulatory regions, mutations and variations associated with particular traits, such as environmental persistence, pathogenicity or biocide tolerance.
Collapse
Affiliation(s)
| | | | - Maria Diaz
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Thanh Le Viet
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | | | - Frieda Jørgensen
- UK Health Security Agency, Food, Water and Environmental Microbiology Laboratories and the Gastrointestinal Bacteria Reference Unit, London, UK
| | - Heather Aird
- UK Health Security Agency, Food, Water and Environmental Microbiology Laboratories and the Gastrointestinal Bacteria Reference Unit, London, UK
| | - Anaïs Painset
- UK Health Security Agency, Food, Water and Environmental Microbiology Laboratories and the Gastrointestinal Bacteria Reference Unit, London, UK
| | - Nicolle Som
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Oleksii Omelchenko
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich, UK
| | - Evelien M. Adriaenssens
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich, UK
| | - Robert A. Kingsley
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich, UK
| | - Matthew W. Gilmour
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich, UK
| |
Collapse
|
3
|
Møretrø T, Wagner E, Heir E, Langsrud S, Fagerlund A. Genomic analysis of Listeria monocytogenes CC7 associated with clinical infections and persistence in the food industry. Int J Food Microbiol 2024; 410:110482. [PMID: 37977076 DOI: 10.1016/j.ijfoodmicro.2023.110482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Listeria monocytogenes clonal complex 7 (CC7), belonging to lineage II, is the most common subtype among clinical listeriosis isolates in Norway, and is also commonly found in Norwegian food industry and outdoor environments. In the present study, the relative prevalence of CCs among clinical isolates of L. monocytogenes in European countries during 2010-2015 was determined. Then, phylogenomic and comparative genomic analyses was performed for 115 Norwegian and 255 international reference genomes from various sources, to examine potential explanations underlying the high prevalence of CC7 among Norwegian listeriosis cases. Selected isolates were also compared using in vitro virulence assays. The results showed a high relative prevalence of CC7 in clinical isolates from Norway and the neighboring Nordic countries Sweden and Finland. In contrast to in most other European countries, lineage II dominated among clinical isolates in these countries. Phylogenetic analysis of the 370 CC7 isolates separated the genomes into four clades, with the majority of Norwegian isolates (69 %) clustered in one of these clades, estimated to have diverged from the other clades around year 1830. The Norwegian isolates within this clade were widely distributed in different habitats; several (poultry) meat processing factories, a salmon processing plant, in nature, farms, and slugs, and among human clinical isolates. In particular, one pervasive CC7 clone was found across three poultry processing plants and one salmon processing plant, and also included three clinical isolates. All analysed CC7 isolates harbored the same set of 72 genes involved in both general and specific stress responses. Divergence was observed for plasmid-encoded genes including genes conferring resistance against arsenic (Tn554-arsCBADR), cadmium (cadA1C1 and cadA2C2), and the biocide benzalkonium chloride (bcrABC). No significant difference in prevalence of these genes was seen between isolates from different habitats or sources. Virulence attributes were highly conserved among the CC7 isolates. In vitro virulence studies of five representative CC7 isolates revealed a virulence potential that, in general, was not significantly lower than that of the control strain EGDe, with isolate-dependent differences that could not be correlated with genetic determinants. The study shows that CC7 is widespread in Norway, and that a pervasive CC7 clone was present in food processing plants. The study highlights the importance of CC7 and lineage II strains in causing listeriosis and shows that more research is needed to understand the reasons behind geographical differences in CC prevalence.
Collapse
Affiliation(s)
- Trond Møretrø
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, N-1430 Aas, Norway.
| | - Eva Wagner
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, N-1430 Aas, Norway
| | - Even Heir
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, N-1430 Aas, Norway
| | - Solveig Langsrud
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, N-1430 Aas, Norway
| | - Annette Fagerlund
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, N-1430 Aas, Norway
| |
Collapse
|
4
|
Pracser N, Zaiser A, Ying HMK, Pietzka A, Wagner M, Rychli K. Diverse Listeria monocytogenes in-house clones are present in a dynamic frozen vegetable processing environment. Int J Food Microbiol 2024; 410:110479. [PMID: 37977080 DOI: 10.1016/j.ijfoodmicro.2023.110479] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Listeria (L.) monocytogenes is of global concern for food safety as the listeriosis-causing pathogen is widely distributed in the food processing environments, where it can survive for a long time. Frozen vegetables contaminated with L. monocytogenes were recently identified as the source of two large listeriosis outbreaks in the EU and US. So far, only a few studies have investigated the occurrence and behavior of Listeria in frozen vegetables and the associated processing environment. This study investigates the occurrence of L. monocytogenes and other Listeria spp. in a frozen vegetable processing environment and in frozen vegetable products. Using whole genome sequencing (WGS), the distribution of sequence types (MLST-STs) and core genome sequence types (cgMLST-CT) of L. monocytogenes were assessed, and in-house clones were identified. Comparative genomic analyses and phenotypical characterization of the different MLST-STs and isolates were performed, including growth ability under low temperatures, as well as survival of freeze-thaw cycles. Listeria were widely disseminated in the processing environment and five in-house clones namely ST451-CT4117, ST20-CT3737, ST8-CT1349, ST8-CT6243, ST224-CT5623 were identified among L. monocytogenes isolates present in environmental swab samples. Subsequently, the identified in-house clones were also detected in product samples. Conveyor belts were a major source of contamination in the processing environment. A wide repertoire of stress resistance markers supported the colonization and survival of L. monocytogenes in the frozen vegetable processing facility. The presence of ArgB was significantly associated with in-house clones. Significant differences were also observed in the growth rate between different MLST-STs at low temperatures (4 °C and 10 °C), but not between in-house and non-in-house isolates. All isolates harbored major virulence genes such as full length InlA and InlB and LIPI-1, yet there were differences between MLST-STs in the genomic content. The results of this study demonstrate that WGS is a strong tool for tracing contamination sources and transmission routes, and for identifying in-house clones. Further research targeting the co-occurring microbiota and the presence of biofilms is needed to fully understand the mechanism of colonization and persistence in a food processing environment.
Collapse
Affiliation(s)
- Nadja Pracser
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, 3430 Tulln, Austria.
| | - Andreas Zaiser
- Unit of Food Microbiology, Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Hui Min Katharina Ying
- Unit of Food Microbiology, Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Ariane Pietzka
- Austrian National Reference Laboratory for Listeria monocytogenes, Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Beethovenstrasse 6, 8010 Graz, Austria.
| | - Martin Wagner
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, 3430 Tulln, Austria; Unit of Food Microbiology, Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Kathrin Rychli
- Unit of Food Microbiology, Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| |
Collapse
|
5
|
Mejía L, Espinosa-Mata E, Freire AL, Zapata S, González-Candelas F. Listeria monocytogenes, a silent foodborne pathogen in Ecuador. Front Microbiol 2023; 14:1278860. [PMID: 38179446 PMCID: PMC10764610 DOI: 10.3389/fmicb.2023.1278860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/23/2023] [Indexed: 01/06/2024] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that can produce serious, even fatal, infections. Among other foods, it can be found in unpasteurized dairy and ready-to-eat products. Surveillance of L. monocytogenes is of great interest since sources of infection are difficult to determine due to the long incubation period, and because the symptoms of listeriosis are similar to other diseases. We performed a genomic study of L. monocytogenes isolated from fresh cheeses and clinical samples from Ecuador. Sixty-five isolates were evaluated and sequenced, 14 isolates from cheese samples and 20 from clinical listeriosis cases from the National Institute of National Institute of Public Health Research, and 31 isolates from artisanal cheese samples from 8 provinces. All isolates exhibited heterogeneous patterns of the presence of pathogenicity islands. All isolates exhibited at least 4 genes from LIPI-1, but all references (26 L. monocytogenes closed genomes available in the NCBI database) showed the complete island, which encompasses 5 genes but is present in only two Ecuadorian isolates. Most isolates lacked gene actA. Genes from LIPI-2 were absent in all isolates. LIPI-3 and LIPI-4 were present in only a few references and isolates. With respect to the stress survival islets, our samples either presented SSI-1 or SSI-F2365, except for one isolate that presented SSI-F2365 and also one gene from SSI-1. None of the samples presented SSI-2. The predominant ST (sequence type) was ST2 (84.62% 55/65), and the only ST found in food (93.33% 42/45) and clinical samples (65% 13/20). Isolates were not grouped according to their sampling origin, date, or place in a phylogenetic tree obtained from the core alignment. The presence of ST2 in food and clinical samples, with high genomic similarity, suggests a foodborne infection risk linked to the consumption of fresh cheeses in Ecuador.
Collapse
Affiliation(s)
- Lorena Mejía
- Colegio de Ciencias Biológicas y Ambientales, Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito, Ecuador
- Institute for Integrative Systems Biology, University of Valencia, Valencia, Spain
- Joint Research Unit “Infection and Public Health” FISABIO-University of Valencia, Valencia, Spain
| | - Estefanía Espinosa-Mata
- Colegio de Ciencias Biológicas y Ambientales, Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Ana Lucía Freire
- Colegio de Ciencias Biológicas y Ambientales, Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Sonia Zapata
- Colegio de Ciencias Biológicas y Ambientales, Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Fernando González-Candelas
- Institute for Integrative Systems Biology, University of Valencia, Valencia, Spain
- Joint Research Unit “Infection and Public Health” FISABIO-University of Valencia, Valencia, Spain
- CIBER (Centro de Investigación Biomédica en Red) in Epidemiology and Public Health, Valencia, Spain
| |
Collapse
|
6
|
Tibbs-Cortes BW, Schultz DL, Schmitz-Esser S. Closed genome sequences of two Listeria monocytogenes ST121 strains. Microbiol Resour Announc 2023; 12:e0075023. [PMID: 37768047 PMCID: PMC10586163 DOI: 10.1128/mra.00750-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
We performed Oxford Nanopore and Illumina sequencing to generate accurate, closed genomes for the Listeria monocytogenes strains 6179 and L58-55. The new assemblies were generally similar to the previous Illumina-based assemblies, but additional rRNA operons and repeat regions were identified in the new assembly for strain 6179.
Collapse
Affiliation(s)
- Bienvenido W. Tibbs-Cortes
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, Iowa, USA
| | - Dylan L. Schultz
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, Iowa, USA
| | - Stephan Schmitz-Esser
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
7
|
Myintzaw P, Pennone V, McAuliffe O, Begley M, Callanan M. Association of Virulence, Biofilm, and Antimicrobial Resistance Genes with Specific Clonal Complex Types of Listeria monocytogenes. Microorganisms 2023; 11:1603. [PMID: 37375105 DOI: 10.3390/microorganisms11061603] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Precise classification of foodborne pathogen Listeria monocytogenes is a necessity in efficient foodborne disease surveillance, outbreak detection, and source tracking throughout the food chain. In this study, a total of 150 L. monocytogenes isolates from various food products, food processing environments, and clinical sources were investigated for variations in virulence, biofilm formation, and the presence of antimicrobial resistance genes based on their Whole-Genome Sequences. Clonal complex (CC) determination based on Multi-Locus Sequence Typing (MLST) revealed twenty-eight CC-types including eight isolates representing novel CC-types. The eight isolates comprising the novel CC-types share the majority of the known (cold and acid) stress tolerance genes and are all genetic lineage II, serogroup 1/2a-3a. Pan-genome-wide association analysis by Scoary using Fisher's exact test identified eleven genes specifically associated with clinical isolates. Screening for the presence of antimicrobial and virulence genes using the ABRicate tool uncovered variations in the presence of Listeria Pathogenicity Islands (LIPIs) and other known virulence genes. Specifically, the distributions of actA, ecbA, inlF, inlJ, lapB, LIPI-3, and vip genes across isolates were found to be significantly CC-dependent while the presence of ami, inlF, inlJ, and LIPI-3 was associated with clinical isolates specifically. In addition, Roary-derived phylogenetic grouping based on Antimicrobial-Resistant Genes (AMRs) revealed that the thiol transferase (FosX) gene was present in all lineage I isolates, and the presence of the lincomycin resistance ABC-F-type ribosomal protection protein (lmo0919_fam) was also genetic-lineage-dependent. More importantly, the genes found to be specific to CC-type were consistent when a validation analysis was performed with fully assembled, high-quality complete L. monocytogenes genome sequences (n = 247) extracted from the National Centre for Biotechnology Information (NCBI) microbial genomes database. This work highlights the usefulness of MLST-based CC typing using the Whole-Genome Sequence as a tool in classifying isolates.
Collapse
Affiliation(s)
- Peter Myintzaw
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland
| | - Vincenzo Pennone
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., P61 C996 Cork, Ireland
| | - Olivia McAuliffe
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., P61 C996 Cork, Ireland
| | - Máire Begley
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland
| | - Michael Callanan
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland
| |
Collapse
|
8
|
Wiktorczyk-Kapischke N, Skowron K, Wałecka-Zacharska E. Genomic and pathogenicity islands of Listeria monocytogenes-overview of selected aspects. Front Mol Biosci 2023; 10:1161486. [PMID: 37388250 PMCID: PMC10300472 DOI: 10.3389/fmolb.2023.1161486] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023] Open
Abstract
Listeria monocytogenes causes listeriosis, a disease characterized by a high mortality rate (up to 30%). Since the pathogen is highly tolerant to changing conditions (high and low temperature, wide pH range, low availability of nutrients), it is widespread in the environment, e.g., water, soil, or food. L. monocytogenes possess a number of genes that determine its high virulence potential, i.e., genes involved in the intracellular cycle (e.g., prfA, hly, plcA, plcB, inlA, inlB), response to stress conditions (e.g., sigB, gadA, caspD, clpB, lmo1138), biofilm formation (e.g., agr, luxS), or resistance to disinfectants (e.g., emrELm, bcrABC, mdrL). Some genes are organized into genomic and pathogenicity islands. The islands LIPI-1 and LIPI-3 contain genes related to the infectious life cycle and survival in the food processing environment, while LGI-1 and LGI-2 potentially ensure survival and durability in the production environment. Researchers constantly have been searching for new genes determining the virulence of L. monocytogenes. Understanding the virulence potential of L. monocytogenes is an important element of public health protection, as highly pathogenic strains may be associated with outbreaks and the severity of listeriosis. This review summarizes the selected aspects of L. monocytogenes genomic and pathogenicity islands, and the importance of whole genome sequencing for epidemiological purposes.
