1
|
Zhang W, Li L, Li T, Li X, Wang X, Yao Q, Lu X, Chen G, Liu W. SGBP-B-like bimodular cellulose-binding protein CHU_1279 is essential for cellulose utilization by Cytophaga hutchinsonii. Appl Environ Microbiol 2025; 91:e0247124. [PMID: 40130838 PMCID: PMC12016534 DOI: 10.1128/aem.02471-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 02/26/2025] [Indexed: 03/26/2025] Open
Abstract
The widespread cellulolytic specialist Cytophaga hutchinsonii belonging to the phylum Bacteroidetes adopted a unique cellulose utilization strategy that did not conform to the known cellulose-degrading paradigms involving free cellulases or cellulosomes. The strategy used by C. hutchinsonii still remains largely unclear. In this study, we showed that chu_1279 within the chu_1276-chu_1280 gene cluster, which has been previously shown to be important for cellulose utilization by C. hutchinsonii, encodes an outer membrane protein, and its elimination prohibited bacterial growth on cellulose. Structural prediction revealed that CHU_1279 is a surface glycan-binding protein B (SGBP-B)-like protein comprising two putative carbohydrate-binding module (CBM)-like domains. Further analyses verified that recombinant CHU_1279 displayed significant cellulose-binding protein, and its C-terminal domain is predominantly responsible for cellulose binding. Expression of the C-terminal domain but not the N-terminal domain restored cellulose utilization of ∆chu_1279. Moreover, site-directed mutagenesis analyses identified three aromatic residues important for cellulose binding of the recombinant CHU_1279 protein. The defective cellulose utilization of ∆chu_1279 cells otherwise could be recovered by CHU_1279 variants with significantly damaged cellulose-binding capability. Sequence analyses revealed that orthologs of CHU_1279 as well as the atypical polysaccharide utilization loci (PUL) constituted by the gene cluster chu_1276-chu_1280 are also present in two other cellulolytic Bacteroidetes bacteria, Cytophaga aurantiaca and Sporocytophaga myxococcoides, which are closely related to C. hutchinsonii. Our results contribute to unveiling the unique mechanism underlying the efficient cellulose utilization by C. hutchinsonii and similar cellulolytic bacteria.IMPORTANCEMost members of the phylum Bacteroidetes are highly competitive and efficient degraders of complex polysaccharides largely ascribed to their employment of a SusC-like system encoded by a polysaccharide utilization locus (PUL). However, characterization of PULs is limited to those responsible for utilization of (semi)soluble glycans. PULs involved in the utilization of cellulose, the most abundant renewable polymer, have not been identified and functionally characterized yet. We demonstrated that chu_1279 in the cellulolytic specialist C. hutchinsonii encodes an SGBP-B-like protein that is required for cellulose utilization, supporting that the gene cluster chu_1276-chu_1280 in C. hutchinsonii encodes an atypical PUL system dedicated to cellulose assimilation. Further analyses showed that this atypical PUL system is also present in two other cellulolytic Bacteroidetes bacteria. This study not only contributes to unveiling the unusual cellulose utilization strategy adopted by C. hutchinsonii and similar cellulolytic bacteria but also helps expand our understanding of atypical PULs for nutrient acquisition by cellulolytic bacteria.
Collapse
Affiliation(s)
- Weixin Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Lizhu Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Tengxin Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xin Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xia Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Qiang Yao
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, China
| | - Xuemei Lu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Guanjun Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
2
|
Rocha ST, Shah DD, Shrivastava A. Ecological, beneficial, and pathogenic functions of the Type 9 Secretion System. Microb Biotechnol 2024; 17:e14516. [PMID: 38924452 PMCID: PMC11205867 DOI: 10.1111/1751-7915.14516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The recently discovered Type 9 Secretion System (T9SS) is present in bacteria of the Fibrobacteres-Bacteroidetes-Chlorobi superphylum, which are key constituents of diverse microbiomes. T9SS is instrumental in the extracellular secretion of over 270,000 proteins, including peptidases, sugar hydrolases, metal ion-binding proteins, and metalloenzymes. These proteins are essential for the interaction of bacteria with their environment. This mini-review explores the extensive array of proteins secreted by the T9SS. It highlights the diverse functions of these proteins, emphasizing their roles in pathogenesis, bacterial interactions, host colonization, and the overall health of the ecosystems inhabited by T9SS-containing bacteria.
Collapse
Affiliation(s)
- Sofia T. Rocha
- Biodesign InstituteArizona State UniversityTempeArizonaUSA
- School of Life SciencesArizona State UniversityTempeArizonaUSA
| | - Dhara D. Shah
- Biodesign InstituteArizona State UniversityTempeArizonaUSA
- School of Mathematical and Natural SciencesArizona State UniversityGlendaleArizonaUSA
| | - Abhishek Shrivastava
- Biodesign InstituteArizona State UniversityTempeArizonaUSA
- School of Life SciencesArizona State UniversityTempeArizonaUSA
| |
Collapse
|
3
|
Glycosyltransferase-Related Protein GtrA Is Essential for Localization of Type IX Secretion System Cargo Protein Cellulase Cel9A and Affects Cellulose Degradation in Cytophaga hutchinsonii. Appl Environ Microbiol 2022; 88:e0107622. [PMID: 36197104 PMCID: PMC9599414 DOI: 10.1128/aem.01076-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Gram-negative bacterium Cytophaga hutchinsonii digests cellulose through a novel cellulose degradation mechanism. It possesses the lately characterized type IX secretion system (T9SS). We recently discovered that N-glycosylation of the C-terminal domain (CTD) of a hypothetical T9SS substrate protein in the periplasmic space of C. hutchinsonii affects protein secretion and localization. In this study, green fluorescent protein (GFP)-CTDCel9A recombinant protein was found with increased molecular weight in the periplasm of C. hutchinsonii. Site-directed mutagenesis studies on the CTD of cellulase Cel9A demonstrated that asparagine residue 900 in the D-X-N-X-S motif is important for the processing of the recombinant protein. We found that the glycosyltransferase-related protein GtrA (CHU_0012) located in the cytoplasm of C. hutchinsonii is essential for outer membrane localization of the recombinant protein. The deletion of gtrA decreased the abundance of the outer membrane proteins and affected cellulose degradation by C. hutchinsonii. This study provided a link between the glycosylation system and cellulose degradation in C. hutchinsonii. IMPORTANCE N-Glycosylation systems are generally limited to some pathogenic bacteria in prokaryotes. The disruption of the N-glycosylation pathway is related to adherence, invasion, colonization, and other phenotypic characteristics. We recently found that the cellulolytic bacterium Cytophaga hutchinsonii also has an N-glycosylation system. The cellulose degradation mechanism of C. hutchinsonii is novel and mysterious; cellulases and other proteins on the cell surface are involved in utilizing cellulose. In this study, we identified an asparagine residue in the C-terminal domain of cellulase Cel9A that is necessary for the processing of the T9SS cargo protein. Moreover, the glycosyltransferase-related protein GtrA is essential for the localization of the GFP-CTDCel9A recombinant protein. Deletion of gtrA affected cellulose degradation and the abundance of outer membrane proteins. This study enriched the understanding of the N-glycosylation system in C. hutchinsonii and provided a link between N-glycosylation and cellulose degradation, which also expanded the role of the N-glycosylation system in bacteria.
