1
|
Pérez Gallego R, von Meijenfeldt FAB, Bale NJ, Sinninghe Damsté JS, Villanueva L. Emergence and evolution of heterocyte glycolipid biosynthesis enabled specialized nitrogen fixation in cyanobacteria. Proc Natl Acad Sci U S A 2025; 122:e2413972122. [PMID: 39869795 PMCID: PMC11804610 DOI: 10.1073/pnas.2413972122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 12/03/2024] [Indexed: 01/29/2025] Open
Abstract
Heterocytes, specialized cells for nitrogen fixation in cyanobacteria, are surrounded by heterocyte glycolipids (HGs), which contribute to protection of the nitrogenase enzyme from oxygen. Diverse HGs preserve in the sediment and have been widely used as evidence of past nitrogen fixation, and structural variation has been suggested to preserve taxonomic information and reflect paleoenvironmental conditions. Here, by comprehensive HG identification and screening of HG biosynthetic gene clusters throughout cyanobacteria, we reconstruct the convergent evolutionary history of HG structure, in which different clades produce the same HGs. We find that rudimentary HG biosynthetic machinery was already present in cyanobacteria before the emergence of heterocytes for functions unrelated to nitrogen fixation and identify HG analogs produced by specific and distantly related nonheterocytous cyanobacteria. These structurally less complex molecules represent precursors of HGs, suggesting that HGs arose after a genomic reorganization and expansion of ancestral biosynthetic machinery, enabling the rise of cyanobacterial heterocytes in an increasingly oxygenated atmosphere. Our results open a chapter in the potential use of diagenetic products of HGs and HG analogs as fossils for reconstructing the evolution of multicellularity and division of labor in cyanobacteria.
Collapse
Affiliation(s)
- Ruth Pérez Gallego
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Den Burg1790 AB, The Netherlands
| | - F. A. Bastiaan von Meijenfeldt
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Den Burg1790 AB, The Netherlands
| | - Nicole J. Bale
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Den Burg1790 AB, The Netherlands
| | - Jaap S. Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Den Burg1790 AB, The Netherlands
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht3508 TA, The Netherlands
| | - Laura Villanueva
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Den Burg1790 AB, The Netherlands
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht3508 TA, The Netherlands
- Department of Biology, Faculty of Sciences, Utrecht University, Utrecht3584 CS, The Netherlands
| |
Collapse
|
2
|
Zhu J, Li S, Chen W, Xu X, Wang X, Wang X, Han J, Jouhet J, Amato A, Maréchal E, Hu H, Allen AE, Gong Y, Jiang H. Delta-5 elongase knockout reduces docosahexaenoic acid and lipid synthesis and increases heat sensitivity in a diatom. PLANT PHYSIOLOGY 2024; 196:1356-1373. [PMID: 38796833 DOI: 10.1093/plphys/kiae297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 05/29/2024]
Abstract
Recent global marine lipidomic analysis reveals a strong relationship between ocean temperature and phytoplanktonic abundance of omega-3 long-chain polyunsaturated fatty acids, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which are essential for human nutrition and primarily sourced from phytoplankton in marine food webs. In phytoplanktonic organisms, EPA may play a major role in regulating the phase transition temperature of membranes, while the function of DHA remains unexplored. In the oleaginous diatom Phaeodactylum tricornutum, DHA is distributed mainly on extraplastidial phospholipids, which is very different from the EPA enriched in thylakoid lipids. Here, clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9-mediated knockout of delta-5 elongase (ptELO5a), which encodes a delta-5 elongase (ELO5) catalyzing the elongation of EPA to synthesize DHA, led to a substantial interruption of DHA synthesis in P. tricornutum. The ptELO5a mutants showed some alterations in transcriptome and glycerolipidomes, including membrane lipids and triacylglycerols under normal temperature (22 °C), and were more sensitive to elevated temperature (28 °C) than wild type. We conclude that PtELO5a-mediated synthesis of small amounts of DHA has indispensable functions in regulating membrane lipids, indirectly contributing to storage lipid accumulation, and maintaining thermomorphogenesis in P. tricornutum. This study also highlights the significance of DHA synthesis and lipid composition for environmental adaptation of P. tricornutum.
Collapse
Affiliation(s)
- Junkai Zhu
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Shuangqing Li
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Life and Ecology Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Weizhong Chen
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xinde Xu
- Department of Human Nutrition, Zhejiang Medicine Co. Ltd., Xinchang 312500, China
- Department of Human Nutrition, Zhejiang Keming Biopharmaceuticals Co. Ltd., Xinchang 312500, China
| | - Xiaoping Wang
- Department of Human Nutrition, Zhejiang Medicine Co. Ltd., Xinchang 312500, China
- Department of Human Nutrition, Zhejiang Keming Biopharmaceuticals Co. Ltd., Xinchang 312500, China
| | - Xinwei Wang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jichang Han
- College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, INRAE, Université Grenoble Alpes, Unité mixte de recherche 5168, IRIG, CEA Grenoble, F-38041 Grenoble, France
| | - Alberto Amato
- Laboratoire de Physiologie Cellulaire et Végétale, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, INRAE, Université Grenoble Alpes, Unité mixte de recherche 5168, IRIG, CEA Grenoble, F-38041 Grenoble, France
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, INRAE, Université Grenoble Alpes, Unité mixte de recherche 5168, IRIG, CEA Grenoble, F-38041 Grenoble, France
| | - Hanhua Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Andrew E Allen
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Environment and Sustainability, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Yangmin Gong
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Haibo Jiang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Life and Ecology Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| |
Collapse
|
3
|
Choudhary P, Bhatt S, Chatterjee S. From freezing to functioning: cellular strategies of cold-adapted bacteria for surviving in extreme environments. Arch Microbiol 2024; 206:329. [PMID: 38940837 DOI: 10.1007/s00203-024-04058-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
The ability of cold-adapted bacteria to survive in extreme cold and diverse temperatures is due to their unique attributes like cell membrane stability, up-regulation of peptidoglycan biosynthesis, increased production of extracellular polymeric substances, and expansion of membrane pigment. Various cold-adapted proteins, including ice-nucleating proteins (INPs), antifreeze proteins (AFPs), cold shock proteins (Csps), and cold-acclimated proteins (CAPs), help the bacteria to survive in these environments. To sustain cells from extreme cold conditions and maintain stability in temperature fluctuations, survival strategies at the molecular level and their mechanism play significant roles in adaptations in cryospheric conditions. Furthermore, cold shock domains present in the multifunctional cold shock proteins play crucial roles in their adaptation strategies. The considerable contribution of lipopeptides, osmolytes, and membrane pigments plays an integral part in their survival in extreme environments. This review summarizes the evolutionary history of cold-adapted bacteria and their molecular and cellular adaptation strategies to thrive in harsh cold environments. It also discusses the importance of carotenoids produced, lipid composition, cryoprotectants, proteins, and chaperones related to this adaptation. Furthermore, the functions and mechanisms of adaptations within the cell are discussed briefly. One can utilize and explore their potential in various biotechnology applications and their evolutionary journey by knowing the inherent mechanism of their molecular and cellular adaptation to cold climatic conditions. This review will help all branches of the life science community understand the basic microbiology of psychrophiles and their hidden prospect in life science research.
Collapse
Affiliation(s)
- Priyanka Choudhary
- Bioremediation and Metabolomics Research Group, Department of Environmental Sciences, Central University of Himachal Pradesh, Academic Block-Shahpur, Kangra, Himachal Pradesh, 176206, India
| | - Sunidhi Bhatt
- Bioremediation and Metabolomics Research Group, Department of Environmental Sciences, Central University of Himachal Pradesh, Academic Block-Shahpur, Kangra, Himachal Pradesh, 176206, India
| | - Subhankar Chatterjee
- Bioremediation and Metabolomics Research Group, Dept. of Ecology & Environmental Sciences, School of Life Sciences, Pondicherry University, R.V. Nagar, Kalapet, Puducherry, 605014, India.
| |
Collapse
|
4
|
Giovannini M, Vieri W, Bosi E, Riccardi C, Lo Giudice A, Fani R, Fondi M, Perrin E. Functional Genomics of a Collection of Gammaproteobacteria Isolated from Antarctica. Mar Drugs 2024; 22:238. [PMID: 38921549 PMCID: PMC11205219 DOI: 10.3390/md22060238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Antarctica, one of the most extreme environments on Earth, hosts diverse microbial communities. These microbes have evolved and adapted to survive in these hostile conditions, but knowledge on the molecular mechanisms underlying this process remains limited. The Italian Collection of Antarctic Bacteria (Collezione Italiana Batteri Antartici (CIBAN)), managed by the University of Messina, represents a valuable repository of cold-adapted bacterial strains isolated from various Antarctic environments. In this study, we sequenced and analyzed the genomes of 58 marine Gammaproteobacteria strains from the CIBAN collection, which were isolated during Italian expeditions from 1990 to 2005. By employing genome-scale metrics, we taxonomically characterized these strains and assigned them to four distinct genera: Pseudomonas, Pseudoalteromonas, Shewanella, and Psychrobacter. Genome annotation revealed a previously untapped functional potential, including secondary metabolite biosynthetic gene clusters and antibiotic resistance genes. Phylogenomic analyses provided evolutionary insights, while assessment of cold-shock protein presence shed light on adaptation mechanisms. Our study emphasizes the significance of CIBAN as a resource for understanding Antarctic microbial life and its biotechnological potential. The genomic data unveil new horizons for insight into bacterial existence in Antarctica.
Collapse
Affiliation(s)
- Michele Giovannini
- Department of Biology, University of Florence, Via Madonna del Piano 6, I-50019 Sesto Fiorentino, Italy; (M.G.); (W.V.); (C.R.); (R.F.); (M.F.)
| | - Walter Vieri
- Department of Biology, University of Florence, Via Madonna del Piano 6, I-50019 Sesto Fiorentino, Italy; (M.G.); (W.V.); (C.R.); (R.F.); (M.F.)
| | - Emanuele Bosi
- Department of Earth, Environment and Life Sciences—DISTAV, University of Genoa, Corso Europa 26, I-16132 Genova, Italy;
| | - Christopher Riccardi
- Department of Biology, University of Florence, Via Madonna del Piano 6, I-50019 Sesto Fiorentino, Italy; (M.G.); (W.V.); (C.R.); (R.F.); (M.F.)
