1
|
Grieves LA, Gloor GB. Uropygial gland microbiota of nearctic-neotropical migrants vary with season and migration distance. Anim Microbiome 2025; 7:11. [PMID: 39885562 PMCID: PMC11780944 DOI: 10.1186/s42523-024-00367-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/17/2024] [Indexed: 02/01/2025] Open
Abstract
Symbiotic microbiota are important drivers of host behaviour, health, and fitness. While most studies focus on humans, model organisms, and domestic or economically important species, research investigating the role of host microbiota in wild populations is rapidly accumulating. Most studies focus on the gut microbiota; however, skin and other glandular microbiota also play an important role in shaping traits that may impact host fitness. The uropygial gland is an important source of chemical cues and harbours diverse microbes that could mediate chemical communication in birds, so determining the factors most important in shaping host microbiota should improve our understanding of microbially-mediated chemical communication. Hypothesizing that temporal, geographic, and taxonomic effects influence host microbiota, we evaluated the effects of season, migration distance, and taxonomy on the uropygial gland microbiota of 18 passerine species from 11 families. By sampling 473 birds at a single stopover location during spring and fall migration and using 16S rRNA sequencing, we demonstrate that season, followed by migration distance, had the strongest influence on uropygial gland microbial community composition. While statistically significant, taxonomic family and species had only weak effects on gland microbiota. Given that temporal effects on gland microbiota were nearly ubiquitous among the species we tested, determining the consequences of and mechanisms driving this seasonal variation are important next steps.
Collapse
Affiliation(s)
- Leanne A Grieves
- Department of Biology, McMaster University, 1280 Main St. W, Hamilton, ON, L8S 3L8, Canada.
- Lab of Ornithology, Cornell University, 159 Sapsucker Woods Rd, Ithaca, NY, 14850, USA.
| | - Gregory B Gloor
- Department of Biochemistry, The University of Western Ontario, 1151 Richmond St., London, ON, N6A 5C1, Canada
| |
Collapse
|
2
|
Soler JJ, Barón MD, Martínez-Renau E, Zhang L, Liang W, Martín-Vivaldi M. Nesting hoopoes cultivate in their uropygial gland the microbial symbionts with the highest antimicrobial capacity. Sci Rep 2024; 14:30797. [PMID: 39730533 DOI: 10.1038/s41598-024-81062-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/25/2024] [Indexed: 12/29/2024] Open
Abstract
The European hoopoe (Upupa epops) conforms a paradigmatic example of animals cultivating bacteria in their uropygial gland that protect them against pathogenic infections. We here explore the hypothesis that enterococci are the responsible bacteria of such beneficial effect. We did so by comparing the antimicrobial activity against three indicator bacteria of colonies isolated from cultures of enterococci and mesophilic bacteria from the uropygial skin or secretion of nestlings, brooding or non-brooding females, and males of the subspecies longirostris in Hainan (China). In accordance with the hypothesis, enterococci isolated from nesting birds are more active than those from non-nesting birds. Moreover, enterococci from the uropygial secretion were more active than those isolated from the skin or than mesophilic bacteria isolates. These results therefore support the hypothesis that, during the nesting phase, hoopoe females and nestlings cultivate enterococci in their uropygial gland with relatively high antimicrobial activity.
Collapse
Affiliation(s)
- Juan José Soler
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (EEZA-CSIC), 04120, Almería, Spain.
- Unidad Asociada (CSIC): Coevolución: Cucos, Hospedadores y Bacterias Simbiontes, Universidad de Granada, 18003, Granada, Spain.
| | - María Dolores Barón
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (EEZA-CSIC), 04120, Almería, Spain
| | - Ester Martínez-Renau
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (EEZA-CSIC), 04120, Almería, Spain
| | - Lu Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
| | - Wei Liang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
| | - Manuel Martín-Vivaldi
- Unidad Asociada (CSIC): Coevolución: Cucos, Hospedadores y Bacterias Simbiontes, Universidad de Granada, 18003, Granada, Spain
- Departamento de Zoología, Facultad de Ciencias, Universidad de Granada, 18003, Granada, Spain
| |
Collapse
|
3
|
Whittaker DJ, Atyam A, Burroughs NA, Greenberg JM, Hagey TJ, Novotny MV, Soini HA, Theis KR, Van Laar TA, Slade JWG. Effects of short-term experimental manipulation of captive social environment on uropygial gland microbiome and preen oil volatile composition. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.1027399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
IntroductionAvian preen oil, secreted by the uropygial gland, is an important source of volatile compounds that convey information about the sender’s identity and quality, making preen oil useful for the recognition and assessment of potential mates and rivals. Although intrinsic factors such as hormone levels, genetic background, and diet can affect preen oil volatile compound composition, many of these compounds are not the products of the animal’s own metabolic processes, but rather those of odor-producing symbiotic microbes. Social behavior affects the composition of uropygial microbial communities, as physical contact results in microbe sharing. We experimentally manipulated social interactions in captive dark-eyed juncos (Junco hyemalis) to assess the relative influence of social interactions, subspecies, and sex on uropygial gland microbial composition and the resulting preen oil odor profiles.MethodsWe captured 24 birds at Mountain Lake Biological Station in Virginia, USA, including birds from two seasonally sympatric subspecies – one resident, one migratory. We housed them in an outdoor aviary in three phases of social configurations: first in same-sex, same-subspecies flocks, then in male-female pairs, and finally in the original flocks. Using samples taken every four days of the experiment, we characterized their uropygial gland microbiome through 16S rRNA gene sequencing and their preen oil volatile compounds via GC-MS.ResultsWe predicted that if social environment was the primary driver of uropygial gland microbiome composition, and if microbiome composition in turn affected preen oil volatile profiles, then birds housed together would become more similar over time. Our results did not support this hypothesis, instead showing that sex and subspecies were stronger predictors of microbiome composition. We observed changes in volatile compounds after the birds had been housed in pairs, which disappeared after they were moved back into flocks, suggesting that hormonal changes related to breeding condition were the most important factor in these patterns.DiscussionAlthough early life social environment of nestlings and long-term social relationships have been shown to be important in shaping uropygial gland microbial communities, our study suggests that shorter-term changes in social environment do not have a strong effect on uropygial microbiomes and the resulting preen oil volatile compounds.