Collapse
|
4
|
Song W, Zhuang X, Tan Y, Qi Q, Lu X. The type IX secretion system: Insights into its function and connection to glycosylation in Cytophaga hutchinsonii. ENGINEERING MICROBIOLOGY 2022; 2:100038. [PMID: 39629027 PMCID: PMC11611037 DOI: 10.1016/j.engmic.2022.100038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 12/06/2024]
Abstract
The recently discovered type IX secretion system (T9SS) is limited to the Bacteroidetes phylum. Cytophaga hutchinsonii, a member of the Bacteroidetes phylum widely spread in soil, has complete orthologs of T9SS components and many T9SS substrates. C. hutchinsonii can efficiently degrade crystalline cellulose using a novel strategy, in which bacterial cells must be in direct contact with cellulose. It can rapidly glide over surfaces via unclear mechanisms. Studies have shown that T9SS plays an important role in cellulose degradation, gliding motility, and ion assimilation in C. hutchinsonii. As reported recently, T9SS substrates are N- or O-glycosylated at their C-terminal domains (CTDs), with N-glycosylation being related to the translocation and outer membrane anchoring of these proteins. These findings have deepened our understanding of T9SS in C. hutchinsonii. In this review, we focused on the research progress on diverse substrates and functions of T9SS in C. hutchinsonii and the glycosylation of its substrates. A model of T9SS functions and the glycosylation of its substrates was proposed.
Collapse
Affiliation(s)
- Wenxia Song
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xueke Zhuang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yahong Tan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xuemei Lu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
5
|
Al Makishah NH, Elfarash AE. Molecular characterization of cellulase genes in Pseudomonas stutzeri. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
6
|
Evaluation of Non-Biodegradable Organic Matter and Microbial Community’s Effects on Achievement of Partial Nitrification Coupled with ANAMMOX for Treating Low-Carbon Livestock Wastewater. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
After the anaerobic digestion of livestock manure, high concentrations of nutrients still remain. Treatment of livestock wastewater through partial nitrification coupled with anaerobic ammonium oxidation (ANAMMOX) could be a useful technology depending on the investigation of microorganism enrichment and partial nitrification coupled with achievement of the ANAMMOX process. The results show 78.4% and 64.7% nitrite accumulation efficiency was successfully obtained in an intermittent aeration sequencing batch reactor and a continuous aeration sequencing batch reactor, respectively, at a loading rate of 0.93 kg ammonium/(m3·d). The main reason for the high nitrite accumulation efficiency was the intermittent aeration strategy which generated a 20–30 min lag reaction for nitrite oxidation and promoted the growth of the dominant ammonium oxidation bacteria (Nitrosomonas). Non-biodegradable organic matter in the effluents of partial nitrification did not have obvious influence on ANAMMOX activity at low loading rates (118 ± 13 mg COD/L and 168 ± 9 mg COD/L), and up to 87.4% average nitrite removal rate was observed. However, with the influent COD concentration increasing to 242 ± 17 mg/L, the potential inhibition of ANAMMOX activity was exerted by non-biodegradable organic matter.
Collapse
|
7
|
Fan G, Song W, Guan Z, Zhang W, Lu X. Some novel features of strong promoters discovered in Cytophaga hutchinsonii. Appl Microbiol Biotechnol 2022; 106:2529-2540. [PMID: 35318522 DOI: 10.1007/s00253-022-11869-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/25/2022] [Accepted: 03/05/2022] [Indexed: 11/28/2022]
Abstract
Cytophaga hutchinsonii is an important Gram-negative bacterium belonging to the Bacteroides phylum that can efficiently degrade cellulose. But the promoter that mediates the initiation of gene transcription has been unknown for a long time. In this study, we determined the transcription start site (TSS) of C. hutchinsonii by 5' rapid amplification of cDNA ends (5'RACE). The promoter structure was first identified as TAAT and TATTG which are located -5 and -31 bp upstream of TSS, respectively. The function of -5 and -31 regions and the spacer length of the promoter Pchu_1284 were explored by site directed ligase-independent mutagenesis (SLIM). The results showed that the promoter activities were sharply decreased when the TTG motif was mutated into guanine (G) or cytosine (C). Interestingly, we found that the strong promoter was accompanied with many TTTG motifs which could enhance the promoter activities within certain copies. These characteristics were different from other promoters of Bacteriodes species. Furthermore, we carried out genome scanning analysis for C. hutchinsonii and another Bacteroides species by Perl6.0. The results indicated that the promoter structure of C. hutchinsonii possessed more unique features than other species. Also, the screened inducible promoter Pchu_2268 was used to overexpress protein CHU_2196 with a molecular weight of 120 kDa in C. hutchinsonii. The present study enriched the promoter structure of Bacteroidetes species and also provided a novel method for the highly expressed large protein (cellulase) in vivo, which was helpful to elucidate the unique cellulose degradation mechanism of C. hutchinsonii.Key points• The conserved structure of strong promoter of C. hutchinsonii was elucidated.• Two novel regulation motifs of TTTG and AATTATG in the promoter were discovered.• A new method for induced expression of cellulase in vivo was established.• Helpful for explained the unique cellulose degradation mechanism of C. hutchinsonii.
Collapse
Affiliation(s)
- Guoqing Fan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266200, China
| | - Wenxia Song
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266200, China
| | - Zhiwei Guan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266200, China.,School of Life Science, Qilu Normal University, Jinan, 250200, China
| | - Weican Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266200, China
| | - Xuemei Lu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266200, China.