- Quantitative and Computational Biology Department, University of Southern California, Los Angeles, CA 90089, USA
| | - Angelina Lo Giudice
- Institute of Polar Sciences, National Research Council, (CNR.ISP), Spianata San Raineri 86, I-98122 Messina, Italy;
- Italian Collection of Antarctic Bacteria, National Antarctic Museum (CIBAN-MNA), I-98122 Messina, Italy
- NBFC, National Biodiversity Future Center, Piazza Marina 61, I-90133 Palermo, Italy
| | - Renato Fani
- Department of Biology, University of Florence, Via Madonna del Piano 6, I-50019 Sesto Fiorentino, Italy; (M.G.); (W.V.); (C.R.); (R.F.); (M.F.)
| | - Marco Fondi
- Department of Biology, University of Florence, Via Madonna del Piano 6, I-50019 Sesto Fiorentino, Italy; (M.G.); (W.V.); (C.R.); (R.F.); (M.F.)
| | - Elena Perrin
- Department of Biology, University of Florence, Via Madonna del Piano 6, I-50019 Sesto Fiorentino, Italy; (M.G.); (W.V.); (C.R.); (R.F.); (M.F.)
| |
Collapse
|
5
|
Seyler LM, Kraus EA, McLean C, Spear JR, Templeton AS, Schrenk MO. An untargeted exometabolomics approach to characterize dissolved organic matter in groundwater of the Samail Ophiolite. Front Microbiol 2023; 14:1093372. [PMID: 36970670 PMCID: PMC10033605 DOI: 10.3389/fmicb.2023.1093372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/23/2023] [Indexed: 03/11/2023] Open
Abstract
The process of serpentinization supports life on Earth and gives rise to the habitability of other worlds in our Solar System. While numerous studies have provided clues to the survival strategies of microbial communities in serpentinizing environments on the modern Earth, characterizing microbial activity in such environments remains challenging due to low biomass and extreme conditions. Here, we used an untargeted metabolomics approach to characterize dissolved organic matter in groundwater in the Samail Ophiolite, the largest and best characterized example of actively serpentinizing uplifted ocean crust and mantle. We found that dissolved organic matter composition is strongly correlated with both fluid type and microbial community composition, and that the fluids that were most influenced by serpentinization contained the greatest number of unique compounds, none of which could be identified using the current metabolite databases. Using metabolomics in conjunction with metagenomic data, we detected numerous products and intermediates of microbial metabolic processes and identified potential biosignatures of microbial activity, including pigments, porphyrins, quinones, fatty acids, and metabolites involved in methanogenesis. Metabolomics techniques like the ones used in this study may be used to further our understanding of life in serpentinizing environments, and aid in the identification of biosignatures that can be used to search for life in serpentinizing systems on other worlds.
Collapse
Affiliation(s)
- Lauren M. Seyler
- Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI, United States
- Biology Program, School of Natural Sciences and Mathematics, Stockton University, Galloway, NJ, United States
- Blue Marble Space Institute of Science, Seattle, WA, United States
- *Correspondence: Lauren M. Seyler,
| | - Emily A. Kraus
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
- Department of Environmental Engineering, University of Colorado, Boulder, Boulder, CO, United States
| | - Craig McLean
- Massachusetts Institute of Technology, Cambridge, MA, United States
| | - John R. Spear
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| | - Alexis S. Templeton
- Department of Geological Sciences, University of Colorado, Boulder, Boulder, CO, United States
| | - Matthew O. Schrenk
- Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
6
|
Schüler LM, Bombo G, Duarte P, Santos TF, Maia IB, Pinheiro F, Marques J, Jacinto R, Schulze PSC, Pereira H, Barreira L, Varela JCS. Carotenoid biosynthetic gene expression, pigment and n-3 fatty acid contents in carotenoid-rich Tetraselmis striata CTP4 strains under heat stress combined with high light. BIORESOURCE TECHNOLOGY 2021; 337:125385. [PMID: 34147770 DOI: 10.1016/j.biortech.2021.125385] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
In this study, two carotenoid-rich strains of the euryhaline microalga Tetraselmis striata CTP4 were isolated by random mutagenesis combined with selection via fluorescence activated cell sorting and growth on norflurazon. Both strains, ED5 and B11, showed an up to 1.5-fold increase in carotenoid contents as compared with the wildtype, independent of the growth conditions. More specifically, violaxanthin, β-carotene and lutein contents reached as high as 1.63, 4.20 and 3.81 mg g-1 DW, respectively. Genes coding for phytoene synthase, phytoene desaturase, lycopene-β-cyclase and ε-ring hydroxylase involved in carotenoid biosynthesis were found to be upregulated in ED5 and B11 cells as compared to the wildtype. Both strains showed higher contents of eicosapentaenoic acid as compared with those of the wildtype, reaching up to 4.41 and 2.88 mg g-1 DW, respectively. Overall, these results highlight the complexity of changes in carotenoid biosynthesis regulation that are required to improve pigment contents in microalgae.
Collapse
Affiliation(s)
- Lisa M Schüler
- Marine Biotechnology Group, Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Gabriel Bombo
- Marine Biotechnology Group, Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Green Colab - Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Paulo Duarte
- Marine Biotechnology Group, Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Tamára F Santos
- Marine Biotechnology Group, Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Inês B Maia
- Marine Biotechnology Group, Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Filipa Pinheiro
- Marine Biotechnology Group, Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - José Marques
- Marine Biotechnology Group, Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Rita Jacinto
- Green Colab - Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Peter S C Schulze
- Green Colab - Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Hugo Pereira
- Green Colab - Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Luísa Barreira
- Marine Biotechnology Group, Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Green Colab - Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - João C S Varela
- Marine Biotechnology Group, Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Green Colab - Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
7
|
Gaillard S, Réveillon D, Danthu C, Hervé F, Sibat M, Carpentier L, Hégaret H, Séchet V, Hess P. Effect of a short-term salinity stress on the growth, biovolume, toxins, osmolytes and metabolite profiles on three strains of the Dinophysis acuminata-complex (Dinophysis cf. sacculus). HARMFUL ALGAE 2021; 107:102009. [PMID: 34456027 DOI: 10.1016/j.hal.2021.102009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 06/13/2023]
Abstract
Dinophysis is the main dinoflagellate genus responsible for diarrheic shellfish poisoning (DSP) in human consumers of filter feeding bivalves contaminated with lipophilic diarrheic toxins. Species of this genus have a worldwide distribution driven by environmental conditions (temperature, irradiance, salinity, nutrients etc.), and these factors are sensitive to climate change. The D. acuminata-complex may contain several species, including D. sacculus. The latter has been found in estuaries and semi-enclosed areas, water bodies subjected to quick salinity variations and its natural repartition suggests some tolerance to salinity changes. However, the response of strains of D. acuminata-complex (D. cf. sacculus) subjected to salinity stress and the underlying mechanisms have never been studied in the laboratory. Here, a 24 h hypoosmotic (25) and hyperosmotic (42) stress was performed in vitro in a metabolomic study carried out with three cultivated strains of D. cf. sacculus isolated from the French Atlantic and Mediterranean coasts. Growth rate, biovolume and osmolyte (proline, glycine betaine and dimethylsulfoniopropionate (DMSP)) and toxin contents were measured. Osmolyte contents were higher at the highest salinity, but only a significant increase in glycine betaine was observed between the control (35) and the hyperosmotic treatment. Metabolomics revealed significant and strain-dependent differences in metabolite profiles for different salinities. These results, as well as the absence of effects on growth rate, biovolume, okadaic acid (OA) and pectenotoxin (PTXs) cellular contents, suggest that the D. cf. sacculus strains studied are highly tolerant to salinity variations.
Collapse
Affiliation(s)
- Sylvain Gaillard
- IFREMER, DYNECO, Laboratoire Phycotoxines, Rue de l'Ile d'Yeu, F-44000 Nantes, France.
| | - Damien Réveillon
- IFREMER, DYNECO, Laboratoire Phycotoxines, Rue de l'Ile d'Yeu, F-44000 Nantes, France
| | - Charline Danthu
- IFREMER, DYNECO, Laboratoire Phycotoxines, Rue de l'Ile d'Yeu, F-44000 Nantes, France
| | - Fabienne Hervé
- IFREMER, DYNECO, Laboratoire Phycotoxines, Rue de l'Ile d'Yeu, F-44000 Nantes, France
| | - Manoella Sibat
- IFREMER, DYNECO, Laboratoire Phycotoxines, Rue de l'Ile d'Yeu, F-44000 Nantes, France
| | - Liliane Carpentier
- IFREMER, DYNECO, Laboratoire Phycotoxines, Rue de l'Ile d'Yeu, F-44000 Nantes, France
| | - Hélène Hégaret
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER - Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, Rue Dumont d'Urville, 29280 Plouzané, France
| | - Véronique Séchet
- IFREMER, DYNECO, Laboratoire Phycotoxines, Rue de l'Ile d'Yeu, F-44000 Nantes, France
| | - Philipp Hess
- IFREMER, DYNECO, Laboratoire Phycotoxines, Rue de l'Ile d'Yeu, F-44000 Nantes, France.
| |
Collapse
|
8
|
|
9
|
Kannan N, Rao AS, Nair A. Microbial production of omega-3 fatty acids: an overview. J Appl Microbiol 2021; 131:2114-2130. [PMID: 33570824 DOI: 10.1111/jam.15034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/25/2021] [Accepted: 02/05/2021] [Indexed: 12/20/2022]
Abstract
The essence of appropriate nutritional intake on a regular basis has a great impact in maintaining fundamental physiological functions and the body metabolism. Considering how pivotal maintaining a nourishing fat diet is to human health, Omega-3 fatty acids have gained a lot of attention in recent times. Omega-3 fatty acids (n-3 FAs) such as eicosapentaenoic acid (EPA) and DHA are considered as essential fatty acids (EFAs) offering enormous nutritional benefits: from playing a major role in the prevention and treatment of a number of human diseases, such as cardiovascular disorders and neurological disorders, to having anti-inflammatory properties, to providing joint support, etc. Hence, their incorporation into our daily diet is of great importance. Also, both EPA and DHA have been shown to be therapeutically significant in treating several infectious diseases. EFAs were initially thought to be marine in origin, produced by fishes. Consequentially, this led to the increase in the industrial extraction of fish oils for meeting the commercial need for of n-3-rich dietary supplements. Although fish oil supplementation met almost all of the dietary demand for EFAs, they did come with a fair share of drawbacks such as undesirable odour and flavour, heavy metal contamination, extinction of fish species, etc. Oleaginous micro-organisms are a promising alternative for the production of a more sustainable, consistent and quality production of n-3 FAs. Thus, the entire review focuses on understanding the eco-friendlier production of n-3 FAs by micro-organisms.