Collapse
Affiliation(s)
- Natalia Wiktorczyk-Kapischke
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Krzysztof Skowron
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Ewa Wałecka-Zacharska
- Department of Food Hygiene and Consumer Health, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
9
|
Molecular typing and genome sequencing allow the identification of persistent Listeria monocytogenes strains and the tracking of the contamination source in food environments. Int J Food Microbiol 2023; 386:110025. [PMID: 36436413 DOI: 10.1016/j.ijfoodmicro.2022.110025] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
The presence of Listeria monocytogenes (Lm) in the food processing environment (facilities and products) is a challenging problem in food safety management. Lm is one of the main causes of mortality in foodborne infections, and the trend is continuously increasing. In this study, a collection of 323 Lm strain isolates recovered from food matrices and food industry environments (surfaces and equipment) over four years from 80 food processing facilities was screened using a restriction site-associated tag sequencing (2b-RAD) typing approach developed for Lm. Thirty-six different restriction site-associated DNA (RAD) types (RTs) were identified, most of which correspond to lineage II. RT1, the most represented genotype in our collection and already reported as one of the most prevalent genotypes in the food environment, was significantly associated with meat processing facilities. The sequencing of the genomes of strains belonging to the same RT and isolated in the same facility in different years revealed several clusters of persistence. The definition of the persistent strains (PSs) allowed the identification of the potential source of contamination in the incoming raw meat that is introduced in the facility to be processed. The slaughterhouses, which, according to the European Union (EU) regulation, are not inspected for the presence of Lm could be hotspots for the persistence of Lm PSs.
Collapse
|
10
|
Xu J, Wu S, Liu M, Xiao Z, Peng Y, He H. Prevalence and contamination patterns of Listeria monocytogenes in Pleurotus eryngii (king oyster mushroom) production plants. Front Microbiol 2023; 14:1064575. [PMID: 36778843 PMCID: PMC9912299 DOI: 10.3389/fmicb.2023.1064575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/03/2023] [Indexed: 01/29/2023] Open
Abstract
Listeria monocytogenes is a major foodborne pathogen that is well-known for its high mortality rate upon infection. In recent years, the edible mushroom has also been found to be an important source of L. monocytogenes, but the contamination sources in Pleurotus eryngii (the king oyster mushroom) were unclear. In this study, a total of 203 edible mushrooms and environmental samples from four P. eryngii production plants were obtained. As a result, 29 samples (14.3%) were positive for L. monocytogenes, including eight mushroom samples (13.3%, 8/60) and 21 associated environmental samples (14.7%, 21/143). The contamination of L. monocytogenes in plants A and B was more severe and was likely to originate from the mycelium stimulation machine. The isolates belonged to serogroups II.1 (4b-4d-4e), I.1 (1/2a-3a), and I.2 (1/2c-3c), and multilocus sequence typing (MLST) revealed that these L. monocytogenes strains belonged to five different sequence types (ST3, ST121, ST9, ST87, and ST224). The ST121 and ST3 isolates were only found in plants A and B, respectively. The isolates were carried by hly (29/29, 100%), inlB (23/29, 79.3%), inlA (29/29, 100%), inlC (29/29, 100%), inlJ (29/29, 100%), actA (19/29, 65.5%), iap (29/29, 100%), plcA (26/29, 100%), plcB (29/29, 100%), prfA (27/29, 93.1%), and mpl (29/29, 100%). Further study of inlA sequencing showed that 65.5% of strains (19/29) contained full-length InlA that was required for host cell invasion, whereas the mutation led to premature stop codons (PMSCs) at position 492 (type 6) on inlA alleles. All isolates in this survey were sensitive to gentamicin, kanamycin, sulbactam/ampicillin, trimethoprim-sulfamethoxazole, tetracycline, and doxycycline. The drug with the highest resistance is rifampicin (37.9%), followed by penicillin (24.1%) and ciprofloxacin (10.3%). Most multiply resistant strains are isolated from raw materials and equipment of the P. eryngii processing lines. Our study reflects the contamination patterns and potential risk of L. monocytogenes infection in P. eryngii production plants. The persistence of specific L. monocytogenes isolates (such as ST121 and ST3) may assist with contamination. In accordance with these results, the control of L. monocytogenes should focus on the environmental materials, especially in the mycelium stimulation stage. However, effective Listeria monitoring programs will allow for the improved development of Listeria control measures to minimize cross-contamination in the processing of P. eryngii.
Collapse
Affiliation(s)
- Jiang Xu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China,*Correspondence: Shi Wu,
| | - Ming Liu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zitian Xiao
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yangyang Peng
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Huanqing He
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
11
|
Tsai YH, Moura A, Gu ZQ, Chang JH, Liao YS, Teng RH, Tseng KY, Chang DL, Liu WR, Huang YT, Leclercq A, Lo HJ, Lecuit M, Chiou CS. Genomic Surveillance of Listeria monocytogenes in Taiwan, 2014 to 2019. Microbiol Spectr 2022; 10:e0182522. [PMID: 36222695 PMCID: PMC9769603 DOI: 10.1128/spectrum.01825-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/20/2022] [Indexed: 01/05/2023] Open
Abstract
Listeria monocytogenes is a life-threatening foodborne pathogen. Here, we report the genomic characterization of a nationwide dataset of 411 clinical and 82 food isolates collected in Taiwan between 2014 and 2019. The observed incidence of listeriosis increased from 0.83 to 7 cases per million population upon implementation of mandatory notification in 2018. Pregnancy-associated cases accounted for 2.8% of human listeriosis and all-cause 7-day mortality was of 11.9% in nonmaternal-neonatal listeriosis. L. monocytogenes was isolated from 90% of raw pork and 34% of chicken products collected in supermarkets. Sublineages SL87, SL5, and SL378 accounted for the majority (65%) of clinical cases. SL87 and SL378 were also predominant (57%) in food products. Five cgMLST clusters accounted for 57% clinical cases, suggesting unnoticed outbreaks spanning up to 6 years. Mandatory notification allowed identifying the magnitude of listeriosis in Taiwan. Continuous real-time genomic surveillance will allow reducing contaminating sources and disease burden. IMPORTANCE Understanding the phylogenetic relationship between clinical and food isolates is important to identify the transmission routes of foodborne diseases. Here, we performed a nationwide study between 2014 and 2019 of both clinical and food Listeria monocytogenes isolates and sequenced their genomes. We show a 9-fold increase in listeriosis reporting upon implementation of mandatory notification. We found that sublineages SL87 and SL378 predominated among both clinical (50%) and food (57%) isolates, and identified five cgMLST clusters accounting for 57% of clinical cases, suggestive of potential protracted sources of contamination over up to 6 years in Taiwan. These findings highlight that mandatory declaration is critical in identifying the burden of listeriosis, and the importance of genome sequencing for a detailed characterization of the pathogenic L. monocytogenes genotypes circulating in Asia.
Collapse
Affiliation(s)
- Yu-Huan Tsai
- Laboratory of Host-Microbe Interactions and Cell Dynamics, Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Alexandra Moura
- Biology of Infection Unit, Institut Pasteur, Université Paris Cité, Inserm U1117, Paris, France
- Institut Pasteur, National Reference Centre and WHO Collaborating Centre Listeria, Paris, France
| | - Zi-Qi Gu
- Laboratory of Host-Microbe Interactions and Cell Dynamics, Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jui-Hsien Chang
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taichung, Taiwan
| | - Ying-Shu Liao
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taichung, Taiwan
| | - Ru-Hsiou Teng
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taichung, Taiwan
| | - Kuo-Yao Tseng
- Laboratory of Host-Microbe Interactions and Cell Dynamics, Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Dai-Ling Chang
- Laboratory of Host-Microbe Interactions and Cell Dynamics, Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Ren Liu
- Laboratory of Host-Microbe Interactions and Cell Dynamics, Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Tsung Huang
- Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Alexandre Leclercq
- Biology of Infection Unit, Institut Pasteur, Université Paris Cité, Inserm U1117, Paris, France
- Institut Pasteur, National Reference Centre and WHO Collaborating Centre Listeria, Paris, France
| | - Hsiu-Jung Lo
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- School of Dentistry, China Medical University, Taichung, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Marc Lecuit
- Biology of Infection Unit, Institut Pasteur, Université Paris Cité, Inserm U1117, Paris, France
- Institut Pasteur, National Reference Centre and WHO Collaborating Centre Listeria, Paris, France
- Division of Infectious Diseases and Tropical Medicine, Institut Imagine, APHP, Necker-Enfants Malades University Hospital, Paris, France
| | - Chien-Shun Chiou
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taichung, Taiwan
| |
Collapse
|
12
|
Whole-Genome Sequencing-Based Characterization of
Listeria
Isolates from Produce Packinghouses and Fresh-Cut Facilities Suggests Both Persistence and Reintroduction of Fully Virulent L. monocytogenes. Appl Environ Microbiol 2022; 88:e0117722. [PMID: 36286532 PMCID: PMC9680643 DOI: 10.1128/aem.01177-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The contamination of ready-to-eat produce with Listeria monocytogenes (LM) can often be traced back to environmental sources in processing facilities and packinghouses. To provide an improved understanding of Listeria sources and transmission in produce operations, we performed whole-genome sequencing (WGS) of LM (n = 169) and other Listeria spp. (n = 107) obtained from 13 produce packinghouses and three fresh-cut produce facilities. Overall, a low proportion of LM isolates (9/169) had inlA premature stop codons, and a large proportion (83/169) had either or both of the LIPI-3 or LIPI-4 operons, which have been associated with hypervirulence. The further analysis of the WGS data by operation showed a reisolation (at least 2 months apart) of highly related isolates (<10 hqSNP differences) in 7/16 operations. Two operations had highly related strains reisolated from samples that were collected at least 1 year apart. The identification of isolates collected during preproduction (i.e., following sanitation but before the start of production) that were highly related to isolates collected during production (i.e., after people or products have entered and begun moving through the operation) provided evidence that some strains were able to survive standard sanitation practices. The identification of closely related isolates (<20 hqSNPs differences) in different operations suggests that cross-contamination between facilities or introductions from common suppliers may also contribute to Listeria transmission. Overall, our data suggest that the majority of LM isolates collected from produce operations are fully virulent and that both persistence and reintroduction may lead to the repeat isolation of closely related Listeria in produce operations. IMPORTANCEListeria monocytogenes is of particular concern to the produce industry due to its frequent presence in natural environments as well as its ability to survive in packinghouses and fresh-cut processing facilities over time. The use of whole-genome sequencing, which provides high discriminatory power for the characterization of Listeria isolates, along with detailed source data (isolation date and sample location) shows that the presence of Listeria in produce operations appears to be due to random and continued reintroduction as well as to the persistence of highly related strains in both packinghouses and fresh-cut facilities. These findings indicate the importance of using high-resolution characterization approaches for root cause analyses of Listeria contamination issues. In cases of repeat isolation of closely related Listeria in a given facility, both persistence and reintroduction need to be considered as possible root causes.
Collapse
|
13
|
Persistence of Listeria monocytogenes ST5 in Ready-to-Eat Food Processing Environment. Foods 2022; 11:foods11172561. [PMID: 36076746 PMCID: PMC9454991 DOI: 10.3390/foods11172561] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/05/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
Most human listeriosis is foodborne, and ready-to-eat (RET) foods contaminated by Listeria monocytogenes during processing are found to be common vehicles. In this study, a total of four L. monocytogens STs (ST5, ST121, ST120, and ST2) have been identified in two RTE food plants from 2019 to 2020 in Shanghai, China. The L. monocytogenes ST5 was predominant in one RTE food processing plant, and it persists in the RTE meat processing plant with continued clone transmission. The genetic features of the four STs isolates were different. ST5 and ST121 had the three genes clpL, mdrL, and lde; however, ST120 and ST2 had two genes except for clpL. SSI-1was present in ST5, ST121, and ST120. Additionally, SSI-2 was present only in the ST121 isolates. ST120 had all six biofilm-forming associated genes (actA, prfA, lmo0673, recO, lmo2504 and luxS). The ST2 isolate had only three biofilm-forming associated genes, which were prfA, lmo0673, and recO. The four ST isolates had different biofilm formation abilities at different stages. The biofilm formation ability of ST120 was significantly higher when grown for one day. However, the biofilm formation ability of ST120 reduced significantly after growing for four days. In contrast, the biofilm formation ability of ST5 and ST121 increased significantly. These results suggested that ST5 and ST121 had stronger ability to adapt to stressful environments. Biofilms formed by all four STs grown over four days can be sanitized entirely by a disinfectant concentration of 500 mg/L. Additionally, only ST5 and ST121 biofilm cells survived in sub-lethal concentrations of chlorine-containing disinfectant. These results suggested that ST5 and ST121 were more resistant to chlorine-containing disinfectants. These results indicated that the biofilm formation ability of L. monocytogenes isolates changed at different stages. Additionally, the persistence in food processing environments might be verified by the biofilm formation, stress resistance, etc. Alternatively, these results underlined that disinfectants should be used at lethal concentrations. More attention should be paid to ST5 and ST121, and stronger surveillance should be taken to prevent and control the clonal spread of L. monocytogenes isolates in food processing plants in Shanghai.
Collapse
|
14
|
Lourenco A, Linke K, Wagner M, Stessl B. The Saprophytic Lifestyle of Listeria monocytogenes and Entry Into the Food-Processing Environment. Front Microbiol 2022; 13:789801. [PMID: 35350628 PMCID: PMC8957868 DOI: 10.3389/fmicb.2022.789801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
Listeria monocytogenes is an environmentally adapted saprophyte that can change into a human and animal bacterial pathogen with zoonotic potential through several regulatory systems. In this review, the focus is on the occurrence of Listeria sensu stricto and sensu lato in different ecological niches, the detection methods, and their analytical limitations. It also highlights the occurrence of L. monocytogenes genotypes in the environment (soil, water, and wildlife), reflects on the molecular determinants of L. monocytogenes for the saprophytic lifestyle and the potential for antibiotic resistance. In particular, the strain-specific properties with which some genotypes circulate in wastewater, surface water, soil, wildlife, and agricultural environments are of particular interest for the continuously updating risk analysis.