Collapse
|
4
|
Díaz-Lora S, Pérez-Contreras T, Azcárate-García M, Peralta-Sánchez JM, Martínez-Bueno M, José Soler J, Martín-Vivaldi M. Cosmetic coloration of cross-fostered eggs affects paternal investment in the hoopoe ( Upupa epops). Proc Biol Sci 2021; 288:20203174. [PMID: 33947236 PMCID: PMC8097196 DOI: 10.1098/rspb.2020.3174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/06/2021] [Indexed: 11/12/2022] Open
Abstract
The signalling hypothesis suggests that avian eggshell coloration is a sexually selected female signal advertising her quality to its male partner, thereby stimulating his provisioning rate. This hypothesis has been tested for structural eggshell pigments, but not for cosmetic colorations, such as that produced by the uropygial secretion on eggshells. During the breeding season, female hoopoes (Upupa epops) host in their uropygial glands symbiotic bacteria. Females actively smear the eggshells with their secretion, protecting embryos from pathogenic trans-shell infections and changing eggshell coloration. Because the colour of the secretions is related to their antimicrobial potential, cosmetic eggshell coloration may act as a cue or even as a post-mating sexually selected signal if it affects male provisioning rates. To experimentally test this hypothesis, we cross-fostered already-smeared clutches between hoopoe nests, and quantified male feeding behaviour to females before and after the experiment. This approach allows disentanglement of the effects of female quality and of egg coloration on male investment. In accordance with the hypothesis, males adjusted their provisioning rate to the eggshell cosmetic coloration. This is, to our knowledge, the first experimental demonstration that egg colour stained with uropygial secretion could act as a post-mating sexual signal of female quality to males.
Collapse
Affiliation(s)
- Silvia Díaz-Lora
- Departamento de Zoología, Facultad de Ciencias, Universidad de Granada (UGR), Granada, Spain
| | - Tomás Pérez-Contreras
- Departamento de Zoología, Facultad de Ciencias, Universidad de Granada (UGR), Granada, Spain
- Unidad asociada: Coevolución: cucos, hospedadores y bacterias simbiontes, Universidad de Granada (UGR), Granada, Spain
| | - Manuel Azcárate-García
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (EEZA-CSIC), Almería, Spain
| | | | - Manuel Martínez-Bueno
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada (UGR), Granada, Spain
- Unidad asociada: Coevolución: cucos, hospedadores y bacterias simbiontes, Universidad de Granada (UGR), Granada, Spain
| | - Juan José Soler
- Unidad asociada: Coevolución: cucos, hospedadores y bacterias simbiontes, Universidad de Granada (UGR), Granada, Spain
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (EEZA-CSIC), Almería, Spain
| | - Manuel Martín-Vivaldi
- Departamento de Zoología, Facultad de Ciencias, Universidad de Granada (UGR), Granada, Spain
- Unidad asociada: Coevolución: cucos, hospedadores y bacterias simbiontes, Universidad de Granada (UGR), Granada, Spain
| |
Collapse
|
5
|
Mazorra-Alonso M, Tomás G, Soler JJ. Microbially Mediated Chemical Ecology of Animals: A Review of Its Role in Conspecific Communication, Parasitism and Predation. BIOLOGY 2021; 10:274. [PMID: 33801728 PMCID: PMC8065758 DOI: 10.3390/biology10040274] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023]
Abstract
Microbial symbionts are nowadays considered of pivotal importance for animal life. Among the many processes where microorganisms are involved, an emerging research avenue focuses on their major role in driving the evolution of chemical communication in their hosts. Volatiles of bacterial origin may underlie chemical communication and the transfer of social information through signals, as well as inadvertent social information. We reviewed the role of microorganisms in animal communication between conspecifics, and, because the microbiome may cause beneficial as well as deleterious effects on their animal hosts, we also reviewed its role in determining the outcome of the interactions with parasites and predators. Finally, we paid special attention to the hypothetical role of predation and parasitism in driving the evolution of the animal microbiome. We highlighted the novelty of the theoretical framework derived from considering the microbiota of animals in scenarios of communication, parasitism, and predation. We aimed to encourage research in these areas, suggesting key predictions that need to be tested to better understand what is one of the main roles of bacteria in animal biology.