Collapse
Affiliation(s)
- Nivetha Kannan
- School of basic and applied sciences, Dayananda Sagar University, Bangalore, India
| | - A S Rao
- School of basic and applied sciences, Dayananda Sagar University, Bangalore, India
| | - A Nair
- School of basic and applied sciences, Dayananda Sagar University, Bangalore, India
| |
Collapse
|
10
|
Tendulkar S, Hattiholi A, Chavadar M, Dodamani S. Psychrophiles: A journey of hope. J Biosci 2021; 46:64. [PMID: 34219740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Psychrophiles are organisms living in extremely cold conditions within the temperature range of -20°C to +10°C. These organisms survive in harsh environment by modulating their genetic make-up to thrive in extremely cold conditions. These cold-adaptations are closely associated with changes in the life forms, gene expression, and proteins, enzymes, lipids, etc. This review gives a brief description of the life and genetic adaptations of psychrophiles for their survival in extreme conditions as well as the bioactive compounds that are potential antimicrobials.
Collapse
Affiliation(s)
- Shivani Tendulkar
- Dr. Prabhakar Kore Basic Science Research Center, KLE Academy of Higher Education and Research, Belagavi 590 010, India
| | | | | | | |
Collapse
|
11
|
Cavan EL, Kawaguchi S, Boyd PW. Implications for the mesopelagic microbial gardening hypothesis as determined by experimental fragmentation of Antarctic krill fecal pellets. Ecol Evol 2021; 11:1023-1036. [PMID: 33520184 PMCID: PMC7820144 DOI: 10.1002/ece3.7119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/08/2020] [Accepted: 11/12/2020] [Indexed: 11/26/2022] Open
Abstract
Detritivores need to upgrade their food to increase its nutritional value. One method is to fragment detritus promoting the colonization of nutrient-rich microbes, which consumers then ingest along with the detritus; so-called microbial gardening. Observations and numerical models of the detritus-dominated ocean mesopelagic zone have suggested microbial gardening by zooplankton is a fundamental process in the ocean carbon cycle leading to increased respiration of carbon-rich detritus. However, no experimental evidence exists to demonstrate that microbial respiration rates are higher on recently fragmented sinking detrital particles.Using aquaria-reared Antarctic krill fecal pellets, we showed fragmentation increased microbial particulate organic carbon (POC) turnover by 1.9×, but only on brown fecal pellets, formed from the consumption of other pellets. Microbial POC turnover on un- and fragmented green fecal pellets, formed from consuming fresh phytoplankton, was equal. Thus, POC content, fragmentation, and potentially nutritional value together drive POC turnover rates.Mesopelagic microbial gardening could be a risky strategy, as the dominant detrital food source is settling particles; even though fragmentation decreases particle size and sinking rate, it is unlikely that an organism would remain with the particle long enough to nutritionally benefit from attached microbes. We propose "communal gardening" occurs whereby additional mesopelagic organisms nearby or below the site of fragmentation consume the particle and the colonized microbes.To determine how fragmentation impacts the remineralization of sinking carbon-rich detritus and to parameterize microbial gardening in mesopelagic carbon models, three key metrics from further controlled experiments and observations are needed; how particle composition (here, pellet color/krill diet) impacts the response of microbes to the fragmentation of particles; the nutritional benefit to zooplankton from ingesting microbes after fragmentation along with identification of which essential nutrients are being targeted; how both these factors vary between physical (shear) and biological particle fragmentation.
Collapse
Affiliation(s)
- Emma L. Cavan
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaBattery PointTASAustralia
- Department of Life Sciences, Silwood Park CampusImperial College LondonAscotUK
| | - So Kawaguchi
- Australian Antarctic DivisionKingstonTASAustralia
| | - Philip W. Boyd
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaBattery PointTASAustralia
- Antarctic Climate and Ecosystems CRCUniversity of TasmaniaBattery PointTASAustralia
| |
Collapse
|
12
|
Matsui H, Shiozaki K, Okumura Y, Ishikawa M, Waqalevu V, Hayasaka O, Honda A, Kotani T. Effects of phosphorous deficiency of a microalga Nannochloropsis oculata on its fatty acid profiles and intracellular structure and the effectiveness in rotifer nutrition. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Sajjad W, Din G, Rafiq M, Iqbal A, Khan S, Zada S, Ali B, Kang S. Pigment production by cold-adapted bacteria and fungi: colorful tale of cryosphere with wide range applications. Extremophiles 2020; 24:447-473. [PMID: 32488508 PMCID: PMC7266124 DOI: 10.1007/s00792-020-01180-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/18/2020] [Indexed: 12/18/2022]
Abstract
Pigments are an essential part of everyday life on Earth with rapidly growing industrial and biomedical applications. Synthetic pigments account for a major portion of these pigments that in turn have deleterious effects on public health and environment. Such drawbacks of synthetic pigments have shifted the trend to use natural pigments that are considered as the best alternative to synthetic pigments due to their significant properties. Natural pigments from microorganisms are of great interest due to their broader applications in the pharmaceutical, food, and textile industry with increasing demand among the consumers opting for natural pigments. To fulfill the market demand of natural pigments new sources should be explored. Cold-adapted bacteria and fungi in the cryosphere produce a variety of pigments as a protective strategy against ecological stresses such as low temperature, oxidative stresses, and ultraviolet radiation making them a potential source for natural pigment production. This review highlights the protective strategies and pigment production by cold-adapted bacteria and fungi, their industrial and biomedical applications, condition optimization for maximum pigment extraction as well as the challenges facing in the exploitation of cryospheric microorganisms for pigment extraction that hopefully will provide valuable information, direction, and progress in forthcoming studies.
Collapse
Affiliation(s)
- Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Ghufranud Din
- Department of Microbiology, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Rafiq
- Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of IT, Engineering and Management Sciences, Quetta, Pakistan
| | - Awais Iqbal
- School of Life Sciences, State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, People's Republic of China
| | - Suliman Khan
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sahib Zada
- Department of Biology, College of Science, Shantou University, Shantou, China
| | - Barkat Ali
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China.
| |
Collapse
|
14
|
Estupiñán M, Hernández I, Saitua E, Bilbao ME, Mendibil I, Ferrer J, Alonso-Sáez L. Novel Vibrio spp. Strains Producing Omega-3 Fatty Acids Isolated from Coastal Seawater. Mar Drugs 2020; 18:E99. [PMID: 32024040 PMCID: PMC7074563 DOI: 10.3390/md18020099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 12/26/2022] Open
Abstract
Omega-3 long-chain polyunsaturated fatty acids (LC-PUFAs), such as eicosapentaenoic acid (EPA) (20:5n-3) and docosahexaenoic acid (DHA) (22:6n-3), are considered essential for human health. Microorganisms are the primary producers of omega-3 fatty acids in marine ecosystems, representing a sustainable source of these lipids, as an alternative to the fish industry. Some marine bacteria can produce LC-PUFAs de novo via the Polyunsaturated Fatty Acid (Pfa) synthase/ Polyketide Synthase (PKS) pathway, which does not require desaturation and elongation of saturated fatty acids. Cultivation-independent surveys have revealed that the diversity of microorganisms harboring a molecular marker of the pfa gene cluster (i.e., pfaA-KS domain) is high and their potential distribution in marine systems is widespread, from surface seawater to sediments. However, the isolation of PUFA producers from marine waters has been typically restricted to deep or cold environments. Here, we report a phenotypic and genotypic screening for the identification of omega-3 fatty acid producers in free-living bacterial strains isolated from 5, 500, and 1000 m deep coastal seawater from the Bay of Biscay (Spain). We further measured EPA production in pelagic Vibrio sp. strains collected at the three different depths. Vibrio sp. EPA-producers and non-producers were simultaneously isolated from the same water samples and shared a high percentage of identity in their 16S rRNA genes, supporting the view that the pfa gene cluster can be horizontally transferred. Within a cluster of EPA-producers, we found intraspecific variation in the levels of EPA synthesis for isolates harboring different genetic variants of the pfaA-KS domain. The maximum production of EPA was found in a Vibrio sp. strain isolated from a 1000 m depth (average 4.29% ± 1.07 of total fatty acids at 10 °C, without any optimization of culturing conditions).
Collapse
Affiliation(s)
- Mónica Estupiñán
- AZTI, Marine Research Division, Txatxarramendi Irla s/n, 48395 Sukarrieta, Spain; (M.E.); (M.E.B.); (I.M.)
| | - Igor Hernández
- AZTI, Food Research Division, Astondo Bidea, Building 609, 48160 Derio, Spain; (I.H.); (E.S.); (J.F.)
| | - Eduardo Saitua
- AZTI, Food Research Division, Astondo Bidea, Building 609, 48160 Derio, Spain; (I.H.); (E.S.); (J.F.)
| | - M. Elisabete Bilbao
- AZTI, Marine Research Division, Txatxarramendi Irla s/n, 48395 Sukarrieta, Spain; (M.E.); (M.E.B.); (I.M.)
| | - Iñaki Mendibil
- AZTI, Marine Research Division, Txatxarramendi Irla s/n, 48395 Sukarrieta, Spain; (M.E.); (M.E.B.); (I.M.)
| | - Jorge Ferrer
- AZTI, Food Research Division, Astondo Bidea, Building 609, 48160 Derio, Spain; (I.H.); (E.S.); (J.F.)
| | - Laura Alonso-Sáez
- AZTI, Marine Research Division, Txatxarramendi Irla s/n, 48395 Sukarrieta, Spain; (M.E.); (M.E.B.); (I.M.)
| |
Collapse
|
15
|
Double-blind, randomized, multicenter phase 2 study of SC411 in children with sickle cell disease (SCOT trial). Blood Adv 2019; 2:1969-1979. [PMID: 30097463 DOI: 10.1182/bloodadvances.2018021444] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/12/2018] [Indexed: 01/21/2023] Open
Abstract
Blood cell membranes in sickle cell disease (SCD) have low docosahexaenoic acid (DHA). DHA treatment reduces sickle cell crisis (SCC) rate and ameliorates the inflammation, oxidative stress, and hypercoagulable state of SCD. SC411 is a novel DHA ethyl ester formulation with a proprietary delivery platform (Advanced Lipid Technology) that enhances DHA bioavailability. The SCOT trial investigated the effect of 3 different doses of SC411 on clinical and biochemical endpoints in 67 children with SCD (5-17 years old). Seventy-six percent of subjects were also receiving hydroxyurea. After 4 weeks of treatment with SC411 at 20, 36, and 60 mg DHA/kg per day or placebo a statistically significant (P < .001) mean percentage increase of blood cell membrane DHA and eicosapentaenoic acid was seen vs baseline: 109.0% (confidence interval [CI], 46.7-171.3), 163.8% (CI, 108.3-219.2), 170.8% (CI, 90.2-251.4), and 28.6% (CI, 250.1 to 107.3), respectively. After 8 weeks of treatment, statistically significant changes vs placebo were also observed in D-dimer (P = .025) and soluble E-selectin (P = .0219) in subjects exposed to 36 mg/kg. A significant increase in hemoglobin was observed against placebo in subjects receiving 20 mg DHA/kg per day (P = .039). SC411 significantly reduced electronic diary recorded SCC, analgesic use at home, and days absent from school because of sickle cell pain. The lower rate of clinical SCC observed in the pooled active groups vs placebo did not reach statistical significance (rate ratio, 0.47; 95% CI, 0.20-1.11; P = .07). All tested doses were safe and well tolerated. This trial was registered at www.clinicaltrials.gov as #NCT02973360.