| |
Collapse
|
8
|
Zhao D, Song W, Wang S, Zhang W, Zhao Y, Lu X. Identification of the Type IX Secretion System Component, PorV (CHU_3238), Involved in Secretion and Localization of Proteins in Cytophaga hutchinsonii. Front Microbiol 2021; 12:742673. [PMID: 34745042 PMCID: PMC8564354 DOI: 10.3389/fmicb.2021.742673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/22/2021] [Indexed: 11/29/2022] Open
Abstract
Cytophaga hutchinsonii can efficiently degrade cellulose and rapidly glide over surfaces, but the underlying mechanisms remain unclear. The type IX secretion system (T9SS) is involved in protein secretion and gliding motility, which is unique to the phylum Bacteroidetes. In this study, we deleted a homologous gene of PorV (chu_3238), a shuttle protein in the T9SS. The Δ3238 mutant caused cellulolytic and gliding defects, while the porV deletion mutants in other Bacteroidetes could glide normally. Adding Ca2+ and K+ improved growth in the PY6 medium, suggesting a potential role of chu_3238 in ion uptake. A proteomic analysis showed an increase in the number of extracellular proteins in the Δ3238 mutant and a decrease in the outer membrane proteins compared to the wild type (WT). Endoglucanase activity in the Δ3238 intact cells was reduced by approximately 70% compared to that of the WT. These results indicate that the secreted proteins could not attach to the cell surface but were released into the extracellular space in the Δ3238 mutant. However, the cargo proteins accumulated in the periplasm of other reported porV deletion mutants. In addition, the homologs of the translocon SprA and a Plug protein were pulled down by co-immunoprecipitation in the 3238-FLAG strain, which are involved in protein transport in the T9SS of Flavobacterium johnsoniae. The integrity of the lipopolysaccharide (LPS) was also affected in the Δ3238 mutant, which may be the reason for the sensitivity of the cell to toxic reagents. The functional diversity of CHU_3238 suggests its important role in the T9SS of C. hutchinsonii and highlights the functional differences of PorV in the T9SS among the Bacteroidetes.
Collapse
Affiliation(s)
- Dong Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenxia Song
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Sen Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Weican Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yue Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xuemei Lu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
9
|
A T9SS Substrate Involved in Crystalline Cellulose Degradation by Affecting Crucial Cellulose Binding Proteins in Cytophaga hutchinsonii. Appl Environ Microbiol 2021; 88:e0183721. [PMID: 34731049 DOI: 10.1128/aem.01837-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytophaga hutchinsonii is an abundant soil cellulolytic bacterium that uses a unique cellulose degradation mechanism different from those that involve free cellulases or cellulosomes. Though several proteins were identified to be important for cellulose degradation, the mechanism used by C. hutchinsonii to digest crystalline cellulose remains a mystery. In this study, chu_0922 was identified by insertional mutation and gene deletion as an important gene locus indispensable for crystalline cellulose utilization. Deletion of chu_0922 resulted in defect in crystalline cellulose utilization. The Δ0922 mutant completely lost the ability to grow on crystalline cellulose even with extended incubation, and selectively utilized the amorphous region of cellulose leading to the increased crystallinity. As a protein secreted by the type Ⅸ secretion system (T9SS), CHU_0922 was found to be located on the outer membrane, and the outer membrane localization of CHU_0922 relied on the T9SS. Comparative analysis of the outer membrane proteins revealed that the abundance of several cellulose binding proteins, including CHU_1276, CHU_1277, and CHU_1279, was reduced in the Δ0922 mutant. Further study showed that CHU_0922 is crucial for the full expression of the gene cluster containing chu_1276, chu_1277, chu_1278, chu_1279, and chu_1280 (cel9C), which is essential for cellulose utilization. Moreover, CHU_0922 is required for the cell surface localization of CHU_3220, a cellulose binding protein that is essential for crystalline cellulose utilization. Our study provides insights into the complex system that C. hutchinsonii uses to degrade crystalline cellulose. IMPORTANCE The widespread aerobic cellulolytic bacterium Cytophaga hutchinsonii, belonging to the phylum Bacteroidetes, utilizes a novel mechanism to degrade crystalline cellulose. No genes encoding proteins specialized in loosening or disruption the crystalline structure of cellulose were identified in the genome of C. hutchinsonii, except for chu_3220 and chu_1557. The crystalline cellulose degradation mechanism remains enigmatic. This study identified a new gene locus, chu_0922, encoding a typical T9SS substrate that is essential for crystalline cellulose degradation. Notably, CHU_0922 is crucial for the normal transcription of chu_1276, chu_1277, chu_1278, chu_1279, and chu_1280 (cel9C), which play important roles in the degradation of cellulose. Moreover, CHU_0922 participates in the cell surface localization of CHU_3220. These results demonstrated that CHU_0922 plays a key role in the crystalline cellulose degradation network. Our study will promote the uncovering of the novel cellulose utilization mechanism of C. hutchinsonii.
Collapse
|
10
|
Zainul Armir NA, Zulkifli A, Gunaseelan S, Palanivelu SD, Salleh KM, Che Othman MH, Zakaria S. Regenerated Cellulose Products for Agricultural and Their Potential: A Review. Polymers (Basel) 2021; 13:3586. [PMID: 34685346 PMCID: PMC8537589 DOI: 10.3390/polym13203586] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/17/2022] Open
Abstract
Cellulose is one of the most abundant natural polymers with excellent biocompatibility, non-toxicity, flexibility, and renewable source. Regenerated cellulose (RC) products result from the dissolution-regeneration process risen from solvent and anti-solvent reagents, respectively. The regeneration process changes the cellulose chain conformation from cellulose I to cellulose II, leads the structure to have more amorphous regions with improved crystallinity, and inclines towards extensive modification on the RC products such as hydrogel, aerogel, cryogel, xerogel, fibers, membrane, and thin film. Recently, RC products are accentuated to be used in the agriculture field to develop future sustainable agriculture as alternatives to conventional agriculture systems. However, different solvent types and production techniques have great influences on the end properties of RC products. Besides, the fabrication of RC products from solely RC lacks excellent mechanical characteristics. Thus, the flexibility of RC has allowed it to be homogenously blended with other materials to enhance the final products' properties. This review will summarize the properties and preparation of potential RC-based products that reflect its application to replace soil the plantation medium, govern the release of the fertilizer, provide protection on crops and act as biosensors.
Collapse
Affiliation(s)
- Nur Amira Zainul Armir
- Bioresources and Biorefinery Laboratory, Department of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.Z.A.); (A.Z.); (S.G.); (S.D.P.)
| | - Amalia Zulkifli
- Bioresources and Biorefinery Laboratory, Department of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.Z.A.); (A.Z.); (S.G.); (S.D.P.)
| | - Shamini Gunaseelan
- Bioresources and Biorefinery Laboratory, Department of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.Z.A.); (A.Z.); (S.G.); (S.D.P.)
| | - Swarna Devi Palanivelu
- Bioresources and Biorefinery Laboratory, Department of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.Z.A.); (A.Z.); (S.G.); (S.D.P.)