Collapse
Affiliation(s)
- Mónica Mazorra-Alonso
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas, 04120 Almería, Spain
| | - Gustavo Tomás
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas, 04120 Almería, Spain
- Unidad Asociada (Consejo Superior de Investigaciones Científicas): Coevolución: Cucos, Hospedadores y Bacterias Simbiontes, Universidad de Granada, 18071 Granada, Spain
| | - Juan José Soler
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas, 04120 Almería, Spain
- Unidad Asociada (Consejo Superior de Investigaciones Científicas): Coevolución: Cucos, Hospedadores y Bacterias Simbiontes, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
6
|
Tomás G, Zamora-Muñoz C, Martín-Vivaldi M, Barón MD, Ruiz-Castellano C, Soler JJ. Effects of Chemical and Auditory Cues of Hoopoes (Upupa epops) in Repellence and Attraction of Blood-Feeding Flies. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.579667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
7
|
Ramalho MDO, Martins C, Morini MSC, Bueno OC. What Can the Bacterial Community of Atta sexdens (Linnaeus, 1758) Tell Us about the Habitats in Which This Ant Species Evolves? INSECTS 2020; 11:E332. [PMID: 32481532 PMCID: PMC7349130 DOI: 10.3390/insects11060332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/22/2022]
Abstract
Studies of bacterial communities can reveal the evolutionary significance of symbiotic interactions between hosts and their associated bacteria, as well as identify environmental factors that may influence host biology. Atta sexdens is an ant species native to Brazil that can act as an agricultural pest due to its intense behavior of cutting plants. Despite being extensively studied, certain aspects of the general biology of this species remain unclear, such as the evolutionary implications of the symbiotic relationships it forms with bacteria. Using high-throughput amplicon sequencing of 16S rRNA genes, we compared for the first time the bacterial community of A. sexdens (whole ant workers) populations according to the habitat (natural versus agricultural) and geographical location. Our results revealed that the bacterial community associated with A. sexdens is mainly influenced by the geographical location, and secondarily by the differences in habitat. Also, the bacterial community associated with citrus differed significantly from the other communities due to the presence of Tsukamurella. In conclusion, our study suggests that environmental shifts may influence the bacterial diversity found in A. sexdens.
Collapse
Affiliation(s)
- Manuela de Oliveira Ramalho
- Centro de Estudos de Insetos Sociais—CEIS, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro 13506-900, SP, Brazil;
- Department of Entomology, Cornell University, 129 Garden Ave, Ithaca, NY 14850, USA
| | - Cintia Martins
- Campus Ministro Reis Velloso, Universidade Federal do Piauí, Av. São Sebastião, 2819, Parnaíba, Piauí 64202-020, Brazil;
| | - Maria Santina Castro Morini
- Núcleo de Ciências Ambientais, Universidade de Mogi das Cruzes, Av. Dr. Cândido Xavier de Almeida e Souza, 200, Centro Cívico, Mogi das Cruzes 08780-911, SP, Brazil;
| | - Odair Correa Bueno
- Centro de Estudos de Insetos Sociais—CEIS, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro 13506-900, SP, Brazil;
| |
Collapse
|
8
|
Whittaker DJ, Slowinski SP, Greenberg JM, Alian O, Winters AD, Ahmad MM, Burrell MJE, Soini HA, Novotny MV, Ketterson ED, Theis KR. Experimental evidence that symbiotic bacteria produce chemical cues in a songbird. ACTA ACUST UNITED AC 2019; 222:jeb.202978. [PMID: 31537652 DOI: 10.1242/jeb.202978] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 09/16/2019] [Indexed: 12/18/2022]
Abstract
Symbiotic microbes that inhabit animal scent glands can produce volatile compounds used as chemical signals by the host animal. Though several studies have demonstrated correlations between scent gland bacterial community structure and host animal odour profiles, none have systematically demonstrated a causal relationship. In birds, volatile compounds in preen oil secreted by the uropygial gland serve as chemical cues and signals. Here, we tested whether manipulating the uropygial gland microbial community affects chemical profiles in the dark-eyed junco (Junco hyemalis). We found an effect of antibiotic treatment targeting the uropygial gland on both bacterial and volatile profiles. In a second experiment, we cultured bacteria from junco preen oil, and found that all of the cultivars produced at least one volatile compound common in junco preen oil, and that most cultivars produced multiple preen oil volatiles. In both experiments, we identified experimentally generated patterns in specific volatile compounds previously shown to predict junco reproductive success. Together, our data provide experimental support for the hypothesis that symbiotic bacteria produce behaviourally relevant volatile compounds within avian chemical cues and signals.
Collapse
Affiliation(s)
- Danielle J Whittaker
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA
| | - Samuel P Slowinski
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Jonathan M Greenberg
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Osama Alian
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA.,Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI 48824-4320, USA
| | - Andrew D Winters
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Madison M Ahmad
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Mikayla J E Burrell
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA.,Institute for Pheromone Research, Indiana University, Bloomington, IN 47405-7102, USA
| | - Helena A Soini
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA.,Institute for Pheromone Research, Indiana University, Bloomington, IN 47405-7102, USA
| | - Milos V Novotny
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA.,Institute for Pheromone Research, Indiana University, Bloomington, IN 47405-7102, USA
| | - Ellen D Ketterson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Kevin R Theis
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA.,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
9
|
Smith AH, Rehberger TG. Bacteria and fungi in day-old turkeys vary among companies, collection periods, and breeder flocks. Poult Sci 2018; 97:1400-1411. [PMID: 29390100 DOI: 10.3382/ps/pex429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/06/2017] [Indexed: 12/21/2022] Open
Abstract
Microbial colonization of the intestinal tract of commercial poultry is highly variable, likely due to the fact that poults and chicks are hatched and raised without exposure to adult birds and their microbiota. In industrial poultry production, it is hypothesized that most of the microbiota is obtained through horizontal transmission from the environment and very little by maternal transmission. The initial gut microbiota will therefore differ between flocks and companies based on environmental conditions at the hatchery. Day-old poults were collected from the hatchery of 2 companies at 3 different time points to monitor the initial colonizing microbiota by sequencing amplicons of marker genes for bacteria, lactic acid bacteria (LAB), fungi, and archaea. Bacterial colonizers were distinct by company (pseudo-F 38.7, P ≤ 0.05) with the predominant bacteria at Company A being clostridia, specifically Clostridium celatum group, C. paraputrificum, and C. tertium. Predominant bacteria at Company B were Enterobacteriaceae, belonging to 2 different groups, one that included Escherichia; Shigella and Salmonella and the other Klebsiella; Enterobacter; and others. The predominant LAB at both companies were Enterococcus faecalis and E. gallinarum, confirmed by sequencing the 16S ribosomal RNA (rRNA) gene of colonies picked from lactobacilli agar plate counts. The predominant fungi were Aspergillus niger and Saccharomyces cerevisiae, with Candida sake or Alterneria sp. in some samples of Company A. Archaeal sequences were detected only in a single poult from Company B. The initial gastrointestinal colonizers of poults vary across company and time, signifying a strong environmental effect on microbiota acquisition. There was an indication of maternal effects in certain breeder flocks from Company B. Further work is necessary to determine how this variability affects microbiota succession and impacts growth and production of the birds.
