1
|
van de Put B, de Bruijn WJ, Schols HA. Structural Characterization of Disaccharides Using Cyclic Ion Mobility Spectrometry and Monosaccharide Standards. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1012-1020. [PMID: 38634722 PMCID: PMC11066964 DOI: 10.1021/jasms.4c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
To understand the mode of action of bioactive oligosaccharides, such as prebiotics, in-depth knowledge about all structural features, including monosaccharide composition, linkage type, and anomeric configuration, is necessary. Current analytical techniques provide limited information about structural features within complex mixtures unless preceded by extensive purification. In this study, we propose an approach employing cyclic ion mobility spectrometry (cIMS) for the in-depth characterization of oligosaccharides, here demonstrated for disaccharides. We were able to separate galactose and glucose anomers by exploiting the high ion mobility resolution of cIMS. Using the obtained monosaccharide mobilograms as references, we determined the composition and anomeric configuration of 4β-galactobiose by studying the monosaccharide fragments generated by collision-induced dissociation (CID) before the ion mobility separation. Drift times and individual MS2 spectra of partially resolved reducing-end anomers of 4β-galactobiose, 4β-galactosylglucose (lactose), and 4β-glucosylglucose (cellobiose) were obtained by deconvolution using CID fragmentation induced in the transfer region between the cIMS cell and TOF analyzer. The composition and anomeric configuration of the reducing end anomers of these disaccharides were identified using cIMS2 approaches, where first each anomer was isolated using cIMS and individually fragmented, and the monosaccharide fragments were again separated by cIMS for comparison with monosaccharide standards. With these results we demonstrate the promising application of cIMS for the structural characterization of isomeric oligosaccharides.
Collapse
Affiliation(s)
- Bram van de Put
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708, WG Wageningen, The Netherlands
| | - Wouter J.C. de Bruijn
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708, WG Wageningen, The Netherlands
| | - Henk A. Schols
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708, WG Wageningen, The Netherlands
| |
Collapse
|
2
|
Meeusen E, Cao L, Delsing DJ, Groeneveld A, Heerikhuisen M, Schuren F, Boltje TJ. Gram-scale chemical synthesis of galactosyllactoses and their impact on infant gut microbiota in vitro. Org Biomol Chem 2024; 22:2091-2097. [PMID: 38363206 PMCID: PMC10917138 DOI: 10.1039/d3ob02069j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/14/2024] [Indexed: 02/17/2024]
Abstract
Galactooligosaccharides (GOS) are widely used as a supplement in infant nutrition to mimic the beneficial effects found in prebiotic human milk oligosaccharides (HMOs). However, the complexity of the GOS mixture makes it challenging to ascertain which of the GOS components contribute most to their health benefits. Galactosyllactoses (GLs) are lactose-based trisaccharides containing a β-galactopyranosyl residue at the 3'-position (3'galactosyllactose, 3'-GL), 4'-position (4'-galactosyllactose, 4'-GL), or the 6'-position (6'-galactosyllactose, 6'-GL). These GLs are of particular interest as they are present in both GOS mixtures and human milk at early stages of lactation. However, research on the potential health benefits of these individual GLs has been limited. Gram quantities are needed to assess their health benefits but these GLs are not readily available at this scale. In this study, we report the gram-scale chemical synthesis of 3'-GL, 4'-GL, and 6'-GL. All three galactosyllactoses were obtained on a gram scale in good purity from cheap and commercially available lactose. Furthermore, in vitro incubation of GLs with infant faecal microbiota demonstrates that the GLs were able to increase the abundance of Bifidobacterium and stimulate short chain fatty acid production.
Collapse
Affiliation(s)
- Evy Meeusen
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
| | - Linqiu Cao
- FrieslandCampina N.V., Amersfoort, The Netherlands
| | | | | | - Margreet Heerikhuisen
- Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Frank Schuren
- Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Thomas J Boltje
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
3
|
Kaewarsar E, Chaiyasut C, Lailerd N, Makhamrueang N, Peerajan S, Sirilun S. Effects of Synbiotic Lacticaseibacillus paracasei, Bifidobacterium breve, and Prebiotics on the Growth Stimulation of Beneficial Gut Microbiota. Foods 2023; 12:3847. [PMID: 37893739 PMCID: PMC10606279 DOI: 10.3390/foods12203847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The gut microbiota is a complex community of microorganisms that plays a vital role in maintaining overall health, and is comprised of Lactobacillus and Bifidobacterium. The probiotic efficacy and safety of Lacticaseibacillus paracasei and Bifidobacterium breve for consumption were confirmed by in vitro experiments. The survival rate of the probiotics showed a significant decline in in vitro gut tract simulation; however, the survival rate was more than 50%. Also, the probiotics could adhere to Caco-2 cell lines by more than 90%, inhibit the pathogenic growths, deconjugate glycocholic acid and taurodeoxycholic acid through activity of bile salt hydrolase (BSH) proteins, and lower cholesterol levels by over 46%. Regarding safety assessment, L. paracasei and B. breve showed susceptibility to some antibiotics but resistance to vancomycin and were examined as γ-hemolytic strains. Anti-inflammatory properties of B. breve with Caco-2 epithelial cell lines showed the significantly highest value (p < 0.05) for interleukin-10. Furthermore, probiotics and prebiotics (inulin, fructooligosaccharides, and galactooligosaccharides) comprise synbiotics, which have potential effects on the increased abundance of beneficial microbiota, but do not affect the growth of harmful bacteria in feces samples. Moreover, the highest concentration of short chain fatty acid was of acetic acid, followed by propionic and butyric acid.