Collapse
|
16
|
Gonçalves CF, Menegol T, Rech R. Biochemical composition of green microalgae Pseudoneochloris marina grown under different temperature and light conditions. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Psychrophilic lifestyles: mechanisms of adaptation and biotechnological tools. Appl Microbiol Biotechnol 2019; 103:2857-2871. [PMID: 30729286 DOI: 10.1007/s00253-019-09659-5] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/22/2022]
Abstract
Cold-adapted microorganisms inhabiting permanently low-temperature environments were initially just a biological curiosity but have emerged as rich sources of numerous valuable tools for application in a broad spectrum of innovative technologies. To overcome the multiple challenges inherent to life in their cold habitats, these microorganisms have developed a diverse array of highly sophisticated synergistic adaptations at all levels within their cells: from cell envelope and enzyme adaptation, to cryoprotectant and chaperone production, and novel metabolic capabilities. Basic research has provided valuable insights into how these microorganisms can thrive in their challenging habitat conditions and into the mechanisms of action of the various adaptive features employed, and such insights have served as a foundation for the knowledge-based development of numerous novel biotechnological tools. In this review, we describe the current knowledge of the adaptation strategies of cold-adapted microorganisms and the biotechnological perspectives and commercial tools emerging from this knowledge. Adaptive features and, where possible, applications, in relation to membrane fatty acids, membrane pigments, the cell wall peptidoglycan layer, the lipopolysaccharide component of the outer cell membrane, compatible solutes, antifreeze and ice-nucleating proteins, extracellular polymeric substances, biosurfactants, chaperones, storage materials such as polyhydroxyalkanoates and cyanophycins and metabolic adjustments are presented and discussed.
Collapse
|
18
|
González-Ravina C, Aguirre-Lipperheide M, Pinto F, Martín-Lozano D, Fernández-Sánchez M, Blasco V, Santamaría-López E, Candenas L. Effect of dietary supplementation with a highly pure and concentrated docosahexaenoic acid (DHA) supplement on human sperm function. Reprod Biol 2018; 18:282-288. [DOI: 10.1016/j.repbio.2018.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/29/2018] [Accepted: 06/16/2018] [Indexed: 10/28/2022]
|
19
|
Li Z, Meng T, Ling X, Li J, Zheng C, Shi Y, Chen Z, Li Z, Li Q, Lu Y, He N. Overexpression of Malonyl-CoA: ACP Transacylase in Schizochytrium sp. to Improve Polyunsaturated Fatty Acid Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5382-5391. [PMID: 29722541 DOI: 10.1021/acs.jafc.8b01026] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Polyunsaturated fatty acids (PUFAs) have been widely applied in the food and medical industry. In this study, malonyl-CoA: ACP transacylase (MAT) was overexpressed through homologous recombination to improve PUFA production in Schizochytrium. The results showed that the lipid and PUFA concentration were increased by 10.1 and 24.5% with MAT overexpression, respectively. Metabolomics analysis revealed that the intracellular tricarboxylic acid cycle was weakened and glucose absorption was accelerated in the engineered strain. In the mevalonate pathway, intracellular carotene content was decreased, and the carbon flux was then redirected toward PUFA synthesis. Furthermore, a glucose fed-batch fermentation was finally performed with the engineered Schizochytrium. The total lipid yield was further increased to 110.5 g/L, 39.6% higher than the wild strain. Docosahexaenoic acid and eicosapentaenoic acid yield were enhanced to 47.39 g/L and 1.65 g/L with an increase of 81.5 and 172.5%, respectively. This study provided an effective metabolic engineering strategy for industrial PUFA production.
Collapse
Affiliation(s)
- Zhipeng Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
- The Key Lab for Synthetic Biotechnology of Xiamen City , Xiamen University , Xiamen 361005 , P.R. China
| | - Tong Meng
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
- The Key Lab for Synthetic Biotechnology of Xiamen City , Xiamen University , Xiamen 361005 , P.R. China
| | - Xueping Ling
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
- The Key Lab for Synthetic Biotechnology of Xiamen City , Xiamen University , Xiamen 361005 , P.R. China
| | - Jun Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
- The Key Lab for Synthetic Biotechnology of Xiamen City , Xiamen University , Xiamen 361005 , P.R. China
| | - Chuqiang Zheng
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
- The Key Lab for Synthetic Biotechnology of Xiamen City , Xiamen University , Xiamen 361005 , P.R. China
| | - Yanyan Shi
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
- The Key Lab for Synthetic Biotechnology of Xiamen City , Xiamen University , Xiamen 361005 , P.R. China
| | - Zhen Chen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
- The Key Lab for Synthetic Biotechnology of Xiamen City , Xiamen University , Xiamen 361005 , P.R. China
| | - Zhenqi Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
- The Key Lab for Synthetic Biotechnology of Xiamen City , Xiamen University , Xiamen 361005 , P.R. China
| | - Qingbiao Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
- College of Food and Biological Engineering , Jimei University , Xiamen , P. R. China
| | - Yinghua Lu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
- The Key Lab for Synthetic Biotechnology of Xiamen City , Xiamen University , Xiamen 361005 , P.R. China
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
- The Key Lab for Synthetic Biotechnology of Xiamen City , Xiamen University , Xiamen 361005 , P.R. China
| |
Collapse
|
20
|
Polyunsaturated fatty acids in marine bacteria and strategies to enhance their production. Appl Microbiol Biotechnol 2018; 102:5811-5826. [PMID: 29749565 DOI: 10.1007/s00253-018-9063-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/26/2018] [Accepted: 04/30/2018] [Indexed: 10/16/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) play an important role in human diet. Despite the wide-ranging importance and benefits from heart health to brain functions, humans and mammals cannot synthesize PUFAs de novo. The primary sources of PUFA are fish and plants. Due to the increasing concerns associated with food security as well as issues of environmental contaminants in fish oil, there has been considerable interest in the production of polyunsaturated fatty acids from alternative resources which are more sustainable, safer, and economical. For instance, marine bacteria, particularly the genus of Shewanella, Photobacterium, Colwellia, Moritella, Psychromonas, Vibrio, and Alteromonas, are found to be one among the major microbial producers of polyunsaturated fatty acids. Recent developments in the area with a focus on the production of polyunsaturated fatty acids from marine bacteria as well as the metabolic engineering strategies for the improvement of PUFA production are discussed.
Collapse
|
21
|
Enhancement of Schizochytrium DHA synthesis by plasma mutagenesis aided with malonic acid and zeocin screening. Appl Microbiol Biotechnol 2018; 102:2351-2361. [DOI: 10.1007/s00253-018-8756-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/28/2017] [Accepted: 12/30/2017] [Indexed: 12/28/2022]
|
22
|
Allemann MN, Allen EE. Characterization and Application of Marine Microbial Omega-3 Polyunsaturated Fatty Acid Synthesis. Methods Enzymol 2018; 605:3-32. [DOI: 10.1016/bs.mie.2018.02.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
Tokunaga T, Watanabe B, Sato S, Kawamoto J, Kurihara T. Synthesis and Functional Assessment of a Novel Fatty Acid Probe, ω-Ethynyl Eicosapentaenoic Acid Analog, to Analyze the in Vivo Behavior of Eicosapentaenoic Acid. Bioconjug Chem 2017; 28:2077-2085. [PMID: 28682621 DOI: 10.1021/acs.bioconjchem.7b00235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Eicosapentaenoic acid (EPA) is an ω-3 polyunsaturated fatty acid that plays various beneficial roles in organisms from bacteria to humans. Although its beneficial physiological functions are well-recognized, a molecular probe that enables the monitoring of its in vivo behavior without abolishing its native functions has not yet been developed. Here, we designed and synthesized an ω-ethynyl EPA analog (eEPA) as a tool for analyzing the in vivo behavior and function of EPA. eEPA has an ω-ethynyl group tag in place of the ω-methyl group of EPA. An ethynyl group has a characteristic Raman signal and can be visualized by Raman scattering microscopy. Moreover, this group can specifically react in situ with azide compounds, such as those with fluorescent group, via click chemistry. In this study, we first synthesized eEPA efficiently based on the following well-known strategies. To introduce four C-C double bonds, a coupling reaction between terminal acetylene and propargylic halide or tosylate was employed, and then, by simultaneous and stereoselective partial hydrogenation with P-2 nickel, the triple bonds were converted to cis double bonds. One double bond and an ω-terminal C-C triple bond were introduced by Wittig reaction with a phosphonium salt harboring an ethynyl group. Then, we evaluated the in vivo function of the resulting probe by using an EPA-producing bacterium, Shewanella livingstonensis Ac10. This cold-adapted bacterium inducibly produces EPA at low temperatures, and the EPA-deficient mutant (ΔEPA) shows growth retardation and abnormal morphology at low temperatures. When eEPA was exogenously supplemented to ΔEPA, eEPA was incorporated into the membrane phospholipids as an acyl chain, and the amount of eEPA was about 5% of the total fatty acids in the membrane, which is comparable to the amount of EPA in the membrane of the parent strain. Notably, by supplementation with eEPA, the growth retardation and abnormal morphology of ΔEPA were almost completely suppressed. These results indicated that eEPA mimics EPA well and is useful for analyzing the in vivo behavior of EPA.