Collapse
Affiliation(s)
| | - T G Rehberger
- Arm and Hammer Animal Nutrition, W227 N752 Westmound Dr., Waukesha, WI 53186
| |
Collapse
|
10
|
Maraci Ö, Engel K, Caspers BA. Olfactory Communication via Microbiota: What Is Known in Birds? Genes (Basel) 2018; 9:E387. [PMID: 30065222 PMCID: PMC6116157 DOI: 10.3390/genes9080387] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/27/2018] [Accepted: 07/27/2018] [Indexed: 12/11/2022] Open
Abstract
Animal bodies harbour a complex and diverse community of microorganisms and accumulating evidence has revealed that microbes can influence the hosts' behaviour, for example by altering body odours. Microbial communities produce odorant molecules as metabolic by-products and thereby modulate the biochemical signalling profiles of their animal hosts. As the diversity and the relative abundance of microbial species are influenced by several factors including host-specific factors, environmental factors and social interactions, there are substantial individual variations in the composition of microbial communities. In turn, the variations in microbial communities would consequently affect social and communicative behaviour by influencing recognition cues of the hosts. Therefore, microbiota studies have a great potential to expand our understanding of recognition of conspecifics, group members and kin. In this review, we aim to summarize existing knowledge of the factors influencing the microbial communities and the effect of microbiota on olfactory cue production and social and communicative behaviour. We concentrate on avian taxa, yet we also include recent research performed on non-avian species when necessary.
Collapse
Affiliation(s)
- Öncü Maraci
- Research Group Chemical Signalling, Department of Animal Behaviour, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany.
| | - Kathrin Engel
- Research Group Chemical Signalling, Department of Animal Behaviour, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany.
| | - Barbara A Caspers
- Research Group Chemical Signalling, Department of Animal Behaviour, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany.
| |
Collapse
|
11
|
Martín-Vivaldi M, Soler JJ, Martínez-García Á, Arco L, Juárez-García-Pelayo N, Ruiz-Rodríguez M, Martínez-Bueno M. Acquisition of Uropygial Gland Microbiome by Hoopoe Nestlings. MICROBIAL ECOLOGY 2018; 76:285-297. [PMID: 29250734 DOI: 10.1007/s00248-017-1125-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 12/06/2017] [Indexed: 06/07/2023]
Abstract
Mutualistic symbioses between animals and bacteria depend on acquisition of appropriate symbionts while avoiding exploitation by non-beneficial microbes. The mode of acquisition of symbionts would determine, not only the probability of encountering but also evolutionary outcomes of mutualistic counterparts. The microbiome inhabiting the uropygial gland of the European hoopoe (Upupa epops) includes a variety of bacterial strains, some of them providing antimicrobial benefits. Here, the mode of acquisition and stability of this microbiome is analyzed by means of Automated rRNA Intergenic Spacer Analysis and two different experiments. The first experiment impeded mothers' access to their glands, thus avoiding direct transmission of microorganisms from female to offspring secretions. The second experiment explored the stability of the microbiomes by inoculating glands with secretions from alien nests. The first experiment provoked a reduction in similarity of microbiomes of mother and nestlings. Interestingly, some bacterial strains were more often detected when females had not access to their glands, suggesting antagonistic effects among bacteria from different sources. The second experiment caused an increase in richness of the microbiome of receivers in terms of prevalence of Operational Taxonomic Units (OTUs) that reduced differences in microbiomes of donors and receivers. That occurred because OTUs that were present in donors but not in receivers incorporated to the microbiome of the latter, which provoked that cross-inoculated nestlings got similar final microbiomes that included the most prevalent OTUs. The results are therefore consistent with a central role of vertical transmission in bacterial acquisition by nestling hoopoes and support the idea that the typical composition of the hoopoe gland microbiome is reached by the incorporation of some bacteria during the nestling period. This scenario suggests the existence of a coevolved core microbiome composed by a mix of specialized vertically transmitted strains and facultative symbionts able to coexist with them. The implications of this mixed mode of transmission for the evolution of the mutualism are discussed.
Collapse
Affiliation(s)
- Manuel Martín-Vivaldi
- Departamento de Zoología, Universidad de Granada, 18071, Granada, Spain.