Collapse
Affiliation(s)
- Ekkachai Kaewarsar
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (E.K.); (C.C.); (N.M.)
| | - Chaiyavat Chaiyasut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (E.K.); (C.C.); (N.M.)
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Narissara Lailerd
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Netnapa Makhamrueang
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (E.K.); (C.C.); (N.M.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Sasithorn Sirilun
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (E.K.); (C.C.); (N.M.)
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
4
|
Infant Fecal Fermentations with Galacto-Oligosaccharides and 2′-Fucosyllactose Show Differential Bifidobacterium longum Stimulation at Subspecies Level. CHILDREN 2023; 10:children10030430. [PMID: 36979988 PMCID: PMC10047592 DOI: 10.3390/children10030430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/26/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
The objective of the current study was to evaluate the potential of 2′-FL and GOS, individually and combined, in beneficially modulating the microbial composition of infant and toddler (12–18 months) feces using the micro-Matrix bioreactor. In addition, the impacts of GOS and 2′-FL, individually and combined, on the outgrowth of fecal bifidobacteria at (sub)species level was investigated using the baby M-SHIME® model. For young toddlers, significant increases in the genera Bifidobacterium, Veillonella, and Streptococcus, and decreases in Enterobacteriaceae, Clostridium XIVa, and Roseburia were observed in all supplemented fermentations. In addition, GOS, and combinations of GOS and 2′-FL, increased Collinsella and decreased Salmonella, whereas 2′-FL, and combined GOS and 2′-FL, decreased Dorea. Alpha diversity increased significantly in infants with GOS and/or 2′-FL, as well as the relative abundances of the genera Veillonella and Akkermansia with 2′-FL, and Lactobacillus with GOS. Combinations of GOS and 2′-FL significantly stimulated Veillonella, Lactobacillus, Bifidobacterium, and Streptococcus. In all supplemented fermentations, Proteobacteria decreased, with the most profound decreases accomplished by the combination of GOS and 2′-FL. When zooming in on the different (sub)species of Bifidobacterium, GOS and 2’-FL were shown to be complementary in stimulating breast-fed infant-associated subspecies of Bifidobacterium longum in a dose-dependent manner: GOS stimulated Bifidobacterium longum subsp. longum, whereas 2′-FL supported outgrowth of Bifidobacterium longum subsp. infantis.
Collapse
|
5
|
Parkar SG, Rosendale DI, Stoklosinski HM, Jobsis CMH, Hedderley DI, Gopal P. Complementary Food Ingredients Alter Infant Gut Microbiome Composition and Metabolism In Vitro. Microorganisms 2021; 9:microorganisms9102089. [PMID: 34683410 PMCID: PMC8540059 DOI: 10.3390/microorganisms9102089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/24/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022] Open
Abstract
We examined the prebiotic potential of 32 food ingredients on the developing infant microbiome using an in vitro gastroileal digestion and colonic fermentation model. There were significant changes in the concentrations of short-chain fatty-acid metabolites, confirming the potential of the tested ingredients to stimulate bacterial metabolism. The 16S rRNA gene sequencing for a subset of the ingredients revealed significant increases in the relative abundances of the lactate- and acetate-producing Bifidobacteriaceae, Enterococcaceae, and Lactobacillaceae, and lactate- and acetate-utilizing Prevotellaceae, Lachnospiraceae, and Veillonellaceae. Selective changes in specific bacterial groups were observed. Infant whole-milk powder and an oat flour enhanced Bifidobacteriaceae and lactic acid bacteria. A New Zealand-origin spinach powder enhanced Prevotellaceae and Lachnospiraceae, while fruit and vegetable powders increased a mixed consortium of beneficial gut microbiota. All food ingredients demonstrated a consistent decrease in Clostridium perfringens, with this organism being increased in the carbohydrate-free water control. While further studies are required, this study demonstrates that the selected food ingredients can modulate the infant gut microbiome composition and metabolism in vitro. This approach provides an opportunity to design nutrient-rich complementary foods that fulfil infants’ growth needs and support the maturation of the infant gut microbiome.
