1
|
Le Marc Y, Cosciani-Cunico E, Dalzini E, Monastero P, Abdul ME, Merigo D, Ducoli S, Norton A, Losio MN. Behaviour of the Shiga toxin-producing Escherichia coli O157:H7 and O26:H11 in dairy products, in static and dynamic conditions for predictive model validation. Int J Food Microbiol 2025; 435:111159. [PMID: 40120393 DOI: 10.1016/j.ijfoodmicro.2025.111159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/25/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
In this study, the kinetics of two Shiga-toxin-producing Escherichia coli (STEC) strains (one O157:H7 strain and one O26:H11 strain) were investigated in different dairy matrices (milk supplemented or not with NaCl, mascarpone and raw milk cheese). Significant differences in the growth parameters of these two strains occurred in stressful conditions and in raw milk cheese. The O157:H7 strain showed better growth abilities at aw 0.973 in milk supplemented with NaCl and at T = 8.0 and 8.8 °C in mascarpone. However, during raw-milk cheese making, it was the O26:H11 strain that showed better growth capacities compared to the O157:H7 one. The latter result is consistent with previous studies on STEC in raw milk cheeses. A probabilistic model was developed for the growth and non-growth of generic E. coli. This model, developed from literature data and expert opinion, incorporates the effects of temperature, pH, aw and undissociated lactic acid in the aqueous phase. Strain variability was incorporated by using statistic distributions instead of single values for the model parameters. The maximum specific growth rates of the two STEC strains in milk and mascarpone (under static conditions) fall within the prediction intervals of this generic model. During the making of raw milk cheese (dynamic conditions), the incorporation of the inhibitory effects of indigenous lactic acid bacteria (Jameson effect) improves model predictions and STEC counts are within or very close to the predicted upper and lower concentrations. During ripening and storage (140 days), inactivation of STEC occurs (with observed decreases in counts between 3.7 and 5.5 log10 CFU/g). The survival data generated were used to refine an existing model developed for non-thermal inactivation of pathogenic E. coli in meat products. Further model validation is necessary to combine this inactivation model with the developed growth and growth/no growth model to describe the behaviour of pathogenic E. coli throughout the making and ripening of raw milk cheese.
Collapse
Affiliation(s)
- Yvan Le Marc
- Adria Food Technology Institute, ZA Créac'h Gwen, 29196 Quimper, France.
| | - Elena Cosciani-Cunico
- Food Control Division of Food Safety Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy
| | - Elena Dalzini
- Food Control Division of Food Safety Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy
| | - Paola Monastero
- Food Control Division of Food Safety Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy
| | - Muhammad-Ehtesham Abdul
- Food Control Division of Food Safety Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy
| | - Daniela Merigo
- Food Control Division of Food Safety Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy
| | - Stefania Ducoli
- Food Control Division of Food Safety Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy
| | - Alessandro Norton
- Food Control Division of Food Safety Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy
| | - Marina-Nadia Losio
- Food Control Division of Food Safety Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy; National Reference Centre for Emerging Risks in Food Safety, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Milano, Italy
| |
Collapse
|
2
|
Gill A, McMahon T, Ferrato C, Chui L. Survival of O157 and non-O157 shiga toxin-producing Escherichia coli in Korean style kimchi. Food Microbiol 2024; 121:104526. [PMID: 38637088 DOI: 10.1016/j.fm.2024.104526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/16/2024] [Accepted: 03/29/2024] [Indexed: 04/20/2024]
Abstract
Korean style kimchi contaminated with Shiga toxin-producing Escherichia coli (STEC) O157:H7 was the cause of an outbreak in Canada from December 2021 to January 2022. To determine if this STEC O157:H7 has greater potential for survival in kimchi than other STEC, the outbreak strain and six other STEC strains (O26:H11, O91:H21, O103:H2, O121:H19, and two O157:H7) were inoculated individually at 6 to 6.5 log CFU/g into commercially sourced kimchi and incubation at 4 °C. At intervals of seven days inoculated and control kimchi was plated onto MacConkey agar to enumerate lactose utilising bacteria. The colony counts were interpreted as enumerating the inoculated STEC, since no colonies were observed on MacConkey agar plated with uninoculated kimchi. Over eight weeks of incubation the pH was stable at 4.10 to 4.05 and the STEC strains declined by 0.7-1.0 log, with a median reduction of 0.9 log. The linear rate of reduction of kimchi outbreak STEC O157:H7 was -0.4 log per 30 days (Slope Uncertainty 0.05), which was not significantly different from the other O157 and nonO157 STEC strains (P = 0.091). These results indicate that the outbreak was not due to the presence of strain better adapted to survival in kimchi than other STEC, and that STEC can persist in refrigerated Korean style kimchi with a minimal decline over the shelf-life of the product.
Collapse
Affiliation(s)
- Alexander Gill
- Health Canada/Santé Canada, Bureau of Microbial Hazards, Ottawa, Ontario, Canada.
| | - Tanis McMahon
- Health Canada/Santé Canada, Bureau of Microbial Hazards, Ottawa, Ontario, Canada
| | - Christina Ferrato
- Alberta Precision Laboratories: Provincial Laboratory for Public Health, Edmonton, AB, Canada
| | - Linda Chui
- Alberta Precision Laboratories: Provincial Laboratory for Public Health, Edmonton, AB, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
3
|
Miszczycha SD, Mazuy-Cruchaudet C, Thollet C, Sergentet-Thevenot D. Comparison of Two Shiga Toxin-producing Escherichia coli (STEC) Isolation Protocols in Raw Cow's Milk Cheese Enrichment Broths: Direct STEC Isolation Versus Techniques Based on Immuno-concentration. J Food Prot 2023; 86:100128. [PMID: 37442229 DOI: 10.1016/j.jfp.2023.100128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023]
Abstract
The presence of Shiga toxin-producing Escherichia coli (STEC) in dairy products made with raw milk is a major concern for food safety authorities and industries. Two approaches have been proposed to isolate STEC from food. In the IC-Protocol (immuno-concentration protocol), specific serogroups are identified in the enrichment broth after the detection of the stx and eae genes. An immuno-concentration of the targeted serogroups is performed before isolating them on specific media. In the DI-Protocol (direct isolation protocol), a direct isolation of all STEC present in the enrichment broth is carried out after the detection of stx genes. We compared the ability of these two methods to isolate STEC O26:H11, O103:H2, O111:H8, O145:H28, and O157:H7 after artificial inoculation in four different raw milk cheeses. Across all serogroups and cheese types, STEC were isolated in 83.3% of samples when using the IC-Protocol but only 53.3% of samples with the DI-Protocol. For two cheese types, the DI-Protocol failed to isolate STEC O157:H7 strains altogether. Our results suggest that IC-Protocol is a robust methodology to effectively isolate STEC across a range of cheese types.