- Estación Experimental de Zonas Áridas (CSIC), 04120, Almería, Spain.
| | - Juan José Soler
- Estación Experimental de Zonas Áridas (CSIC), 04120, Almería, Spain
| | | | - Laura Arco
- Departamento de Zoología, Universidad de Granada, 18071, Granada, Spain
| | | | | | | |
Collapse
|
12
|
Tieleman BI. Understanding immune function as a pace of life trait requires environmental context. Behav Ecol Sociobiol 2018; 72:55. [PMID: 29563662 PMCID: PMC5843675 DOI: 10.1007/s00265-018-2464-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/09/2017] [Accepted: 02/07/2018] [Indexed: 02/07/2023]
Abstract
This article provides a brief historical perspective on the integration of physiology into the concept of the pace of life of birds, evaluates the fit of immune function into this framework, and asks what it will take to fruitfully understand immune functioning of birds in pace of life studies in the future. In the late 1970s, physiology started to seriously enter avian life history ecology, with energy as the main currency of interest, inspired by David Lack's work in the preceding decades emphasizing how food availability explained life history variation. In an effort to understand the trade-off between survival and reproduction, and specifically the mortality costs associated with hard work, in the 1980s and 1990s, other physiological phenomena entered the realm of animal ecologists, including endocrinology, oxidative stress, and immunology. Reviewing studies thus far to evaluate the role of immune function in a life history context and particularly to address the questions whether immune function (1) consistently varies with life history variation among free-living bird species and (2) mediates life history trade-offs in experiments with free-living bird species; I conclude that, unlike energy metabolism, the immune system does not closely covary with life history among species nor mediates the classical trade-offs within individuals. Instead, I propose that understanding the tremendous immunological variation uncovered among free-living birds over the past 25 years requires a paradigm shift. The paradigm should shift from viewing immune function as a costly trait involved in life history trade-offs to explicitly including the benefits of the immune system and placing it firmly in an environmental and ecological context. A first step forward will be to quantify the immunobiotic pressures presented by diverse environmental circumstances that both shape and challenge the immune system of free-living animals. Current developments in the fields of infectious wildlife diseases and host-microbe interactions provide promising steps in this direction.
Collapse
Affiliation(s)
- B. Irene Tieleman
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700 CC Groningen, The Netherlands
| |
Collapse
|
13
|
Dal Grande F, Rolshausen G, Divakar PK, Crespo A, Otte J, Schleuning M, Schmitt I. Environment and host identity structure communities of green algal symbionts in lichens. THE NEW PHYTOLOGIST 2018; 217:277-289. [PMID: 28892165 DOI: 10.1111/nph.14770] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/03/2017] [Indexed: 06/07/2023]
Abstract
An understanding of how biotic interactions shape species' distributions is central to predicting host-symbiont responses under climate change. Switches to locally adapted algae have been proposed to be an adaptive strategy of lichen-forming fungi to cope with environmental change. However, it is unclear how lichen photobionts respond to environmental gradients, and whether they play a role in determining the fungal host's upper and lower elevational limits. Deep-coverage Illumina DNA metabarcoding was used to track changes in the community composition of Trebouxia algae associated with two phylogenetically closely related, but ecologically divergent fungal hosts along a steep altitudinal gradient in the Mediterranean region. We detected the presence of multiple Trebouxia species in the majority of thalli. Both altitude and host genetic identity were strong predictors of photobiont community assembly in these two species. The predominantly clonally dispersing fungus showed stronger altitudinal structuring of photobiont communities than the sexually reproducing host. Elevation ranges of the host were not limited by the lack of compatible photobionts. Our study sheds light on the processes guiding the formation and distribution of specific fungal-algal combinations in the lichen symbiosis. The effect of environmental filtering acting on both symbiotic partners appears to shape the distribution of lichens.
Collapse
Affiliation(s)
- Francesco Dal Grande
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, Frankfurt am Main, 60325, Germany
| | - Gregor Rolshausen
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, Frankfurt am Main, 60325, Germany
| | - Pradeep K Divakar
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Ana Crespo
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Jürgen Otte
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, Frankfurt am Main, 60325, Germany
| | - Matthias Schleuning
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, Frankfurt am Main, 60325, Germany
| | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, Frankfurt am Main, 60325, Germany
- Institut für Ökologie, Evolution und Diversität, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, Frankfurt am Main, 60438, Germany
| |
Collapse
|
14
|
van Veelen HPJ, Falcao Salles J, Tieleman BI. Multi-level comparisons of cloacal, skin, feather and nest-associated microbiota suggest considerable influence of horizontal acquisition on the microbiota assembly of sympatric woodlarks and skylarks. MICROBIOME 2017; 5:156. [PMID: 29191217 PMCID: PMC5709917 DOI: 10.1186/s40168-017-0371-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 11/09/2017] [Indexed: 05/04/2023]
Abstract
BACKGROUND Working toward a general framework to understand the role of microbiota in animal biology requires the characterisation of animal-associated microbial communities and identification of the evolutionary and ecological factors shaping their variation. In this study, we described the microbiota in the cloaca, brood patch skin and feathers of two species of birds and the microbial communities in their nest environment. We compared patterns of resemblance between these microbial communities at different levels of biological organisation (species, individual, body part) and investigated the phylogenetic structure to deduce potential microbial community assembly processes. RESULTS Using 16S rRNA gene amplicon data of woodlarks (Lullula arborea) and skylarks (Alauda arvensis), we demonstrated that bird- and nest-associated microbiota showed substantial OTU co-occurrences and shared dominant taxonomic groups, despite variation in OTU richness, diversity and composition. Comparing host species, we uncovered that sympatric woodlarks and skylarks harboured similar microbiota, dominated by Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes and Acidobacteria. Yet, compared with the nest microbiota that showed little variation, each species' bird-associated microbiota displayed substantial variation. The latter could be partly (~ 20%) explained by significant inter-individual differences. The various communities of the bird's body (cloaca, brood patch skin and feathers) appeared connected with each other and with the nest microbiota (nest lining material and surface soil). Communities were more similar when the contact between niches was frequent or intense. Finally, bird microbiota showed significant phylogenetic clustering at the tips, but not at deeper branches of the phylogeny. CONCLUSIONS Our interspecific comparison suggested that the environment is more important than phylogeny in shaping the bird-associated microbiotas. In addition, variation among individuals and among body parts suggested that intrinsic or behavioural differences among females and spatial heterogeneity among territories contributed to the microbiome variation of larks. Modest but significant phylogenetic clustering of cloacal, skin and feather microbiotas suggested weak habitat filtering in these niches. We propose that lark microbiota may be primarily, but not exclusively, shaped by horizontal acquisition from the regional bacterial pool at the breeding site. More generally, we hypothesise that the extent of ecological niche-sharing by avian (or other vertebrate) hosts may predict the convergence of their microbiota.