Collapse
Affiliation(s)
- Tomohisa Tokunaga
- Institute for Chemical Research, Kyoto University , Uji, Kyoto 611-0011, Japan
| | - Bunta Watanabe
- Institute for Chemical Research, Kyoto University , Uji, Kyoto 611-0011, Japan
| | - Sho Sato
- Institute for Chemical Research, Kyoto University , Uji, Kyoto 611-0011, Japan
| | - Jun Kawamoto
- Institute for Chemical Research, Kyoto University , Uji, Kyoto 611-0011, Japan
| | - Tatsuo Kurihara
- Institute for Chemical Research, Kyoto University , Uji, Kyoto 611-0011, Japan
| |
Collapse
|
24
|
Schüler LM, Schulze PS, Pereira H, Barreira L, León R, Varela J. Trends and strategies to enhance triacylglycerols and high-value compounds in microalgae. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.05.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Deng Y, Lee ELH, Chong K, Almsherqi ZA. Evaluation of radical scavenging system in amoeba Chaos carolinense during nutrient deprivation. Interface Focus 2017. [PMID: 28630667 DOI: 10.1098/rsfs.2016.0113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The frequent appearance of non-lamellar membrane arrangements such as cubic membranes (CMs) in cells under stressed or pathological conditions points to an intrinsic cellular response mechanism. CM represents highly curved, three-dimensional nano-periodic structures that correspond to mathematically well-defined triply periodic minimal surfaces. Specifically, cellular membrane may transform into CM organization in response to pathological, inflammatory and oxidative stress conditions. CM organization, thus, may provide an advantage to cope with various types of stress. The identification of inducible membrane systems, such as in the mitochondrial inner membranes to cubic morphology upon starvation, opens new avenues for understanding the molecular mechanisms of cellular responses to oxidative stress. In this study, we compared the cellular responses of starved and fed amoeba Chaos carolinense to oxidative stress. Food deprivation from C. carolinense induces a significant increase in prooxidants such as superoxide and hydrogen peroxide. Surprisingly, we observed a significant lower rate of biomolecular damage in starved cells (with higher free radicals generation) when compared with fed cells. Specifically, lipid and RNA damages were significantly less in starved cells compared with fed cells. This observation was not due to the upregulation of intracellular antioxidants, as starved amoeba show reduced antioxidant enzymatic activities; however, it could be attributed to CM formation. CM could uptake and retain short segments of nucleic acids (resembles cellular RNA) in vivo and in vitro. Previous results showed that nucleic acids retained within CM sustain a minimal oxidative damage in vitro upon exposure to high level of superoxide. We thus propose that CM may act as a 'protective' shelter to minimize the oxidation of biologically essential macromolecules such as RNA. In summary, we examined enzymatic antioxidant activities as well as oxidative damage biomarkers in starved amoeba C. carolinense in correlation with the potential role of CM as an optimal intracellular membrane organization for the protection of biological macromolecules against oxidative damage.
Collapse
Affiliation(s)
- Yuru Deng
- Institute of Biomaterials and Engineering, Wenzhou Medical University, Zhejiang 325035, People's Republic of China
| | - Edlyn Li-Hui Lee
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Republic of Singapore
| | - Ketpin Chong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Republic of Singapore
| | - Zakaria A Almsherqi
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Republic of Singapore
| |
Collapse
|
26
|
Ueno A, Shimizu S, Hashimoto M, Adachi T, Matsushita T, Okuyama H, Yoshida K. Effects of Aerobic Growth on the Fatty Acid and Hydrocarbon Compositions of Geobacter bemidjiensis Bem T. J Oleo Sci 2017; 66:93-101. [PMID: 27928141 DOI: 10.5650/jos.ess16122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Geobacter spp., regarded as strict anaerobes, have been reported to grow under aerobic conditions. To elucidate the role of fatty acids in aerobiosis of Geobacter spp., we studied the effect of aerobiosis on fatty acid composition and turnover in G. bemidjiensis BemT. G. bemidjiensis BemT was grown under the following different culture conditions: anaerobic culture for 4 days (type 1) and type 1 culture followed by 2-day anaerobic (type 2) or aerobic culture (anaerobic-to-aerobic shift; type 3). The mean cell weight of the type 3 culture was approximately 2.5-fold greater than that of type 1 and 2 cultures. The fatty acid methyl ester and hydrocarbon fraction contained hexadecanoic (16:0), 9-cis-hexadecenoic [16:1(9c)], tetradecanoic (14:0), tetradecenoic [14:1(7c)] acids, hentriacontanonaene, and hopanoids, but not long-chain polyunsaturated fatty acids. The type 3 culture contained higher levels of 14:0 and 14:1(7c) and lower levels of 16:0 and 16:1(9c) compared with type 1 and 2 cultures. The weight ratio of extracted lipid per dry cell was lower in the type 3 culture than in the type 1 and 2 cultures. We concluded that anaerobically-grown G. bemidjiensis BemT followed by aerobiosis were enhanced in growth, fatty acid turnover, and de novo fatty acid synthesis.
Collapse
Affiliation(s)
- Akio Ueno
- Horonobe Research Institute for the Subsurface Environment (H-RISE), NOASTEC
| | | | | | | | | | | | | |
Collapse
|
27
|
Yang KM, Cheng MC, Chen CW, Tseng CY, Lin LY, Chiang PY. Characterization of Volatile Compounds with HS-SPME from Oxidized n-3 PUFA Rich Oils via Rancimat Tests. J Oleo Sci 2017; 66:113-122. [DOI: 10.5650/jos.ess16157] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kai-Min Yang
- Department of Food Science and Biotechnology, National Chung Hsing University
| | - Ming-Ching Cheng
- Department of Health Food, Chung Chou University of Science and Technology
| | - Chih-Wei Chen
- Department of Health Food, Chung Chou University of Science and Technology
| | - Chin-Yin Tseng
- Department of Health Food, Chung Chou University of Science and Technology
| | - Li-Yun Lin
- Department of Food Science and Technology, Hungkuang University
| | - Po-Yuan Chiang
- Department of Food Science and Biotechnology, National Chung Hsing University
| |
Collapse
|
28
|
Yoshida K, Hashimoto M, Hori R, Adachi T, Okuyama H, Orikasa Y, Nagamine T, Shimizu S, Ueno A, Morita N. Bacterial Long-Chain Polyunsaturated Fatty Acids: Their Biosynthetic Genes, Functions, and Practical Use. Mar Drugs 2016; 14:E94. [PMID: 27187420 PMCID: PMC4882568 DOI: 10.3390/md14050094] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/23/2016] [Accepted: 04/29/2016] [Indexed: 02/06/2023] Open
Abstract
The nutritional and pharmaceutical values of long-chain polyunsaturated fatty acids (LC-PUFAs) such as arachidonic, eicosapentaenoic and docosahexaenoic acids have been well recognized. These LC-PUFAs are physiologically important compounds in bacteria and eukaryotes. Although little is known about the biosynthetic mechanisms and functions of LC-PUFAs in bacteria compared to those in higher organisms, a combination of genetic, bioinformatic, and molecular biological approaches to LC-PUFA-producing bacteria and some eukaryotes have revealed the notably diverse organization of the pfa genes encoding a polyunsaturated fatty acid synthase complex (PUFA synthase), the LC-PUFA biosynthetic processes, and tertiary structures of the domains of this enzyme. In bacteria, LC-PUFAs appear to take part in specific functions facilitating individual membrane proteins rather than in the adjustment of the physical fluidity of the whole cell membrane. Very long chain polyunsaturated hydrocarbons (LC-HCs) such as hentriacontanonaene are considered to be closely related to LC-PUFAs in their biosynthesis and function. The possible role of LC-HCs in strictly anaerobic bacteria under aerobic and anaerobic environments and the evolutionary relationships of anaerobic and aerobic bacteria carrying pfa-like genes are also discussed.
Collapse
Affiliation(s)
- Kiyohito Yoshida
- Laboratory of Ecological Genetics, Section of Environmental Biology, Faculty of Environmental Earth Science, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-0810, Japan.
| | - Mikako Hashimoto
- Course in Ecological Genetics, Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-0810, Japan.
| | - Ryuji Hori
- Technical Solution Center First Group, J-OIL MILLS, Inc., Chuo-ku, Tokyo 104-0044, Japan.
| | - Takumi Adachi
- Laboratory of Environmental Microbiology, Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-8589, Japan.
- Bioproduction Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Toyohira-ku, Sapporo, Hokkaido 062-8517, Japan.
| | - Hidetoshi Okuyama
- Laboratory of Environmental Molecular Biology, Section of Environmental Biology, Faculty of Environmental Earth Science, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-0810, Japan.
| | - Yoshitake Orikasa
- Department Food Science, Obihiro University Agriculture Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan.
| | - Tadashi Nagamine
- ROM Co. Ltd., Togashi Bld., Chuo-ku, Sapporo, Hokkaido 060-0062, Japan.
| | - Satoru Shimizu
- Horonobe Research Institute for the Subsurface Environment, Northern Advancement Centre for Science and Technology, 5-3, Sakae-machi, Horonobe, Teshio-gun, Hokkaido 098-3221, Japan.
| | - Akio Ueno
- Horonobe Research Institute for the Subsurface Environment, Northern Advancement Centre for Science and Technology, 5-3, Sakae-machi, Horonobe, Teshio-gun, Hokkaido 098-3221, Japan.
| | - Naoki Morita
- Laboratory of Environmental Microbiology, Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-8589, Japan.