Collapse
|
6
|
Ambrogi V, Bottacini F, Cao L, Kuipers B, Schoterman M, van Sinderen D. Galacto-oligosaccharides as infant prebiotics: production, application, bioactive activities and future perspectives. Crit Rev Food Sci Nutr 2021; 63:753-766. [PMID: 34477457 DOI: 10.1080/10408398.2021.1953437] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Galacto-oligosaccharides (GOS) are non-digestible oligosaccharides characterized by a mix of structures that vary in their degree of polymerization (DP) and glycosidic linkage between the galactose moieties or between galactose and glucose. They have enjoyed extensive scientific scrutiny, and their health-promoting effects are supported by a large number of scientific and clinical studies. A variety of GOS-associated health-promoting effects have been reported, such as growth promotion of beneficial bacteria, in particular bifidobacteria and lactobacilli, inhibition of pathogen adhesion and improvement of gut barrier function. GOS have attracted significant interest from food industries for their versatility as a bioactive ingredient and in particular as a functional component of infant formulations. These oligosaccharides are produced in a kinetically-controlled reaction involving lactose transgalactosylation, being catalyzed by particular β-galactosidases of bacterial or fungal origin. Despite the well-established technology applied for GOS production, this process may still meet with technological challenges when employed at an industrial scale. The current review will cover relevant scientific literature on the beneficial physiological properties of GOS as a prebiotic for the infant gut microbiota, details of GOS structures, the associated reaction mechanism of β-galactosidase, and its (large-scale) production.
Collapse
Affiliation(s)
- Valentina Ambrogi
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Francesca Bottacini
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | - Linqiu Cao
- FrieslandCampina, Amersfoort, The Netherlands
| | - Bas Kuipers
- FrieslandCampina, Amersfoort, The Netherlands
| | | | - Douwe van Sinderen
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
7
|
Parkar SG, Frost JKT, Rosendale D, Stoklosinski HM, Jobsis CMH, Hedderley DI, Gopal P. The sugar composition of the fibre in selected plant foods modulates weaning infants' gut microbiome composition and fermentation metabolites in vitro. Sci Rep 2021; 11:9292. [PMID: 33927231 PMCID: PMC8085221 DOI: 10.1038/s41598-021-88445-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
Eight plant-based foods: oat flour and pureed apple, blackcurrant, carrot, gold- and green-fleshed kiwifruit, pumpkin, sweetcorn, were pre-digested and fermented with pooled inocula of weaning infants’ faecal bacteria in an in vitro hindgut model. Inulin and water were included as controls. The pre-digested foods were analysed for digestion-resistant fibre-derived sugar composition and standardised to the same total fibre concentration prior to fermentation. The food-microbiome interactions were then characterised by measuring microbial acid and gas metabolites, microbial glycosidase activity and determining microbiome structure. At the physiologically relevant time of 10 h of fermentation, the xyloglucan-rich apple and blackcurrant favoured a propiogenic metabolic and microbiome profile with no measurable gas production. Glucose-rich, xyloglucan-poor pumpkin caused the greatest increases in lactate and acetate (indicative of high fermentability) commensurate with increased bifidobacteria. Glucose-rich, xyloglucan-poor oats and sweetcorn, and arabinogalactan-rich carrot also increased lactate and acetate, and were more stimulatory of clostridial families, which are indicative of increased microbial diversity and gut and immune health. Inulin favoured a probiotic-driven consortium, while water supported a proteolytic microbiome. This study shows that the fibre-derived sugar composition of complementary foods may shape infant gut microbiome structure and metabolic activity, at least in vitro.
Collapse
Affiliation(s)
- Shanthi G Parkar
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand.
| | - Jovyn K T Frost
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Doug Rosendale
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Halina M Stoklosinski
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Carel M H Jobsis
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Duncan I Hedderley
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Pramod Gopal
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand. .,Riddet Institute, Massey University, Palmerston North, 4442, New Zealand.
| |
Collapse
|
8
|
Toe LC, Kerckhof FM, De Bodt J, Morel FB, Ouedraogo JB, Kolsteren P, Van de Wiele T. A prebiotic-enhanced lipid-based nutrient supplement (LNSp) increases Bifidobacterium relative abundance and enhances short-chain fatty acid production in simulated colonic microbiota from undernourished infants. FEMS Microbiol Ecol 2020; 96:5858895. [PMID: 32568403 DOI: 10.1093/femsec/fiaa105] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
Undernutrition remains a public health problem in the developing world with an attributable under-five death proportion of 45%. Lower gut microbiota diversity and poor metabolic output are associated with undernutrition and new therapeutic paths may come from steering gut microbiota composition and functionality. Using a dynamic gut model, the Simulator of Human Intestinal Microbial Ecosystem (SHIME®), we investigated the effect of a lipid-based nutrient supplement enriched with prebiotics (LNSp), compared to LNS alone and control treatment, on the composition and metabolic functionality of fecal microbiota from three infants suffering from undernutrition. LNS elicited a significant increase in acetate and branched-chain fatty acid production, and a higher relative abundance of the genera Prevotella, Megasphaera, Acinetobacter, Acidaminococcus and Pseudomonas. In contrast, LNSp treatment resulted in a significant 9-fold increase in Bifidobacterium relative abundance and a decrease in that of potential pathogens and detrimental bacteria such as Enterobacteriaceae spp. and Bilophila sp. Moreover, the LNSp treatment resulted in a significantly higher production of acetate, butyrate and propionate, as compared to control and LNS. Our results suggest that provision of prebiotic-enhanced LNS to undernourished children could be a possible strategy to steer the microbiota toward a more beneficial composition and metabolic activity. Further in vivo investigations are needed to assess these effects and their repercussion on nutritional status.