Collapse
Affiliation(s)
- H Pieter J van Veelen
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. box 11103, 9700 CC, Groningen, The Netherlands.
| | - Joana Falcao Salles
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. box 11103, 9700 CC, Groningen, The Netherlands
| | - B Irene Tieleman
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. box 11103, 9700 CC, Groningen, The Netherlands
| |
Collapse
|
15
|
Pearce DS, Hoover BA, Jennings S, Nevitt GA, Docherty KM. Morphological and genetic factors shape the microbiome of a seabird species (Oceanodroma leucorhoa) more than environmental and social factors. MICROBIOME 2017; 5:146. [PMID: 29084611 PMCID: PMC5663041 DOI: 10.1186/s40168-017-0365-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 10/26/2017] [Indexed: 05/10/2023]
Abstract
BACKGROUND The microbiome provides multiple benefits to animal hosts that can profoundly impact health and behavior. Microbiomes are well-characterized in humans and other animals in controlled settings, yet assessments of wild bird microbial communities remain vastly understudied. This is particularly true for pelagic seabirds with unique life histories that differ from terrestrial bird species. This study was designed to examine how morphological, genetic, environmental, and social factors affect the microbiome of a burrow-nesting seabird species, Leach's storm petrel (Oceanodroma leucorhoa). These seabirds are highly olfactory and may rely on microbiome-mediated odor cues during mate selection. Composition and structure of bacterial communities associated with the uropygial gland and brood patch were assessed using 16S rRNA amplicon-based Illumina Mi-Seq analysis and compared to burrow-associated bacterial communities. This is the first study to examine microbial diversity associated with multiple body sites on a seabird species. RESULTS Results indicate that sex and skin site contribute most to bacterial community variation in Leach's storm petrels and that major histocompatibility complex (MHC) genotype may impact the composition of bacterial assemblages in males. In contrast to terrestrial birds and other animals, environmental and social interactions do not significantly influence storm petrel-associated bacterial assemblages. Thus, individual morphological and genetic influences outweighed environmental and social factors on microbiome composition. CONCLUSIONS Contrary to observations of terrestrial birds, microbiomes of Leach's storm petrels vary most by the sex of the bird and by the body site sampled, rather than environmental surroundings or social behavior.
Collapse
Affiliation(s)
- Douglas S. Pearce
- Department of Biological Sciences, Western Michigan University, 1903 W Michigan Ave, Kalamazoo, MI 49008 USA
| | - Brian A. Hoover
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, One Shields Avenue, University of California, Davis, CA 95616 USA
| | - Sarah Jennings
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, One Shields Avenue, University of California, Davis, CA 95616 USA
| | - Gabrielle A. Nevitt
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, One Shields Avenue, University of California, Davis, CA 95616 USA
| | - Kathryn M. Docherty
- Department of Biological Sciences, Western Michigan University, 1903 W Michigan Ave, Kalamazoo, MI 49008 USA
| |
Collapse
|
16
|
Arbulu S, Jiménez JJ, Gútiez L, Campanero C, Del Campo R, Cintas LM, Herranz C, Hernández PE. Evaluation of bacteriocinogenic activity, safety traits and biotechnological potential of fecal lactic acid bacteria (LAB), isolated from Griffon Vultures (Gyps fulvus subsp. fulvus). BMC Microbiol 2016; 16:228. [PMID: 27688001 PMCID: PMC5041338 DOI: 10.1186/s12866-016-0840-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/15/2016] [Indexed: 11/23/2022] Open
Abstract
Background Lactic acid bacteria (LAB) are part of the gut microbiota and produce ribosomally synthesized antimicrobial peptides or bacteriocins with interest as natural food preservatives and therapeutic agents. Bacteriocin-producing LAB are also attractive as probiotics. Griffon vultures (Gyps fulvus subspecies fulvus) are scavenger birds that feed almost exclusively on carrion without suffering apparent ill effects. Therefore, griffon vultures might be considered a reservoir of bacteriocin-producing lactic acid bacteria (LAB) with potential biotechnological applications. Results Griffon vulture feces were screened for LAB with antimicrobial activity, genes encoding bacteriocins, potential virulence determinants, susceptibility to antibiotics, genotyping and characterization of bacteriocins. In this study, from 924 LAB evaluated 332 isolates (36 %) showed direct antimicrobial activity against Gram-positive bacteria only. The molecular identification of the most antagonistic 95 isolates showed that enterococci was the largest LAB group with antimicrobial activity (91 %) and E. faecium (40 %) the most identified antagonistic species. The evaluation of the presence of bacteriocin structural genes in 28 LAB isolates with the highest bacteriocinogenic activity in their supernatants determined that most enterococcal isolates (75 %) encoded multiple bacteriocins, being enterocin A (EntA) the largest identified (46 %) bacteriocin. Most enterococci (88 %) were resistant to multiple antibiotics. ERIC-PCR and MLST techniques permitted genotyping and recognition of the potential safety of the bacteriocinogenic enterococci. A multiple-step chromatographic procedure, determination of the N-terminal amino acid sequence of purified bacteriocins by Edman degradation and a MALDI TOF/TOF tandem MS procedure permitted characterization of bacteriocins present in supernatants of producer cells. Conclusions Enterococci was the largest LAB group with bacteriocinogenic activity isolated from griffon vulture feces. Among the isolates, E. faecium M3K31 has been identified as producer of enterocin HF (EntHF), a bacteriocin with remarkable antimicrobial activity against most evaluated Listeria spp. and of elevated interest as a natural food preservative. E. faecium M3K31 would be also considered a safe probiotic strain for use in animal nutrition. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0840-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sara Arbulu