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Kushairi Mohd Salleh
- Bioresources and Biorefinery Laboratory, Department of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.Z.A.); (A.Z.); (S.G.); (S.D.P.)
| | - Muhamad Hafiz Che Othman
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Sarani Zakaria
- Bioresources and Biorefinery Laboratory, Department of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.Z.A.); (A.Z.); (S.G.); (S.D.P.)
| |
Collapse
|
11
|
N-glycosylation of a cargo protein C-terminal domain recognized by the type IX secretion system in Cytophaga hutchinsonii affects protein secretion and localization. Appl Environ Microbiol 2021; 88:e0160621. [PMID: 34644163 DOI: 10.1128/aem.01606-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytophaga hutchinsonii is a Gram-negative bacterium belonging to the phylum Bacteroidetes. It digests crystalline cellulose with an unknown mechanism, and possesses a type IX secretion system (T9SS) that can recognize the C-terminal domain (CTD) of the cargo protein as a signal. In this study, the functions of CTD in the secretion and localization of T9SS substrates in C. hutchinsonii were studied by fusing the green fluorescent protein (GFP) with CTD from CHU_2708. CTD is necessary for the secretion of GFP by C. hutchinsonii T9SS. The GFP-CTDCHU_2708 fusion protein was found to be glycosylated in the periplasm with a molecular mass about 5 kDa higher than that predicted from its sequence. The glycosylated protein was sensitive to peptide-N-glycosidase F which can hydrolyze N-linked oligosaccharides. Analyses of mutants obtained by site-directed mutagenesis of asparagine residues in the N-X-S/T motif of CTDCHU_2708 suggest that N-glycosylation occurred on the CTD. CTD N-glycosylation is important for the secretion and localization of GFP-CTD recombinant proteins in C. hutchinsonii. Glycosyltransferase encoding gene chu_3842, a homologous gene of Campylobacter jejuni pglA, was found to participate in the N-glycosylation of C. hutchinsonii. Deletion of chu_3842 affected cell motility, cellulose degradation, and cell resistance to some chemicals. Our study provided the evidence that CTD as the signal of T9SS was N-glycosylated in the periplasm of C. hutchinsonii. IMPORTANCE The bacterial N-glycosylation system has previously only been found in several species of Proteobacteria and Campylobacterota, and the role of N-linked glycans in bacteria is still not fully understood. C. hutchinsonii has a unique cell-contact cellulose degradation mechanism, and many cell surface proteins including cellulases are secreted by the T9SS. Here, we found that C. hutchinsonii, a member of the phylum Bacteroidetes, has an N-glycosylation system. Glycosyltransferase CHU_3842 was found to participate in the N-glycosylation of C. hutchinsonii proteins, and had effects on cell resistance to some chemicals, cell motility, and cellulose degradation. Moreover, N-glycosylation occurs on the CTD translocation signal of T9SS. The glycosylation of CTD apears to play an important role in affecting T9SS substrates transportation and localization. This study enriched our understanding of the widespread existence and multiple biological roles of N-glycosylation in bacteria.
Collapse
|
12
|
Gao L, Tan Y, Zhang W, Qi Q, Lu X. Cytophaga hutchinsonii SprA and SprT Are Essential Components of the Type IX Secretion System Required for Ca 2+ Acquisition, Cellulose Degradation, and Cell Motility. Front Microbiol 2021; 12:628555. [PMID: 33643255 PMCID: PMC7906972 DOI: 10.3389/fmicb.2021.628555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/21/2021] [Indexed: 11/13/2022] Open
Abstract
The type IX secretion system (T9SS) is a novel protein secretion system, which is found in and confined to the phylum Bacteroidetes. T9SS is involved in the secretion of virulence factors, cell surface adhesins, and complex biopolymer degrading enzymes to the cell surface or extracellular medium. Cytophaga hutchinsonii is a widely distributed bacterium, which is able to efficiently digest cellulose and rapidly glide along the solid surfaces. C. hutchinsonii has a full set of orthologs of T9SS components. However, the functions of most homologous proteins have not been verified. In C. hutchinsonii, CHU_0029 and CHU_2709 are similar in sequence to Flavobacterium johnsoniae T9SS components SprA and SprT, respectively. In this study, the single deletion mutants of chu_0029 (sprA) and chu_2709 (sprT) were obtained using a complex medium with the addition of Ca2+ and Mg2+. Single deletion of sprA or sprT resulted in defects in cellulose utilization and gliding motility. Moreover, the ΔsprA and ΔsprT mutants showed growth defects in Ca2+- and Mg2+-deficient media. The results of ICP-MS test showed that both the whole cell and intracellular concentrations of Ca2+ were dramatically reduced in the ΔsprA and ΔsprT mutants, indicating that SprA and SprT are both important for the assimilation of trace amount of Ca2+. While the assimilation of Mg2+ was not obviously influenced in the ΔsprA and ΔsprT mutants. Through proteomics analysis of the cell surface proteins of the wild type and mutants, we found that the ΔsprA and ΔsprT mutants were defective in secretion of the majority of T9SS substrates. Together, these results indicate that SprA and SprT are both essential components of C. hutchinsonii T9SS, which is required for protein secretion, Ca2+ acquisition, cellulose degradation, and gliding motility in C. hutchinsonii. Our study shed more light on the functions of SprA and SprT in T9SS, and further proved the link between the T9SS and Ca2+ uptake system.
Collapse
Affiliation(s)
- Lijuan Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yahong Tan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Weican Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xuemei Lu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
13
|
Wang S, Lan C, Wang Z, Wan W, Zhang H, Cui Q, Song X. Optimizing Eicosapentaenoic Acid Production by Grafting a Heterologous Polyketide Synthase Pathway in the Thraustochytrid Aurantiochytrium. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11253-11260. [PMID: 32829640 DOI: 10.1021/acs.jafc.0c04299] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Eicosapentaenoic acid (EPA) is an essential nutritional supplement for human health. The most prominent dietary source of EPA is fish oil, which is unsustainable because of the decline in fishery resources and serious environmental pollution. Alternatively, a heterologous polyketide synthase pathway for EPA biosynthesis was assembled in Thraustochytrid Aurantiochytrium. A 2A peptide-based facile assembly platform that can achieve multigene expression as a polycistron was first established. The platform was then applied to express the EPA biosynthetic gene cluster from Shewanella japonica in Aurantiochytrium. In the shake flask fermentation, the lipid and PUFA yields of the mutant were increased by 26.9 and 36.0%, respectively, and led to about 5-fold increase of the EPA yield. The final EPA titer reached 2.7 g/L in fed-batch fermentation. This study provides a novel metabolic engineering strategy to regulate the EPA ratio in microalgal oil for human nutritional supplementation.
