1
|
Yuan S, Leng P, Feng Y, Jin F, Zhang H, Zhang C, Huang Y, Shan Z, Yang Z, Hao Q, Chen S, Chen L, Cao D, Guo W, Yang H, Chen H, Zhou X. Comparative genomic and transcriptomic analyses provide new insight into symbiotic host specificity. iScience 2024; 27:110207. [PMID: 38984200 PMCID: PMC11231455 DOI: 10.1016/j.isci.2024.110207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/03/2024] [Accepted: 06/04/2024] [Indexed: 07/11/2024] Open
Abstract
Host specificity plays important roles in expanding the host range of rhizobia, while the genetic information responsible for host specificity remains largely unexplored. In this report, the roots of four symbiotic systems with notable different symbiotic phenotypes and the control were studied at four different post-inoculation time points by RNA sequencning (RNA-seq). The differentially expressed genes (DEGs) were divided into "found only in soybean or Lotus," "only expressed in soybean or Lotus," and "expressed in both hosts" according to the comparative genomic analysis. The distributions of enriched function ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways vary significantly in different symbiotic systems. Host specific genes account for the majority of the DEGs involved in response to stimulus, associated with plant-pathogen interaction pathways, and encoding resistance (R) proteins, the symbiotic nitrogen fixation (SNF) proteins and the target proteins in the SNF-related modules. Our findings provided molecular candidates for better understanding the mechanisms of symbiotic host-specificity.
Collapse
Affiliation(s)
- Songli Yuan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Piao Leng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yong Feng
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Fuxiao Jin
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Hui Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Chanjuan Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yi Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Zhihui Shan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Zhonglu Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Qingnan Hao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Shuilian Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Limiao Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Dong Cao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Wei Guo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Hongli Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Haifeng Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Xinan Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| |
Collapse
|
2
|
Khambani LS, Hassen AI, Rumbold K. Characterization of rhizobia for beneficial traits that promote nodulation in legumes under abiotically stressed conditions. Lett Appl Microbiol 2023; 76:ovad106. [PMID: 37682534 DOI: 10.1093/lambio/ovad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 08/26/2023] [Accepted: 09/06/2023] [Indexed: 09/09/2023]
Abstract
The growing interest in using rhizobia as inoculants in sustainable agricultural systems has prompted the screening of rhizobia species for beneficial traits that enhance nodulation and nitrogen fixation under abiotic stressed conditions. This study reports phenotypic and phylogenetic characterization of rhizobia strains previously isolated from the root nodules of several indigenous and exotic legumes growing in South Africa and other countries. The Rhizobia strains were screened for their ability to tolerate various abiotic stresses (temperature 16, 28, and 36 °C; acidity/alkalinity pH 5, 7, and 9; heavy metals 50, 100, and 150 mM AlCl3.6H2O; and salinity 50, 100, and 150 mM NaCl). Phylogenetic characterization of the isolates was determined using multilocus sequence analysis of the 16S rRNA, recA, acdS, exoR, nodA, and nodC genes. The analysis indicated that the isolates are phylogenetically related to Sinorhizobium, Bradyrhizobium, Rhizobium, Mesorhizobium, and Aminobacter genera and exhibited significant variations in their tolerance to abiotic stresses. Amid the increasing threats of the global stresses, these current results provide baseline information in the selection of rhizobia for use as inoculants under extreme temperatures, acidity/alkalinity, and salinity stress conditions in South Africa.