Collapse
Affiliation(s)
- Antonio Lourenco
- Department of Food Biosciences, Teagasc Food Research Centre, Co. Cork, Ireland
- Unit for Food Microbiology, Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Kristina Linke
- Unit for Food Microbiology, Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Martin Wagner
- Unit for Food Microbiology, Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
- Austrian Competence Center for Feed and Food Quality, Safety and Innovation, Tulln, Austria
| | - Beatrix Stessl
- Unit for Food Microbiology, Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
15
|
Lakicevic BZ, Den Besten HMW, De Biase D. Landscape of Stress Response and Virulence Genes Among Listeria monocytogenes Strains. Front Microbiol 2022; 12:738470. [PMID: 35126322 PMCID: PMC8811131 DOI: 10.3389/fmicb.2021.738470] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/30/2021] [Indexed: 12/23/2022] Open
Abstract
The pathogenic microorganism Listeria monocytogenes is ubiquitous and responsible for listeriosis, a disease with a high mortality rate in susceptible people. It can persist in different habitats, including the farm environment, the food production environments, and in foods. This pathogen can grow under challenging conditions, such as low pH, low temperatures, and high salt concentrations. However, L. monocytogenes has a high degree of strain divergence regarding virulence potential, environmental adaption, and stress response. This review seeks to provide the reader with an up-to-date overview of clonal and serotype-specific differences among L. monocytogenes strains. Emphasis on the genes and genomic islands responsible for virulence and resistance to environmental stresses is given to explain the complex adaptation among L. monocytogenes strains. Moreover, we highlight the use of advanced diagnostic technologies, such as whole-genome sequencing, to fine-tune quantitative microbiological risk assessment for better control of listeriosis.
Collapse
Affiliation(s)
- Brankica Z. Lakicevic
- Institute of Meat Hygiene and Technology, Belgrade, Serbia
- *Correspondence: Brankica Z. Lakicevic,
| | | | - Daniela De Biase
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| |
Collapse
|
16
|
Mahoney DBJ, Falardeau J, Hingston P, Chmielowska C, Carroll LM, Wiedmann M, Jang SS, Wang S. Associations between Listeria monocytogenes genomic characteristics and adhesion to polystyrene at 8 °C. Food Microbiol 2021; 102:103915. [PMID: 34809941 DOI: 10.1016/j.fm.2021.103915] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 09/22/2021] [Indexed: 11/04/2022]
Abstract
Listeria monocytogenes remains a threat to the food system and has led to numerous foodborne outbreaks worldwide. L. monocytogenes can establish itself in food production facilities by adhering to surfaces, resulting in increased resistance to environmental stressors. The aim of this study was to evaluate the adhesion ability of L. monocytogenes at 8 °C and to analyse associations between the observed phenotypes and genetic factors such as internalin A (inlA) genotypes, stress survival islet 1 (SSI-1) genotype, and clonal complex (CC). L. monocytogenes isolates (n = 184) were grown at 8 °C and 100% relative humidity for 15 days. The growth was measured by optical density at 600 nm every 24 h. Adherent cells were stained using crystal violet and quantified spectrophotometrically. Genotyping of inlA and SSI-1, multi-locus sequence typing, and a genome-wide association study (GWAS) were performed to elucidate the phenotype-genotype relationships in L. monocytogenes cold adhesion. Among all inlA genotypes, truncated inlA isolates had the highest mean adhered cells, ABS595nm = 0.30 ± 0.15 (Tukey HSD; P < 0.05), while three-codon deletion inlA isolates had the least mean adhered cells (Tukey HSD; P < 0.05). When SSI-1 was present, more cells adhered; less cells adhered when SSI-1 was absent (Welch's t-test; P < 0.05). Adhesion was associated with clonal complexes which have low clinical frequency, while reduced adhesion was associated with clonal complexes which have high frequency. The results of this study support that premature stop codons in the virulence gene inlA are associated with increased cold adhesion and that an invasion enhancing deletion in inlA is associated with decreased cold adhesion. This study also provides evidence to suggest that there is an evolutionary trade off between virulence and adhesion in L. monocytogenes. These results provide a greater understanding of L. monocytogenes adhesion which will aid in the development of strategies to reduce L. monocytogenes in the food system.
Collapse
Affiliation(s)
| | - Justin Falardeau
- Department of Food, Nutrition, and Health, University of British Columbia, Vancouver, BC, Canada
| | - Patricia Hingston
- Department of Food, Nutrition, and Health, University of British Columbia, Vancouver, BC, Canada
| | - Cora Chmielowska
- Department of Bacterial Genetics, University of Warsaw, Warsaw, Poland
| | - Laura M Carroll
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | - Sung Sik Jang
- British Columbia Centre for Disease Control, Vancouver, BC, Canada
| | - Siyun Wang
- Department of Food, Nutrition, and Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
17
|
Shedleur-Bourguignon F, Thériault WP, Longpré J, Thibodeau A, Fravalo P. Use of an Ecosystem-Based Approach to Shed Light on the Heterogeneity of the Contamination Pattern of Listeria monocytogenes on Conveyor Belt Surfaces in a Swine Slaughterhouse in the Province of Quebec, Canada. Pathogens 2021; 10:pathogens10111368. [PMID: 34832524 PMCID: PMC8625388 DOI: 10.3390/pathogens10111368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/12/2021] [Accepted: 10/20/2021] [Indexed: 12/16/2022] Open
Abstract
The role of the accompanying microbiota in the presence of Listeria monocytogenes on meat processing surfaces is not yet understood, especially in industrial production conditions. In this study, 300 conveyor belt samples from the cutting room of a swine slaughterhouse were collected during production. The samples were subjected to the detection of L. monocytogenes. Recovered strains were characterized by serogrouping-PCR, InlA Sanger sequencing and for their ability to form biofilm. A selection of isolates was compared with core genome multi-locus sequence typing analysis (cgMLST). The sequencing of the V4 region of the 16S RNA gene of the microorganisms harvested from each sample was carried out in parallel using the Illumina MiSeq platform. Diversity analyses were performed and MaAsLin analysis was used to assess the link between L. monocytogenes detection and the surrounding bacteria. The 72 isolates collected showed a low genetic diversity and important persistence characteristics. L. monocytogenes isolates were not stochastically distributed on the surfaces: the isolates were detected on three out of six production lines, each associated with a specific meat cut: the half carcasses, the bostons and the picnics. MaAsLin biomarker analysis identified the taxa Veillonella (p ≤ 0.0397) as a bacterial determinant of the presence of L. monocytogenes on processing surfaces. The results of this study revealed a heterogenous contamination pattern of the processing surfaces by L. monocytogenes and targeted a bacterial indicator of the presence of the pathogen. These results could lead to a better risk assessment of the contamination of meat products.
Collapse
Affiliation(s)
- Fanie Shedleur-Bourguignon
- NSERC Industrial Research Chair in Meat Safety (CRSV), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (F.S.-B.); (W.P.T.); (A.T.)
| | - William P. Thériault
- NSERC Industrial Research Chair in Meat Safety (CRSV), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (F.S.-B.); (W.P.T.); (A.T.)
| | - Jessie Longpré
- F. Ménard, Division d’Olymel s.e.c., Ange-Gardien, QC J0E 1E0, Canada;
| | - Alexandre Thibodeau
- NSERC Industrial Research Chair in Meat Safety (CRSV), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (F.S.-B.); (W.P.T.); (A.T.)
- CRIPA Swine and Poultry Infectious Diseases Research Center, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Philippe Fravalo
- NSERC Industrial Research Chair in Meat Safety (CRSV), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (F.S.-B.); (W.P.T.); (A.T.)
- F. Ménard, Division d’Olymel s.e.c., Ange-Gardien, QC J0E 1E0, Canada;
- CRIPA Swine and Poultry Infectious Diseases Research Center, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Pôle Agroalimentaire, Conservatoire National des Arts et Métiers (Cnam), 75003 Paris, France
- Correspondence:
| |
Collapse
|
18
|
Unrath N, McCabe E, Macori G, Fanning S. Application of Whole Genome Sequencing to Aid in Deciphering the Persistence Potential of Listeria monocytogenes in Food Production Environments. Microorganisms 2021; 9:1856. [PMID: 34576750 PMCID: PMC8464834 DOI: 10.3390/microorganisms9091856] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/26/2023] Open
Abstract
Listeria monocytogenes is the etiological agent of listeriosis, a foodborne illness associated with high hospitalizations and mortality rates. This bacterium can persist in food associated environments for years with isolates being increasingly linked to outbreaks. This review presents a discussion of genomes of Listeria monocytogenes which are commonly regarded as persisters within food production environments, as well as genes which are involved in mechanisms aiding this phenotype. Although criteria for the detection of persistence remain undefined, the advent of whole genome sequencing (WGS) and the development of bioinformatic tools have revolutionized the ability to find closely related strains. These advancements will facilitate the identification of mechanisms responsible for persistence among indistinguishable genomes. In turn, this will lead to improved assessments of the importance of biofilm formation, adaptation to stressful conditions and tolerance to sterilizers in relation to the persistence of this bacterium, all of which have been previously associated with this phenotype. Despite much research being published around the topic of persistence, more insights are required to further elucidate the nature of true persistence and its implications for public health.
Collapse
Affiliation(s)
- Natalia Unrath
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, D04 N2E5 Dublin, Ireland; (N.U.); (E.M.); (G.M.)
| | - Evonne McCabe
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, D04 N2E5 Dublin, Ireland; (N.U.); (E.M.); (G.M.)
- Department of Microbiology, St. Vincent’s University Hospital, D04 T6F4 Dublin, Ireland
| | - Guerrino Macori
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, D04 N2E5 Dublin, Ireland; (N.U.); (E.M.); (G.M.)
| | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, D04 N2E5 Dublin, Ireland; (N.U.); (E.M.); (G.M.)
| |
Collapse
|
19
|
Lachtara B, Osek J, Wieczorek K. Molecular Typing of Listeria monocytogenes IVb Serogroup Isolated from Food and Food Production Environments in Poland. Pathogens 2021; 10:pathogens10040482. [PMID: 33921133 PMCID: PMC8071568 DOI: 10.3390/pathogens10040482] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/31/2022] Open
Abstract
Listeria monocytogenes is one of the most important foodborne pathogens that may be present in food and in food processing environments. In the present study, 91 L. monocytogenes isolates of serogroup IVb from raw meat, ready-to-eat food and food production environments in Poland were characterized by whole genome sequencing (WGS). The strains were also compared, using core genome multi-locus sequence typing (cgMLST) analysis, with 186 genomes of L. monocytogenes recovered worldwide from food, environments, and from humans with listeriosis. The L. monocytogenes examined belonged to three MLST clonal complexes: CC1 (10; 11.0% isolates), CC2 (70; 76.9%), and CC6 (11; 12.1%). CC1 comprised of two STs (ST1 and ST515) which could be divided into five cgMLST, CC2 covered two STs (ST2 and ST145) with a total of 20 cgMLST types, whereas CC6 consisted of only one ST (ST6) classified as one cgMLST. WGS sequences of the tested strains revealed that they had several pathogenic markers making them potentially hazardous for public health. Molecular comparison of L. monocytogenes strains tested in the present study with those isolated from food and human listeriosis showed a relationship between the isolates from Poland, but not from other countries.
Collapse
|
20
|
Pérez-Baltar A, Pérez-Boto D, Medina M, Montiel R. Genomic diversity and characterization of Listeria monocytogenes from dry-cured ham processing plants. Food Microbiol 2021; 99:103779. [PMID: 34119091 DOI: 10.1016/j.fm.2021.103779] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 11/28/2022]
Abstract
Genomic diversity of Listeria monocytogenes isolates from the deboning and slicing areas of three dry-cured ham processing plants was analysed. L. monocytogenes was detected in 58 out of 491 samples from the environment and equipment surfaces, all from the deboning area, with differences in prevalence among facilities. The most frequent PCR-serogroup was IIa (74.1%) followed by IIb and IIc, and only one isolate was serogroup IVb. Twenty different pulsotypes and 11 sequence types (STs) grouped into 10 clonal complexes (CCs) were determined. ST121 (CC121) and ST9 (CC9) were the most abundant. Premature stop codons (PMSC6 and PMSC19) associated with attenuated virulence were found in the inlA sequence in 7 out of 12 selected strains. CC121 strains were strong biofilm formers and some harboured the transposon Tn6188, related with increased tolerance to quaternary ammonium compounds. L. monocytogenes clones considered hypovirulent resulted predominant in the deboning areas. The clonal structure and potential virulence of the isolates could help to establish adequate control measures and cleaning protocols for the comprehensive elimination of the pathogen in dry-cured ham processing environment.
Collapse
Affiliation(s)
- Aida Pérez-Baltar
- Departamento Tecnología de Alimentos, INIA, Carretera de La Coruña Km 7, 28040, Madrid, Spain
| | - David Pérez-Boto
- Departamento Tecnología de Alimentos, INIA, Carretera de La Coruña Km 7, 28040, Madrid, Spain
| | - Margarita Medina
- Departamento Tecnología de Alimentos, INIA, Carretera de La Coruña Km 7, 28040, Madrid, Spain
| | - Raquel Montiel
- Departamento Tecnología de Alimentos, INIA, Carretera de La Coruña Km 7, 28040, Madrid, Spain.
| |
Collapse
|
21
|
Kurpas M, Osek J, Moura A, Leclercq A, Lecuit M, Wieczorek K. Genomic Characterization of Listeria monocytogenes Isolated From Ready-to-Eat Meat and Meat Processing Environments in Poland. Front Microbiol 2020; 11:1412. [PMID: 32670248 PMCID: PMC7331111 DOI: 10.3389/fmicb.2020.01412] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
Listeria monocytogenes is one of the major foodborne pathogens. Isolates of PCR-serogroups IIb (n = 17) and IVb (n = 31) recovered from food (n = 33) and food processing environment (n = 15) in Poland were characterized using whole genome sequencing. Most isolates belonged to Multi-Locus Sequence Type (MLST) ST2 (31.3%) and ST5 (22.9%). Core genome MLST (cgMLST) analysis classified isolates into seven sublineages (SL) and 25 different cgMLST types (CT). Consistent with the MLST results, most sublineages were SL2 and SL5. Eleven isolates harbored aacA4 encoding resistance to aminoglycosides, three isolates harbored emrC (n = 3) and one brcABC (n = 1) encoding tolerance to benzalkonium chloride. Isolates belonging to SL5 CT2323 carried a so far unreported inlB allele with a deletion of 141 nucleotides encoding the β-repeat sheet and partially the GW1 domain of InlB. Comparison with publicly available genome sequences from L. monocytogenes isolated from human listeriosis cases in Poland from 2004 to 2013 revealed five common CTs, suggesting a possible epidemiological link with these strains. The present study contributes to characterize the diversity of L. monocytogenes in ready-to-eat (RTE) meat and meat processing environments in Poland and unravels previously unnoticed links with clinical cases in Europe.