Collapse
Affiliation(s)
- Laeticia Celine Toe
- Department of Food Technology, Safety and Health, Ghent University, Coupure links 653, 9000 Ghent, Belgium.,Center for Microbial Ecology and Technology, Ghent University, Coupure links 653, 9000 Ghent, Belgium.,Institut de Recherche en Sciences de la Santé, Avenue de la Liberté 399, Bobo-Dioulasso, Burkina Faso
| | | | - Jana De Bodt
- Center for Microbial Ecology and Technology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Fanny B Morel
- Nutriset SAS, Hameau du Bois Ricard, CS 80035, 76770 Malaunay, France
| | - Jean-Bosco Ouedraogo
- Institut de Recherche en Sciences de la Santé, Avenue de la Liberté 399, Bobo-Dioulasso, Burkina Faso
| | - Patrick Kolsteren
- Department of Food Technology, Safety and Health, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| |
Collapse
|
9
|
Ayuso M, Michiels J, Wuyts S, Yan H, Degroote J, Lebeer S, Le Bourgot C, Apper E, Majdeddin M, Van Noten N, Vanden Hole C, Van Cruchten S, Van Poucke M, Peelman L, Van Ginneken C. Short-chain fructo-oligosaccharides supplementation to suckling piglets: Assessment of pre- and post-weaning performance and gut health. PLoS One 2020; 15:e0233910. [PMID: 32502215 PMCID: PMC7274435 DOI: 10.1371/journal.pone.0233910] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/14/2020] [Indexed: 01/04/2023] Open
Abstract
Farmers face difficulties in redeeming their investment in larger litter sizes since this comes with larger litter heterogenicity, lower litter resilience and risk of higher mortality. Dietary oligosaccharides, given to the sow, proved beneficial for the offspring’s performance. However, giving oligosaccharides to the suckling piglet is poorly explored. Therefore, this field trial studied the effect of dietary short-chain fructo-oligosaccharides (scFOS; 1g/day; drenched) supplementation to low (LBW, lower quartile), normal (NBW, two intermediate quartiles) and high (HBW, upper quartile) birth weight piglets from birth until 7 or 21 days of age. Performance parameters, gut microbiome and short-chain fatty acids profile of feces and digesta were assessed at birth (d 0), d 7, weaning (d 21.5) and 2 weeks post-weaning (d 36.5). Additional parameters reflecting gut health (intestinal integrity and morphology, mucosal immune system) were analysed at d 36.5. Most parameters changed with age or differed with the piglet’s birth weight. Drenching with scFOS increased body weight by 1 kg in NBW suckling piglets and reduced the post-weaning mortality rate by a 100%. No clear difference in the IgG level, the microbiota composition and fermentative activity between the treatment groups was observed. Additionnally, intestinal integrity, determined by measuring intestinal permeability and regenerative capacity, was similar between the treatment groups. Also, intestinal architecture (villus lenght, crypt depth) was not affected by scFOS supplementation. The density of intra-epithelial lymphocytes and the expression profiles (real-time qPCR) for immune system-related genes (IL-10, IL-1ß, IL-6, TNFα and IFNγ) were used to assess mucosal immunity. Only IFNγ expression, was upregulated in piglets that received scFOS for 7 days. The improved body weight and the reduced post-weaning mortality seen in piglets supplemented with scFOS support the view that scFOS positively impact piglet’s health and resilience. However, the modes of action for these effects are not yet fully elucidated and its potential to improve other performance parameters needs further investigation.