Collapse
Affiliation(s)
- Sen Wang
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
| | - Chuanzeng Lan
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuojun Wang
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weijian Wan
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
| | - Huidan Zhang
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
| | - Xiaojin Song
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
| |
Collapse
|
14
|
Gavriilidou A, Gutleben J, Versluis D, Forgiarini F, van Passel MWJ, Ingham CJ, Smidt H, Sipkema D. Comparative genomic analysis of Flavobacteriaceae: insights into carbohydrate metabolism, gliding motility and secondary metabolite biosynthesis. BMC Genomics 2020; 21:569. [PMID: 32819293 PMCID: PMC7440613 DOI: 10.1186/s12864-020-06971-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 08/05/2020] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Members of the bacterial family Flavobacteriaceae are widely distributed in the marine environment and often found associated with algae, fish, detritus or marine invertebrates. Yet, little is known about the characteristics that drive their ubiquity in diverse ecological niches. Here, we provide an overview of functional traits common to taxonomically diverse members of the family Flavobacteriaceae from different environmental sources, with a focus on the Marine clade. We include seven newly sequenced marine sponge-derived strains that were also tested for gliding motility and antimicrobial activity. RESULTS Comparative genomics revealed that genome similarities appeared to be correlated to 16S rRNA gene- and genome-based phylogeny, while differences were mostly associated with nutrient acquisition, such as carbohydrate metabolism and gliding motility. The high frequency and diversity of genes encoding polymer-degrading enzymes, often arranged in polysaccharide utilization loci (PULs), support the capacity of marine Flavobacteriaceae to utilize diverse carbon sources. Homologs of gliding proteins were widespread among all studied Flavobacteriaceae in contrast to members of other phyla, highlighting the particular presence of this feature within the Bacteroidetes. Notably, not all bacteria predicted to glide formed spreading colonies. Genome mining uncovered a diverse secondary metabolite biosynthesis arsenal of Flavobacteriaceae with high prevalence of gene clusters encoding pathways for the production of antimicrobial, antioxidant and cytotoxic compounds. Antimicrobial activity tests showed, however, that the phenotype differed from the genome-derived predictions for the seven tested strains. CONCLUSIONS Our study elucidates the functional repertoire of marine Flavobacteriaceae and highlights the need to combine genomic and experimental data while using the appropriate stimuli to unlock their uncharted metabolic potential.
Collapse
Affiliation(s)
- Asimenia Gavriilidou
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Johanna Gutleben
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Dennis Versluis
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Francesca Forgiarini
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Mark W. J. van Passel
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Present address: Ministry of Health, Welfare and Sport, Parnassusplein 5, 2511 VX, The Hague, The Netherlands
| | | | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
15
|
Jiang N, Ma XD, Fu LH, Li CX, Feng JX, Duan CJ. Identification of a unique 1,4-β-D-glucan glucohydrolase of glycoside hydrolase family 9 from Cytophaga hutchinsonii. Appl Microbiol Biotechnol 2020; 104:7051-7066. [PMID: 32577801 DOI: 10.1007/s00253-020-10731-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 05/25/2020] [Accepted: 06/07/2020] [Indexed: 10/24/2022]
Abstract
Cytophaga hutchinsonii is an aerobic cellulolytic soil bacterium that rapidly digests crystalline cellulose. The predicted mechanism by which C. hutchinsonii digests cellulose differs from that of other known cellulolytic bacteria and fungi. The genome of C. hutchinsonii contains 22 glycoside hydrolase (GH) genes, which may be involved in cellulose degradation. One predicted GH with uncertain specificity, CHU_0961, is a modular enzyme with several modules. In this study, phylogenetic tree of the catalytic modules of the GH9 enzymes showed that CHU_0961 and its homologues formed a new group (group C) of GH9 enzymes. The catalytic module of CHU_0961 (CHU_0961B) was identified as a 1,4-β-D-glucan glucohydrolase (EC 3.2.1.74) that has unique properties compared with known GH9 cellulases. CHU_0961B showed highest activity against barley glucan, but low activity against other polysaccharides. Interestingly, CHU_0961B showed similar activity against ρ-nitrophenyl β-D-cellobioside (ρ-NPC) and ρ-nitrophenyl β-D-glucopyranoside. CHU_0961B released glucose from the nonreducing end of cello-oligosaccharides, ρ-NPC, and barley glucan in a nonprocessive exo-type mode. CHU_0961B also showed same hydrolysis mode against deacetyl-chitooligosaccharides as against cello-oligosaccharides. The kcat/Km values for CHU_0961B against cello-oligosaccharides increased as the degree of polymerization increased, and its kcat/Km for cellohexose was 750 times higher than that for cellobiose. Site-directed mutagenesis showed that threonine 321 in CHU_0961 played a role in hydrolyzing cellobiose to glucose. CHU_0961 may act synergistically with other cellulases to convert cellulose to glucose on the bacterial cell surface. The end product, glucose, may initiate cellulose degradation to provide nutrients for bacterial proliferation in the early stage of C. hutchinsonii growth. KEY POINTS: • CHU_0961 and its homologues formed a novel group (group C) of GH9 enzymes. • CHU_0961 was identified as a 1,4-β-d-glucan glucohydrolase with unique properties. • CHU_0961 may play an important role in the early stage of C. hutchinsonii growth.
Collapse
Affiliation(s)
- Nan Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, People's Republic of China
| | - Xiao-Dan Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, People's Republic of China
| | - Li-Hao Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, People's Republic of China
| | - Cheng-Xi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, People's Republic of China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, People's Republic of China
| | - Cheng-Jie Duan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, People's Republic of China.
| |
Collapse
|
16
|
Cytophaga hutchinsonii gldN, Encoding a Core Component of the Type IX Secretion System, Is Essential for Ion Assimilation, Cellulose Degradation, and Cell Motility. Appl Environ Microbiol 2020; 86:AEM.00242-20. [PMID: 32245758 DOI: 10.1128/aem.00242-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022] Open
Abstract
The type IX secretion system (T9SS), which is involved in pathogenicity, motility, and utilization of complex biopolymers, is a novel protein secretion system confined to the phylum Bacteroidetes Cytophaga hutchinsonii, a common cellulolytic soil bacterium belonging to the phylum Bacteroidetes, can rapidly digest crystalline cellulose using a novel strategy. In this study, the deletion mutant of chu_0174 (gldN) was obtained using PY6 medium supplemented with Stanier salts. GldN was verified to be a core component of C. hutchinsonii T9SS, and is indispensable for cellulose degradation, motility, and secretion of C-terminal domain (CTD) proteins. Notably, the ΔgldN mutant showed significant growth defects in Ca2+- and Mg2+-deficient media. These growth defects could be relieved by the addition of Ca2+ or Mg2+ The intracellular concentrations of Ca2+ and Mg2+ were markedly reduced in ΔgldN These results demonstrated that GldN is essential for the acquisition of trace amounts of Ca2+ and Mg2+, especially for Ca2+ Moreover, an outer membrane efflux protein, CHU_2807, which was decreased in abundance on the outer membrane of ΔgldN, is essential for normal growth in PY6 medium. The reduced intracellular accumulation of Ca2+ and Mg2+ in the Δ2807 mutant indicated that CHU_2807 is involved in the uptake of trace amounts of Ca2+ and Mg2+ This study provides insights into the role of T9SS in metal ion assimilation in C. hutchinsonii IMPORTANCE The widespread Gram-negative bacterium Cytophaga hutchinsonii uses a novel but poorly understood strategy to utilize crystalline cellulose. Recent studies showed that a T9SS exists in C. hutchinsonii and is involved in cellulose degradation and motility. However, the main components of the C. hutchinsonii T9SS and their functions are still unclear. Our study characterized the function of GldN, which is a core component of the T9SS. GldN was proved to play vital roles in cellulose degradation and cell motility. Notably, GldN is essential for the acquisition of Ca2+ and Mg2+ ions under Ca2+- and Mg2+-deficient conditions, revealing a link between the T9SS and the metal ion transport system. The outer membrane abundance of CHU_2807, which is essential for Ca2+ and Mg2+ uptake in PY6 medium, was affected by the deletion of GldN. This study demonstrated that the C. hutchinsonii T9SS has extensive functions, including cellulose degradation, motility, and metal ion assimilation, and contributes to further understanding of the function of the T9SS in the phylum Bacteroidetes.