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain
| | - Juan J Jiménez
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain
| | - Loreto Gútiez
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain
| | - Cristina Campanero
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain
| | - Rosa Del Campo
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, and Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28034, Madrid, Spain
| | - Luis M Cintas
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain
| | - Carmen Herranz
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain
| | - Pablo E Hernández
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain.
| |
Collapse
|
17
|
Whittaker DJ, Gerlach NM, Slowinski SP, Corcoran KP, Winters AD, Soini HA, Novotny MV, Ketterson ED, Theis KR. Social Environment Has a Primary Influence on the Microbial and Odor Profiles of a Chemically Signaling Songbird. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00090] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Martínez-García Á, Martín-Vivaldi M, Rodríguez-Ruano SM, Peralta-Sánchez JM, Valdivia E, Soler JJ. Nest Bacterial Environment Affects Microbiome of Hoopoe Eggshells, but Not That of the Uropygial Secretion. PLoS One 2016; 11:e0158158. [PMID: 27409772 PMCID: PMC4943718 DOI: 10.1371/journal.pone.0158158] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/10/2016] [Indexed: 11/18/2022] Open
Abstract
The study of associations between symbiotic bacterial communities of hosts and those of surrounding environments would help to understand how bacterial assemblages are acquired, and how they are transmitted from one to another location (i.e. symbiotic bacteria acquisition by hosts). Hoopoes (Upupa epops) smear their eggshells with uropygial secretion (oily secretion produced in their uropygial gland) that harbors antibiotic producing bacteria. Trying to elucidate a possible role of nest material and cloaca microbiota in determining the bacterial community of the uropygial gland and the eggshells of hoopoes, we characterized bacterial communities of nest material, cloaca, uropygial gland and eggshells by the ARISA fingerprinting. Further, by adding material with scarce bacteria and antimicrobial properties, we manipulated the bacterial community of nest material and thus tested experimentally its effects on the microbiomes of the uropygial secretion and of the eggshells. The experiment did not influence the microbiome of the uropygial secretion of females, but affected the community established on eggshells. This is the first experimental evidence indicating that nest material influences the bacterial community of the eggshells and, therefore, probability of embryo infection. Some of the bacterial strains detected in the secretion were also in the bacterial communities of the nest material and of cloaca, but their occurrence within nests was not associated, which suggests that bacterial environments of nest material and cloaca are not sources of symbiotic bacteria for the gland. These results do not support a role of nest environments of hoopoes as reservoirs of symbiotic bacteria. We discuss possible scenarios explaining bacterial acquisition by hoopoes that should be further explored.
Collapse
Affiliation(s)
| | | | | | | | - Eva Valdivia
- Departamento de Microbiología Universidad de Granada, E-18071 Granada, Spain
| | - Juan J. Soler
- Estación Experimental de Zonas Áridas (CSIC) E-04120 Almería, Spain
| |
Collapse
|
19
|
Martínez-García Á, Martín-Vivaldi M, Ruiz-Rodríguez M, Martínez-Bueno M, Arco L, Rodríguez-Ruano SM, Peralta-Sánchez JM, Soler JJ. The Microbiome of the Uropygial Secretion in Hoopoes Is Shaped Along the Nesting Phase. MICROBIAL ECOLOGY 2016; 72:252-261. [PMID: 27075655 DOI: 10.1007/s00248-016-0765-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/01/2016] [Indexed: 06/05/2023]
Abstract
Microbial symbiont acquisition by hosts may determine the effectiveness of the mutualistic relationships. A mix of vertical and horizontal transmission may be advantageous for hosts by allowing plastic changes of microbial communities depending on environmental conditions. Plasticity is well known for gut microbiota but is poorly understood for other symbionts of wild animals. We here explore the importance of environmental conditions experienced by nestling hoopoes (Upupa epops) during the late nesting phase determining microbiota in their uropygial gland. In cross-fostering experiments of 8 days old nestlings, "sibling-sibling" and "mother-offspring" comparisons were used to explore whether the bacterial community naturally established in the uropygial gland of nestlings could change depending on experimental environmental conditions (i.e., new nest environment). We found that the final microbiome of nestlings was mainly explained by nest of origin. Moreover, cross-fostered nestlings were more similar to their siblings and mothers than to their stepsiblings and stepmothers. We also detected a significant effect of nest of rearing, suggesting that nestling hoopoes acquire most bacterial symbionts during the first days of life but that the microbiome is dynamic and can be modified along the nestling period depending on environmental conditions. Estimated effects of nest of rearing, but also most of those of nest of origin are associated to environmental characteristics of nests, which are extended phenotypes of parents. Thus, natural selection may favor the acquisition of appropriated microbial symbionts for particular environmental conditions found in nests.