Collapse
Affiliation(s)
- Miriam Ayuso
- Department of Veterinary Medicine, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
- * E-mail:
| | - Joris Michiels
- Department of Animal Sciences and Aquatic Ecology, Laboratory for Animal Production and Animal Product Quality, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Sander Wuyts
- Department of Bioengineering, Faculty of Sciences, University of Antwerp, Wilrijk, Belgium
| | - Honglin Yan
- Department of Animal Sciences and Aquatic Ecology, Laboratory for Animal Production and Animal Product Quality, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jeroen Degroote
- Department of Animal Sciences and Aquatic Ecology, Laboratory for Animal Production and Animal Product Quality, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Sarah Lebeer
- Department of Bioengineering, Faculty of Sciences, University of Antwerp, Wilrijk, Belgium
| | | | | | - Maryam Majdeddin
- Department of Animal Sciences and Aquatic Ecology, Laboratory for Animal Production and Animal Product Quality, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Noémie Van Noten
- Department of Animal Sciences and Aquatic Ecology, Laboratory for Animal Production and Animal Product Quality, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Charlotte Vanden Hole
- Department of Veterinary Medicine, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Steven Van Cruchten
- Department of Veterinary Medicine, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Mario Van Poucke
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Luc Peelman
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Chris Van Ginneken
- Department of Veterinary Medicine, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
10
|
Coleman CM, Ferreira D. Oligosaccharides and Complex Carbohydrates: A New Paradigm for Cranberry Bioactivity. Molecules 2020; 25:E881. [PMID: 32079271 PMCID: PMC7070526 DOI: 10.3390/molecules25040881] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/04/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
Cranberry is a well-known functional food, but the compounds directly responsible for many of its reported health benefits remain unidentified. Complex carbohydrates, specifically xyloglucan and pectic oligosaccharides, are the newest recognized class of biologically active compounds identified in cranberry materials. Cranberry oligosaccharides have shown similar biological properties as other dietary oligosaccharides, including effects on bacterial adhesion, biofilm formation, and microbial growth. Immunomodulatory and anti-inflammatory activity has also been observed. Oligosaccharides may therefore be significant contributors to many of the health benefits associated with cranberry products. Soluble oligosaccharides are present at relatively high concentrations (~20% w/w or greater) in many cranberry materials, and yet their possible contributions to biological activity have remained unrecognized. This is partly due to the inherent difficulty of detecting these compounds without intentionally seeking them. Inconsistencies in product descriptions and terminology have led to additional confusion regarding cranberry product composition and the possible presence of oligosaccharides. This review will present our current understanding of cranberry oligosaccharides and will discuss their occurrence, structures, ADME, biological properties, and possible prebiotic effects for both gut and urinary tract microbiota. Our hope is that future investigators will consider these compounds as possible significant contributors to the observed biological effects of cranberry.
Collapse
Affiliation(s)
- Christina M. Coleman
- Department of BioMolecular Sciences, Division of Pharmacognosy, and the Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | | |
Collapse
|
11
|
Endo A, Hirano K, Ose R, Maeno S, Tochio T. Impact of kestose supplementation on the healthy adult microbiota in in vitro fecal batch cultures. Anaerobe 2020; 61:102076. [DOI: 10.1016/j.anaerobe.2019.102076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 01/06/2023]
|
12
|
Benninga MA, Vandenplas Y. The Magnesium-Rich Formula for Functional Constipation in Infants: a Randomized Comparator-Controlled Study. Pediatr Gastroenterol Hepatol Nutr 2019; 22:270-281. [PMID: 31110960 PMCID: PMC6506425 DOI: 10.5223/pghn.2019.22.3.270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/12/2018] [Accepted: 11/24/2018] [Indexed: 12/02/2022] Open
Abstract
PURPOSE To compare the effectiveness of the magnesium (Mg)-enriched formula vs. control formula in constipated infants. METHODS An open-label, interventional, and the comparator-controlled study was conducted to evaluate the effectiveness of the Mg-enriched formula in formula-fed infants ≤6 months old presenting with functional constipation according to modified Rome IV criteria. Infants were randomized 1:1 to intervention or control formula for 30 days. Parents recorded stool consistency (hard, normal, or watery) and frequency on days 1-7 and 23-29. Physicians recorded patient baseline characteristics and performed the clinical examination at the time of three patient visits (baseline, day 8, and 30). RESULTS Of the 286 recruited infants, 143 received the Mg-rich formula and 142 received the control formula. After 7 days, significantly more infants had stools with normal consistency with the Mg-rich formula compared to the infants fed with the control formula (81.8% vs. 41.1%; p<0.001). The number of infants passing one or more stools per day was increased at day 7 in the Mg-rich formula group (86.7% vs. 68.2%; p<0.001). At days 7 and 29, >25% of infants responded completely to the Mg-rich formula compared to <5% of infants fed with the control formula (p<0.001). Parents of infants in the Mg-rich formula group were very satisfied with the treatment (80.8% vs. 10.2%), with the majority willing to continue treatment after 30 days (97.9% vs. 52.6%; p<0.001). CONCLUSION The Mg-rich formula significantly improved stool consistency and frequency compared to the control formula in constipated infants.