Collapse
Affiliation(s)
- Stephane D Miszczycha
- Université de Lyon, VetAgro Sup, Campus Vétérinaire de Lyon, Laboratoire d'Étude des Microorganismes Alimentaires Pathogènes, French National Reference Laboratory for Escherichia coli including Shiga Toxin-Producing E. coli, Marcy l'Etoile, France
| | - Christine Mazuy-Cruchaudet
- Université de Lyon, VetAgro Sup, Campus Vétérinaire de Lyon, Laboratoire d'Étude des Microorganismes Alimentaires Pathogènes, French National Reference Laboratory for Escherichia coli including Shiga Toxin-Producing E. coli, Marcy l'Etoile, France; Université de Lyon, VetAgro Sup, Campus Vétérinaire de Lyon, Research Group on Bacterial Opportunistic Pathogens and Environment, UMR 5557 Ecologie Microbienne CNRS, VetAgro Sup, and Université Lyon 1, Lyon, France
| | - Camille Thollet
- Université de Lyon, VetAgro Sup, Campus Vétérinaire de Lyon, Laboratoire d'Étude des Microorganismes Alimentaires Pathogènes, French National Reference Laboratory for Escherichia coli including Shiga Toxin-Producing E. coli, Marcy l'Etoile, France
| | - Delphine Sergentet-Thevenot
- Université de Lyon, VetAgro Sup, Campus Vétérinaire de Lyon, Laboratoire d'Étude des Microorganismes Alimentaires Pathogènes, French National Reference Laboratory for Escherichia coli including Shiga Toxin-Producing E. coli, Marcy l'Etoile, France; Université de Lyon, VetAgro Sup, Campus Vétérinaire de Lyon, Research Group on Bacterial Opportunistic Pathogens and Environment, UMR 5557 Ecologie Microbienne CNRS, VetAgro Sup, and Université Lyon 1, Lyon, France.
| |
Collapse
|
4
|
Milani G, Belloso Daza MV, Cortimiglia C, Bassi D, Cocconcelli PS. Genome engineering of Stx1-and Stx2-converting bacteriophages unveils the virulence of the dairy isolate Escherichia coli O174:H2 strain UC4224. Front Microbiol 2023; 14:1156375. [PMID: 37426006 PMCID: PMC10326431 DOI: 10.3389/fmicb.2023.1156375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
The past decade witnessed the emergence in Shiga toxin-producing Escherichia coli (STEC) infections linked to the consumption of unpasteurized milk and raw milk cheese. The virulence of STEC is primarily attributed to the presence of Shiga toxin genes (stx1 and stx2) carried by Stx-converting bacteriophages, along with the intimin gene eae. Most of the available information pertains to the "Top 7" serotypes associated with STEC infections. The objectives of this study were to characterize and investigate the pathogenicity potential of E. coli UC4224, a STEC O174:H2 strain isolated from semi-hard raw milk cheese and to develop surrogate strains with reduced virulence for use in food-related studies. Complete genome sequence analysis of E. coli UC4224 unveiled the presence of a Stx1a bacteriophage, a Stx2a bacteriophage, the Locus of Adhesion and Autoaggregation (LAA) pathogenicity island, plasmid-encoded virulence genes, and other colonization facilitators. In the Galleria mellonella animal model, E. coli UC4224 demonstrated high pathogenicity potential with an LD50 of 6 CFU/10 μL. Upon engineering E. coli UC4224 to generate single and double mutant derivatives by inactivating stx1a and/or stx2a genes, the LD50 increased by approximately 1 Log-dose in the single mutants and 2 Log-doses in the double mutants. However, infectivity was not completely abolished, suggesting the involvement of other virulence factors contributing to the pathogenicity of STEC O174:H2. Considering the possibility of raw milk cheese serving as a reservoir for STEC, cheesemaking model was developed to evaluate the survival of UC4224 and the adequacy of the respective mutants as reduced-virulence surrogates. All tested strains exhibited the ability to survive the curd cooking step at 48°C and multiplied (3.4 Log CFU) in cheese within the subsequent 24 h. These findings indicate that genomic engineering did not exert any unintended effect on the double stx1-stx2 mutant behaviour, making it as a suitable less-virulent surrogate for conducting studies during food processing.
Collapse
|
5
|
Bagel A, Lopez C, David-Briand E, Michel V, Douëllou T, Sergentet D. Serotype-dependent adhesion of Shiga toxin-producing Escherichia coli to bovine milk fat globule membrane proteins. Front Microbiol 2022; 13:1010665. [PMID: 36504830 PMCID: PMC9731836 DOI: 10.3389/fmicb.2022.1010665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/10/2022] [Indexed: 11/25/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are food-borne pathogens that can cause severe symptoms for humans. Raw milk products are often incriminated as vehicule for human STEC infection. However, raw milk naturally contains molecules, such as the milk fat globule membrane and associated proteins, that could inhibit pathogen adhesion by acting as mimetic ligands. This study aimed to: (i) evaluate the capability of STEC cells to adhere to bovine milk fat globule membrane proteins (MFGMPs), (ii) highlight STEC surface proteins associated with adhesion and (iii) evaluate the variation between different STEC serotypes. We evaluated the physicochemical interactions between STEC and milk fat globules (MFGs) by analyzing hydrophobic properties and measuring the ζ-potential. We used a plate adhesion assay to assess adhesion between MFGMPs and 15 Escherichia coli strains belonging to three key serotypes (O157:H7, O26:H11, and O103:H2). A relative quantitative proteomic approach was conducted by mass spectrometry to identify STEC surface proteins that may be involved in STEC-MFG adhesion. The majority of E. coli strains showed a hydrophilic profile. The ζ-potential values were between -3.7 and - 2.9 mV for the strains and between -12.2 ± 0.14 mV for MFGs. Our results suggest that non-specific interactions are not strongly involved in STEC-MFG association and that molecular bonds could form between STEC and MFGs. Plate adhesion assays showed a weak adhesion of O157:H7 E. coli strains to MFGMPs. In contrast, O26:H11 and O103:H2 serotypes attached more to MFGMPs. Relative quantitative proteomic analysis showed that the O26:H11 str. 21,765 differentially expressed five outer membrane-associated proteins or lipoproteins compared with the O157:H7 str. EDL933. This analysis also found strain-specific differentially expressed proteins, including four O26:H11 str. 21,765-specific proteins/lipoproteins and eight O103:H2 str. PMK5-specific proteins. For the first time, we demonstrated STEC adhesion to MFGMPs and discovered a serotype effect. Several outer membrane proteins-OmpC and homologous proteins, intimin, Type 1 Fimbriae, and AIDA-I-that may be involved in STEC-MFG adhesion were highlighted. More research on STEC's ability to adhere to MFGMs in diverse biological environments, such as raw milk cheeses and the human gastrointestinal tract, is needed to confirm the anti-adhesion properties of the STEC-MFG complex.
Collapse
Affiliation(s)
- Arthur Bagel
- Bacterial Opportunistic Pathogens and Environment Research Group, UMR5557 Ecologie Microbienne Lyon, National Center of Scientific Research (CNRS), Université de Lyon, Marcy-l’Etoile, France
| | | | | | | | - Thomas Douëllou
- Bacterial Opportunistic Pathogens and Environment Research Group, UMR5557 Ecologie Microbienne Lyon, National Center of Scientific Research (CNRS), Université de Lyon, Marcy-l’Etoile, France
| | - Delphine Sergentet
- Bacterial Opportunistic Pathogens and Environment Research Group, UMR5557 Ecologie Microbienne Lyon, National Center of Scientific Research (CNRS), Université de Lyon, Marcy-l’Etoile, France,Laboratoire d’Etudes des Microorganismes Alimentaires Pathogènes, VetAgro Sup—Campus Vétérinaire, French National Reference Laboratory for Escherichia coli Including Shiga Toxin-Producing E. coli (NRL-STEC), Université de Lyon, Marcy-l‘Etoile, France,*Correspondence: Delphine Sergentet,
| |
Collapse
|
6
|
Otero V, Santos JA, Rodríguez-Calleja JM, García-López ML. Behavior of Shiga-toxin-producing Escherichia coli in ewe milk stored at different temperatures and during the manufacture and ripening of a raw milk sheep cheese (Zamorano style). J Dairy Sci 2022; 105:6527-6535. [PMID: 35717333 DOI: 10.3168/jds.2021-21613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/02/2022] [Indexed: 11/19/2022]
Abstract
This study was conducted to assess the survival of 2 wild Shiga toxin-producing Escherichia coli strains (one serotype O157:H7 and one non-O157:H7) in ewe milk stored at different conditions and to examine the fate of the O157 strain during the manufacture and ripening of a Spanish sheep hard variety of raw milk cheese (Zamorano). The strains were selected among a population of 50 isolates, which we obtained from ewe milk, because of their high resistance to 0.3% lactic acid. Both strains were inoculated (approximately 2 log10 cfu/mL) in raw and heat-treated (low-temperature holding, LTH; 63°C/30 min) ewe milk and stored for 5 d at 6, 8, and 10°C and also according to a simulation approach for assessing the effects of failures in the cold chain. The minimum growth temperature for the O157:H7 strain in LTH and raw ewe milk was 8°C. For the non-O157:H7 strain, the lowest temperature showing bacterial growth in LTH ewe milk was 6°C, but it did not grow at any of the tested conditions in raw milk. It appears that the O157 strain was more susceptible to cold stress but was likely a better competitor than the non-O157 strain against the milk autochthonous microbiota. For manufacture of Zamorano cheese, raw milk was inoculated with approximately 3 log10 cfu/mL, and after 2 mo of ripening at 10 to 12°C, the cheeses showed the expected general characteristics for this variety. The O157:H7 strain increased 0.9 log10 cfu/g after whey drainage and during ripening and storage decreased by 2.9 log10 cfu/g. Nevertheless, its detectable level (estimated at 6.2 cfu/g) after 2 mo of ripening suggests that Zamorano cheese manufactured from raw ewe milk contaminated with E. coli O157:H7 could represent a public health concern.