Collapse
Affiliation(s)
- Langutani Sanger Khambani
- Agricultural Research Council-Plant Health and Protection, P. bag X134, Queenswood 0121 Pretoria, South Africa
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Jan Smuts Avenue, Braamfontein 2000, South Africa
| | - Ahmed Idris Hassen
- Agricultural Research Council-Plant Health and Protection, P. bag X134, Queenswood 0121 Pretoria, South Africa
- Department of Plant and Soil Sciences, Faculty of Science, Engineering and Agriculture, University of Venda, P. bag 5050, Thohoyandou 0950 Limpopo, South Africa
| | - Karl Rumbold
- Department of Applied Life Sciences, FH Campus Wien, University of Applied Sciences, Favoritenstrasse 222, 1100 Vienna, Austria
| |
Collapse
|
3
|
Baymiev AK, Akimova ES, Koryakov IS, Vladimirova AA, Baymiev AK. The Composition of Lotus corniculatus Root Nodule Bacteria Depending on the Host Plant Vegetation Stage. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722601154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
4
|
Ferraz Helene LC, Klepa MS, Hungria M. New Insights into the Taxonomy of Bacteria in the Genomic Era and a Case Study with Rhizobia. Int J Microbiol 2022; 2022:4623713. [PMID: 35637770 PMCID: PMC9148247 DOI: 10.1155/2022/4623713] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022] Open
Abstract
Since early studies, the history of prokaryotes taxonomy has dealt with many changes driven by the development of new and more robust technologies. As a result, the number of new taxa descriptions is exponentially increasing, while an increasing number of others has been subject of reclassification, demanding from the taxonomists more effort to maintain an organized hierarchical system. However, expectations are that the taxonomy of prokaryotes will acquire a more stable status with the genomic era. Other analyses may continue to be necessary to determine microbial features, but the use of genomic data might be sufficient to provide reliable taxa delineation, helping taxonomy to reach the goal of correct classification and identification. Here we describe the evolution of prokaryotes' taxonomy until the genomic era, emphasizing bacteria and taking as an example the history of rhizobia taxonomy. This example was chosen because of the importance of the symbiotic nitrogen fixation of legumes with rhizobia to the nitrogen input to both natural ecosystems and agricultural crops. This case study reports the technological advances and the methodologies used to classify and identify bacterial species and indicates the actual rules required for an accurate description of new taxa.
Collapse
Affiliation(s)
- Luisa Caroline Ferraz Helene
- Embrapa Soja, CP 4006, 86085-981 Londrina, PR, Brazil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001 Brasília, DF, Brazil
| | - Milena Serenato Klepa
- Embrapa Soja, CP 4006, 86085-981 Londrina, PR, Brazil
- Department of Microbiology, Universidade Estadual de Londrina, CP 10011, 86057-970 Londrina, PR, Brazil
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes, 70040-020 Brasília, DF, Brazil
| | - Mariangela Hungria
- Embrapa Soja, CP 4006, 86085-981 Londrina, PR, Brazil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001 Brasília, DF, Brazil
- Department of Microbiology, Universidade Estadual de Londrina, CP 10011, 86057-970 Londrina, PR, Brazil
| |
Collapse
|
5
|
The leguminous trees Vachellia seyal (Del.) and Prosopis juliflora (Swartz) DC and their association with rhizobial strains from the root-influence zone of the grass Sporobolus robustus Kunth. Symbiosis 2021. [DOI: 10.1007/s13199-021-00763-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
6
|
Li R, Feng Y, Chen H, Zhang C, Huang Y, Chen L, Hao Q, Cao D, Yuan S, Zhou X. Whole-Genome Sequencing of Bradyrhizobium diazoefficiens 113-2 and Comparative Genomic Analysis Provide Molecular Insights Into Species Specificity and Host Specificity. Front Microbiol 2020; 11:576800. [PMID: 33329441 PMCID: PMC7709874 DOI: 10.3389/fmicb.2020.576800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/20/2020] [Indexed: 11/24/2022] Open
Abstract
In the present study, we sequenced the complete genome of Bradyrhizobium diazoefficiens 113-2. The genomic characteristics of six selected rhizobial strains (two fast-growing rhizobia, two medium-slow-growing rhizobia and two slow-growing rhizobia) with four different legume hosts were analyzed by comparative genomic analysis. Genomes of B. diazoefficiens 113-2 and B. diazoefficiens USDA110 were found to share a large synteny blocks and a high ANI value, supporting 113-2 as a strain of B. diazoefficiens. 5,455 singletons and 11,656 clusters were identified among the six rhizobia genomes, and most of the pair-wise comparisons clusters were shared by the two genomes of strains in the same genus. Similar genus-specific gene numbers in the assigned COG functional terms were present in the two strains of the same genus, while the numbers were decreased with the increase of growth rate in most of the COG terms. KEGG pathway analysis of B. diazoefficiens 113-2 suggested that the rhizobial genes in ABC transporters and Two-Component system were mainly species-specific. Besides, the candidate genes related to secretion system and surface polysaccharides biosynthesis in the genomes of the six strains were explored and compared. 39 nodulation gene families, 12 nif gene families and 10 fix gene families in the genomes of these six strains were identified, and gene classes in most of gene families and the types and total gene numbers of gene families were substantially different among these six genomes. We also performed synteny analyses for above-mentioned nod, nif, and fix gene groupings, and selected NodW, NolK, NoeJ, NifB, FixK, and FixJ gene families to perform phylogeny analyses. Our results provided valuable molecular insights into species specificity and host specificity. The genetic information responsible for host specificity will play important roles in expanding the host range of rhizobia among legumes, which might provide new clues for the understanding of the genetic determinants of non-legume-rhizobium symbiosis.