- Bioproduction Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Toyohira-ku, Sapporo, Hokkaido 062-8517, Japan.
| |
Collapse
|
29
|
Beacham TA, Ali ST. Growth dependent silencing and resetting of DGA1 transgene in Nannochloropsis salina. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.01.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
30
|
Affiliation(s)
- Sudipta Chatterjee
- School of Chemical and Biomedical Engineering; Nanyang Technological University; 62 Nanyang Drive, N1.2 B1-14 Singapore 637459
| | - Zaher M. A. Judeh
- School of Chemical and Biomedical Engineering; Nanyang Technological University; 62 Nanyang Drive, N1.2 B1-14 Singapore 637459
| |
Collapse
|
31
|
Komaki H, Ichikawa N, Hosoyama A, Takahashi-Nakaguchi A, Matsuzawa T, Suzuki KI, Fujita N, Gonoi T. Genome based analysis of type-I polyketide synthase and nonribosomal peptide synthetase gene clusters in seven strains of five representative Nocardia species. BMC Genomics 2014; 15:323. [PMID: 24884595 PMCID: PMC4035055 DOI: 10.1186/1471-2164-15-323] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 04/15/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Actinobacteria of the genus Nocardia usually live in soil or water and play saprophytic roles, but they also opportunistically infect the respiratory system, skin, and other organs of humans and animals. Primarily because of the clinical importance of the strains, some Nocardia genomes have been sequenced, and genome sequences have accumulated. Genome sizes of Nocardia strains are similar to those of Streptomyces strains, the producers of most antibiotics. In the present work, we compared secondary metabolite biosynthesis gene clusters of type-I polyketide synthase (PKS-I) and nonribosomal peptide synthetase (NRPS) among genomes of representative Nocardia species/strains based on domain organization and amino acid sequence homology. RESULTS Draft genome sequences of Nocardia asteroides NBRC 15531(T), Nocardia otitidiscaviarum IFM 11049, Nocardia brasiliensis NBRC 14402(T), and N. brasiliensis IFM 10847 were read and compared with published complete genome sequences of Nocardia farcinica IFM 10152, Nocardia cyriacigeorgica GUH-2, and N. brasiliensis HUJEG-1. Genome sizes are as follows: N. farcinica, 6.0 Mb; N. cyriacigeorgica, 6.2 Mb; N. asteroides, 7.0 Mb; N. otitidiscaviarum, 7.8 Mb; and N. brasiliensis, 8.9 - 9.4 Mb. Predicted numbers of PKS-I, NRPS, and PKS-I/NRPS hybrid clusters ranged between 4-11, 7-13, and 1-6, respectively, depending on strains, and tended to increase with increasing genome size. Domain and module structures of representative or unique clusters are discussed in the text. CONCLUSION We conclude the following: 1) genomes of Nocardia strains carry as many PKS-I and NRPS gene clusters as those of Streptomyces strains, 2) the number of PKS-I and NRPS gene clusters in Nocardia strains varies substantially depending on species, and N. brasiliensis strains carry the largest numbers of clusters among the species studied, 3) the seven Nocardia strains studied in the present work have seven common PKS-I and/or NRPS clusters, some of whose products are yet to be studied, and 4) different N. brasiliensis strains have some different gene clusters of PKS-I/NRPS, although the rest of the clusters are common within the N. brasiliensis strains. Genome sequencing suggested that Nocardia strains are highly promising resources in the search of novel secondary metabolites.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tohru Gonoi
- Medical Mycology Research Center (MMRC), Chiba University, Chuo-ku, Chiba 260-8673, Japan.
| |
Collapse
|
32
|
Horta A, Pinteus S, Alves C, Fino N, Silva J, Fernandez S, Rodrigues A, Pedrosa R. Antioxidant and antimicrobial potential of the Bifurcaria bifurcata epiphytic bacteria. Mar Drugs 2014; 12:1676-89. [PMID: 24663118 PMCID: PMC3967231 DOI: 10.3390/md12031676] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 01/14/2014] [Accepted: 03/04/2014] [Indexed: 11/16/2022] Open
Abstract
Surface-associated marine bacteria are an interesting source of new secondary metabolites. The aim of this study was the isolation and identification of epiphytic bacteria from the marine brown alga, Bifurcaria bifurcata, and the evaluation of the antioxidant and antimicrobial activity of bacteria extracts. The identification of epiphytic bacteria was determined by 16S rRNA gene sequencing. Bacteria extracts were obtained with methanol and dichloromethane (1:1) extraction. The antioxidant activity of extracts was performed by quantification of total phenolic content (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and oxygen radical absorbance capacity (ORAC). Antimicrobial activities were evaluated against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Salmonella enteritidis, Staphylococcus aureus, Saccharomyces cerevisiae and Candida albicans. A total of 39 Bifurcaria bifurcata-associated bacteria were isolated and 33 were identified as Vibrio sp. (48.72%), Alteromonas sp. (12.82%), Shewanella sp. (12.26%), Serratia sp. (2.56%), Citricoccus sp. (2.56%), Cellulophaga sp. (2.56%), Ruegeria sp. (2.56%) and Staphylococcus sp. (2.56%). Six (15.38%) of the 39 bacteria Bifurcaria bifurcata-associated bacteria presented less than a 90% Basic Local Alignment Search Tool (BLAST) match, and some of those could be new. The highest antioxidant activity and antimicrobial activity (against B. subtilis) was exhibited by strain 16 (Shewanella sp.). Several strains also presented high antimicrobial activity against S. aureus, mainly belonging to Alteromonas sp. and Vibrio sp. There were no positive results against fungi and Gram-negative bacteria. Bifurcaria bifurcata epiphytic bacteria were revealed to be excellent sources of natural antioxidant and antimicrobial compounds.
Collapse
Affiliation(s)
- André Horta
- Marine Resources Research Group (GIRM), School of Tourism and Maritime Technology (ESTM), Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal.
| | - Susete Pinteus
- Marine Resources Research Group (GIRM), School of Tourism and Maritime Technology (ESTM), Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal.
| | - Celso Alves
- Marine Resources Research Group (GIRM), School of Tourism and Maritime Technology (ESTM), Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal.
| | - Nádia Fino
- Marine Resources Research Group (GIRM), School of Tourism and Maritime Technology (ESTM), Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal.
| | - Joana Silva
- Marine Resources Research Group (GIRM), School of Tourism and Maritime Technology (ESTM), Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal.
| | - Sara Fernandez
- Higher School of Agricultural Engineering (ETSEA), University of Lleida, E-25003 Lleida, Spain.
| | - Américo Rodrigues
- Marine Resources Research Group (GIRM), School of Tourism and Maritime Technology (ESTM), Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal.
| | - Rui Pedrosa
- Marine Resources Research Group (GIRM), School of Tourism and Maritime Technology (ESTM), Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal.
| |
Collapse
|
33
|
|
34
|
Ugalde-Benítez V, Rojo-Domínguez A, Jaramillo-Flores ME, Guerrero-Legarreta I. Effect of Sample Solubilized Aliquot Volume and Concentration on Hydroperoxide Detection in PUFA-Rich Fish Oil. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2013. [DOI: 10.1080/10942912.2012.660719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Behavioral and physiological changes during benthic-pelagic transition in the harmful alga, Heterosigma akashiwo: potential for rapid bloom formation. PLoS One 2013; 8:e76663. [PMID: 24124586 PMCID: PMC3790758 DOI: 10.1371/journal.pone.0076663] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 08/26/2013] [Indexed: 11/19/2022] Open
Abstract
Many species of harmful algae transition between a motile, vegetative stage in the water column and a non-motile, resting stage in the sediments. Physiological and behavioral traits expressed during benthic-pelagic transition potentially regulate the timing, location and persistence of blooms. The roles of key physiological and behavioral traits involved in resting cell emergence and bloom formation were examined in two geographically distinct strains of the harmful alga, Heterosigma akashiwo. Physiological measures of cell viability, division and population growth, and cell fatty acid content were made using flow cytometry and gas chromatography - mass spectrometry techniques as cells transitioned between the benthic resting stage and the vegetative pelagic stage. Video-based tracking was used to quantify cell-level swimming behaviors. Data show increased temperature and light triggered rapid emergence from the resting stage and initiated cell swimming. Algal strains varied in important physiological and behavioral traits, including survivorship during life-stage transitions, population growth rates and swimming velocities. Collectively, these traits function as "population growth strategies" that can influence bloom formation. Many resting cells regained the up-swimming capacity necessary to cross an environmentally relevant halocline and the ability to aggregate in near-surface waters within hours after vegetative growth supporting conditions were restored. Using a heuristic model, we illustrate how strain-specific population growth strategies can govern the timescales over which H. akashiwo blooms form. Our findings highlight the need for identification and quantification of strain-specific physiological and behavioral traits to improve mechanistic understanding of bloom formation and successful bloom prediction.
Collapse
|
36
|
Lønne GK, Gammelsaeter R, Haglerød C. Composition characterization and clinical efficacy study of a salmon egg extract. Int J Cosmet Sci 2013; 35:515-22. [PMID: 23738607 DOI: 10.1111/ics.12071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 06/01/2013] [Indexed: 04/30/2025]
Abstract
OBJECTIVE There is an increasing demand for scientifically documented over-the-counter products on the cosmetic market. Salmon eggs are rich in proteins, vitamins and minerals with anti-oxidative and anti-inflammatory properties, as well as free amino acids and lipids documented to be beneficial for skin. Of the fatty acids, several are commonly used as skin penetration enhancers. The unique combination of active substances led us to study whether an extract from salmon eggs could serve as an ingredient for skin care. METHODS We conducted a double-blinded, randomized clinical trial with 66 healthy female volunteers. Efficacy of the salmon egg extract was evaluated at concentrations of 1% and 5% in vehicle formulation, and responses after 7, 14, 28 and 56 days of treatment were compared with baseline. Composition of the extract was analysed to improve the understanding of the effects of the extract on skin. The salmon egg extract was safety-tested by repeat insult patch test. RESULTS Treatment of facial skin with the salmon egg extract significantly improved all parameters investigated, wrinkles, pigmentation, redness, brightness and hydration and led to global improvement of the facial skin. Efficacy of the extract was dose dependent and time dependent. There were no adverse reactions noted during the course of the repeat insult patch test, demonstrating that the extract causes neither skin irritation nor sensitization. Furthermore, chemical analyses of the extract revealed the composition of a vast number of active substances, including unsaturated fatty acids, vitamins, proteins, minerals, DNA and RNA. CONCLUSION The salmon egg extract serves as a skin care ingredient that significantly improves characteristics important for perception of skin ageing and health. The efficacy of the treatment is conceivably accounted for by the unique combination of numerous active substances present in the salmon egg extract.