Collapse
Affiliation(s)
- Verónica Otero
- Department of Food Hygiene and Food Technology, Veterinary Faculty, University of León, Spain 24007
| | - Jesús A Santos
- Department of Food Hygiene and Food Technology, Veterinary Faculty, University of León, Spain 24007
| | - Jose M Rodríguez-Calleja
- Department of Food Hygiene and Food Technology, Veterinary Faculty, University of León, Spain 24007.
| | - María-Luisa García-López
- Department of Food Hygiene and Food Technology, Veterinary Faculty, University of León, Spain 24007
| |
Collapse
|
7
|
Moreira RV, Vieira CP, Galvan D, Castro VS, Lima RS, Mutz YS, Delgado KF, Rosario AIL, Mano SB, Costa MP, Conte-Junior CA. Pequi ( Caryocar brasiliense) Waste Extract as a Synergistic Agent in the Microbial and Physicochemical Preservation of Low-Sodium Raw Goat Cheese. Front Nutr 2022; 9:855115. [PMID: 35464018 PMCID: PMC9020873 DOI: 10.3389/fnut.2022.855115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
The growth of spoilage and pathogenic bacteria during storage represents significant losses in marketing raw milk cheeses. Thus, reducing NaCl in these products is challenging, as sodium has a critical antimicrobial role. Despite advances in non-thermal technologies, the short shelf life still limits the availability of raw goat cheese. Thus, combined preservation methods can be promising because their synergies can extend shelf life more effectively. In this context, Principal Component Analysis (PCA) was applied to variables to investigate the effect of pequi waste extract (PWE), a native Brazilian fruit, combined with UV-C radiation (CEU) and vacuum packaging (CEV) on the preservation of low-sodium raw goat cheese. CEV samples had lower loadings for Staphylococcus subsp. and Enterobacteriaceae than other treatments in PC2, having a count's reduction up to 3-fold (P < 0.05) compared to vacuum alone. In contrast, CEU showed an increase of up to 1.2-fold on staphylococcal count compared to UV-C alone. Still, the addition of PWE to UV-C-treated cheeses resulted in 8.5% protein loss. Furthermore, PWE, especially in CEV, delayed post-acidification during storage. It made CEV up to 4.5 and 1.6-fold more stable for color and texture, respectively than vacuum alone. These data strongly suggest that PWE may be a novel and promising synergistic agent in the microbial and physicochemical preservation of low-sodium raw milk cheese when combined with the vacuum.
Collapse
Affiliation(s)
- Rodrigo V. Moreira
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Rio de Janeiro, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Carla P. Vieira
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), UFRJ, Rio de Janeiro, Brazil
| | - Diego Galvan
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), UFRJ, Rio de Janeiro, Brazil
| | - Vinicius S. Castro
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), UFRJ, Rio de Janeiro, Brazil
| | - Rayssa S. Lima
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Yhan S. Mutz
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), UFRJ, Rio de Janeiro, Brazil
| | - Karina F. Delgado
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Anisio Iuri L. Rosario
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Rio de Janeiro, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratory of Inspection and Technology of Milk and Derivatives, Faculty of Veterinary Medicine, Federal University of Bahia, Salvador, Brazil
| | - Sérgio B. Mano
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Rio de Janeiro, Brazil
| | - Marion P. Costa
- Laboratory of Inspection and Technology of Milk and Derivatives, Faculty of Veterinary Medicine, Federal University of Bahia, Salvador, Brazil
| | - Carlos A. Conte-Junior
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Rio de Janeiro, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), UFRJ, Rio de Janeiro, Brazil
- Laboratory of Inspection and Technology of Milk and Derivatives, Faculty of Veterinary Medicine, Federal University of Bahia, Salvador, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Bagel A, Sergentet D. Shiga Toxin-Producing Escherichia coli and Milk Fat Globules. Microorganisms 2022; 10:496. [PMID: 35336072 PMCID: PMC8953591 DOI: 10.3390/microorganisms10030496] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are zoonotic Gram-negative bacteria. While raw milk cheese consumption is healthful, contamination with pathogens such as STEC can occur due to poor hygiene practices at the farm level. STEC infections cause mild to serious symptoms in humans. The raw milk cheese-making process concentrates certain milk macromolecules such as proteins and milk fat globules (MFGs), allowing the intrinsic beneficial and pathogenic microflora to continue to thrive. MFGs are surrounded by a biological membrane, the milk fat globule membrane (MFGM), which has a globally positive health effect, including inhibition of pathogen adhesion. In this review, we provide an update on the adhesion between STEC and raw MFGs and highlight the consequences of this interaction in terms of food safety, pathogen detection, and therapeutic development.
Collapse
Affiliation(s)
- Arthur Bagel
- ‘Bacterial Opportunistic Pathogens and Environment’ Research Team, Université de Lyon, UMR5557 Ecologie Microbienne Lyon, CNRS (National Center of Scientific Research), VetAgro Sup, Marcy-l’Etoile, 69280 Lyon, France;
| | - Delphine Sergentet
- ‘Bacterial Opportunistic Pathogens and Environment’ Research Team, Université de Lyon, UMR5557 Ecologie Microbienne Lyon, CNRS (National Center of Scientific Research), VetAgro Sup, Marcy-l’Etoile, 69280 Lyon, France;
- Laboratoire d’Etudes des Microorganismes Alimentaires Pathogènes-French National Reference Laboratory for Escherichia coli Including Shiga Toxin-Producing E. coli (NRL-STEC), VetAgro Sup—Campus Vétérinaire, Université de Lyon, Marcy-l’Etoile, 69280 Lyon, France
| |
Collapse
|
9
|
Loads of Coliforms and Fecal Coliforms and Characterization of Thermotolerant Escherichia coli in Fresh Raw Milk Cheese. Foods 2022; 11:foods11030332. [PMID: 35159482 PMCID: PMC8834472 DOI: 10.3390/foods11030332] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to assess the hygienic status of raw milk cheese and determine the trends of virulence and antimicrobial resistance in thermotolerant Escherichia coli. Two hundred samples of karish, a popular Egyptian fresh raw milk cheese, were analyzed for coliforms and fecal coliforms using a standard most probable number (MPN) technique. Overall, 85% of samples were unsuitable for consumption, as they exceeded Egyptian standards for coliforms (10 MPN/g), and 65% of samples exhibited coliforms at 44.5 °C. Of 150 recovered thermotolerant strains, 140 (93.3%) were identified as E. coli. Importantly, one Shiga toxin-producing E. coli (STEC) strain carrying a striking virulence pattern, stx1−, stx2+, eae−, was detected. Eleven strains (7.8%, 11/140) showed resistance to third-generation cephalosporins. Antibiotic resistance genes included blaSHV, blaCTX-M, qnrS, tet(A), and tet(B), which were present in 4.3%, 2.8%, 0.71%, 2.1%, and 0.71% of isolates, respectively. In conclusion, this study indicated that hygienic-sanitary failures occurred throughout the production process of most retail karish cheese. Furthermore, our findings emphasize the need for adopting third-generation cephalosporin-resistant E. coli as an indicator for monitoring antimicrobial resistance in raw milk cheese to identify the potential public health burden associated with its consumption.