Collapse
Affiliation(s)
- Monika Kurpas
- Department of Hygiene of Food of Animal Origin, National Veterinary Research Institute, Pulawy, Poland
| | - Jacek Osek
- Department of Hygiene of Food of Animal Origin, National Veterinary Research Institute, Pulawy, Poland
| | - Alexandra Moura
- Institut Pasteur, Biology of Infection Unit, Paris, France
- Institut Pasteur, National Reference Centre and WHO Collaborating Centre Listeria, Paris, France
- Inserm U1117, Paris, France
| | - Alexandre Leclercq
- Institut Pasteur, Biology of Infection Unit, Paris, France
- Institut Pasteur, National Reference Centre and WHO Collaborating Centre Listeria, Paris, France
| | - Marc Lecuit
- Institut Pasteur, Biology of Infection Unit, Paris, France
- Institut Pasteur, National Reference Centre and WHO Collaborating Centre Listeria, Paris, France
- Inserm U1117, Paris, France
- Université de Paris, Necker-Enfants Malades University Hospital, Division of Infectious Diseases and Tropical Medicine, Institut Imagine, Paris, France
| | - Kinga Wieczorek
- Department of Hygiene of Food of Animal Origin, National Veterinary Research Institute, Pulawy, Poland
| |
Collapse
|
22
|
Evolution of Listeria monocytogenes in a Food Processing Plant Involves Limited Single-Nucleotide Substitutions but Considerable Diversification by Gain and Loss of Prophages. Appl Environ Microbiol 2020; 86:AEM.02493-19. [PMID: 31900305 PMCID: PMC7054086 DOI: 10.1128/aem.02493-19] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/20/2019] [Indexed: 12/23/2022] Open
Abstract
Knowledge about the genetic evolution of L. monocytogenes in food processing facilities over multiple years is generally lacking. This information is critical to interpret WGS findings involving food or food-associated isolates. This study suggests that L. monocytogenes that persists in processing facilities may evolve with a low single-nucleotide mutation rate mostly driven by negative (i.e., purifying) selection but with rapid diversification of prophages. Hence, isolation of L. monocytogenes with few single-nucleotide polymorphism (SNP) differences in different locations (e.g., supplier plants and receiving plants) is possible, highlighting the importance of epidemiological and detailed isolate metadata for interpreting WGS data in traceback investigation. Our study also shows how advanced WGS data analyses can be used to support root cause analysis efforts and may, for example, pinpoint the time when a persistence event started (which then potentially could be linked to facility changes, introduction of new equipment, etc.). Whole-genome sequencing (WGS) is becoming the standard method for subtyping Listeria monocytogenes. Interpretation of WGS data for isolates from foods and associated environments is, however, challenging due to a lack of detailed data on Listeria evolution in processing facilities. Here, we used previously collected WGS data for 40 L. monocytogenes isolates obtained from a cold-smoked salmon processing facility between 1998 and 2015 to probe the L. monocytogenes molecular evolution in this facility, combined with phenotypic assessment of selected isolates. Isolates represented three clusters (1, 2, and 3); cluster 3 isolates (n = 32) were obtained over 18 years. The average mutation rate for cluster 3 was estimated as 1.15 × 10−7 changes per nucleotide per year (∼0.35 changes per genome per year); the most recent common ancestors (MRCAs) of subclusters 3a and 3b were estimated to have occurred around 1958 and 1974, respectively, within the age of the facility, suggesting long-term persistence in this facility. Extensive prophage diversity was observed within subclusters 3a and 3b, which have one shared and six unique prophage profiles for each subcluster (with 16 prophage profiles found among all 40 isolates). The plasmid-borne sanitizer tolerance operon bcrABC was found in all cluster 2 and 3 isolates, while the transposon-borne sanitizer tolerance gene qacH was found in one cluster 1 isolate; presence of these genes was correlated with the ability to survive increased concentrations of sanitizers. Selected isolates showed significant variation in the ability to attach to surfaces, with persistent isolates attaching better than transient isolates at 21°C. IMPORTANCE Knowledge about the genetic evolution of L. monocytogenes in food processing facilities over multiple years is generally lacking. This information is critical to interpret WGS findings involving food or food-associated isolates. This study suggests that L. monocytogenes that persists in processing facilities may evolve with a low single-nucleotide mutation rate mostly driven by negative (i.e., purifying) selection but with rapid diversification of prophages. Hence, isolation of L. monocytogenes with few single-nucleotide polymorphism (SNP) differences in different locations (e.g., supplier plants and receiving plants) is possible, highlighting the importance of epidemiological and detailed isolate metadata for interpreting WGS data in traceback investigation. Our study also shows how advanced WGS data analyses can be used to support root cause analysis efforts and may, for example, pinpoint the time when a persistence event started (which then potentially could be linked to facility changes, introduction of new equipment, etc.).
Collapse
|
23
|
López-Alonso V, Ortiz S, Corujo A, Martínez-Suárez JV. Analysis of Benzalkonium Chloride Resistance and Potential Virulence of Listeria monocytogenes Isolates Obtained from Different Stages of a Poultry Production Chain in Spain. J Food Prot 2020; 83:443-451. [PMID: 32053831 DOI: 10.4315/0362-028x.jfp-19-289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/12/2019] [Indexed: 01/30/2023]
Abstract
ABSTRACT Listeria monocytogenes can survive in food production facilities and can be transmitted via contamination of food during the various stages of food production. This study was conducted to compile the results of three independent previous studies on the genetic diversity of L. monocytogenes in a poultry production company in Spain and to determine the potential virulence and sanitizer resistance of the strains by using both genotype and phenotype analyses. L. monocytogenes was detected at three production stages: a broiler abattoir, a processing plant, and retail stores marketing fresh poultry products from the same company. These three stages spanned three locations in three provinces of Spain. A set of 347 L. monocytogenes isolates representing 39 subtypes was obtained using pulsed-field gel electrophoresis (PFGE). A total of 28 subtypes (68%) had a full-length internalin A gene, and two subtypes had a phenotype with low potential for virulence because of a mutation in the prfA gene. A total of 32 subtypes (82%) were classified as benzalkonium chloride resistant (BAC-R) and contained the resistance determinant bcrABC (21 subtypes, 54%) or the resistance gene qacH (11 subtypes, 28%). A total of 13 persistent BAC-R subtypes (minimum of 3 months between the first and last sample from with the isolate was recovered) were identified at the abattoir and processing plant. The three production stages shared a unique subtype (PFGE type 1), which had the mutation in the prfA gene and the bcrABC resistance determinant. Whole genome sequencing revealed this subtype to be sequence type 31. Limited genetic diversity was noted in the isolates studied, including some subtypes that were persistent in the environment of the investigated facilities. Given the high prevalence of BAC-R subtypes, these results support the association between resistance to biocides and persistence of L. monocytogenes. HIGHLIGHTS
Collapse
Affiliation(s)
- Victoria López-Alonso
- Unidad de Biología Computacional, UFIEC, Instituto de Salud Carlos III, Carretera de Majadahonda a Pozuelo km 2, 28220 Majadahonda, Madrid, Spain
| | - Sagrario Ortiz
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Autovía A-6 km 7.5, 28040 Madrid, Spain
| | - Alfredo Corujo
- Nutreco Food Research Center, Ctra. CM 4004 km 10.5, 45950 Casarrubios del Monte, Toledo, Spain
| | - Joaquín V Martínez-Suárez
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Autovía A-6 km 7.5, 28040 Madrid, Spain.,(ORCID: https://orcid.org/0000-0003-4306-3223 [J.V.M.-S.])
| |
Collapse
|
24
|
Kaszoni-Rückerl I, Mustedanagic A, Muri-Klinger S, Brugger K, Wagner KH, Wagner M, Stessl B. Predominance of Distinct Listeria Innocua and Listeria Monocytogenes in Recurrent Contamination Events at Dairy Processing Facilities. Microorganisms 2020; 8:E234. [PMID: 32050536 PMCID: PMC7074772 DOI: 10.3390/microorganisms8020234] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/24/2020] [Accepted: 02/06/2020] [Indexed: 12/25/2022] Open
Abstract
: The genus Listeria now comprises up to now 21 recognized species and six subspecies, with L. monocytogenes and L. innocua as the most prevalent sensu stricto associated species. Reports focusing on the challenges in Listeria detection and confirmation are available, especially from food-associated environmental samples. L. innocua is more prevalent in the food processing environment (FPE) than L. monocytogenes and has been shown to have a growth advantage in selective enrichment and agar media. Until now, the adaptive nature of L. innocua in FPEs has not been fully elucidated and potential persistence in the FPE has not been observed. Therefore, the aim of this study is to characterize L. innocua (n = 139) and L. monocytogenes (n = 81) isolated from FPEs and cheese products collected at five dairy processing facilities (A-E) at geno- and phenotypic levels. Biochemical profiling was conducted for all L. monocytogenes and the majority of L. innocua (n = 124) isolates and included a rhamnose positive reaction. L. monocytogenes isolates were most frequently confirmed as PCR-serogroups 1/2a, 3a (95%). Pulsed-field gel electrophoresis (PFGE)-typing, applying the restriction enzymes AscI, revealed 33 distinct Listeria PFGE profiles with a Simpson's Index of Diversity of 0.75. Multi-locus sequence typing (MLST) resulted in 27 STs with seven new L. innocua local STs (ST1595 to ST1601). L. innocua ST1597 and ST603 and L. monocytogenes ST121 and ST14 were the most abundant genotypes in dairy processing facilities A-E over time. Either SSI-1 (ST14) or SSI-2 (ST121, all L. innocua) were present in successfully FPE-adapted strains. We identified housekeeping genes common in Listeria isolates and L. monocytogenes genetic lineage III. Wherever there are long-term contamination events of L. monocytogenes and other Listeria species, subtyping methods are helpful tools to identify niches of high risk.
Collapse
Affiliation(s)
- Irene Kaszoni-Rückerl
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department of Farm Animal and Public Health in Veterinary Medicine Department of Veterinary Public Health and Food Science, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (I.K.-R.); (S.M.-K.); (M.W.)
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria;
| | - Azra Mustedanagic
- Austrian Competence Center for Feed and Food Quality, Safety and Innovation (FFOQSI), Technopark C, 3430 Tulln, Austria;
| | - Sonja Muri-Klinger
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department of Farm Animal and Public Health in Veterinary Medicine Department of Veterinary Public Health and Food Science, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (I.K.-R.); (S.M.-K.); (M.W.)
| | - Katharina Brugger
- Unit of Veterinary Public Health and Epidemiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department of Farm Animal and Public Health in Veterinary Medicine Department of Veterinary Public Health and Food Science, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria;
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria;
| | - Martin Wagner
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department of Farm Animal and Public Health in Veterinary Medicine Department of Veterinary Public Health and Food Science, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (I.K.-R.); (S.M.-K.); (M.W.)
- Austrian Competence Center for Feed and Food Quality, Safety and Innovation (FFOQSI), Technopark C, 3430 Tulln, Austria;
| | - Beatrix Stessl
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department of Farm Animal and Public Health in Veterinary Medicine Department of Veterinary Public Health and Food Science, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (I.K.-R.); (S.M.-K.); (M.W.)
| |
Collapse
|
25
|
Palma F, Brauge T, Radomski N, Mallet L, Felten A, Mistou MY, Brisabois A, Guillier L, Midelet-Bourdin G. Dynamics of mobile genetic elements of Listeria monocytogenes persisting in ready-to-eat seafood processing plants in France. BMC Genomics 2020; 21:130. [PMID: 32028892 PMCID: PMC7006209 DOI: 10.1186/s12864-020-6544-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 01/30/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Listeria monocytogenes Clonal Complexes (CCs) have been epidemiologically associated with foods, especially ready-to-eat (RTE) products for which the most likely source of contamination depends on the occurrence of persisting clones in food-processing environments (FPEs). As the ability of L. monocytogenes to adapt to environmental stressors met in the food chain challenges the efforts to its eradication from FPEs, the threat of persistent strains to the food industry and public health authorities continues to rise. In this study, 94 food and FPEs L. monocytogenes isolates, representing persistent subtypes contaminating three French seafood facilities over 2-6 years, were whole-genome sequenced to characterize their genetic diversity and determine the biomarkers associated with long-term survival in FPEs. RESULTS Food and FPEs isolates belonged to five CCs, comprising long-term intra- and inter-plant persisting clones. Mobile genetic elements (MGEs) such as plasmids, prophages and transposons were highly conserved within CCs, some of which harboured genes for resistance to chemical compounds and biocides used in the processing plants. Some of these genes were found in a 90.8 kbp plasmid, predicted to be" mobilizable", identical in isolates from CC204 and CC155, and highly similar to an 81.6 kbp plasmid from isolates belonging to CC7. These similarities suggest horizontal transfer between isolates, accompanied by deletion and homologous recombination in isolates from CC7. Prophage profiles characterized persistent clonal strains and several prophage-loci were plant-associated. Notably, a persistent clone from CC101 harboured a novel 31.5 kbp genomic island that we named Listeria genomic island 3 (LGI3), composed by plant-associated loci and chromosomally integrating cadmium-resistance determinants cadA1C. CONCLUSIONS Genome-wide analysis indicated that inter- and intra-plant persisting clones harbour conserved MGEs, likely acquired in FPEs and maintained by selective pressures. The presence of closely related plasmids in L. monocytogenes CCs supports the hypothesis of horizontal gene transfer conferring enhanced survival to FPE-associated stressors, especially in hard-to-clean harbourage sites. Investigating the MGEs evolutionary and transmission dynamics provides additional resolution to trace-back potentially persistent clones. The biomarkers herein discovered provide new tools for better designing effective strategies for the removal or reduction of resident L. monocytogenes in FPEs to prevent contamination of RTE seafood.