Collapse
|
17
|
A Disulfide Oxidoreductase (CHU_1165) Is Essential for Cellulose Degradation by Affecting Outer Membrane Proteins in Cytophaga hutchinsonii. Appl Environ Microbiol 2020; 86:AEM.02789-19. [PMID: 32033954 DOI: 10.1128/aem.02789-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/19/2020] [Indexed: 11/20/2022] Open
Abstract
Cytophaga hutchinsonii cells can bind to the surface of insoluble cellulose and degrade it by utilizing a novel cell contact-dependent mechanism, in which the outer membrane proteins may play important roles. In this study, the deletion of a gene locus, chu_1165, which encodes a hypothetical protein with 32% identity with TlpB, a disulfide oxidoreductase in Flavobacterium psychrophilum, caused a complete cellulolytic defect in C. hutchinsonii Further study showed that cells of the Δ1165 strain could not bind to cellulose, and the levels of many outer membrane proteins that can bind to cellulose were significantly decreased. The N-terminal region of CHU_1165 is anchored to the cytoplasmic membrane with five predicted transmembrane helices, and the C-terminal region is predicted to stretch to the periplasm and has a similar thioredoxin (Trx) fold containing a Cys-X-X-Cys motif that is conserved in disulfide oxidoreductases. Recombinant CHU_1165His containing the Cys-X-X-Cys motif was able to reduce the disulfide bonds of insulin in vitro Site-directed mutation showed that the cysteines in the Cys-X-X-Cys motif and at residues 106 and 108 were indispensable for the function of CHU_1165. Western blotting showed that CHU_1165 was in an oxidized state in vivo, suggesting that it may act as an oxidase to catalyze disulfide bond formation. However, many of the decreased outer membrane proteins that were essential for cellulose degradation contained no or one cysteine, and mutation of the cysteine in these proteins did not affect cellulose degradation, indicating that CHU_1165 may have an indirect or pleiotropic effect on the function of these outer membrane proteins.IMPORTANCE Cytophaga hutchinsonii can rapidly digest cellulose in a contact-dependent manner, in which the outer membrane proteins may play important roles. In this study, a hypothetical protein, CHU_1165, characterized as a disulfide oxidoreductase, is essential for cellulose degradation by affecting the cellulose binding ability of many outer membrane proteins in C. hutchinsonii Disulfide oxidoreductases are involved in disulfide bond formation. However, our studies show that many of the decreased outer membrane proteins that were essential for cellulose degradation contained no or one cysteine, and mutation of cysteine did not affect their function, indicating that CHU_1165 did not facilitate the formation of a disulfide bond in these proteins. It may have an indirect or pleiotropic effect on the function of these outer membrane proteins. Our study provides an orientation for exploring the proteins that assist in the appropriate conformation of many outer membrane proteins essential for cellulose degradation, which is important for exploring the novel mechanism of cellulose degradation in C. hutchinsonii.
Collapse
|
18
|
Wang ZY, Wang RX, Zhou JS, Cheng JF, Li YH. An assessment of the genomics, comparative genomics and cellulose degradation potential of Mucilaginibacter polytrichastri strain RG4-7. BIORESOURCE TECHNOLOGY 2020; 297:122389. [PMID: 31757614 DOI: 10.1016/j.biortech.2019.122389] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/22/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
In this study, whole genome sequencing and comparative genomic analyses were performed for Mucilaginibacter polytrichastri RG4-7 and its carboxymethyl cellulose degradation potential was assessed. The results showed that the genome of strain RG4-7 was 5.84 Mb and contained 5019 predicted genes, in which a high proportion of strain-specific genes were related to carbohydrate metabolism. The carboxymethyl cellulose (CMC) degradation and cellulase activity tests revealed the strong cellulose degradation ability, CMCase and β-glucosidase activity in strain RG4-7. Real-time RT-PCR testing of most cellulose degradation related glycoside hydrolase (GH) families showed that GH9 (OKS85969), GH1 (OKS85832), GH3 (OKS89331 and OKS85615) were significantly up-regulated when strain RG4-7 was inoculated with CMC-Na, which suggested that GH9, GH1 and GH3 might determine its cellulose degradation ability. Certainly, further research need to be done to elucidate cellulose degradation mechanisms in strain RG4-7 in order to develop its industrial application value in lignocellulosic biomass degradation and waste management.
Collapse
Affiliation(s)
- Zi Yue Wang
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Rui Xue Wang
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jun Shi Zhou
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jian Fei Cheng
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yan Hong Li
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
19
|
Wang S, Zhao D, Zhang W, Lu X. Identification of a cell-surface protein involved in glucose assimilation and disruption of the crystalline region of cellulose by Cytophaga hutchinsonii. J Ind Microbiol Biotechnol 2019; 46:1479-1490. [PMID: 31321576 DOI: 10.1007/s10295-019-02212-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/01/2019] [Indexed: 12/31/2022]
Abstract
The crystalline region of cellulose is the main barrier to the utilization of crystalline cellulose. Cytophaga hutchinsonii actively digests the crystalline region of cellulose by an unknown mechanism. Transposon mutagenesis was done to identify a novel gene locus chu_1557, which is required for efficient disruption of the crystalline region of cellulose, and the absence of CHU_1557 resulted in decreased glucose assimilation efficiency. The defect of the mutant in the disruption of the crystalline region of cellulose was partially retained by additional glucose or pre-culturing the mutant in a low glucose concentration medium which could improve its glucose absorption efficiency. These results suggested that extracellular glucose has important roles in the disruption of crystalline cellulose by C. hutchinsonii. Further study showed that the expression of an outer membrane protein CHU_3732 was downregulated by the absence of CHU_1557 in a low glucose concentration medium. CHU_3732 was involved in uptake of glucose and its expression was induced by a low concentration of glucose. CHU_3732 was predicted to be a porin, so we inferred that it may work as a glucose transport channel in the outer membrane. Based on these results, we deduced that CHU_1557 played a role in the process of glucose assimilation and its disruption affected the expression of other proteins related to glucose transportation such as CHU_3732, and then affected the cell growth in a low glucose concentration medium and disruption of the crystalline region of cellulose.