Collapse
|
10
|
Piqueras J, Chassard C, Callon C, Rifa E, Theil S, Lebecque A, Delbès C. Lactic Starter Dose Shapes S. aureus and STEC O26:H11 Growth, and Bacterial Community Patterns in Raw Milk Uncooked Pressed Cheeses. Microorganisms 2021; 9:microorganisms9051081. [PMID: 34069983 PMCID: PMC8157849 DOI: 10.3390/microorganisms9051081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 01/04/2023] Open
Abstract
Adding massive amounts of lactic starters to raw milk to manage the sanitary risk in the cheese-making process could be detrimental to microbial diversity. Adjusting the amount of the lactic starter used could be a key to manage these adverse impacts. In uncooked pressed cheeses, we investigated the impacts of varying the doses of a lactic starter (the recommended one, 1×, a 0.1× lower and a 2× higher) on acidification, growth of Staphylococcus aureus SA15 and Shiga-toxin-producing Escherichia coli (STEC) O26:H11 F43368, as well as on the bacterial community patterns. We observed a delayed acidification and an increase in the levels of pathogens with the 0.1× dose. This dose was associated with increased richness and evenness of cheese bacterial community and higher relative abundance of potential opportunistic bacteria or desirable species involved in cheese production. No effect of the increased lactic starter dose was observed. Given that sanitary criteria were paramount to our study, the increase in the pathogen levels observed at the 0.1× dose justified proscribing such a reduction in the tested cheese-making process. Despite this, the effects of adjusting the lactic starter dose on the balance of microbial populations of potential interest for cheese production deserve an in-depth evaluation.
Collapse
Affiliation(s)
- Justine Piqueras
- UMR 0545 Fromage, Université Clermont Auvergne, INRAE, VetAgro Sup, 20 Côte de Reyne, F-15000 Aurillac, France; (J.P.); (C.C.); (C.C.); (S.T.); (A.L.)
| | - Christophe Chassard
- UMR 0545 Fromage, Université Clermont Auvergne, INRAE, VetAgro Sup, 20 Côte de Reyne, F-15000 Aurillac, France; (J.P.); (C.C.); (C.C.); (S.T.); (A.L.)
| | - Cécile Callon
- UMR 0545 Fromage, Université Clermont Auvergne, INRAE, VetAgro Sup, 20 Côte de Reyne, F-15000 Aurillac, France; (J.P.); (C.C.); (C.C.); (S.T.); (A.L.)
| | - Etienne Rifa
- UMR INSA/INRA 792, Toulouse Biotechnology Institute, INSA/CNRS 5504, 135 Avenue de Rangueil, F-31077 Toulouse, France;
| | - Sébastien Theil
- UMR 0545 Fromage, Université Clermont Auvergne, INRAE, VetAgro Sup, 20 Côte de Reyne, F-15000 Aurillac, France; (J.P.); (C.C.); (C.C.); (S.T.); (A.L.)
| | - Annick Lebecque
- UMR 0545 Fromage, Université Clermont Auvergne, INRAE, VetAgro Sup, 20 Côte de Reyne, F-15000 Aurillac, France; (J.P.); (C.C.); (C.C.); (S.T.); (A.L.)
| | - Céline Delbès
- UMR 0545 Fromage, Université Clermont Auvergne, INRAE, VetAgro Sup, 20 Côte de Reyne, F-15000 Aurillac, France; (J.P.); (C.C.); (C.C.); (S.T.); (A.L.)
- Correspondence: ; Tel.: +33-471-456-419
| |
Collapse
|
11
|
Survival rate of Escherichia coli O157 in artificially contaminated raw and thermized ewe milk in different Pecorino cheese production processes. Int J Food Microbiol 2021; 347:109175. [PMID: 33812165 DOI: 10.1016/j.ijfoodmicro.2021.109175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 02/04/2021] [Accepted: 03/20/2021] [Indexed: 11/24/2022]
Abstract
Pecorino is a typical Italian cheese, mostly produced in central and southern Italy regions using ewe raw milk and following traditional procedures. The use of raw milk constitutes a risk linked to the potential survival or multiplication of pathogenic microorganisms, as Shiga toxin-producing Escherichia coli (STEC). The aim of this study was to compare different Italian traditional Pecorino production methods to determine if there were any phases that could influence the Escherichia coli O157 survival rate, but also if they could negatively influence lactic acid bacteria survival rate, during the phases of production and ripening. Therefore batches of Pecorino cheese were prepared using different production methods, representing the real and typical cheese production in southern and central Italy regions: 1) heating the milk at 37 °C for about 40 min before curding, 2) heating the milk at 60 °C (thermization) for 13 min, so that the alkaline phosphatase reaction is still positive before curding, 3) cooking curd at 41 °C and 4) at 45 °C, both for 5 min. Our results demonstrated that traditional milk treatments different from pasteurization can help but do not eliminate serious microbiological treats, as E. coli O157, especially if the raw milk is heavily contaminated. The heat treatment at 60 °C applied to raw milk was able to decrease the concentration of E. coli O157 of 1.7 log10CFU/ml and, according to the inactivation slope, it would be further reduced prolonging the heating treatment. The results obtained also showed that, during the Pecorino cheese ripening, E. coli O157 was always enumerable for 60 days, remaining detectable after 90 days of ripening.
Collapse
|
12
|
Frétin M, Chassard C, Delbès C, Lavigne R, Rifa E, Theil S, Fernandez B, Laforce P, Callon C. Robustness and efficacy of an inhibitory consortium against E. coli O26:H11 in raw milk cheeses. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Behaviour of Non-O157 STEC and Atypical EPEC during the Manufacturing and Ripening of Raw Milk Cheese. Foods 2020; 9:foods9091215. [PMID: 32883030 PMCID: PMC7554789 DOI: 10.3390/foods9091215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 01/17/2023] Open
Abstract
This study was carried out to assess the survival of Shiga toxin-producing E. coli (STEC) and atypical enteropathogenic Escherichia coli (aEPEC) during the traditional manufacturing and ripening of Spanish hard cheese from raw cow’s milk. Milk samples were spiked with up to 3.1–3.5 log cfu/mL of one strain of STEC (O140:H32 serotype) and one of aEPEC (serotype O25:H2). The first steps of cheesemaking allow for a STEC and aEPEC increase of more than 1 log cfu/mL (up to 4.74 log cfu/g and 4.55 log cfu/g, respectively). After cheese pressing, a steady reduction of both populations was observed, with the STEC strain being more sensitive. The studied pathogenic E. coli populations decreased by 1.32 log cfu/g in STEC and 0.59 log cfu/g in aEPEC in cheese ripened during a minimum period of 60 d. Therefore, a moderate contamination by these diarrhoeagenic E. coli pathotypes, in particular, with aEPEC, on cheese manufactured from raw milk may not be totally controlled through the cheesemaking process and during a maturation of 90 d. These findings remark the importance of improvement in bacteriological quality of raw milk and cross-contamination prevention with diarrhoeagenic E. coli in the dairy industry.