Collapse
Affiliation(s)
- Federica Palma
- ANSES, Laboratory for Food Safety, University Paris-Est, Maisons-Alfort, France
| | - Thomas Brauge
- ANSES, Laboratory for Food Safety, Boulogne-sur-Mer, France
| | - Nicolas Radomski
- ANSES, Laboratory for Food Safety, University Paris-Est, Maisons-Alfort, France
| | - Ludovic Mallet
- ANSES, Laboratory for Food Safety, University Paris-Est, Maisons-Alfort, France
| | - Arnaud Felten
- ANSES, Laboratory for Food Safety, University Paris-Est, Maisons-Alfort, France
| | - Michel-Yves Mistou
- ANSES, Laboratory for Food Safety, University Paris-Est, Maisons-Alfort, France
- INRAE, MaIAGE, University Paris-Saclay, Jouy-en-Josas, France
| | - Anne Brisabois
- ANSES, Laboratory for Food Safety, University Paris-Est, Maisons-Alfort, France
- ANSES, Laboratory for Food Safety, Boulogne-sur-Mer, France
| | - Laurent Guillier
- ANSES, Laboratory for Food Safety, University Paris-Est, Maisons-Alfort, France
| | | |
Collapse
|
26
|
Chen M, Cheng J, Pang R, Zhang J, Chen Y, Zeng H, Lei T, Ye Q, Wu S, Zhang S, Wu H, Wang J, Wu Q. Rapid detection of Listeria monocytogenes sequence type 121 strains using a novel multiplex PCR assay. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108474] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Upham J, Chen S, Boutilier E, Hodges L, Eisebraun M, Croxen MA, Fortuna A, Mallo GV, Garduño RA. Potential Ad Hoc Markers of Persistence and Virulence in Canadian Listeria monocytogenes Food and Clinical Isolates. J Food Prot 2019; 82:1909-1921. [PMID: 31633427 DOI: 10.4315/0362-028x.jfp-19-028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Listeria monocytogenes gene inlA, encoding a surface virulence protein, was examined for the presence of premature stop codon (PMSC) mutations in 82 isolates obtained by the Canadian Food Inspection Agency (CFIA) from foods and food contact surfaces. These mutations were coanalyzed for the presence of stress survival islet 1 (SSI-1) and for the abilities of the isolates to invade Caco-2 intestinal epithelial cells and form biofilms on polystyrene. PMSC mutations were present in one-third of the isolates (predominantly those of serogroup 1/2a), and their presence was correlated with a noninvasive phenotype. The presence of SSI-1 and the ability to form biofilms were also linked to the 1/2a serogroup. Serogroup 4b isolates lacked inlA PMSC mutations and were invasive, but neither formed biofilms nor carried SSI-1. To expand upon these experimental findings, an in silico analysis was performed on L. monocytogenes genomes from Canadian databases of 278 food isolates and 607 clinical isolates. The prevalence of inlA PMSC mutations in genomes of food isolates was significantly higher (P < 0.0001) than that in clinical isolates. Also, a three-codon deletion in inlA associated with a hyperinvasive phenotype was more prevalent in genomes from clinical isolates (primarily of clonal complex 6, serogroup 4b) than in those from food isolates (P < 0.001). In contrast, SSI-1 was significantly overrepresented (P < 0.001) in genomes from food isolates. We propose the hypothesis that SSI-1 and inlA play a role in the evolution of Canadian L. monocytogenes strains into either a virulent (represented by serogroup 4b clinical isolates) or an environmentally persistent (represented by serogroup 1/2a food isolates) phenotype. The combined presence of SSI-1 and inlA PMSC mutations have potential for use as genetic markers for risk assessment when L. monocytogenes is recovered from foods, indicating low potential for pathogenesis.
Collapse
Affiliation(s)
- Jacqueline Upham
- Canadian Food Inspection Agency, Dartmouth Laboratory, Dartmouth, Nova Scotia, Canada B3B 1Y9
| | - Stephen Chen
- Canadian Food Inspection Agency, Dartmouth Laboratory, Dartmouth, Nova Scotia, Canada B3B 1Y9
| | - Elizabeth Boutilier
- Canadian Food Inspection Agency, Dartmouth Laboratory, Dartmouth, Nova Scotia, Canada B3B 1Y9
| | - Lisa Hodges
- Canadian Food Inspection Agency, Dartmouth Laboratory, Dartmouth, Nova Scotia, Canada B3B 1Y9
| | - Mikaela Eisebraun
- Canadian Food Inspection Agency, Dartmouth Laboratory, Dartmouth, Nova Scotia, Canada B3B 1Y9
| | - Matthew A Croxen
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada V5Z 4R4
| | - Alex Fortuna
- Pathogen Preparedness and Test Development Unit, Public Health Ontario Laboratories, Toronto, Ontario, Canada M5G 1M1
| | - Gustavo V Mallo
- Pathogen Preparedness and Test Development Unit, Public Health Ontario Laboratories, Toronto, Ontario, Canada M5G 1M1
| | - Rafael A Garduño
- Canadian Food Inspection Agency, Dartmouth Laboratory, Dartmouth, Nova Scotia, Canada B3B 1Y9.,Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| |
Collapse
|
28
|
Manso B, Melero B, Stessl B, Fernández-Natal I, Jaime I, Hernández M, Wagner M, Rovira J, Rodríguez-Lázaro D. Characterization of Virulence and Persistence Abilities of Listeria monocytogenes Strains Isolated from Food Processing Premises. J Food Prot 2019; 82:1922-1930. [PMID: 31633423 DOI: 10.4315/0362-028x.jfp-19-109] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We report the characterization of 15 Listeria monocytogenes strains isolated from various food processing plants by multivirulence locus sequence typing to determine virulence types (VTs) and epidemic clones. Molecular mechanisms involved in adaptation to food processing environments and related to virulence were also studied. Phenotypic behaviors associated with various antimicrobials, biofilm formations, and invasiveness were assessed. There were 11 VTs among the 15 L. monocytogenes strains. Strains belonging to six VTs were stress survival islet 1 (SSI-1) and one strain of VT94 was SSI-2. Tn6188 was found in VT6 and VT94 strains, and bcrABC cassette genes were identified in VT21, VT60, and VT63 strains. Only one strain, in VT20, showed llxS, whereas a full-size inlA was detected in strains belonging to VT8, VT20, VT21, and VT63. VT10, VT20, VT21, VT60, and VT63 strains were the most tolerant to studied disinfectants. A VT6 strain showed the strongest biofilm formation ability in polyvinyl chloride, and strains belonging to VT10, VT11, VT20, and VT94 had moderate abilities. Antimicrobial sensitivity tests showed that all the L. monocytogenes strains were multidrug resistant. F tests revealed that only strains of VT10, VT60, and VT94 were significantly noninvasive (P < 0.05) in Caco-2 cells. Our findings illustrate how L. monocytogenes isolates exploit diverse mechanisms to adapt to adverse conditions. Consequently, detailed characterization of L. monocytogenes isolates is required for comprehensive elimination of this pathogenic bacterium in food processing environments.
Collapse
Affiliation(s)
- Beatriz Manso
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Burgos, Spain (ORCID. https://orcid.org/0000-0002-8795-854X [D.R.-L.])
| | - Beatriz Melero
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Burgos, Spain (ORCID. https://orcid.org/0000-0002-8795-854X [D.R.-L.])
| | - Beatrix Stessl
- Institute of Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria.,Christian Doppler Laboratory for Molecular Food Analytics, University of Veterinary Medicine, Vienna, Austria
| | - Isabel Fernández-Natal
- Complejo Asistencial, University of León, Leon, Spain.,Institute of Biomedicine (IBIOMED), University of León, Leon, Spain
| | - Isabel Jaime
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Burgos, Spain (ORCID. https://orcid.org/0000-0002-8795-854X [D.R.-L.])
| | - Marta Hernández
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Burgos, Spain (ORCID. https://orcid.org/0000-0002-8795-854X [D.R.-L.]).,Laboratory of Molecular Biology and Microbiology, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Valladolid, Spain
| | - Martin Wagner
- Institute of Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria.,Christian Doppler Laboratory for Molecular Food Analytics, University of Veterinary Medicine, Vienna, Austria
| | - Jordi Rovira
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Burgos, Spain (ORCID. https://orcid.org/0000-0002-8795-854X [D.R.-L.])
| | - David Rodríguez-Lázaro
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Burgos, Spain (ORCID. https://orcid.org/0000-0002-8795-854X [D.R.-L.])
| |
Collapse
|
29
|
Melero B, Manso B, Stessl B, Hernández M, Wagner M, Rovira J, Rodríguez-Lázaro D. Distribution and Persistence of Listeria monocytogenes in a Heavily Contaminated Poultry Processing Facility. J Food Prot 2019; 82:1524-1531. [PMID: 31414898 DOI: 10.4315/0362-028x.jfp-19-087] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We studied the colonization and distribution of Listeria monocytogenes in a heavily contaminated poultry processing plant over a 1-year period. A total of 180 nonfood contact surfaces, 70 food contact surfaces, 29 personnel, and 40 food samples were analyzed. L. monocytogenes isolates were subtyped by PCR serotyping, pulsed-field gel electrophoresis (PFGE), and multilocus sequence typing. L. monocytogenes was detected in samples collected at every visit to the plant, and 43.8% (visit 4) to 65.6% (visit 7) of samples were positive, for an overall prevalence of 55.2%. The deboning area had the highest prevalence of positive samples (83.3%), and the processing area had the highest diversity of PFGE types. Ninety percent of the final products were positive for L. monocytogenes. Most of the isolates belonged to well-known persistent L. monocytogenes sequence types (ST9 and ST121). This study illustrates a well-established L. monocytogenes contamination problem in a poultry processing plant associated with a generalized failure of the food safety system as a whole. These findings reflect the potential for L. monocytogenes contamination when the food safety and quality management system is unsatisfactory, as described in the present study. It is essential to revise food safety and quality management systems to eliminate L. monocytogenes from food processing facilities, to control the entrance of sporadic sequence types, and to prevent L. monocytogenes spread within such facilities, especially in those premises with higher L. monocytogenes prevalence in the environment and final food products.
Collapse
Affiliation(s)
- Beatriz Melero
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain (ORCID: https://orcid.org/0000-0002-8795-854X [D.R.-L.])
| | - Beatriz Manso
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain (ORCID: https://orcid.org/0000-0002-8795-854X [D.R.-L.])
| | - Beatrix Stessl
- Institute of Milk Hygiene, Milk Technology and Food Science, Department of Veterinary Public Health and Food Science, University of Veterinary Medicine, Vienna, Austria
| | - Marta Hernández
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain (ORCID: https://orcid.org/0000-0002-8795-854X [D.R.-L.]).,Laboratory of Molecular Biology and Microbiology, Instituto Tecnológico Agrario de Castilla y León, Valladolid, Spain
| | - Martin Wagner
- Institute of Milk Hygiene, Milk Technology and Food Science, Department of Veterinary Public Health and Food Science, University of Veterinary Medicine, Vienna, Austria
| | - Jordi Rovira
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain (ORCID: https://orcid.org/0000-0002-8795-854X [D.R.-L.])
| | - David Rodríguez-Lázaro
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain (ORCID: https://orcid.org/0000-0002-8795-854X [D.R.-L.])
| |
Collapse
|
30
|
Hurley D, Luque-Sastre L, Parker CT, Huynh S, Eshwar AK, Nguyen SV, Andrews N, Moura A, Fox EM, Jordan K, Lehner A, Stephan R, Fanning S. Whole-Genome Sequencing-Based Characterization of 100 Listeria monocytogenes Isolates Collected from Food Processing Environments over a Four-Year Period. mSphere 2019; 4:e00252-19. [PMID: 31391275 PMCID: PMC6686224 DOI: 10.1128/msphere.00252-19] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/12/2019] [Indexed: 02/05/2023] Open
Abstract
Listeria monocytogenes is frequently found in foods and processing facilities, where it can persist, creating concerns for the food industry. Its ability to survive under a wide range of environmental conditions enhances the potential for cross-contamination of the final food products, leading to possible outbreaks of listeriosis. In this study, whole-genome sequencing (WGS) was applied as a tool to characterize and track 100 L. monocytogenes isolates collected from three food processing environments. These WGS data from environmental and food isolates were analyzed to (i) assess the genomic diversity of L. monocytogenes, (ii) identify possible source(s) of contamination, cross-contamination routes, and persistence, (iii) detect absence/presence of antimicrobial resistance-encoding genes, (iv) assess virulence genotypes, and (v) explore in vivo pathogenicity of selected L. monocytogenes isolates carrying different virulence genotypes. The predominant L. monocytogenes sublineages (SLs) identified were SL101 (21%), SL9 (17%), SL121 (12%), and SL5 (12%). Benzalkonium chloride (BC) tolerance-encoding genes were found in 62% of these isolates, a value that increased to 73% among putative persistent subgroups. The most prevalent gene was emrC followed by bcrABC, qacH-Tn6188, and qacC. The L. monocytogenes major virulence factor inlA was truncated in 31% of the isolates, and only one environmental isolate (L. monocytogenes CFS086) harbored all major virulence factors, including Listeria pathogenicity island 4 (LIPI-4), which has been shown to confer hypervirulence. A zebrafish embryo infection model showed a low (3%) embryo survival rate for all putatively hypervirulent L. monocytogenes isolates assayed. Higher embryo survival rates were observed following infection with unknown virulence potential (20%) and putatively hypovirulent (53 to 83%) L. monocytogenes isolates showing predicted pathogenic phenotypes inferred from virulence genotypes.IMPORTANCE This study extends current understanding of the genetic diversity among L. monocytogenes from various food products and food processing environments. Application of WGS-based strategies facilitated tracking of this pathogen of importance to human health along the production chain while providing insights into the pathogenic potential for some of the L. monocytogenes isolates recovered. These analyses enabled the grouping of selected isolates into three putative virulence categories according to their genotypes along with informing selection for phenotypic assessment of their pathogenicity using the zebrafish embryo infection model. It has also facilitated the identification of those isolates with genes conferring tolerance to commercially used biocides. Findings from this study highlight the potential for the application of WGS as a proactive tool to support food safety controls as applied to L. monocytogenes.