Collapse
Affiliation(s)
- Marc A Benninga
- Department of Pediatric Gastroenterology, Emma Children's Hospital, Academic Medical Center, Amsterdam, Netherlands
| | | | - Yvan Vandenplas
- KidZ Health Castle, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
13
|
Oat bran, but not its isolated bioactive β-glucans or polyphenols, have a bifidogenic effect in an in vitro fermentation model of the gut microbiota. Br J Nutr 2019; 121:549-559. [PMID: 30688188 DOI: 10.1017/s0007114518003501] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Wholegrain oats are known to modulate the human gut microbiota and have prebiotic properties (increase the growth of some health-promoting bacterial genera within the colon). Research to date mainly attributes these effects to the fibre content; however, oat is also a rich dietary source of polyphenols, which may contribute to the positive modulation of gut microbiota. In vitro anaerobic batch-culture experiments were performed over 24 h to evaluate the impact of two different doses (1 and 3 % (w/v)) of oat bran, matched concentrations of β-glucan extract or polyphenol mix, on the human faecal microbiota composition using 16S RNA gene sequencing and SCFA analysis. Supplementation with oats increased the abundance of Proteobacteria (P <0·01) at 10 h, Bacteroidetes (P <0·05) at 24 h and concentrations of acetic and propionic acid increased at 10 and 24 h compared with the NC. Fermentation of the 1 % (w/v) oat bran resulted in significant increase in SCFA production at 24 h (86 (sd 27) v. 28 (sd 5) mm; P <0·05) and a bifidogenic effect, increasing the relative abundance of Bifidobacterium unassigned at 10 h and Bifidobacterium adolescentis (P <0·05) at 10 and 24 h compared with NC. Considering the β-glucan treatment induced an increase in the phylum Bacteroidetes at 24 h, it explains the Bacteriodetes effects of oats as a food matrix. The polyphenol mix induced an increase in Enterobacteriaceae family at 24 h. In conclusion, in this study, we found that oats increased bifidobacteria, acetic acid and propionic acid, and this is mediated by the synergy of all oat compounds within the complex food matrix, rather than its main bioactive β-glucan or polyphenols. Thus, oats as a whole food led to the greatest impact on the microbiota.
Collapse
|
14
|
Rodriguez J, Jordan S, Mutic A, Thul T. The Neonatal Microbiome: Implications for Neonatal Intensive Care Unit Nurses. MCN Am J Matern Child Nurs 2017; 42:332-337. [PMID: 29049058 PMCID: PMC5679116 DOI: 10.1097/nmc.0000000000000375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nursing care of the neonate in the neonatal intensive care unit (NICU) is complex, due in large part to various physiological challenges. A newer and less well-known physiological consideration is the neonatal microbiome, the community of microorganisms, both helpful and harmful, that inhabit the human body. The neonatal microbiome is influenced by the maternal microbiome, mode of infant birth, and various aspects of NICU care such as feeding choice and use of antibiotics. The composition and diversity of the microbiome is thought to influence key health outcomes including development of necrotizing enterocolitis, late-onset sepsis, altered physical growth, and poor neurodevelopment. Nurses in the NICU play a key role in managing care that can positively influence the microbiome to promote more optimal health outcomes in this vulnerable population of newborns.
Collapse
Affiliation(s)
- Jeannie Rodriguez
- Jeannie Rodriguez is an Assistant Professor, Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA. She can be reached via e-mail at Sheila Jordan is a Pre-Doctoral Fellow, Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA. Abby Mutic is a Certified Nurse Midwife, Doctoral Candidate, Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA. Taylor Thul is a Doctoral Student, Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA
| | | | | | | |
Collapse
|
15
|
Metzler-Zebeli B, Trevisi P, Prates J, Tanghe S, Bosi P, Canibe N, Montagne L, Freire J, Zebeli Q. Assessing the effect of dietary inulin supplementation on gastrointestinal fermentation, digestibility and growth in pigs: A meta-analysis. Anim Feed Sci Technol 2017. [DOI: 10.1016/j.anifeedsci.2017.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
C. K. Rajendran SR, Okolie CL, Udenigwe CC, Mason B. Structural features underlying prebiotic activity of conventional and potential prebiotic oligosaccharides in food and health. J Food Biochem 2017. [DOI: 10.1111/jfbc.12389] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Subin R. C. K. Rajendran
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture; Dalhousie University; Nova Scotia B2N5E3, Canada
- Verschuren Centre for Sustainability in Energy and the Environment; Cape Breton University; Nova Scotia B1P6L2, Canada
| | - Chigozie Louis Okolie
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture; Dalhousie University; Nova Scotia B2N5E3, Canada
- Verschuren Centre for Sustainability in Energy and the Environment; Cape Breton University; Nova Scotia B1P6L2, Canada
| | - Chibuike C. Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences; University of Ottawa; Ontario K1N6N5, Canada
| | - Beth Mason
- Verschuren Centre for Sustainability in Energy and the Environment; Cape Breton University; Nova Scotia B1P6L2, Canada
| |
Collapse
|
17
|
Ackerman DL, Craft KM, Townsend SD. Infant food applications of complex carbohydrates: Structure, synthesis, and function. Carbohydr Res 2017; 437:16-27. [PMID: 27883906 PMCID: PMC6172010 DOI: 10.1016/j.carres.2016.11.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/31/2016] [Accepted: 11/09/2016] [Indexed: 01/05/2023]
Abstract
Professional health bodies such as the World Health Organization (WHO), the American Academy of Pediatrics (AAP), and the U.S. Department of Health and Human Services (HHS) recommend breast milk as the sole source of food during the first year of life. This position recognizes human milk as being uniquely suited for infant nutrition. Nonetheless, most neonates in the West are fed alternatives by 6 months of age. Although inferior to human milk in most aspects, infant formulas are able to promote effective growth and development. However, while breast-fed infants feature a microbiota dominated by bifidobacteria, the bacterial flora of formula-fed infants is usually heterogeneous with comparatively lower levels of bifidobacteria. Thus, the objective of any infant food manufacturer is to prepare a product that results in a formula-fed infant developing a breast-fed infant-like microbiota. The goal of this focused review is to discuss the structure, synthesis, and function of carbohydrate additives that play a role in governing the composition of the infant microbiome and have other health benefits.