Collapse
Affiliation(s)
- Sen Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266200, China
| | - Dong Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266200, China
| | - Weican Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266200, China
| | - Xuemei Lu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266200, China.
| |
Collapse
|
20
|
Lu X, Li C, Zhang S, Wang X, Zhang W, Wang S, Xia T. Enzymatic sugar production from elephant grass and reed straw through pretreatments and hydrolysis with addition of thioredoxin-His-S. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:297. [PMID: 31890025 PMCID: PMC6933627 DOI: 10.1186/s13068-019-1629-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/04/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND The bioconversion of lignocellulose to fermentable C5/C6-saccharides is composed of pretreatment and enzymatic hydrolysis. Lignin, as one of the main components, resists lignocellulose to be bio-digested. Alkali and organosolv treatments were reported to be able to delignify feedstocks and loose lignocellulose structure. In addition, the use of additives was an alternative way to block lignin and reduce the binding of cellulases to lignin during hydrolysis. However, the relatively high cost of these additives limits their commercial application. RESULTS This study explored the feasibility of using elephant grass (Pennisetum purpureum) and reed straw (Phragmites australis), both of which are important fibrous plants with high biomass, no-occupation of cultivated land, and soil phytoremediation, as feedstocks for bio-saccharification. Compared with typical agricultural residues, elephant grass and reed straw contained high contents of cellulose and hemicellulose. However, lignin droplets on the surface of elephant grass and the high lignin content in reed straw limited their hydrolysis performances. High hydrolysis yield was obtained for reed straw after organosolv and alkali pretreatments via increasing cellulose content and removing lignin. However, the hydrolysis of elephant grass was only enhanced by organosolv pretreatment. Further study showed that the addition of bovine serum albumin (BSA) or thioredoxin with His- and S-Tags (Trx-His-S) improved the hydrolysis of alkali-pretreated elephant grass. In particular, Trx-His-S was first used as an additive in lignocellulose saccharification. Its structural and catalytic properties were supposed to be beneficial for enzymatic hydrolysis. CONCLUSIONS Elephant grass and reed straw could be used as feedstocks for bioconversion. Organosolv and alkali pretreatments improved their enzymatic sugar production; however, the increase in hydrolysis yield of pretreated elephant grass was not as effective as that of reed straw. During the hydrolysis of alkali-pretreated elephant grass, Trx-His-S performed well as additive, and its structural and catalytic capability was beneficial for enzymatic hydrolysis.
Collapse
Affiliation(s)
- Xianqin Lu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Jinan, 250353 Shandong People’s Republic of China
- School of Bioengineering, Qilu University of Technology, Jinan, 250353 Shandong People’s Republic of China
- Advanced Research Institute for Multidisciplinary Science, Qilu University of Technology, Jinan, 250353 Shandong People’s Republic of China
| | - Can Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Jinan, 250353 Shandong People’s Republic of China
- School of Bioengineering, Qilu University of Technology, Jinan, 250353 Shandong People’s Republic of China
| | - Shengkui Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Jinan, 250353 Shandong People’s Republic of China
- School of Bioengineering, Qilu University of Technology, Jinan, 250353 Shandong People’s Republic of China
| | - Xiaohan Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Jinan, 250353 Shandong People’s Republic of China
- School of Bioengineering, Qilu University of Technology, Jinan, 250353 Shandong People’s Republic of China
| | - Wenqing Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Jinan, 250353 Shandong People’s Republic of China
- School of Bioengineering, Qilu University of Technology, Jinan, 250353 Shandong People’s Republic of China
| | - Shouguo Wang
- Advanced Research Institute for Multidisciplinary Science, Qilu University of Technology, Jinan, 250353 Shandong People’s Republic of China
| | - Tao Xia
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Jinan, 250353 Shandong People’s Republic of China
- School of Bioengineering, Qilu University of Technology, Jinan, 250353 Shandong People’s Republic of China
| |
Collapse
|
21
|
Proteomic Dissection of the Cellulolytic Machineries Used by Soil-Dwelling Bacteroidetes. mSystems 2018; 3:mSystems00240-18. [PMID: 30505945 PMCID: PMC6247017 DOI: 10.1128/msystems.00240-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/02/2018] [Indexed: 11/20/2022] Open
Abstract
Bacteria of the phylum Bacteroidetes are regarded as highly efficient carbohydrate metabolizers, but most species are limited to (semi)soluble glycans. The soil Bacteroidetes species Cytophaga hutchinsonii and Sporocytophaga myxococcoides have long been known as efficient cellulose metabolizers, but neither species conforms to known cellulolytic mechanisms. Both species require contact with their substrate but do not encode cellulosomal systems of cell surface-attached enzyme complexes or the polysaccharide utilization loci found in many other Bacteroidetes species. Here, we have fractionated the cellular compartments of each species from cultures growing on crystalline cellulose and pectin, respectively, and analyzed them using label-free quantitative proteomics as well as enzymatic activity assays. The combined results enabled us to highlight enzymes likely to be important for cellulose conversion and to infer their cellular localization. The combined proteomes represent a wide array of putative cellulolytic enzymes and indicate specific and yet highly redundant mechanisms for cellulose degradation. Of the putative endoglucanases, especially enzymes of hitherto-unstudied glycoside hydrolase family, 8 were abundant, indicating an overlooked important role during cellulose metabolism. Furthermore, both species generated a large number of abundant hypothetical proteins during cellulose conversion, providing a treasure trove of targets for future enzymology studies. IMPORTANCE Cellulose is the most abundant renewable polymer on earth, but its recalcitrance limits highly efficient conversion methods for energy-related and material applications. Though microbial cellulose conversion has been studied for decades, recent advances showcased that large knowledge gaps still exist. Bacteria of the phylum Bacteroidetes are regarded as highly efficient carbohydrate metabolizers, but most species are limited to (semi)soluble glycans. A few species, including the soil bacteria C. hutchinsonii and S. myxococcoides, are regarded as cellulose specialists, but their cellulolytic mechanisms are not understood, as they do not conform to the current models for enzymatic cellulose turnover. By unraveling the proteome setups of these two bacteria during growth on both crystalline cellulose and pectin, we have taken a significant step forward in understanding their idiosyncratic mode of cellulose conversion. This report provides a plethora of new enzyme targets for improved biomass conversion.