Collapse
Affiliation(s)
- Daniel Hurley
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Laura Luque-Sastre
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Craig T Parker
- Western Regional Research Center, Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, USA
| | - Steven Huynh
- Western Regional Research Center, Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, USA
| | - Athmanya K Eshwar
- Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Scott V Nguyen
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Nicholas Andrews
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Alexandra Moura
- Biodiversity and Epidemiology of Bacterial Pathogens, Institut Pasteur, Paris, France
| | - Edward M Fox
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Kieran Jordan
- Food Safety Department, Teagasc Food Research Centre, Fermoy, County Cork, Ireland
| | - Angelika Lehner
- Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
31
|
Gelbíčová T, Florianová M, Tomáštíková Z, Pospíšilová L, Koláčková I, Karpíšková R. Prediction of Persistence of Listeria monocytogenes ST451 in a Rabbit Meat Processing Plant in the Czech Republic. J Food Prot 2019; 82:1350-1356. [PMID: 31313961 DOI: 10.4315/0362-028x.jfp-19-030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This study was focused on characterization of the genetic diversity of Listeria monocytogenes isolated from packed fresh rabbit meat obtained from one producer via retail outlets. The partial aim was to compare the characteristics of a suspect persistent strain with strains from human cases. The occurrence of L. monocytogenes in vacuum-packed rabbit meat was monitored during 2013 to 2016. All strains were characterized by serotyping, pulsed-field gel electrophoresis, and multilocus sequence typing (MLST). Selected strains, which represented each year, were analyzed using the whole genome sequencing method. L. monocytogenes was detected in 21 (38%) of 56 originally packed rabbit meat samples from one food producer during the whole monitored period. All strains showed the identical serotype (1/2a), AscI/ApaI pulsotype (735/2), and sequence type (ST451). The clonal similarity of strains from rabbit meat was also confirmed on the basis of core genome MLST (on 1,701 loci). This fact suggests the occurrence of a suspect persistent strain in the meat processing plant. Results of core genome MLST enabled us to unambiguously exclude rabbit meat as a source of listeriosis in humans caused by the indistinguishable AscI/ApaI pulsotype and sequence type, although all strains carried all genes important for the virulence of L. monocytogenes. No specific genes that may be associated with its persistence in the food processing environment were detected among the tested strains of ST451.
Collapse
Affiliation(s)
- Tereza Gelbíčová
- Department of Bacteriology, Veterinary Research Institute, Brno, 621 00, Czech Republic
| | - Martina Florianová
- Department of Bacteriology, Veterinary Research Institute, Brno, 621 00, Czech Republic
| | - Zuzana Tomáštíková
- Department of Bacteriology, Veterinary Research Institute, Brno, 621 00, Czech Republic
| | - Lucie Pospíšilová
- Department of Bacteriology, Veterinary Research Institute, Brno, 621 00, Czech Republic
| | - Ivana Koláčková
- Department of Bacteriology, Veterinary Research Institute, Brno, 621 00, Czech Republic
| | - Renáta Karpíšková
- Department of Bacteriology, Veterinary Research Institute, Brno, 621 00, Czech Republic
| |
Collapse
|
32
|
Chen M, Cheng J, Wu Q, Zhang J, Chen Y, Xue L, Lei T, Zeng H, Wu S, Ye Q, Bai J, Wang J. Occurrence, Antibiotic Resistance, and Population Diversity of Listeria monocytogenes Isolated From Fresh Aquatic Products in China. Front Microbiol 2018; 9:2215. [PMID: 30283429 PMCID: PMC6157410 DOI: 10.3389/fmicb.2018.02215] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/30/2018] [Indexed: 12/14/2022] Open
Abstract
Listeria monocytogenes is an important Gram-positive foodborne pathogen. However, limited information is available on the comprehensive investigation and potential risk of L. monocytogenes in fresh aquatic products, which are popular to consumers in China. This study aimed to determine the occurrence, virulence profiles, and population diversity of L. monocytogenes isolated from aquatic products in China. In total, 846 aquatic product samples were collected between July 2011 and April 2016 from 43 cities in China. Approximately 7.92% (67/846) aquatic product samples were positive for L. monocytogenes, 86.57% positive samples ranged from 0.3 to 10 MPN/g, whereas 5.97% showed over 110 MPN/g by the Most Probable Number method, which included two samples of products intended to be eaten raw. Serogroups I.1 (serotype 1/2a), I.2 (serotype 1/2b), and III (serotype 4c) were the predominant serogroups isolated, whereas serogroup II.1 (serotype 4b) was detected at much lower frequencies. Examination of antibacterial resistance showed that nine antibacterial resistance profiles were exhibited in 72 isolates, a high level susceptibility of 16 tested antibiotics against L. monocytogenes were observed, indicating these common antibacterial agents are still effective for treating L. monocytogenes infection. Multilocus sequence typing revealed that ST299, ST87, and ST8 are predominant in aquatic products, indicating that the rare ST299 (serotype 4c) may have a special ecological niche in aquatic products and associated environments. Except llsX and ptsA, the 72 isolates harbor nine virulence genes (prfA, actA, hly, plcA, plcB, iap, mpl, inlA, and inlB), premature stop codons (PMSCs) in inlA were found in four isolates, three of which belonged to ST9. A novel PMSC was found in 2929-1LM with a nonsense mutation at position 1605 (TGG→TGA). All ST87 isolates harbored the ptsA gene, whereas 8 isolates (11.11%) carried the llsX gene, and mainly belonged to ST1, ST3, ST308, ST323, ST330, and ST619. Taken together, these results first reported potential virulent L. monocytogenes isolates (ST8 and ST87) were predominant in aquatic products which may have implications for public health in China. It is thus necessary to perform continuous surveillance for L. monocytogenes in aquatic products in China.
Collapse
Affiliation(s)
- Moutong Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Jianheng Cheng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Jumei Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Yuetao Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Liang Xue
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Tao Lei
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Haiyan Zeng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Shi Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Qinghua Ye
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Jianling Bai
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
33
|
Antimicrobial resistance and genotypic characteristics of Listeria monocytogenes isolated from food in Poland. Int J Food Microbiol 2018; 289:1-6. [PMID: 30189331 DOI: 10.1016/j.ijfoodmicro.2018.08.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 07/09/2018] [Accepted: 08/30/2018] [Indexed: 01/06/2023]
Abstract
The aim of the study was to determine antimicrobial resistance and genotypic characteristics of L. monocytogenes isolated from food of animal origin from different parts of Poland during years 2013-2016. A total of 146 isolates were tested using a microbroth dilution method, whereas virulence genes and molecular serogroups were identified by PCR. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) methods were used to analyze the genotypic relationship of the strains. Altogether, 102 pulsotypes grouped into 7 clusters and 24 sequence types, including 3 new types, were identified. Most of the strains clustered into individual patterns were originated from different food products and were isolated in different geographical regions at various time. L. monocytogenes was mostly resistant to oxacilin (90.4% strains), clindamycin (54.1%) and ceftriaxone (49.3%). A multiresistance patterns, mainly to ceftriaxone, oxacillin together with other antimicrobials, were observed among 27.4% strains. Antimicrobial resistance and presence of virulence genes suggest that food of animal origin contaminated with L. monocytogenes may present a risk for public health.
Collapse
|
34
|
Pasquali F, Palma F, Guillier L, Lucchi A, De Cesare A, Manfreda G. Listeria monocytogenes Sequence Types 121 and 14 Repeatedly Isolated Within One Year of Sampling in a Rabbit Meat Processing Plant: Persistence and Ecophysiology. Front Microbiol 2018; 9:596. [PMID: 29662481 PMCID: PMC5890179 DOI: 10.3389/fmicb.2018.00596] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 03/15/2018] [Indexed: 01/15/2023] Open
Abstract
Listeria monocytogenes is a foodborne pathogen adapted to survive and persist in multiple environments. Following two previous studies on prevalence and virulence of L. monocytogenes ST121 and ST14 repeatedly collected in a the same rabbit-meat processing plant, the research questions of the present study were to: (1) assess persistence of L. monocytogenes isolates from the rabbit-plant; (2) select genes associated to physiological adaptation to the food-processing environment; (3) compare presence/absence/truncation of these genes in newly sequenced and publicly available ST121 and ST14 genomes. A total of 273 draft genomes including ST121 and ST14 newly sequenced and publicly available draft genomes were analyzed. Whole-genome Single Nucleotide Polymorfism (wgSNP) analysis was performed separately on the assemblies of ST121 and ST14 draft genomes. SNPs alignments were used to infer phylogeny. A dataset of L. monocytogenes ecophysiology genes was built based on a comprehensive literature review. The 94 selected genes were screened on the assemblies of all ST121 and ST14 draft genomes. Significant gene enrichments were evaluated by statistical analyses. A persistent ST14 clone, including 23 out of 27 newly sequenced genomes, was circulating in the rabbit-meat plant along with two not persistent clones. A significant enrichment was observed in ST121 genomes concerning stress survival islet 2 (SSI-2) (alkaline and oxidative stress), qacH gene (resistance to benzalkonium chloride), cadA1C gene cassette (resistance to 70 mg/l of cadmium chloride) and a truncated version of actA gene (biofilm formation). Conversely, ST14 draft genomes were enriched with a full-length version of actA gene along with the Listeria Genomic Island 2 (LGI 2) including the ars operon (arsenic resistance) and the cadA4C gene cassette (resistance to 35 mg/l of cadmium chloride). Phenotypic tests confirmed ST121 as a weak biofilm producer in comparison to ST14. In conclusion, ST121 carried the qacH gene and was phenotypically resistant to quaternary ammonium compounds. This property might contribute to the high prevalence of ST121 in food processing plants. ST14 showed greater ability to form biofilms, which might contribute to the occasional colonization and persistence on harborage sites where sanitizing procedures are difficult to display.
Collapse
Affiliation(s)
- Frédérique Pasquali
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| | - Federica Palma
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| | - Laurent Guillier
- Laboratoire de Sécurité des Aliments, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, Maisons-Alfort, France
| | - Alex Lucchi
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| | - Alessandra De Cesare
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| | - Gerardo Manfreda
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| |
Collapse
|
35
|
Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Fernández Escámez PS, Girones R, Herman L, Koutsoumanis K, Nørrung B, Robertson L, Ru G, Sanaa M, Simmons M, Skandamis P, Snary E, Speybroeck N, Ter Kuile B, Threlfall J, Wahlström H, Takkinen J, Wagner M, Arcella D, Da Silva Felicio MT, Georgiadis M, Messens W, Lindqvist R. Listeria monocytogenes contamination of ready-to-eat foods and the risk for human health in the EU. EFSA J 2018; 16:e05134. [PMID: 32760461 PMCID: PMC7391409 DOI: 10.2903/j.efsa.2018.5134] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Food safety criteria for Listeria monocytogenes in ready-to-eat (RTE) foods have been applied from 2006 onwards (Commission Regulation (EC) 2073/2005). Still, human invasive listeriosis was reported to increase over the period 2009-2013 in the European Union and European Economic Area (EU/EEA). Time series analysis for the 2008-2015 period in the EU/EEA indicated an increasing trend of the monthly notified incidence rate of confirmed human invasive listeriosis of the over 75 age groups and female age group between 25 and 44 years old (probably related to pregnancies). A conceptual model was used to identify factors in the food chain as potential drivers for L. monocytogenes contamination of RTE foods and listeriosis. Factors were related to the host (i. population size of the elderly and/or susceptible people; ii. underlying condition rate), the food (iii. L. monocytogenes prevalence in RTE food at retail; iv. L. monocytogenes concentration in RTE food at retail; v. storage conditions after retail; vi. consumption), the national surveillance systems (vii. improved surveillance), and/or the bacterium (viii. virulence). Factors considered likely to be responsible for the increasing trend in cases are the increased population size of the elderly and susceptible population except for the 25-44 female age group. For the increased incidence rates and cases, the likely factor is the increased proportion of susceptible persons in the age groups over 45 years old for both genders. Quantitative modelling suggests that more than 90% of invasive listeriosis is caused by ingestion of RTE food containing > 2,000 colony forming units (CFU)/g, and that one-third of cases are due to growth in the consumer phase. Awareness should be increased among stakeholders, especially in relation to susceptible risk groups. Innovative methodologies including whole genome sequencing (WGS) for strain identification and monitoring of trends are recommended.
Collapse
|
36
|
Harter E, Wagner EM, Zaiser A, Halecker S, Wagner M, Rychli K. Stress Survival Islet 2, Predominantly Present in Listeria monocytogenes Strains of Sequence Type 121, Is Involved in the Alkaline and Oxidative Stress Responses. Appl Environ Microbiol 2017; 83:e00827-17. [PMID: 28625982 PMCID: PMC5541211 DOI: 10.1128/aem.00827-17] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/02/2017] [Indexed: 11/20/2022] Open
Abstract
The foodborne pathogen Listeria monocytogenes is able to survive a variety of stress conditions leading to the colonization of different niches like the food processing environment. This study focuses on the hypervariable genetic hot spot lmo0443 to lmo0449 haboring three inserts: the stress survival islet 1 (SSI-1), the single-gene insert LMOf2365_0481, and two homologous genes of the nonpathogenic species Listeria innocua: lin0464, coding for a putative transcriptional regulator, and lin0465, encoding an intracellular PfpI protease. Our prevalence study revealed a different distribution of the inserts between human and food-associated isolates. The lin0464-lin0465 insert was predominantly found in food-associated strains of sequence type 121 (ST121). Functional characterization of this insert showed that the putative PfpI protease Lin0465 is involved in alkaline and oxidative stress responses but not in acidic, gastric, heat, cold, osmotic, and antibiotic stresses. In parallel, deletion of lin0464 decreased survival under alkaline and oxidative stresses. The expression of both genes increased significantly under oxidative stress conditions independently of the alternative sigma factor σB Furthermore, we showed that the expression of the protease gene lin0465 is regulated by the transcription factor lin0464 under stress conditions, suggesting that lin0464 and lin0465 form a functional unit. In conclusion, we identified a novel stress survival islet 2 (SSI-2), predominantly present in L. monocytogenes ST121 strains, beneficial for survival under alkaline and oxidative stresses, potentially supporting adaptation and persistence of L. monocytogenes in food processing environments.IMPORTANCEListeria monocytogenes strains of ST121 are known to persist for months and even years in food processing environments, thereby increasing the risk of food contamination and listeriosis. However, the molecular mechanism underlying this remarkable niche-specific adaptation is still unknown. Here, we demonstrate that the genomic islet SSI-2, predominantly present in L. monocytogenes ST121 strains, is beneficial for survival under alkaline and oxidative stress conditions, which are routinely encountered in food processing environments. Our findings suggest that SSI-2 is part of a diverse set of molecular determinants contributing to niche-specific adaptation and persistence of L. monocytogenes ST121 strains in food processing environments.