Collapse
Affiliation(s)
- G K Lønne
- Regenics AS, PO Box 4536, Nydalen, 0404, Oslo, Norway
| | | | | |
Collapse
|
37
|
Adarme-Vega TC, Thomas-Hall SR, Schenk PM. Towards sustainable sources for omega-3 fatty acids production. Curr Opin Biotechnol 2013; 26:14-8. [PMID: 24607804 DOI: 10.1016/j.copbio.2013.08.003] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/01/2013] [Accepted: 08/05/2013] [Indexed: 11/18/2022]
Abstract
Omega-3 fatty acids eicosapentaenoic acid (EPA) and docohexaenoic acid (DHA), provide significant health benefits for brain function/development and cardiovascular conditions. However, most EPA and DHA for human consumption is sourced from small fatty fish caught in coastal waters and, with depleting global fish stocks, recent research has been directed towards more sustainable sources. These include aquaculture with plant-based feeds, krill, marine microalgae, microalgae-like protists and genetically-modified plants. To meet the increasing demand for EPA and DHA, further developments are needed towards land-based sources. In particular large-scale cultivation of microalgae and plants is likely to become a reality with expected reductions in production costs, yield increasese and the adequate addressing of genetically modified food acceptance issues.
Collapse
Affiliation(s)
- T Catalina Adarme-Vega
- Algae Biotechnology Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Skye R Thomas-Hall
- Algae Biotechnology Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Peer M Schenk
- Algae Biotechnology Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
38
|
Comprehensive and sensitive quantification of long-chain and very long-chain polyunsaturated fatty acids in small samples of human and mouse retina. J Chromatogr A 2013; 1307:191-200. [DOI: 10.1016/j.chroma.2013.07.103] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/30/2013] [Accepted: 07/30/2013] [Indexed: 11/18/2022]
|
39
|
Abd Elrazak A, Ward AC, Glassey J. Polyunsaturated fatty acid production by marine bacteria. Bioprocess Biosyst Eng 2013; 36:1641-52. [PMID: 23525832 DOI: 10.1007/s00449-013-0936-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 02/26/2013] [Indexed: 11/28/2022]
Abstract
Polyunsaturated fatty acids are important in maintaining human health. Limitations associated with current sources of ω-3 fatty acids and ω-6 fatty acids, from animal and plant sources, have led to increased interest in microbial production. Marine bacteria may provide a suitable alternative, although the isolation of production strains and the identification of operating conditions must be addressed before manufacturing processes become economically viable. Marine isolate 560 was identified as an eicosapentaenoic acid (EPA) producer via GC/MS. The isolate was initially identified as Vibrio cyclitrophicus by 16S rRNA sequencing. Statistically based experimental designs were applied to the optimisation of medium components and environmental factors for the production of EPA. A Plackett-Burman design was used to screen for the effect of temperature, pH, and media components. Subsequently, the concentrations of NaCl, yeast extract, and peptone, identified as significant factors, were optimised using a central composite design. The predicted optimal combination of media components for maximum EPA production (4.8 mg/g dry weight) was determined as 7.9 g/l peptone, 16.2 g/l NaCl, and 6.2 g/l yeast extract. On transfer of this process to bioreactor cultivation, where a range of pH and DO values were tested, the maximum amount of EPA produced increased to 7.5 mg/g dry weight and 10 % of the total fatty acid.
Collapse
Affiliation(s)
- Ahmed Abd Elrazak
- School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle Upon Tyne, UK,
| | | | | |
Collapse
|
40
|
Response surface methodology for optimising the culture conditions for eicosapentaenoic acid production by marine bacteria. J Ind Microbiol Biotechnol 2013; 40:477-87. [PMID: 23455698 DOI: 10.1007/s10295-013-1238-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/31/2013] [Indexed: 10/27/2022]
Abstract
Polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic acid (EPA), are increasingly attracting scientific attention owing to their significant health-promoting role in the human body. However, the human body lacks the ability to produce them in vivo. The limitations associated with the current sources of ω-3 fatty acids from animal and plant sources have led to increased interest in microbial production. Bacterial isolate 717 was identified as a potential high EPA producer. As an important step in the process development of the microbial PUFA production, the culture conditions at the bioreactor scale were optimised for the isolate 717 using a response surface methodology exploring the significant effect of temperature, pH and dissolved oxygen and the interaction between them on the EPA production. This optimisation strategy led to a significant increase in the amount of EPA produced by the isolate under investigation, where the amount of EPA increased from 9 mg/g biomass (33 mg/l representing 7.6 % of the total fatty acids) to 45 mg/g (350 mg/l representing 25 % of the total fatty acids). To avoid additional costs associated with extreme cooling at large scale, a temperature shock experiment was carried out reducing the overall cooling time from the whole cultivation process to 4 h only prior to harvest. The ability of the organism to produce EPA under the complete absence of oxygen was tested revealing that oxygen is not critically required for the biosynthesis of EPA but the production improved in the presence of oxygen. The stability of the produced oil and the complete absence of heavy metals in the bacterial biomass are considered as an additional benefit of bacterial EPA compared to other sources of PUFA. To our knowledge this is the first report of a bacterial isolate producing EPA with such high yields making the large-scale manufacture much more economically viable.
Collapse
|
41
|
de Carvalho CCCR, Caramujo MJ. Lipids of prokaryotic origin at the base of marine food webs. Mar Drugs 2012; 10:2698-2714. [PMID: 23342392 PMCID: PMC3528120 DOI: 10.3390/md10122698] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/14/2012] [Accepted: 11/22/2012] [Indexed: 11/16/2022] Open
Abstract
In particular niches of the marine environment, such as abyssal trenches, icy waters and hot vents, the base of the food web is composed of bacteria and archaea that have developed strategies to survive and thrive under the most extreme conditions. Some of these organisms are considered "extremophiles" and modulate the fatty acid composition of their phospholipids to maintain the adequate fluidity of the cellular membrane under cold/hot temperatures, elevated pressure, high/low salinity and pH. Bacterial cells are even able to produce polyunsaturated fatty acids, contrarily to what was considered until the 1990s, helping the regulation of the membrane fluidity triggered by temperature and pressure and providing protection from oxidative stress. In marine ecosystems, bacteria may either act as a sink of carbon, contribute to nutrient recycling to photo-autotrophs or bacterial organic matter may be transferred to other trophic links in aquatic food webs. The present work aims to provide a comprehensive review on lipid production in bacteria and archaea and to discuss how their lipids, of both heterotrophic and chemoautotrophic origin, contribute to marine food webs.
Collapse
Affiliation(s)
- Carla C. C. R. de Carvalho
- IBB-Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Technical University of Lisbon, Av. Rovisco Pais, Lisbon 1049-001, Portugal
| | - Maria José Caramujo
- Centre for Environmental Biology, Faculty of Sciences, University of Lisbon, Campo Grande C2, Lisbon 1749-016, Portugal;
| |
Collapse
|
42
|
Novel simplified and rapid method for screening and isolation of polyunsaturated Fatty acids producing marine bacteria. BIOTECHNOLOGY RESEARCH INTERNATIONAL 2012; 2012:542721. [PMID: 22934188 PMCID: PMC3426174 DOI: 10.1155/2012/542721] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 05/27/2012] [Accepted: 05/28/2012] [Indexed: 11/25/2022]
Abstract
Bacterial production of polyunsaturated fatty acids (PUFAs) is a potential biotechnological approach for production of valuable nutraceuticals. Reliable method for screening of number of strains within short period of time is great need. Here, we report a novel simplified method for screening and isolation of PUFA-producing bacteria by direct visualization using the H2O2-plate assay. The oxidative stability of PUFAs in growing bacteria towards added H2O2 is a distinguishing characteristic between the PUFAs producers (no zone of inhibition) and non-PUFAs producers (zone of inhibition) by direct visualization. The confirmation of assay results was performed by injecting fatty acid methyl esters (FAMEs) produced by selected marine bacteria to Gas Chromatography-Mass Spectrometry (GCMS). To date, this assay is the most effective, inexpensive, and specific method for bacteria producing PUFAs and shows drastically reduction in the number of samples thus saves the time, effort, and cost of screening and isolating strains of bacterial PUFAs producers.
Collapse
|
43
|
Hori R, Nishida T, Okuyama H. Hydrophilic and Hydrophobic Compounds Antithetically Affect the Growth of Eicosapentaenoic Acid-Synthesizing Escherichia coli Recombinants. Open Microbiol J 2011; 5:114-8. [PMID: 22114656 PMCID: PMC3219880 DOI: 10.2174/1874285801105010114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 08/08/2011] [Accepted: 08/18/2011] [Indexed: 11/22/2022] Open
Abstract
The growth of Escherichia coli DH5α recombinants producing eicosapentaenoic acid (EPA) (DH5αEPA+) and those not producing EPA (DH5αEPA–) was compared in the presence of hydrophilic or hydrophobic growth inhibitors. The minimal inhibitory concentrations of hydrophilic inhibitors such as reactive oxygen species and antibiotics were higher for DH5αEPA+ than for DH5αEPA–, and vice versa for hydrophobic inhibitors such as protonophores and radical generators. E. coli DH5α with higher levels of EPA became more resistant to ethanol. The cell surface hydrophobicity of DH5αEPA+ was higher than that of DH5αEPA–, suggesting that EPA may operate as a structural constituent in the cell membrane to affect the entry and efflux of hydrophilic and hydrophobic inhibitors.
Collapse
Affiliation(s)
- Ryuji Hori
- Course in Environmental Molecular Biology and Microbial Ecology, Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, Kita-ku, Sapporo 060-0810, Japan
| | | | | |
Collapse
|
44
|
Eicosapentaenoic acid plays a role in stabilizing dynamic membrane structure in the deep-sea piezophile Shewanella violacea: a study employing high-pressure time-resolved fluorescence anisotropy measurement. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:574-83. [PMID: 22037146 DOI: 10.1016/j.bbamem.2011.10.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 09/29/2011] [Accepted: 10/10/2011] [Indexed: 11/24/2022]
Abstract
Shewanella violacea DSS12 is a psychrophilic piezophile that optimally grows at 30MPa. It contains a substantial amount of eicosapentaenoic acid (EPA) in the membrane. Despite evidence linking increased fatty acid unsaturation and bacterial growth under high pressure, little is known of how the physicochemical properties of the membrane are modulated by unsaturated fatty acids in vivo. By means of the newly developed system performing time-resolved fluorescence anisotropy measurement under high pressure (HP-TRFAM), we demonstrate that the membrane of S. violacea is highly ordered at 0.1MPa and 10°C with the order parameter S of 0.9, and the rotational diffusion coefficient D(w) of 5.4μs(-1) for 1-[4-(trimethylamino)pheny]-6-phenyl-1,3,5-hexatriene in the membrane. Deletion of pfaA encoding the omega-3 polyunsaturated fatty acid synthase caused disorder of the membrane and enhanced the rotational motion of acyl chains, in concert with a 2-fold increase in the palmitoleic acid level. While the wild-type membrane was unperturbed over a wide range of pressures with respect to relatively small effects of pressure on S and D(w), the ΔpfaA membrane was disturbed judging from the degree of increased S and decreased D(w). These results suggest that EPA prevents the membrane from becoming hyperfluid and maintains membrane stability against significant changes in pressure. Our results counter the generally accepted concept that greater fluidity is a membrane characteristic of microorganisms that inhabit cold, high-pressure environments. We suggest that retaining a certain level of membrane physical properties under high pressure is more important than conferring membrane fluidity alone.