Collapse
|
14
|
Dos Santos Rosario AIL, da Silva Mutz Y, Castro VS, da Silva MCA, Conte-Junior CA, da Costa MP. Everybody loves cheese: crosslink between persistence and virulence of Shiga-toxin Escherichia coli. Crit Rev Food Sci Nutr 2020; 61:1877-1899. [PMID: 32519880 DOI: 10.1080/10408398.2020.1767033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
General cheese manufacturing involves high temperatures, fermentation and ripening steps that function as hurdles to microbial growth. On the other hand, the application of several different formulations and manufacturing techniques may create a bacterial protective environment. In cheese, the persistent behavior of Shiga toxin-producing Escherichia coli (STEC) relies on complex mechanisms that enable bacteria to respond to stressful conditions found in cheese matrix. In this review, we discuss how STEC manages to survive to high and low temperatures, hyperosmotic conditions, exposure to weak organic acids, and pH decreasing related to cheese manufacturing, the cheese matrix itself and storage. Moreover, we discuss how these stress responses interact with each other by enhancing adaptation and consequently, the persistence of STEC in cheese. Further, we show how virulence genes eae and tir are affected by stress response mechanisms, increasing either cell adherence or virulence factors production, which leads to a selection of more resistant and virulent pathogens in the cheese industry, leading to a public health issue.
Collapse
Affiliation(s)
- Anisio Iuri Lima Dos Santos Rosario
- Postgraduate Program in Food Science, Faculty of Pharmacy, Universidade Federal da Bahia, Salvador, Brazil.,Department of Preventive Veterinary Medicine and Animal Production, School of Veterinary Medicine and Zootechnics of Veterinary, Universidade Federal da Bahia, Salvador, Brazil
| | - Yhan da Silva Mutz
- Postgraduate Program in Food Science, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, Brazil
| | - Vinícius Silva Castro
- Postgraduate Program in Food Science, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maurício Costa Alves da Silva
- Department of Preventive Veterinary Medicine and Animal Production, School of Veterinary Medicine and Zootechnics of Veterinary, Universidade Federal da Bahia, Salvador, Brazil
| | - Carlos Adam Conte-Junior
- Postgraduate Program in Food Science, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, Brazil.,National Institute for Health Quality Control, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Marion Pereira da Costa
- Postgraduate Program in Food Science, Faculty of Pharmacy, Universidade Federal da Bahia, Salvador, Brazil.,Department of Preventive Veterinary Medicine and Animal Production, School of Veterinary Medicine and Zootechnics of Veterinary, Universidade Federal da Bahia, Salvador, Brazil
| |
Collapse
|
15
|
The efficacy of individual and combined commercial protective cultures against Listeria monocytogenes, Salmonella, O157 and non-O157 shiga toxin-producing Escherichia coli in growth medium and raw milk. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106924] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Use of indicator bacteria for monitoring sanitary quality of raw milk cheeses – A literature review. Food Microbiol 2020; 85:103283. [DOI: 10.1016/j.fm.2019.103283] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 06/06/2019] [Accepted: 07/30/2019] [Indexed: 11/17/2022]
|
17
|
Survival of acid-adapted and non-adapted Shiga toxin-producing Escherichia coli using an in vitro model. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Investigating the troublesome relationship between the cow milk and human health. Res Vet Sci 2018; 120:1-3. [PMID: 30144621 DOI: 10.1016/j.rvsc.2018.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/10/2018] [Accepted: 08/20/2018] [Indexed: 11/22/2022]
|
19
|
Douëllou T, Galia W, Kerangart S, Marchal T, Milhau N, Bastien R, Bouvier M, Buff S, Montel MC, Sergentet-Thevenot D. Milk Fat Globules Hamper Adhesion of Enterohemorrhagic Escherichia coli to Enterocytes: In Vitro and in Vivo Evidence. Front Microbiol 2018; 9:947. [PMID: 29867855 PMCID: PMC5963252 DOI: 10.3389/fmicb.2018.00947] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/23/2018] [Indexed: 12/13/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC; E. coli) are food-borne agents associated with gastroenteritis, enterocolitis, bloody diarrhea and the hemolytic-uremic syndrome (HUS). Bovine milk glycans have been shown to contain oligosaccharides which are similar to host epithelial cell receptors and can therefore prevent bacterial adhesion. This study aimed to describe interactions between EHEC O157:H7 EDL933 and O26:H11 21765 and milk fat globules (MFGs) in raw milk and raw milk cheese, and the impact of MFGs on EHEC strains adhesion to the intestinal tract in vitro and in vivo. Both EHEC serotypes clearly associated with native bovine MFGs and significantly limited their adhesion to a co-culture of intestinal cells. The presence of MFGs in raw milk cheese had two effects on the adhesion of both EHEC serotypes to the intestinal tracts of streptomycin-treated mice. First, it delayed and reduced EHEC excretion in mouse feces for both strains. Second, the prime implantation site for both EHEC strains was 6 cm more proximal in the intestinal tracts of mice fed with contaminated cheese containing less than 5% of fat than in those fed with contaminated cheese containing 40% of fat. Feeding mice with 40% fat cheese reduced the intestinal surface contaminated with EHEC and may therefore decrease severity of illness.
Collapse
Affiliation(s)
- Thomas Douëllou
- Institut National de Recherche Agronomique, Unité de Recherches Fromagères, Aurillac, France.,Université de Lyon, Research Group "Bacterial Opportunistic Pathogens and Environment", UMR5557 Ecologie Microbienne Lyon, Université Lyon 1, CNRS, VetAgro Sup, Marcy-l'Étoile, France
| | - Wessam Galia
- Université de Lyon, Research Group "Bacterial Opportunistic Pathogens and Environment", UMR5557 Ecologie Microbienne Lyon, Université Lyon 1, CNRS, VetAgro Sup, Marcy-l'Étoile, France
| | - Stéphane Kerangart
- Université de Lyon, Research Group "Bacterial Opportunistic Pathogens and Environment", UMR5557 Ecologie Microbienne Lyon, Université Lyon 1, CNRS, VetAgro Sup, Marcy-l'Étoile, France
| | - Thierry Marchal
- UPSP ICE 2011.03.101 & CRB ANIM (ANR11.INBS.0003), Université de Lyon, VetAgro Sup, Marcy-l'Étoile, France
| | - Nadège Milhau
- UPSP ICE 2011.03.101 & CRB ANIM (ANR11.INBS.0003), Université de Lyon, VetAgro Sup, Marcy-l'Étoile, France
| | - Renaud Bastien
- Department of Collective Behaviour, Max Planck Institute for Ornithology, Konstanz, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany
| | - Marion Bouvier
- Université de Lyon, Research Group "Bacterial Opportunistic Pathogens and Environment", UMR5557 Ecologie Microbienne Lyon, Université Lyon 1, CNRS, VetAgro Sup, Marcy-l'Étoile, France.,Laboratoire d'Études des Microorganismes Alimentaires Pathogènes - French National Reference Laboratory for Escherichia coli Including Shiga Toxin Producing E. coli, Université de Lyon, VetAgro Sup Campus Vétérinaire, Marcy-l'Étoile, France
| | - Samuel Buff
- UPSP ICE 2011.03.101 & CRB ANIM (ANR11.INBS.0003), Université de Lyon, VetAgro Sup, Marcy-l'Étoile, France
| | - Marie-Christine Montel
- Institut National de Recherche Agronomique, Unité de Recherches Fromagères, Aurillac, France
| | - Delphine Sergentet-Thevenot
- Université de Lyon, Research Group "Bacterial Opportunistic Pathogens and Environment", UMR5557 Ecologie Microbienne Lyon, Université Lyon 1, CNRS, VetAgro Sup, Marcy-l'Étoile, France.,Laboratoire d'Études des Microorganismes Alimentaires Pathogènes - French National Reference Laboratory for Escherichia coli Including Shiga Toxin Producing E. coli, Université de Lyon, VetAgro Sup Campus Vétérinaire, Marcy-l'Étoile, France