Collapse
Affiliation(s)
| | | | | | | | - Laura Arco
- Departamento de Zoología Universidad de Granada, E-18071, Granada, Spain
| | | | | | - Juan José Soler
- Estación Experimental de Zonas Áridas (CSIC), E-04120, Almería, Spain.
| |
Collapse
|
20
|
Soler JJ, Martínez-García Á, Rodríguez-Ruano SM, Martínez-Bueno M, Martín-Platero AM, Peralta-Sánchez JM, Martín-Vivaldi M. Nestedness of hoopoes' bacterial communities: symbionts from the uropygial gland to the eggshell. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12772] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Juan J. Soler
- Estación Experimental de Zonas Áridas (CSIC); E-04120 Almería Spain
| | | | | | | | | | | | | |
Collapse
|
21
|
Martínez-García Á, Soler JJ, Rodríguez-Ruano SM, Martínez-Bueno M, Martín-Platero AM, Juárez-García N, Martín-Vivaldi M. Preening as a Vehicle for Key Bacteria in Hoopoes. MICROBIAL ECOLOGY 2015; 70:1024-1033. [PMID: 26078039 DOI: 10.1007/s00248-015-0636-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/26/2015] [Indexed: 06/04/2023]
Abstract
Oily secretions produced in the uropygial gland of incubating female hoopoes contain antimicrobial-producing bacteria that prevent feathers from degradation and eggs from pathogenic infection. Using the beak, females collect the uropygial gland secretion and smear it directly on the eggshells and brood patch. Thus, some bacterial strains detected in the secretion should also be present on the eggshell, beak, and brood patch. To characterize these bacterial communities, we used Automatic Ribosomal Intergenic Spacer Analysis (ARISA), which distinguishes between taxonomically different bacterial strains (i.e. different operational taxonomic units [OTUs]) by the size of the sequence amplified. We identified a total of 146 different OTUs with sizes between 139 and 999 bp. Of these OTUs, 124 were detected in the uropygial oil, 106 on the beak surface, 97 on the brood patch, and 98 on the eggshell. The highest richness of OTUs appeared in the uropygial oil samples. Moreover, the detection of some OTUs on the beak, brood patch, and eggshells of particular nests depended on these OTUs being present in the uropygial oil of the female. These results agree with the hypothesis that symbiotic bacteria are transmitted from the uropygial gland to beak, brood patch, and eggshell surfaces, opening the possibility that the bacterial community of the secretion plays a central role in determining the communities of special hoopoe eggshell structures (i.e., crypts) that, soon after hatching, are filled with uropygial oil, thereby protecting embryos from pathogens.
Collapse
Affiliation(s)
| | - Juan J Soler
- Estación Experimental de Zonas Áridas (CSIC), E-04120, Almería, Spain
| | | | | | | | | | | |
Collapse
|
22
|
Rodríguez-Ruano SM, Martín-Vivaldi M, Martín-Platero AM, López-López JP, Peralta-Sánchez JM, Ruiz-Rodríguez M, Soler JJ, Valdivia E, Martínez-Bueno M. The Hoopoe's Uropygial Gland Hosts a Bacterial Community Influenced by the Living Conditions of the Bird. PLoS One 2015; 10:e0139734. [PMID: 26445111 PMCID: PMC4596831 DOI: 10.1371/journal.pone.0139734] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/15/2015] [Indexed: 12/16/2022] Open
Abstract
Molecular methods have revealed that symbiotic systems involving bacteria are mostly based on whole bacterial communities. Bacterial diversity in hoopoe uropygial gland secretion is known to be mainly composed of certain strains of enterococci, but this conclusion is based solely on culture-dependent techniques. This study, by using culture-independent techniques (based on the 16S rDNA and the ribosomal intergenic spacer region) shows that the bacterial community in the uropygial gland secretion is more complex than previously thought and its composition is affected by the living conditions of the bird. Besides the known enterococci, the uropygial gland hosts other facultative anaerobic species and several obligated anaerobic species (mostly clostridia). The bacterial assemblage of this community was largely invariable among study individuals, although differences were detected between captive and wild female hoopoes, with some strains showing significantly higher prevalence in wild birds. These results alter previous views on the hoopoe-bacteria symbiosis and open a new window to further explore this system, delving into the possible sources of symbiotic bacteria (e.g. nest environments, digestive tract, winter quarters) or the possible functions of different bacterial groups in different contexts of parasitism or predation of their hoopoe host.
Collapse
Affiliation(s)
| | | | | | | | | | - Magdalena Ruiz-Rodríguez
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (CSIC), Almería, Spain
| | - Juan J Soler
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (CSIC), Almería, Spain
| | - Eva Valdivia
- Departamento de Microbiología, Universidad de Granada, Granada, Spain
| | | |
Collapse
|