Collapse
|
22
|
Guan Z, Wang Y, Gao L, Zhang W, Lu X. Effects of the histone-like protein HU on cellulose degradation and biofilm formation of Cytophaga hutchinsonii. Appl Microbiol Biotechnol 2018; 102:6593-6611. [PMID: 29876607 DOI: 10.1007/s00253-018-9071-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/26/2018] [Accepted: 04/29/2018] [Indexed: 01/23/2023]
Abstract
Cytophaga hutchinsonii, belonging to Bacteroidetes, is speculated to use a novel cell-contact mode to digest cellulose. In this study, we identified a histone-like protein HU, CHU_2750, in C. hutchinsonii, whose transcription could be induced by crystalline but not amorphous cellulose. We constructed a CHU_2750-deleted mutant and expressed CHU_2750 in Escherichia coli to study the gene's functions. Our results showed that although the deletion of CHU_2750 was not lethal to C. hutchinsonii, the mutant displayed an abnormal filamentous morphology, loose nucleoid, and obvious defects in the degradation of crystalline cellulose and cell motility. Further study indicated that the mutant displayed significantly decreased cell surface and intracellular endoglucanase activities but with β-glucosidase activities similar to the wild-type strain. Analyses by real-time quantitative PCR revealed that the transcription levels of many genes involved in cellulose degradation and/or cell motility were significantly downregulated in the mutant. In addition, we found that CHU_2750 was important for biofilm formation of C. hutchinsonii. The main extracellular components of the biofilm were analyzed, and the results showed that the mutant yielded significantly less exopolysaccharide but more extracellular DNA and protein than the wild-type strain. Collectively, our findings demonstrated that CHU_2750 is important for cellulose degradation, cell motility, and biofilm formation of C. hutchinsonii by modulating transcription of certain related genes, and it is the first identified transcriptional regulator in these processes of C. hutchinsonii. Our study shed more light on the mechanisms of cellulose degradation, cell motility, and biofilm formation by C. hutchinsonii.
Collapse
Affiliation(s)
- Zhiwei Guan
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China.,School of Life Science, Qilu Normal University, Jinan, 250200, China
| | - Ying Wang
- Central Laboratory, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, 223300, China
| | - Lijuan Gao
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China
| | - Weican Zhang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China
| | - Xuemei Lu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China.
| |
Collapse
|
23
|
Wang X, Wang Z, Bai X, Zhao Y, Zhang W, Lu X. Deletion of a Gene Encoding a Putative Peptidoglycan-Associated Lipoprotein Prevents Degradation of the Crystalline Region of Cellulose in Cytophaga hutchinsonii. Front Microbiol 2018; 9:632. [PMID: 29666619 PMCID: PMC5891637 DOI: 10.3389/fmicb.2018.00632] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/19/2018] [Indexed: 01/04/2023] Open
Abstract
Cytophaga hutchinsonii is a gliding Gram-negative bacterium in the phylum Bacteroidetes with the capability to digest crystalline cellulose rapidly, but the mechanism is unclear. In this study, deletion of chu_0125, encoding a homolog of the peptidoglycan-associated lipoprotein (Pal), was determined to prevent degradation of the crystalline region of cellulose. We found that the chu_0125 deletion mutant grew normally in regenerated amorphous cellulose medium but displayed defective growth in crystalline cellulose medium and increased the degree of crystallinity of Avicel. The endoglucanase and β-glucosidase activities on the cell surface were reduced by 60 and 30% without chu_0125, respectively. Moreover, compared with the wild type, the chu_0125 deletion mutant was found to be more sensitive to some harmful compounds and to release sixfold more outer membrane vesicles (OMVs) whose protein varieties were dramatically increased. These results indicated that CHU_0125 played a critical role in maintaining the integrity of the outer membrane. Further study showed that the amounts of some outer membrane proteins were remarkably decreased in the chu_0125 deletion mutant. Western blotting revealed that CHU_3220, the only reported outer membrane protein that was necessary and specialized for degradation of the crystalline region of cellulose, was largely leaked from the outer membrane and packaged into OMVs. We concluded that the deletion of chu_0125 affected the integrity of outer membrane and thus influenced the localization of some outer membrane proteins including CHU_3220. This might be the reason why deletion of chu_0125 prevented degradation of the crystalline region of cellulose.
Collapse
Affiliation(s)
- Xifeng Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Zhiquan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Xinfeng Bai
- Key Laboratory for Biosensors of Shandong Province, Biology Institute of Shandong Academy of Sciences, Jinan, China
| | - Yue Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Weican Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Xuemei Lu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| |
Collapse
|
24
|
The unusual cellulose utilization system of the aerobic soil bacterium Cytophaga hutchinsonii. Appl Microbiol Biotechnol 2017; 101:7113-7127. [PMID: 28849247 DOI: 10.1007/s00253-017-8467-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 08/05/2017] [Indexed: 10/19/2022]
Abstract
Cellulolytic microorganisms play important roles in global carbon cycling and have evolved diverse strategies to digest cellulose. Some are 'generous,' releasing soluble sugars from cellulose extracellularly to feed both themselves and their neighbors. The gliding soil bacterium Cytophaga hutchinsonii exhibits a more 'selfish' strategy. It digests crystalline cellulose using cell-associated cellulases and releases little soluble sugar outside of the cell. The mechanism of C. hutchinsonii cellulose utilization is still poorly understood. In this review, we discuss novel aspects of the C. hutchinsonii cellulolytic system. Recently developed genetic manipulation tools allowed the identification of proteins involved in C. hutchinsonii cellulose utilization. These include periplasmic and cell-surface endoglucanases and novel cellulose-binding proteins. The recently discovered type IX secretion system is needed for cellulose utilization and appears to deliver some of the cellulolytic enzymes and other proteins to the cell surface. The requirement for periplasmic endoglucanases for cellulose utilization is unusual and suggests that cello-oligomers must be imported across the outer membrane before being further digested. Cellobiohydrolases or other predicted processive cellulases that play important roles in many other cellulolytic bacteria appear to be absent in C. hutchinsonii. Cells of C. hutchinsonii attach to and glide along cellulose fibers, which may allow them to find sites most amenable to attack. A model of C. hutchinsonii cellulose utilization summarizing recent progress is proposed.
Collapse
|
25
|
Veith PD, Glew MD, Gorasia DG, Reynolds EC. Type IX secretion: the generation of bacterial cell surface coatings involved in virulence, gliding motility and the degradation of complex biopolymers. Mol Microbiol 2017; 106:35-53. [DOI: 10.1111/mmi.13752] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Paul D. Veith
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute; The University of Melbourne; Melbourne Australia
| | - Michelle D. Glew
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute; The University of Melbourne; Melbourne Australia
| | - Dhana G. Gorasia
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute; The University of Melbourne; Melbourne Australia
| | - Eric C. Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute; The University of Melbourne; Melbourne Australia
| |
Collapse
|