| |
Collapse
|
20
|
Kowalik J, Lobacz A, Zulewska J, Dec B. Analysis and mathematical modelling of the behaviour of Escherichia coli
in the mascarpone cheese during cold storage. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13736] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jaroslaw Kowalik
- Department of Dairy Science and Quality Management; Faculty of Food Sciences; University of Warmia and Mazury in Olsztyn; Oczapowskiego str. 7 10-719 Olsztyn Poland
| | - Adriana Lobacz
- Department of Dairy Science and Quality Management; Faculty of Food Sciences; University of Warmia and Mazury in Olsztyn; Oczapowskiego str. 7 10-719 Olsztyn Poland
| | - Justyna Zulewska
- Department of Dairy Science and Quality Management; Faculty of Food Sciences; University of Warmia and Mazury in Olsztyn; Oczapowskiego str. 7 10-719 Olsztyn Poland
| | - Bogdan Dec
- Department of Dairy Science and Quality Management; Faculty of Food Sciences; University of Warmia and Mazury in Olsztyn; Oczapowskiego str. 7 10-719 Olsztyn Poland
| |
Collapse
|
21
|
Miszczycha S, Bel N, Gay-Perret P, Michel V, Montel M, Sergentet-Thevenot D. Short communication: Behavior of different Shiga toxin-producing Escherichia coli serotypes (O26:H11, O103:H2, O145:H28, O157:H7) during the manufacture, ripening, and storage of a white mold cheese. J Dairy Sci 2016; 99:5224-5229. [DOI: 10.3168/jds.2015-10803] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/04/2016] [Indexed: 11/19/2022]
|
22
|
|
23
|
Escherichia coli O26:H11 growth in co-culture with an antagonistic strain of Hafnia alvei according to pH and temperature. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.10.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Verraes C, Vlaemynck G, Van Weyenberg S, De Zutter L, Daube G, Sindic M, Uyttendaele M, Herman L. A review of the microbiological hazards of dairy products made from raw milk. Int Dairy J 2015. [DOI: 10.1016/j.idairyj.2015.05.011] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Callon C, Arliguie C, Montel MC. Control of Shigatoxin-producing Escherichia coli in cheese by dairy bacterial strains. Food Microbiol 2015; 53:63-70. [PMID: 26678131 DOI: 10.1016/j.fm.2015.08.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 08/18/2015] [Accepted: 08/31/2015] [Indexed: 11/19/2022]
Abstract
Bio-preservation could be a valuable way to control Shigatoxin-producing Escherichia coli (STEC) in cheese. To this end, 41 strains were screened for their inhibitory potential on model cheese curd and on pasteurized and raw milk uncooked pressed cheeses. Strains of Lactococcus lactis, Lactococcus garvieae, Leuconostoc pseudomesenteroides, Leuconostoc citreum, Lactobacillus sp, Carnobacterium mobile, Enterococcus faecalis, Enterococcus faecium, Macrococcus caseolyticus and Hafnia alvei reduced STEC O26:H11 counts by 1.4-2.5 log cfu g(-1) and to a lesser extent STEC O157:H7 counts in pasteurized milk cheeses. Some strains can act in synergy to inhibit STEC in raw milk uncooked pressed cheeses. Inhibitory associations had no adverse effect on the sensory characteristics of these cheeses. The association of H. alvei, Lactobacillus plantarum and Lc. lactis was the most inhibitory: after inoculation of this consortium into milk, STEC O26:H11 and O157:H7, inoculated at 2 log cfu ml(-1), were reduced by up to 3 log cfu g(-1) in ripened cheese. Inhibition in cheese cannot be predicted from H2O2 production in BHI medium, decreased pH or milk reduction. It is not clear what role the rapid decrease in pH during the first 6 h may play in the inhibition. Further studies will be needed to determine the nature of the inhibition.
Collapse
Affiliation(s)
- Cécile Callon
- INRA, UR545 Fromagères, 20 Côte de Reyne, 15000 Aurillac, France.
| | - Céline Arliguie
- INRA, UR545 Fromagères, 20 Côte de Reyne, 15000 Aurillac, France
| | | |
Collapse
|
26
|
Gill A, Oudit D. Enumeration of Escherichia coli O157 in Outbreak-Associated Gouda Cheese Made with Raw Milk. J Food Prot 2015; 78:1733-7. [PMID: 26319728 DOI: 10.4315/0362-028x.jfp-15-036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this article, we discuss the enumerative analysis for Escherichia coli O157 in two raw milk Gouda cheese products (A and B), implicated in an outbreak of 29 cases of E. coli O157:H7 illness that occurred across Canada in 2013. Samples were enumerated for E. coli O157 by most probable number (MPN) over a period of 30 to 60 days after the end of the outbreak. Samples (55.55 g) of product A (n = 14) were analyzed at 146 to 180 days postproduction. E. coli O157 was isolated from six samples at 19.9 to 44.6 MPN/kg. The E. coli O157 concentration of product A estimated from the results of all 14 samples was 9.5 MPN/kg. Samples (55.55 g) of product B (n = 20) were analyzed at 133 to 149 days postproduction. E. coli O157 was isolated from four samples at 19.9 MPN/kg. The E. coli O157 concentration of product B estimated from the results of all 20 samples was 3.7 MPN/kg. Analysis of a 305-g sample of product A (n = 1) stored at 4°C until 306 days postproduction revealed that the E. coli O157 concentration had declined to 3.6 MPN/kg. E. coli O157 could not be isolated from 555-g samples of product B (n = 5) after 280 days postproduction. The physicochemical parameters (pH, water activity, percent moisture, and percent salt) of both cheese products were found to be in the normal range for this type of product. The results of this study demonstrate that E. coli O157 could not replicate during storage at 4°C in the products tested but was capable of survival following aging and prolonged storage. This indicates that, if contaminated, the minimum 60-day aging period, which is required for raw milk Gouda cheeses, is not sufficient in all cases to ensure that the product does not contain viable cells of E. coli O157. The results also indicate that samples sizes greater than 100 g may be required to reliably detect E. coli O157 in cheese products associated with outbreaks.
Collapse
Affiliation(s)
- Alexander Gill
- Health Canada, Bureau of Microbial Hazards, 251 Sir Frederick Banting Driveway, P.L. 2204E Ottawa, Ontario, Canada K1A 0K9.
| | - Denise Oudit
- Health Canada, Bureau of Microbial Hazards, 251 Sir Frederick Banting Driveway, P.L. 2204E Ottawa, Ontario, Canada K1A 0K9
| |
Collapse
|
27
|
Cosciani-Cunico E, Dalzini E, Ducoli S, Sfameni C, Bertasi B, Losio MN, Daminelli P, Varisco G. Behaviour of Listeria Monocytogenes and Escherichia Coli O157:H7 During the Cheese Making of Traditional Raw-Milk Cheeses from Italian Alps. Ital J Food Saf 2015; 4:4585. [PMID: 27800408 PMCID: PMC5076637 DOI: 10.4081/ijfs.2015.4585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 01/21/2015] [Accepted: 01/21/2015] [Indexed: 11/23/2022] Open
Abstract
The behaviour of Listeria monocytogenes and Escherichia coli O157:H7 was studied during the manufacture and ripening of two traditional Italian Alps cheeses. Each cheese type was manufactured in a pilot plan from raw cow milk (without the addition of starter cultures) artificially inoculated with L. monocytogenes and E. coli O157:H7 to a final concentration of about 4 log CFU/mL. The pathogens were enumerated throughout the cheese making and ripening processes to study their behaviour. When the milk was inoculated with 4 Log CFU/mL, the pathogens counts increased in the first time during the manufacturing process and then remained constant, until the end of ripening, or decreased significantly. Results indicate that the environment and nature of food borne pathogens affected the concentration of the bacteria during the manufacturing and ripening process. Thus, the presence of low cells numbers of L. monocytogenes and E. coli O157:H7 in milk destined for the production of raw milk cheeses characterized by a cooking of the curd less than 48°C can constitute a hazard for the consumer.