Collapse
Affiliation(s)
- Dorothy L Ackerman
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, United States
| | - Kelly M Craft
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, United States
| | - Steven D Townsend
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, United States; Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, United States.
| |
Collapse
|
18
|
Camilleri M. High-Fat Diet, Dysbiosis, and Gastrointestinal and Colonic Transit: Is There a Missing Link? Cell Mol Gastroenterol Hepatol 2016; 2:257-258. [PMID: 28174717 PMCID: PMC5042364 DOI: 10.1016/j.jcmgh.2016.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Michael Camilleri
- Correspondence Address correspondence to: Michael Camilleri, MD, Mayo Clinic, 200 First Street SW, Charlton 8-110, Rochester, Minnesota 55905.Mayo Clinic200 First Street SWCharlton 8-110RochesterMinnesota 55905
| |
Collapse
|
19
|
Abstract
The microbiota has recently been recognized as a driver of health that affects the immune, nervous, and metabolic systems. This influence is partially exerted through the metabolites produced, which may be relevant for optimal infant development and health. The gut microbiota begins developing early in life, and this initial colonization is remarkably important because it may influence long-term microbiota composition and activity. Considering that the microbiome may play a key role in health and disease, maintaining a protective microbiota could be critical in preventing dysbiosis-related diseases such as allergies, autoimmunity disorders, and metabolic syndrome. Breast milk and milk glycans in particular are thought to play a major role in shaping the early-life microbiota and promoting its development, thus affecting health. This review describes some of the effects the microbiota has on the host and discusses the role microbial metabolites play in shaping newborn health and development. We describe the gut microbiota structure and function during early life and the factors that determine its composition and hypothesize about the effects of human milk oligosaccharides and other prebiotic fibers on the neonatal microbiota.
Collapse
Affiliation(s)
| | - Maria J Martin
- Discovery R&D Department, Abbott Nutrition, Granada, Spain
| | | |
Collapse
|
20
|
Savignac HM, Couch Y, Stratford M, Bannerman DM, Tzortzis G, Anthony DC, Burnet PW. Prebiotic administration normalizes lipopolysaccharide (LPS)-induced anxiety and cortical 5-HT2A receptor and IL1-β levels in male mice. Brain Behav Immun 2016; 52:120-131. [PMID: 26476141 PMCID: PMC4927692 DOI: 10.1016/j.bbi.2015.10.007] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 12/26/2022] Open
Abstract
The manipulation of the enteric microbiota with specific prebiotics and probiotics, has been shown to reduce the host's inflammatory response, alter brain chemistry, and modulate anxiety behaviour in both rodents and humans. However, the neuro-immune and behavioural effects of prebiotics on sickness behaviour have not been explored. Here, adult male CD1 mice were fed with a specific mix of non-digestible galacto-oligosaccharides (Bimuno®, BGOS) for 3 weeks, before receiving a single injection of lipopolysaccharide (LPS), which induces sickness behaviour and anxiety. Locomotor and marble burying activities were assessed 4h after LPS injection, and after 24h, anxiety in the light-dark box was assessed. Cytokine expression, and key components of the serotonergic (5-Hydroxytryptamine, 5-HT) and glutamatergic system were evaluated in the frontal cortex to determine the impact of BGOS administration at a molecular level. BGOS-fed mice were less anxious in the light-dark box compared to controls 24h after the LPS injection. Elevated cortical IL-1β concentrations in control mice 28 h after LPS were not observed in BGOS-fed animals. This significant BGOS×LPS interaction was also observed for 5HT2A receptors, but not for 5HT1A receptors, 5HT, 5HIAA, NMDA receptor subunits, or other cytokines. The intake of BGOS did not influence LPS-mediated reductions in marble burying behaviour, and its effect on locomotor activity was equivocal. Together, our data show that the prebiotic BGOS has an anxiolytic effect, which may be related to the modulation of cortical IL-1β and 5-HT2A receptor expression. Our data suggest a potential role for prebiotics in the treatment of neuropsychiatric disorders where anxiety and neuroinflammation are prominent clinical features.