Collapse
Affiliation(s)
- Eva Harter
- Institute for Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Eva Maria Wagner
- Institute for Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Andreas Zaiser
- Institute for Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Sabrina Halecker
- Institute for Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Martin Wagner
- Institute for Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Kathrin Rychli
- Institute for Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
37
|
Knudsen GM, Nielsen JB, Marvig RL, Ng Y, Worning P, Westh H, Gram L. Genome-wide-analyses of Listeria monocytogenes from food-processing plants reveal clonal diversity and date the emergence of persisting sequence types. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:428-440. [PMID: 28574206 DOI: 10.1111/1758-2229.12552] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 05/27/2017] [Indexed: 06/07/2023]
Abstract
Whole genome sequencing is increasing used in epidemiology, e.g. for tracing outbreaks of food-borne diseases. This requires in-depth understanding of pathogen emergence, persistence and genomic diversity along the food production chain including in food processing plants. We sequenced the genomes of 80 isolates of Listeria monocytogenes sampled from Danish food processing plants over a time-period of 20 years, and analysed the sequences together with 10 public available reference genomes to advance our understanding of interplant and intraplant genomic diversity of L. monocytogenes. Except for three persisting sequence types (ST) based on Multi Locus Sequence Typing being ST7, ST8 and ST121, long-term persistence of clonal groups was limited, and new clones were introduced continuously, potentially from raw materials. No particular gene could be linked to the persistence phenotype. Using time-based phylogenetic analyses of the persistent STs, we estimate the L. monocytogenes evolutionary rate to be 0.18-0.35 single nucleotide polymorphisms/year, suggesting that the persistent STs emerged approximately 100 years ago, which correlates with the onset of industrialization and globalization of the food market.
Collapse
Affiliation(s)
- Gitte M Knudsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jesper Boye Nielsen
- Department of Clinical Microbiology, Hvidovre Hospital, MRSA KnowledgeCenter, Hvidovre, Denmark
| | - Rasmus L Marvig
- Center for Genomic Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Yin Ng
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Peder Worning
- Department of Clinical Microbiology, Hvidovre Hospital, MRSA KnowledgeCenter, Hvidovre, Denmark
| | - Henrik Westh
- Department of Clinical Microbiology, Hvidovre Hospital, MRSA KnowledgeCenter, Hvidovre, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
38
|
Malekmohammadi S, Kodjovi KK, Sherwood J, Bergholz TM. Genetic and environmental factors influence Listeria monocytogenes nisin resistance. J Appl Microbiol 2017; 123:262-270. [PMID: 28452154 DOI: 10.1111/jam.13479] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/21/2017] [Accepted: 04/25/2017] [Indexed: 02/03/2023]
Abstract
AIMS Listeria monocytogenes nisin resistance increases when first exposed to NaCl and other stresses, such as low pH. In addition to environmental stressors, specific genomic elements can confer nisin resistance, such as the stress survival islet (SSI-1). As SSI-1 is variably present among L. monocytogenes strains, we wanted to determine if SSI-1 was associated with salt-induced nisin resistance. METHODS AND RESULTS The presence of SSI-1 was determined using PCR for 48 strains of L. monocytogenes. When combined with multilocus sequence typing data, we found that the distribution of SSI-1 is clonal, where strains from clonal complexes (CC) 2, 6 and 11 do not have SSI-1, while strains from CCs 3, 5, 7 and 9 contain SSI-1. The impact of SSI-1 on salt-induced nisin resistance was dependent on CC. The average log decrease after 24 h of exposure to nisin at 7°C under salt-inducing conditions was 2·6 ± 1·1 for CC 9 strains and 2·3 ± 0·7 for CC 11 strains, which had significantly lower survival compared to the other CCs, such as 1·3 ± 0·3 for CC 6. Deletion of SSI-1 from a CC 7 strain demonstrated the role SSI-1 plays in salt-induced nisin resistance, as the deletion mutant had lower resistance compared to the parent strain. CONCLUSIONS These data suggest that inducible nisin resistance in L. monocytogenes can be influenced by environmental conditions as well as the genetic composition of the strain, which should be considered when selecting control measures for ready-to-eat foods. SIGNIFICANCE AND IMPACT OF THE STUDY The foodborne pathogen L. monocytogenes can grow in suboptimal conditions, including low temperature and high osmolarity, which makes it a safety concern for ready-to-eat foods. When using antimicrobial peptide inhibitors such as nisin, it is important to understand how food components can impact antimicrobial resistance across the genetic diversity of L. monocytogenes.
Collapse
Affiliation(s)
- S Malekmohammadi
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA
| | - K K Kodjovi
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA
| | - J Sherwood
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA
| | - T M Bergholz
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
39
|
Rychli K, Wagner EM, Ciolacu L, Zaiser A, Tasara T, Wagner M, Schmitz-Esser S. Comparative genomics of human and non-human Listeria monocytogenes sequence type 121 strains. PLoS One 2017; 12:e0176857. [PMID: 28472116 PMCID: PMC5417603 DOI: 10.1371/journal.pone.0176857] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 04/18/2017] [Indexed: 01/01/2023] Open
Abstract
The food-borne pathogen Listeria (L.) monocytogenes is able to survive for months and even years in food production environments. Strains belonging to sequence type (ST)121 are particularly found to be abundant and to persist in food and food production environments. To elucidate genetic determinants characteristic for L. monocytogenes ST121, we sequenced the genomes of 14 ST121 strains and compared them with currently available L. monocytogenes ST121 genomes. In total, we analyzed 70 ST121 genomes deriving from 16 different countries, different years of isolation, and different origins—including food, animal and human ST121 isolates. All ST121 genomes show a high degree of conservation sharing at least 99.7% average nucleotide identity. The main differences between the strains were found in prophage content and prophage conservation. We also detected distinct highly conserved subtypes of prophages inserted at the same genomic locus. While some of the prophages showed more than 99.9% similarity between strains from different sources and years, other prophages showed a higher level of diversity. 81.4% of the strains harbored virtually identical plasmids. 97.1% of the ST121 strains contain a truncated internalin A (inlA) gene. Only one of the seven human ST121 isolates encodes a full-length inlA gene, illustrating the need of better understanding their survival and virulence mechanisms.
Collapse
Affiliation(s)
- Kathrin Rychli
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Wien, Austria
| | - Eva M. Wagner
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Wien, Austria
| | - Luminita Ciolacu
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Wien, Austria
| | - Andreas Zaiser
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Wien, Austria
| | - Taurai Tasara
- Vetsuisse Faculty, Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Martin Wagner
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Wien, Austria
| | - Stephan Schmitz-Esser
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Wien, Austria
- * E-mail:
| |
Collapse
|
40
|
Hingston P, Chen J, Dhillon BK, Laing C, Bertelli C, Gannon V, Tasara T, Allen K, Brinkman FSL, Truelstrup Hansen L, Wang S. Genotypes Associated with Listeria monocytogenes Isolates Displaying Impaired or Enhanced Tolerances to Cold, Salt, Acid, or Desiccation Stress. Front Microbiol 2017; 8:369. [PMID: 28337186 PMCID: PMC5340757 DOI: 10.3389/fmicb.2017.00369] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/22/2017] [Indexed: 01/11/2023] Open
Abstract
The human pathogen Listeria monocytogenes is a large concern in the food industry where its continuous detection in food products has caused a string of recalls in North America and Europe. Most recognized for its ability to grow in foods during refrigerated storage, L. monocytogenes can also tolerate several other food-related stresses with some strains possessing higher levels of tolerances than others. The objective of this study was to use a combination of phenotypic analyses and whole genome sequencing to elucidate potential relationships between L. monocytogenes genotypes and food-related stress tolerance phenotypes. To accomplish this, 166 L. monocytogenes isolates were sequenced and evaluated for their ability to grow in cold (4°C), salt (6% NaCl, 25°C), and acid (pH 5, 25°C) stress conditions as well as survive desiccation (33% RH, 20°C). The results revealed that the stress tolerance of L. monocytogenes is associated with serotype, clonal complex (CC), full length inlA profiles, and the presence of a plasmid which was identified in 55% of isolates. Isolates with full length inlA exhibited significantly (p < 0.001) enhanced cold tolerance relative to those harboring a premature stop codon (PMSC) in this gene. Similarly, isolates possessing a plasmid demonstrated significantly (p = 0.013) enhanced acid tolerance. We also identified nine new L. monocytogenes sequence types, a new inlA PMSC, and several connections between CCs and the presence/absence or variations of specific genetic elements. A whole genome single-nucleotide-variants phylogeny revealed sporadic distribution of tolerant isolates and closely related sensitive and tolerant isolates, highlighting that minor genetic differences can influence the stress tolerance of L. monocytogenes. Specifically, a number of cold and desiccation sensitive isolates contained PMSCs in σB regulator genes (rsbS, rsbU, rsbV). Collectively, the results suggest that knowing the sequence type of an isolate in addition to screening for the presence of full-length inlA and a plasmid, could help food processors and food agency investigators determine why certain isolates might be persisting in a food processing environment. Additionally, increased sequencing of L. monocytogenes isolates in combination with stress tolerance profiling, will enhance the ability to identify genetic elements associated with higher risk strains.
Collapse
Affiliation(s)
- Patricia Hingston
- Department of Food, Nutrition, and Health, University of British ColumbiaVancouver, BC, Canada
| | - Jessica Chen
- Department of Food, Nutrition, and Health, University of British ColumbiaVancouver, BC, Canada
| | - Bhavjinder K. Dhillon
- Department of Molecular Biology and Biochemistry, Simon Fraser UniversityBurnaby, BC, Canada
| | - Chad Laing
- Laboratory for Foodborne Zoonoses, Public Health Agency of CanadaLethbridge, AB, Canada
| | - Claire Bertelli
- Department of Molecular Biology and Biochemistry, Simon Fraser UniversityBurnaby, BC, Canada
| | - Victor Gannon
- Laboratory for Foodborne Zoonoses, Public Health Agency of CanadaLethbridge, AB, Canada
| | - Taurai Tasara
- Institute for Food Safety and Hygiene, University of ZurichZurich, Switzerland
| | - Kevin Allen
- Department of Food, Nutrition, and Health, University of British ColumbiaVancouver, BC, Canada
| | - Fiona S. L. Brinkman
- Department of Molecular Biology and Biochemistry, Simon Fraser UniversityBurnaby, BC, Canada
| | - Lisbeth Truelstrup Hansen
- Division for Microbiology and Production, National Food Institute, Technical University of DenmarkKongens Lyngby, Denmark
| | - Siyun Wang
- Department of Food, Nutrition, and Health, University of British ColumbiaVancouver, BC, Canada
| |
Collapse
|
41
|
De Cesare A, Parisi A, Mioni R, Comin D, Lucchi A, Manfreda G. Listeria monocytogenes Circulating in Rabbit Meat Products and Slaughterhouses in Italy: Prevalence Data and Comparison Among Typing Results. Foodborne Pathog Dis 2017; 14:167-176. [PMID: 28067541 DOI: 10.1089/fpd.2016.2211] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Rabbit meat has outstanding dietetic and nutritional properties. However, few data on microbiological hazards associated with rabbit productions are available. In this study, the presence of Listeria monocytogenes was determined in 430 rabbit carcasses, 256 rabbit meat cuts and products, and 599 environmental sponges collected from four Italian rabbit slaughterhouses over a period of 1 year. Prevalence of L. monocytogenes among the 1285 rabbit meat and environmental samples was 11%, with statistically significant differences between slaughterhouses. The highest prevalence (33.6%) was observed in rabbit meat cuts and products; the majority of positive environmental samples were collected from conveyor belts. Overall, 27.9% and 14.3% of rabbit cuts and carcasses, respectively, had L. monocytogenes counts higher than 1 colony-forming unit (CFU)/10 g. A selection of 123 isolates from positive samples was genotyped and serotyped to determine genetic profiles and diversity among L. monocytogenes isolates contaminating different slaughterhouses and classes of products investigated. Discriminatory power and concordance among the results obtained using multilocus variable-number tandem-repeat analysis (MLVA), multilocus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE), automated EcoRI ribotyping, and serotyping were assessed. The isolates selected for typing were classified into serotypes 1/2a (52.8%), 1/2c (32.5%), and 1/2b (14.6%). The majority of the isolates were classified as ST14 (34.1%), ST9 (35.5%), ST121 (17.9%), and ST224 (14.6%). The greatest discriminatory power was observed with the MLVA typing, followed by MLST, PFGE, and ribotyping. The best bidirectional concordance was achieved between PFGE and MLST. There was 100% correlation between both MLST and MLVA with serotype. Moreover, a high unidirectional correspondence was observed between MLVA and both MLST and PFGE, as well as between PFGE and both MLST and serotyping. The results of this study show for the first time in Italy prevalence and genetic profiles of L. monocytogenes isolated in rabbit products and slaughterhouses.
Collapse
Affiliation(s)
- Alessandra De Cesare
- 1 Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna , Bologna, Italy
| | - Antonio Parisi
- 2 Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata , Putignano, Italy
| | - Renzo Mioni
- 3 Istituto Zooprofilattico Sperimentale delle Venezie , Legnaro, Italy
| | - Damiano Comin
- 3 Istituto Zooprofilattico Sperimentale delle Venezie , Legnaro, Italy
| | - Alex Lucchi
- 1 Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna , Bologna, Italy
| | - Gerardo Manfreda
- 1 Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna , Bologna, Italy
| |
Collapse
|
42
|
Population Genetic Structure of Listeria monocytogenes Strains as Determined by Pulsed-Field Gel Electrophoresis and Multilocus Sequence Typing. Appl Environ Microbiol 2016; 82:5720-8. [PMID: 27235443 PMCID: PMC5007763 DOI: 10.1128/aem.00583-16] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/23/2016] [Indexed: 12/30/2022] Open
Abstract
Listeria monocytogenes is a ubiquitous bacterium that may cause the foodborne illness listeriosis. Only a small amount of data about the population genetic structure of strains isolated from food is available. This study aimed to provide an accurate view of the L. monocytogenes food strain population in France. From 1999 to 2014, 1,894 L. monocytogenes strains were isolated from food at the French National Reference Laboratory for L. monocytogenes and classified according to the five risk food matrices defined by the European Food Safety Authority (EFSA). A total of 396 strains were selected on the basis of different pulsed-field gel electrophoresis (PFGE) clusters, serotypes, and strain origins and typed by multilocus sequence typing (MLST), and the MLST results were supplemented with MLST data available from Institut Pasteur, representing human and additional food strains from France. The distribution of sequence types (STs) was compared between food and clinical strains on a panel of 675 strains. High congruence between PFGE and MLST was found. Out of 73 PFGE clusters, the two most prevalent corresponded to ST9 and ST121. Using original statistical analysis, we demonstrated that (i) there was not a clear association between ST9 and ST121 and the food matrices, (ii) serotype IIc, ST8, and ST4 were associated with meat products, and (iii) ST13 was associated with dairy products. Of the two major STs, ST121 was the ST that included the fewest clinical strains, which might indicate lower virulence. This observation may be directly relevant for refining risk analysis models for the better management of food safety. IMPORTANCE This study showed a very useful backward compatibility between PFGE and MLST for surveillance. The results enabled better understanding of the population structure of L. monocytogenes strains isolated from food and management of the health risks associated with L. monocytogenes food strains. Moreover, this work provided an accurate view of L. monocytogenes strain populations associated with specific food matrices. We clearly showed that some STs were associated with food matrices, such as meat, meat products, and dairy products. We opened the way to source attribution modeling in order to quantify the relative importance of the main food matrices.