Collapse
Affiliation(s)
- Elena Cosciani-Cunico
- Department of Food Microbiology, Veterinary Public Health Institute of Lombardy and Emilia Romagna Brescia, Brescia, Italy
| | - Elena Dalzini
- Department of Food Microbiology, Veterinary Public Health Institute of Lombardy and Emilia Romagna Brescia, Brescia, Italy
| | - Stefania Ducoli
- Department of Food Microbiology, Veterinary Public Health Institute of Lombardy and Emilia Romagna Brescia, Brescia, Italy
| | - Chiara Sfameni
- Department of Food Microbiology, Veterinary Public Health Institute of Lombardy and Emilia Romagna Brescia, Brescia, Italy
| | - Barbara Bertasi
- Department of Food Microbiology, Veterinary Public Health Institute of Lombardy and Emilia Romagna Brescia, Brescia, Italy
| | - Marina-Nadia Losio
- Veterinary Public Health Institute of Lombardy and Emilia Romagna, Brescia, Italy
| | - Paolo Daminelli
- Department of Food Microbiology, Veterinary Public Health Institute of Lombardy and Emilia Romagna Brescia, Brescia, Italy
| | - Giorgio Varisco
- Department of Food Microbiology, Veterinary Public Health Institute of Lombardy and Emilia Romagna Brescia, Brescia, Italy
| |
Collapse
|
28
|
Wheeler SR, Heard P, Dufour C, Thevenot-Sergentet D, Loukiadis E, Flowers RS, McMahon W. Detection of non-O157 Shiga toxin-producing Escherichia coli in 375 grams of beef trim enrichments across multiple commercial PCR detection platforms. J Food Prot 2015; 78:196-202. [PMID: 25581196 DOI: 10.4315/0362-028x.jfp-14-263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Although serotype O157:H7 remains the pathogenic Shiga toxin-producing Escherichia coli (STEC) of primary concern worldwide, some focus in the United States has shifted to six particular non-O157 STEC serogroups (O26, O45, O103, O111, O121, and O145). Some of these serogroups have also emerged as concerns elsewhere around the world, including Europe. The objective of this work was to compare commercial detection methods with the U.S. Department of Agriculture (USDA) reference method for detection of non-O157 STEC in 375 g of beef trim using a limit of detection study design. Overall, the commercial platforms performed well, showing similar levels of sensitivity for detection of presumptive positives for O45, O26, O103, and O121 (PCR screen results only). For O111, one method that utilizes an integrated immunomagnetic separation and PCR approach was more sensitive than a PCR-only screen approach. Additionally, one commercial method showed more presumptive and confirmed positives overall. Use of an immunomagnetic separation tool, such as antibody-coated beads, aided considerably with the confirmation procedures and is an important step when confirming suspect samples. A secondary goal of this study was to evaluate isolation and International Organization for Standardization confirmation protocols used in Europe compared with strategies provided by the USDA Microbiology Laboratory Guidebook (MLG). Generally, results from the USDA confirmation plates (modified Rainbow agar) were better than the European Union confirmation plates (MacConkey agar with or without rhamnose). In summary, detection of non-O157 STEC in 375 g of beef trim can be performed by any of the three methods on the market evaluated in the study.
Collapse
Affiliation(s)
| | - Preciaus Heard
- Silliker Food Science Center, 3600 Eagle Nest Drive, Crete, Illinois 60417, USA
| | - Christophe Dufour
- Silliker France, 1 rue de la Croix des Maheux, 95031 Cergy-Pontoise cedex, France
| | - Delphine Thevenot-Sergentet
- University of Lyon, VetAgro Sup, French National Reference Laboratory for Escherichia coli, 1 avenue Bourgelat, 69280 Marcy l'Etoile, France; University of Lyon, Research Group on Bacterial Opportunistic Pathogens and Environment, UMR 5557 Microbial Ecology, University Lyon 1, National Center for Scientific Research, VetAgro Sup, 69622 Villeurbanne cedex, France
| | - Estelle Loukiadis
- University of Lyon, VetAgro Sup, French National Reference Laboratory for Escherichia coli, 1 avenue Bourgelat, 69280 Marcy l'Etoile, France; University of Lyon, Research Group on Bacterial Opportunistic Pathogens and Environment, UMR 5557 Microbial Ecology, University Lyon 1, National Center for Scientific Research, VetAgro Sup, 69622 Villeurbanne cedex, France
| | - Russell S Flowers
- Mérieux NutriSciences, 111 East Wacker Drive, Suite 2300, Chicago, Illinois 60601, USA
| | - Wendy McMahon
- Silliker Food Science Center, 3600 Eagle Nest Drive, Crete, Illinois 60417, USA.
| |
Collapse
|
29
|
Perrin F, Tenenhaus-Aziza F, Michel V, Miszczycha S, Bel N, Sanaa M. Quantitative risk assessment of haemolytic and uremic syndrome linked to O157:H7 and non-O157:H7 Shiga-toxin producing Escherichia coli strains in raw milk soft cheeses. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2015; 35:109-128. [PMID: 25156259 DOI: 10.1111/risa.12267] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Shiga-toxin producing Escherichia coli (STEC) strains may cause human infections ranging from simple diarrhea to Haemolytic Uremic Syndrome (HUS). The five main pathogenic serotypes of STEC (MPS-STEC) identified thus far in Europe are O157:H7, O26:H11, O103:H2, O111:H8, and O145:H28. Because STEC strains can survive or grow during cheese making, particularly in soft cheeses, a stochastic quantitative microbial risk assessment model was developed to assess the risk of HUS associated with the five MPS-STEC in raw milk soft cheeses. A baseline scenario represents a theoretical worst-case scenario where no intervention was considered throughout the farm-to-fork continuum. The risk level assessed with this baseline scenario is the risk-based level. The impact of seven preharvest scenarios (vaccines, probiotic, milk farm sorting) on the risk-based level was expressed in terms of risk reduction. Impact of the preharvest intervention ranges from 76% to 98% of risk reduction with highest values predicted with scenarios combining a decrease of the number of cow shedding STEC and of the STEC concentration in feces. The impact of postharvest interventions on the risk-based level was also tested by applying five microbiological criteria (MC) at the end of ripening. The five MCs differ in terms of sample size, the number of samples that may yield a value larger than the microbiological limit, and the analysis methods. The risk reduction predicted varies from 25% to 96% by applying MCs without preharvest interventions and from 1% to 96% with combination of pre- and postharvest interventions.
Collapse
Affiliation(s)
- Frédérique Perrin
- French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Maison-Alfort, France; ACTALIA, La Roche-sur-Foron, France; Doctoral School ABIES (Agriculture Food Biology Environment Health), Paris, France
| | | | | | | | | | | |
Collapse
|
30
|
Castellote J, Fraud S, Irlinger F, Swennen D, Fer F, Bonnarme P, Monnet C. Investigation of Geotrichum candidum gene expression during the ripening of Reblochon-type cheese by reverse transcription-quantitative PCR. Int J Food Microbiol 2014; 194:54-61. [PMID: 25461609 DOI: 10.1016/j.ijfoodmicro.2014.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/21/2014] [Accepted: 11/10/2014] [Indexed: 12/12/2022]
Abstract
Cheese ripening involves the activity of various bacteria, yeasts or molds, which contribute to the development of the typical color, flavor and texture of the final product. In situ measurements of gene expression are increasingly being used to improve our understanding of the microbial flora activity in cheeses. The objective of the present study was to investigate the physiology and metabolic activity of Geotrichum candidum during the ripening of Reblochon-type cheeses by quantifying mRNA transcripts at various ripening times. The expression of 80 genes involved in various functions could be quantified with a correct level of biological repeatability using a set of three stable reference genes. As ripening progresses, a decrease in expression was observed for genes involved in cell wall organization, translation, vesicular mediated transport, and in cytoskeleton constituents and ribosomal protein genes. There was also a decrease in the expression of mitochondrial F1F0 ATP synthase and plasma membrane H(+) ATPase genes. Some genes involved in the catabolism of lactate, acetate and ethanol were expressed to a greater extent at the beginning of ripening. During the second part of ripening, there was an increased expression of genes involved in the transport and catabolism of amino acids, which could be attributed to a change in the energy source. There was also an increase in the expression of genes involved in autophagy and of genes possibly involved in lifespan determination. Quantification of mRNA transcripts may also be used to produce bioindicators relevant for cheesemaking, for example when considering genes encoding enzymes involved in the catabolism of amino acids.