Collapse
Affiliation(s)
| | - Yvonne Couch
- Department of Pharmacology, University of Oxford, Oxford OX1, UK
| | - Michael Stratford
- CR-UK/MRC Oxford Institute for Radiation Oncology, University of Oxford, OX3 7DQ, UK
| | - David M. Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford OX1, UK
| | | | | | - Philip W.J. Burnet
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK,Corresponding author at: Neurosciences Building, Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK.Neurosciences BuildingDepartment of PsychiatryUniversity of OxfordWarneford HospitalOxfordOX3 7JXUK
| |
Collapse
|
21
|
Christian LM, Galley JD, Hade EM, Schoppe-Sullivan S, Kamp Dush C, Bailey MT. Gut microbiome composition is associated with temperament during early childhood. Brain Behav Immun 2015; 45:118-27. [PMID: 25449582 PMCID: PMC4342262 DOI: 10.1016/j.bbi.2014.10.018] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/30/2014] [Accepted: 10/31/2014] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Understanding the dynamics of the gut-brain axis has clinical implications for physical and mental health conditions, including obesity and anxiety. As such disorders have early life antecedents, it is of value to determine if associations between the gut microbiome and behavior are present in early life in humans. METHODS We used next generation pyrosequencing to examine associations between the community structure of the gut microbiome and maternal ratings of child temperament in 77 children at 18-27months of age. It was hypothesized that children would differ in their gut microbial structure, as indicated by measures of alpha and beta diversity, based on their temperamental characteristics. RESULTS Among both boys and girls, greater Surgency/Extraversion was associated greater phylogenetic diversity. In addition, among boys only, subscales loading on this composite scale were associated with differences in phylogenetic diversity, the Shannon Diversity index (SDI), beta diversity, and differences in abundances of Dialister, Rikenellaceae, Ruminococcaceae, and Parabacteroides. In girls only, higher Effortful Control was associated with a lower SDI score and differences in both beta diversity and Rikenellaceae were observed in relation to Fear. Some differences in dietary patterns were observed in relation to temperament, but these did not account for the observed differences in the microbiome. CONCLUSIONS Differences in gut microbiome composition, including alpha diversity, beta diversity, and abundances of specific bacterial species, were observed in association with temperament in toddlers. This study was cross-sectional and observational and, therefore, does not permit determination of the causal direction of effects. However, if bidirectional brain-gut relationships are present in humans in early life, this may represent an opportunity for intervention relevant to physical as well as mental health disorders.
Collapse
Affiliation(s)
- Lisa M Christian
- Department of Psychiatry, The Ohio State University Wexner Medical Center, United States; The Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, United States; Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, United States; Department of Psychology, The Ohio State University, United States.
| | - Jeffrey D Galley
- The Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, United States; Division of Biosciences, The Ohio State University, United States
| | - Erinn M Hade
- Center for Biostatistics, College of Medicine, The Ohio State University, United States
| | | | - Claire Kamp Dush
- Department of Human Sciences, The Ohio State University, United States
| | - Michael T Bailey
- The Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, United States; Division of Biosciences, The Ohio State University, United States
| |
Collapse
|
22
|
Bondue P, Delcenserie V. Genome of Bifidobacteria and Carbohydrate Metabolism. Korean J Food Sci Anim Resour 2015; 35:1-9. [PMID: 26761794 PMCID: PMC4682508 DOI: 10.5851/kosfa.2015.35.1.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 02/08/2015] [Indexed: 11/25/2022] Open
Abstract
In recent years, the knowledge about bifidobacteria has considerably evolved thanks to recent progress in molecular biology. The analysis of the whole genome sequences of 48 taxa of bifidobacteria offers new perspectives for their classification, especially to set up limit between two species. Indeed, several species are presenting a high homology and should be reclassified. On the other hand, some subspecies are presenting a low homology and should therefore be reclassified into different species. In addition, a better knowledge of the genome of bifidobacteria allows a better understanding of the mechanisms involved in complex carbohydrate metabolism. The genome of some species of bifidobacteria from human but also from animal origin demonstrates high presence in genes involved in the metabolism of complex oligosaccharides. Those species should be further tested to confirm their potential to metabolize complex oligosaccharides in vitro and in vivo.
Collapse
Affiliation(s)
- Pauline Bondue
- Fundamental and Applied Research for Animal & Health (FARAH), Food Science Department, Faculty of Veterinary Medicine, University of Liège, Sart-Tilman, B43b Liege, B-4000 Belgium
| | - Véronique Delcenserie
- Fundamental and Applied Research for Animal & Health (FARAH), Food Science Department, Faculty of Veterinary Medicine, University of Liège, Sart-Tilman, B43b Liege, B-4000 Belgium
| |
Collapse
|