Collapse
|
43
|
Zhang J, Cao G, Xu X, Allard M, Li P, Brown E, Yang X, Pan H, Meng J. Evolution and Diversity of Listeria monocytogenes from Clinical and Food Samples in Shanghai, China. Front Microbiol 2016; 7:1138. [PMID: 27499751 PMCID: PMC4956650 DOI: 10.3389/fmicb.2016.01138] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/07/2016] [Indexed: 11/13/2022] Open
Abstract
Listeria monocytogenes is a significant foodborne pathogen causing severe systemic infections in humans with high mortality rates. The objectives of this work were to establish a phylogenetic framework of L. monocytogenes from China and to investigate sequence diversity among different serotypes. We selected 17 L. monocytogenes strains recovered from patients and foods in China representing serotypes 1/2a, 1/2b, and 1/2c. Draft genome sequences were determined using Illumina MiSeq technique and associated protocols. Open reading frames were assigned using prokaryotic genome annotation pipeline by NCBI. Twenty-four published genomes were included for comparative genomic and phylogenetic analysis. More than 154,000 single nucleotide polymorphisms (SNPs) were identified from multiple genome alignment and used to reconstruct maximum likelihood phylogenetic tree. The 41 genomes were differentiated into lineages I and II, which consisted of 4 and 11 subgroups, respectively. A clinical strain from China (SHL009) contained significant SNP differences compared to the rest genomes, whereas clinical strain SHL001 shared most recent common ancestor with strain SHL017 from food. Moreover, clinical strains SHL004 and SHL015 clustered together with two strains (08-5578 and 08-5923) recovered from an outbreak in Canada. Partial sequences of a plasmid found in the Canadian strain were also present in SHL004. We investigated the presence of various genes and gene clusters associated with virulence and subgroup-specific genes, including internalins, L. monocytogenes pathogenicity islands (LIPIs), L. monocytogenes genomic islands (LGIs), stress survival islet 1 (SSI-1), and clustered regularly interspaced short palindromic repeats (CRISPR)/cas system. A novel genomic island, denoted as LGI-2 was identified. Comparative sequence analysis revealed differences among the L. monocytogenes strains related to virulence, survival abilities, and attributes against foreign genetic elements. L. monocytogenes from China were genetically diverse. Strains from clinical specimens and food related closely suggesting foodborne transmission of human listeriosis.
Collapse
Affiliation(s)
- Jianmin Zhang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Guojie Cao
- Department of Nutrition and Food Science and Joint Institute for Food Safety and Applied Nutrition, University of Maryland, College Park College Park, MD, USA
| | - Xuebin Xu
- Shanghai Municipal Center for Disease Control and Prevention Shanghai, China
| | - Marc Allard
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration College Park, MD, USA
| | - Peng Li
- Institute of Disease Control and Prevention, Academy of Military Medical Science Beijing, China
| | - Eric Brown
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration College Park, MD, USA
| | - Xiaowei Yang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University Shanghai, China
| | - Haijian Pan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University Shanghai, China
| | - Jianghong Meng
- Department of Nutrition and Food Science and Joint Institute for Food Safety and Applied Nutrition, University of Maryland, College Park College Park, MD, USA
| |
Collapse
|
44
|
Bolocan AS, Nicolau AI, Alvarez-Ordóñez A, Borda D, Oniciuc EA, Stessl B, Gurgu L, Wagner M, Jordan K. Dynamics of Listeria monocytogenes colonisation in a newly-opened meat processing facility. Meat Sci 2016; 113:26-34. [DOI: 10.1016/j.meatsci.2015.10.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/18/2015] [Accepted: 10/28/2015] [Indexed: 11/29/2022]
|
45
|
Abee T, Koomen J, Metselaar K, Zwietering M, den Besten H. Impact of Pathogen Population Heterogeneity and Stress-Resistant Variants on Food Safety. Annu Rev Food Sci Technol 2016; 7:439-56. [DOI: 10.1146/annurev-food-041715-033128] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- T. Abee
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands;
| | - J. Koomen
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands;
| | - K.I. Metselaar
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands;
| | - M.H. Zwietering
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands;
| | - H.M.W. den Besten
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands;
| |
Collapse
|
46
|
Pauletto M, Carraro L, Babbucci M, Lucchini R, Bargelloni L, Cardazzo B. Extending RAD tag analysis to microbial ecology: a comparison between MultiLocus Sequence Typing and 2b-RAD to investigate Listeria monocytogenes genetic structure. Mol Ecol Resour 2015; 16:823-35. [PMID: 26613186 DOI: 10.1111/1755-0998.12495] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/14/2015] [Accepted: 11/23/2015] [Indexed: 12/24/2022]
Abstract
The advent of next-generation sequencing (NGS) has dramatically changed bacterial typing technologies, increasing our ability to differentiate bacterial isolates. Despite it is now possible to sequence a bacterial genome in a few days and at reasonable costs, most genetic analyses do not require whole-genome sequencing, which also remains impractical for large population samples due to the cost of individual library preparation and bioinformatics. More traditional sequencing approaches, however, such as MultiLocus Sequence Typing (mlst) are quite laborious and time-consuming, especially for large-scale analyses. In this study, a genotyping approach based on restriction site-associated (RAD) tag sequencing, 2b-RAD, was applied to characterize Listeria monocytogenes strains. To verify the feasibility of the method, an in silico analysis was performed on 30 available complete genomes. For the same set of strains, in silico mlst analysis was conducted as well. Subsequently, 2b-RAD and mlst analyses were experimentally carried out on 58 isolates collected from food samples or food-processing sites. The obtained results demonstrate that 2b-RAD predicts mlst types and often provides more detailed information on population structure than mlst. Moreover, the majority of variants differentiating identical sequence type isolates mapped against accessory fragments, thus providing additional information to characterize strains. Although mlst still represents a reliable typing method, large-scale studies on molecular epidemiology and public health, as well as bacterial phylogenetics, population genetics and biosafety could benefit of a low cost and fast turnaround time approach such as the 2b-RAD analysis proposed here.
Collapse
Affiliation(s)
- Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020, Legnaro, Italy
| | - Lisa Carraro
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020, Legnaro, Italy
| | - Massimiliano Babbucci
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020, Legnaro, Italy
| | - Rosaria Lucchini
- Istituto Zooprofilattico delle Venezie, Viale dell'Università 10, 35020, Legnaro, Italy
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020, Legnaro, Italy
| | - Barbara Cardazzo
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020, Legnaro, Italy
| |
Collapse
|
47
|
Leong D, Alvarez-Ordóñez A, Zaouali S, Jordan K. Examination of Listeria monocytogenes in Seafood Processing Facilities and Smoked Salmon in the Republic of Ireland. J Food Prot 2015; 78:2184-90. [PMID: 26613913 DOI: 10.4315/0362-028x.jfp-15-233] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Listeria monocytogenes is a foodborne pathogen that causes listeriosis, a relatively rare but life-threatening disease primarily affecting immunocompromised individuals. The aim of this study was to determine the prevalence of L. monocytogenes in the seafood processing industry in the Republic of Ireland. The occurrence of L. monocytogenes was determined by regular sampling of both food samples and processing environment swabs at eight seafood processing facilities over two calendar years. All samples were analyzed by the International Organization for Standardization 11290-1 standard method, and the isolates were characterized by PCR, pulsed-field gel electrophoresis, serotyping, and the occurrence of some genes related to survival under stress (SSI-1, Tn6188, and bcrABC). A prevalence of 2.5% in 508 samples (433 environmental swabs and 75 food samples) was found. From the isolates obtained, eight different pulsed-field gel electrophoresis profiles were identified, two occurring in more than one facility and one occurring in food and the environment. Five of the eight pulsotypes identified contained at least one of the three stress survival-related genes tested. The tolerance of the isolates to benzalkonium chloride, a representative quaternary ammonium compound, was also examined and ranged from 5.5 ± 0.5 to 8.5 ± 0.5 ppm of benzalkonium chloride. To evaluate the ability of smoked salmon to support the growth of L. monocytogenes, including the T4 widespread pulsotype that was isolated, a challenge test was performed on cold-smoked salmon obtained from two separate producers. The results showed clearly that both types of smoked salmon supported the growth of L. monocytogenes. Although occurrence of L. monocytogenes on seafood was low, this study showed that the smoked salmon used in this study can support the growth of L. monocytogenes; therefore, vigilance is required in the processing facilities to reduce the associated risk.
Collapse
Affiliation(s)
- Dara Leong
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | | | - Sarah Zaouali
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Kieran Jordan
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland.
| |
Collapse
|
48
|
Rychli K, Grunert T, Ciolacu L, Zaiser A, Razzazi-Fazeli E, Schmitz-Esser S, Ehling-Schulz M, Wagner M. Exoproteome analysis reveals higher abundance of proteins linked to alkaline stress in persistent Listeria monocytogenes strains. Int J Food Microbiol 2015; 218:17-26. [PMID: 26594790 DOI: 10.1016/j.ijfoodmicro.2015.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 11/04/2015] [Accepted: 11/08/2015] [Indexed: 01/24/2023]
Abstract
The foodborne pathogen Listeria monocytogenes, responsible for listeriosis a rare but severe infection disease, can survive in the food processing environment for month or even years. So-called persistent L. monocytogenes strains greatly increase the risk of (re)contamination of food products, and are therefore a great challenge for food safety. However, our understanding of the mechanism underlying persistence is still fragmented. In this study we compared the exoproteome of three persistent strains with the reference strain EGDe under mild stress conditions using 2D differential gel electrophoresis. Principal component analysis including all differentially abundant protein spots showed that the exoproteome of strain EGDe (sequence type (ST) 35) is distinct from that of the persistent strain R479a (ST8) and the two closely related ST121 strains 4423 and 6179. Phylogenetic analyses based on multilocus ST genes showed similar grouping of the strains. Comparing the exoproteome of strain EGDe and the three persistent strains resulted in identification of 22 differentially expressed protein spots corresponding to 16 proteins. Six proteins were significantly increased in the persistent L. monocytogenes exoproteomes, among them proteins involved in alkaline stress response (e.g. the membrane anchored lipoprotein Lmo2637 and the NADPH dehydrogenase NamA). In parallel the persistent strains showed increased survival under alkaline stress, which is often provided during cleaning and disinfection in the food processing environments. In addition, gene expression of the proteins linked to stress response (Lmo2637, NamA, Fhs and QoxA) was higher in the persistent strain not only at 37 °C but also at 10 °C. Invasion efficiency of EGDe was higher in intestinal epithelial Caco2 and macrophage-like THP1 cells compared to the persistent strains. Concurrently we found higher expression of proteins involved in virulence in EGDe e.g. the actin-assembly-inducing protein ActA and the surface virulence associated protein SvpA. Furthermore proteins involved in cell wall modification, such as the lipoteichonic acid primase LtaP and the N-acetylmuramoyl-l-alanine amidase (Lmo2591) are more abundant in EGDe than in the persistent strains and could indirectly contribute to virulence. In conclusion this study provides information about a set of proteins that could potentially support survival of L. monocytogenes in abiotic niches in food processing environments. Based on these data, a more detailed analysis of the role of the identified proteins under stresses mimicking conditions in food producing environment is essential for further elucidate the mechanism of the phenomenon of persistence of L. monocytogenes.
Collapse
Affiliation(s)
- Kathrin Rychli
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Tom Grunert
- Functional Microbiology, Institute of Microbiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Luminita Ciolacu
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria; "Dunarea de Jos" University of Galaţi, 47 Domneasca St., 800008 Galaţi, Romania.
| | - Andreas Zaiser
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Ebrahim Razzazi-Fazeli
- VetCORE facility for research, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Stephan Schmitz-Esser
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Monika Ehling-Schulz
- Functional Microbiology, Institute of Microbiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Martin Wagner
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| |
Collapse
|
49
|
Phenotypic and genotypic characteristics of Listeria monocytogenes strains isolated during 2011–2014 from different food matrices in Switzerland. Food Control 2015. [DOI: 10.1016/j.foodcont.2015.04.030] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
50
|
The Connection between Persistent, Disinfectant-Resistant Listeria monocytogenes Strains from Two Geographically Separate Iberian Pork Processing Plants: Evidence from Comparative Genome Analysis. Appl Environ Microbiol 2015; 82:308-17. [PMID: 26497458 DOI: 10.1128/aem.02824-15] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/17/2015] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to investigate the basis of the putative persistence of Listeria monocytogenes in a new industrial facility dedicated to the processing of ready-to-eat (RTE) Iberian pork products. Quaternary ammonium compounds, which included benzalkonium chloride (BAC), were repeatedly used as surface disinfectants in the processing plant. Clean and disinfected surfaces were sampled to evaluate if resistance to disinfectants was associated with persistence. Of the 14 isolates obtained from product contact and non-product contact surfaces, only five different pulsed-field gel electrophoresis (PFGE) types were identified during the 27-month study period. Two of these PFGE types (S1 and S10-1) were previously identified to be persistent and BAC-resistant (BAC(r)) strains in a geographically separate slaughterhouse belonging to the same company. The remaining three PFGE types, which were first identified in this study, were also BAC(r). Whole-genome sequencing and in silico multilocus sequence typing (MLST) analysis of five BAC(r) isolates of the different PFGE types identified in this study showed that the isolate of the S1 PFGE type belonged to MLST sequence type 31 (ST31), a low-virulence type characterized by mutations in the inlA and prfA genes. The isolates of the remaining four PFGE types were found to belong to MLST ST121, a persistent type that has been isolated in several countries. The ST121 strains contained the BAC resistance transposon Tn6188. The disinfection-resistant L. monocytogenes population in this RTE pork product plant comprised two distinct genotypes with different multidrug resistance phenotypes. This work offers insight into the L. monocytogenes subtypes associated with persistence in food processing environments.
Collapse
|