Collapse
|
45
|
Giles DK, Hankins JV, Guan Z, Trent MS. Remodelling of the Vibrio cholerae membrane by incorporation of exogenous fatty acids from host and aquatic environments. Mol Microbiol 2011; 79:716-28. [PMID: 21255114 PMCID: PMC3079547 DOI: 10.1111/j.1365-2958.2010.07476.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Gram-negative bacteria Vibrio cholerae poses significant public health concerns by causing an acute intestinal infection afflicting millions of people each year. V. cholerae motility, as well as virulence factor expression and outer membrane protein production, has been shown to be affected by bile. The current study examines the effects of bile on V. cholerae phospholipids. Bile exposure caused significant alterations to the phospholipid profile of V. cholerae but not of other enteric pathogens. These changes consisted of a quantitative increase and migratory difference in cardiolipin, decreases in phosphatidylglycerol and phosphatidylethanolamine, and the dramatic appearance of an unknown phospholipid determined to be lyso-phosphatidylethanolamine. Major components of bile were not responsible for the observed changes, but long-chain polyunsaturated fatty acids, which are minor components of bile, were shown to be incorporated into phospholipids of V. cholerae. Although the bile-induced phospholipid profile was independent of the V. cholerae virulence cascade, we identified another relevant environment in which V. cholerae assimilates unique fatty acids into its membrane phospholipids - marine sediment. Our results suggest that Vibrio species possess unique machinery conferring the ability to take up a wider range of exogenous fatty acids than other enteric bacteria.
Collapse
Affiliation(s)
- David K. Giles
- Section of Molecular Genetics and Microbiology, The University of Texas at Austin, Austin, TX 78712
| | - Jessica V. Hankins
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710
| | - M. Stephen Trent
- Section of Molecular Genetics and Microbiology, The University of Texas at Austin, Austin, TX 78712
- The Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
46
|
Abstract
Biomembranes are traditionally viewed as flat phospholipid-bilayer sheets delineating the cell boundaries and dividing the cell into multiple subcellular organelles with specialized functions. However, biological membranes may also fold up into three-dimensional nanoperiodic arrangements, termed cubic membranes. This type of geometry is mathematically well described and extensively studied in lipidic cubic phase systems. This chapter will (1) summarize similarities and dissimilarities between cubic membranes and cubic phases; (2) provide an update on the experimental data describing the role of lipids, proteins and electrostatic charges on the biogenesis of cubic membranes; and (3) discuss their potential function in intracellular macromolecular transport and as optical filters, as well as potential practical applications such as gene delivery vehicles.
Collapse
Affiliation(s)
- Zakaria A Almsherqi
- Cubic Membrane Laboratory, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Felix Margadant
- Cubic Membrane Laboratory, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yuru Deng
- Cubic Membrane Laboratory, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
47
|
Fahs CA, Yan H, Ranadive S, Rossow LM, Agiovlasitis S, Wilund KR, Fernhall B. The effect of acute fish-oil supplementation on endothelial function and arterial stiffness following a high-fat meal. Appl Physiol Nutr Metab 2010; 35:294-302. [PMID: 20555373 DOI: 10.1139/h10-020] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This study examined whether a commercially available fish-oil supplement offers protection from the acute effects of a high-fat meal (HFM) on endothelial function and arterial stiffness. An HFM causes acute impairments in endothelial function, whereas the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have a variety of cardioprotective effects. However, little is known about the efficacy of moderate fish-oil supplementation on the endothelial dysfunction induced by an HFM. Endothelial function (brachial artery flow-mediated dilation (FMD)), forearm blood flow (FBF), total hyperemia, central and peripheral blood pressure, and central artery stiffness were assessed in 20 healthy men (n = 10) and women (n = 10) at rest and 4 h after an HFM supplemented with either placebo or approximately 1 g EPA and DHA. Brachial artery FMD normalized for shear rate was significantly impaired (p = 0.033) following the HFM with placebo but remained unchanged compared with baseline following the HFM with the fish-oil supplement (p = 0.039; condition x time interaction). Resting FBF (p = 0.020) and total hyperemia (p = 0.014) were elevated following the HFM. All other vascular and hemodynamic measurements were unchanged in both trials. Commercially available fish-oil supplements taken with an HFM appear to preserve endothelial function following an HFM.
Collapse
Affiliation(s)
- Christopher A Fahs
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL 68121, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Nishida T, Hori R, Morita N, Okuyama H. Membrane eicosapentaenoic acid is involved in the hydrophobicity of bacterial cells and affects the entry of hydrophilic and hydrophobic compounds. FEMS Microbiol Lett 2010; 306:91-6. [PMID: 20370838 DOI: 10.1111/j.1574-6968.2010.01943.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Eicosapentaenoic acid (EPA)-producing Shewanella marinintestina IK-1 (IK-1) and its EPA-deficient mutant IK-1Delta8 (IK-1Delta8) were grown on microtitre plates at 20 degrees C in a nutrient medium that contained various types of growth inhibitors. The minimal inhibitory concentrations of hydrogen peroxide and tert-butyl hydroxyl peroxide were 100 microM and 1 mM, respectively, for IK-1 and 10 and 100 microM, respectively, for IK-1Delta8. IK-1 was much more resistant than IK-1Delta8 to the four water-soluble antibiotics (ampicillin sodium, kanamycin sulphate, streptomycin sulphate, and tetracycline hydrochloride) tested. In contrast, IK-1 was less resistant than IK-1Delta8 to two hydrophobic uncouplers: carbonyl cyanide m-chloro phenylhydrazone (CCCP) and N,N'-dicyclohexylcarbodiimide (DCCD). The hydrophobicity of the IK-1 and IK-1Delta8 cells grown at 20 degrees C was determined using the bacterial adhesion to hydrocarbon method. EPA-containing ( approximately 10% of total fatty acids) IK-1 cells were more hydrophobic than their counterparts with no EPA. These results suggest that the high hydrophobicity of IK-1 cells can be attributed to the presence of membrane EPA, which shields the entry of hydrophilic membrane-diffusible compounds, and that hydrophobic compounds such as CCCP and DCCD diffuse more effectively in the membranes of IK-1, where they can fulfil their inhibitory activities, than in the membranes of IK-1Delta8.
Collapse
|
49
|
Fan KW, Jiang Y, Ho LT, Chen F. Differentiation in fatty acid profiles of pigmented and nonpigmented Aurantiochytrium isolated from Hong Kong mangroves. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:6334-6341. [PMID: 19534536 DOI: 10.1021/jf901117z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Twenty-five thraustochytrids that belong to the genus Aurantiochytrium were isolated from subtropical mangroves in Hong Kong. Although they have similar morphological and physiological characteristics, they have different colors on a yeast extract-glucose agar plate, which were largely ignored before. On the basis of the differences in their colony color, 25 Aurantiochytrium strains were further classified into pigmented and nonpigmented subgroups and their fatty acid profiles were analyzed and compared. In general, nonpigmented Aurantiochytrium strains were found to contain biomass concentrations and growth yield coefficients statistically higher than pigmented Aurantiochytrium strains (p < 0.01). Among all isolates, a significantly higher content of polyunsaturated fatty acid (PUFA, 123.41-179.64 mg/g) was found in the nonpigmented Aurantiochytrium (p < 0.01), whereas the pigmented strains contained a higher amount of saturated fatty acids. Docosahexaenoic acid (DHA) was identified as the most abundant PUFA in both nonpigmented and pigmented Aurantiochytrium. According to the result of principal component analysis, the contents and composition of saturated fatty acids and PUFAs are the major varieties to distinguish these two Aurantiochytrium groups, especially the contents of C15:0, C13:0, C16:0, C17:0, and DHA. With a rapid growth rate and high DHA yield, the strain from the nonpigmented Aurantiochytrium group was regarded as the ideal candidate for PUFA production.
Collapse
Affiliation(s)
- King-Wai Fan
- School of Biological Sciences, The University of Hong Kong, Hong Kong
| | | | | | | |
Collapse
|
50
|
Orikasa Y, Tanaka M, Sugihara S, Hori R, Nishida T, Ueno A, Morita N, Yano Y, Yamamoto K, Shibahara A, Hayashi H, Yamada Y, Yamada A, Yu R, Watanabe K, Okuyama H. pfaB products determine the molecular species produced in bacterial polyunsaturated fatty acid biosynthesis. FEMS Microbiol Lett 2009; 295:170-6. [PMID: 19453514 DOI: 10.1111/j.1574-6968.2009.01582.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
When pDHA4, a vector carrying all five pfaA-pfaE genes responsible for docosahexaenoic acid (DHA; 22:6) biosynthesis in Moritella marina MP-1, was coexpressed in Escherichia coli with the individual pfaA-pfaD genes for eicosapentaenoic acid (EPA; 20:5) biosynthesis from Shewanella pneumatophori SCRC-2738, both polyunsaturated fatty acids were synthesized only in the recombinant carrying pfaB for EPA synthesis. Escherichia coli coexpressing a deleted construct comprising pfaA, pfaC, pfaD and pfaE for EPA and pfaB for DHA produced EPA and DHA. Both EPA and DHA were detected in bacteria that inherently contained pfa genes for DHA. These results suggest that PfaB is the key enzyme determining the final product in EPA or DHA biosynthesis.
Collapse
Affiliation(s)
- Yoshitake Orikasa
- Laboratory of Environmental Molecular Biology, Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|