Collapse
Affiliation(s)
- Jessie Castellote
- INRA, UMR782 Génie et Microbiologie des Procédés Alimentaires, 78850 Thiverval-Grignon, France; AgroParisTech, UMR782 Génie et Microbiologie des Procédés Alimentaires, 78850 Thiverval-Grignon, France
| | | | - Françoise Irlinger
- INRA, UMR782 Génie et Microbiologie des Procédés Alimentaires, 78850 Thiverval-Grignon, France; AgroParisTech, UMR782 Génie et Microbiologie des Procédés Alimentaires, 78850 Thiverval-Grignon, France
| | - Dominique Swennen
- INRA, UMR1319 Micalis, 78850 Thiverval-Grignon, France; AgroParisTech, UMR1319 Micalis, 78850 Thiverval-Grignon, France
| | - Frédéric Fer
- INRA, UMR1319 Micalis, 78850 Thiverval-Grignon, France; INRA, UMR518 Mathématiques et Informatique Appliquées, 75005 Paris, France
| | - Pascal Bonnarme
- INRA, UMR782 Génie et Microbiologie des Procédés Alimentaires, 78850 Thiverval-Grignon, France; AgroParisTech, UMR782 Génie et Microbiologie des Procédés Alimentaires, 78850 Thiverval-Grignon, France
| | - Christophe Monnet
- INRA, UMR782 Génie et Microbiologie des Procédés Alimentaires, 78850 Thiverval-Grignon, France; AgroParisTech, UMR782 Génie et Microbiologie des Procédés Alimentaires, 78850 Thiverval-Grignon, France.
| |
Collapse
|
31
|
Duffy G, McCabe E. Veterinary Public Health Approach to Managing Pathogenic Verocytotoxigenic Escherichia coli in the Agri-Food Chain. Microbiol Spectr 2014; 2. [PMID: 26104349 DOI: 10.1128/microbiolspec.ehec-0023-2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Verocytoxigenic Escherichia coli (VTEC) comprises many diverse serogroups, but seven serogroups, O157, O26, O103, O145, O111, O21, and O45, have been most commonly linked to severe human infections, though illness has also been reported from a range of other VTEC serogroups. This poses challenges in assessing the risk to humans from the diverse range of VTEC strains that may be recovered from animals, the environment, or food. For routine assessment of risk posed by VTEC recovered from the agri-food chain, the concept of seropathotype can be used to rank the human risk potential from a particular VTEC serogroup on the basis of both serotype (top seven serogroups) and the presence of particular virulence genes (vt in combination with eae, or aaiC plus aggR). But for other VTEC serogroups or virulence gene combinations, it is not currently possible to fully assess the risk posed. VTEC is shed in animal feces and can persist in the farm environment for extended periods ranging from several weeks to many months, posing an ongoing reservoir of contamination for grazing animals, water courses, and fresh produce and for people using farmland for recreational purposes. Appropriate handling and treatment of stored animal waste (slurries and manures) will reduce risk from VTEC in the farm environment. Foods of animal origin such as milk and dairy products and meat may be contaminated with VTEC during production and processing, and the pathogen may survive or grow during processing operations, highlighting the need for well-designed and validated Hazard Analysis Critical Control Point management systems. This article focuses on a veterinary public health approach to managing VTEC, highlighting the various routes in the agri-food chain for transmission of human pathogenic VTEC and general approaches to managing the risk.
Collapse
Affiliation(s)
| | - Evonne McCabe
- Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| |
Collapse
|
32
|
Survival of Escherichia coli O26:H11 exceeds that of Escherichia coli O157:H7 as assessed by simulated human digestion of contaminated raw milk cheeses. Int J Food Microbiol 2014; 172:40-8. [DOI: 10.1016/j.ijfoodmicro.2013.11.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 11/15/2013] [Accepted: 11/26/2013] [Indexed: 11/24/2022]
|
33
|
Wang X, Taylor M, Hoang L, Ekkert J, Nowakowski C, Stone J, Tone G, Trerise S, Paccagnella A, Wong T, Galanis E. Comparison of clinical and epidemiological features of Shiga toxin-producing Escherichia coli O157 and non-O157 infections in British Columbia, 2009 to 2011. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2013; 24:e102-6. [PMID: 24489568 PMCID: PMC3905009 DOI: 10.1155/2013/932752] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Shiga toxin-producing Escherichia coli (STEC) are major foodborne agents that have the potential to cause severe enteric illnesses and large outbreaks worldwide. Several studies found non-O157 infections to be clinically milder than O157 STEC infections. OBJECTIVE To compare the clinical and epidemiological profiles of O157 and non-O157 STEC human infections in British Columbia (BC). METHODS All STEC cases reported in BC from 2009 to 2011 by four local health authorities were included in the study. Cases were classified according to STEC serotype based on laboratory information. Information was gathered via case interview forms. Data analysis included the χ(2) test and Mann-Whitney test; P<0.05 was considered to be statistically significant. RESULTS A total of 260 STEC cases were reported, including 154 (59.2%) O157 cases, 63 (24.2%) non-O157 cases and 43 (16.5%) STEC cases with no serotype identified. Hospitalization rate was higher and duration of hospitalization was significantly longer for O157 cases compared with non-O157 cases, but other clinical features were not significantly different. Patients with non-O157 infections were significantly more likely to have travelled outside Canada, less likely to report food exposure at social gatherings and more likely to consume bagged greens and cheese. DISCUSSION O157 is the predominant O serotype in BC and appeared to be more clinically severe than non-O157 STEC infections. However, the true incidence and severity of non-O157 remain unknown due to our current inability to detect all non-O157 cases. The present study and the literature suggest the need to identify more predictive virulence factors because serotype does not consistently predict disease severity.
Collapse
Affiliation(s)
- Xuetao Wang
- Faculty of Health Sciences, Simon Fraser University, Burnaby
| | - Marsha Taylor
- British Columbia Centre for Disease Control, University of British Columbia, Vancouver
| | - Linda Hoang
- British Columbia Public Health Microbiology and Reference Laboratory, University of British Columbia, Vancouver
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver
| | - Judi Ekkert
- Interior Health, Kelowna, University of British Columbia, Vancouver, British Columbia
| | - Craig Nowakowski
- Vancouver Island Health, Victoria, University of British Columbia, Vancouver, British Columbia
| | - Jason Stone
- Fraser Health, Surrey, University of British Columbia, Vancouver, British Columbia
| | - Greg Tone
- Northern Health, Prince George, University of British Columbia, Vancouver, British Columbia
| | - Steven Trerise
- Fraser Health, Surrey, University of British Columbia, Vancouver, British Columbia
| | - Ana Paccagnella
- British Columbia Public Health Microbiology and Reference Laboratory, University of British Columbia, Vancouver
| | - Titus Wong
- Division of Medical Microbiology and Infection Control, Department of Pathology and Laboratory Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia
| | - Eleni Galanis
- British Columbia Centre for Disease Control, University of British Columbia, Vancouver
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia
| |
Collapse
|