Collapse
Affiliation(s)
- Rong Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Yong Feng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Haifeng Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Chanjuan Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Yi Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Limiao Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Qingnan Hao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Dong Cao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Songli Yuan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Xinan Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| |
Collapse
|
7
|
El-Batanony NH, Castellano-Hinojosa A, Correa-Galeote D, Bedmar EJ. Phylogenetic diversity of bacterial strains from root nodules of legumes grown wild in Egypt. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Rejili M, BenAbderrahim MA, Mars M, Sherrier JD. Novel putative rhizobial species with different symbiovars nodulate Lotus creticus and their differential preference to distinctive soil properties. FEMS Microbiol Lett 2020; 367:5838745. [DOI: 10.1093/femsle/fnaa084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 05/17/2020] [Indexed: 11/13/2022] Open
Abstract
ABSTRACT
Phylogenetically diverse rhizobial strains endemic to Tunisia were isolated from symbiotic nodules of Lotus creticus, growing in different arid extremophile geographical regions of Tunisia, and speciated using multiloci-phylogenetic analysis as Neorhizobium huautlense (LCK33, LCK35, LCO42 and LCO49), Ensifer numidicus (LCD22, LCD25, LCK22 and LCK25), Ensifer meliloti (LCK8, LCK9 and LCK12) and Mesorhizobium camelthorni (LCD11, LCD13, LCD31 and LCD33). In addition, phylogenetic analyses revealed eight additional strains with previously undescribed chromosomal lineages within the genera Ensifer (LCF5, LCF6 and LCF8),Rhizobium (LCF11, LCF12 and LCF14) and Mesorhizobium (LCF16 and LCF19). Analysis using the nodC gene identified five symbiovar groups, four of which were already known. The remaining group composed of two strains (LCD11 and LCD33) represented a new symbiovar of Mesorhizobium camelthorni, which we propose designating as sv. hedysari. Interestingly, we report that soil properties drive and structure the symbiosis of L. creticus and its rhizobia.
Collapse
Affiliation(s)
- Mokhtar Rejili
- Research Laboratory Biodiversity & Valorization of Arid Areas Bioressources (BVBAA) - Faculty of Sciences of Gabes, Erriadh-Zrig, 6072-Tunisia
| | - Mohamed Ali BenAbderrahim
- Laboratoire d'Aridocultures et des Cultures Oasiennes, Institut des Régions Arides, 6051 Gabès, Tunisia
| | - Mohamed Mars
- Research Laboratory Biodiversity & Valorization of Arid Areas Bioressources (BVBAA) - Faculty of Sciences of Gabes, Erriadh-Zrig, 6072-Tunisia
| | - Janine Darla Sherrier
- Department of Crop & Soil Sciences, University of Georgia, 3111 Miller Plant Sci, 120 Carlton St., Athens, GA 30602, USA
| |
Collapse
|
9
|
Soares R, Trejo J, Lorite MJ, Figueira E, Sanjuán J, Videira e Castro I. Diversity, Phylogeny and Plant Growth Promotion Traits of Nodule Associated Bacteria Isolated from Lotus parviflorus. Microorganisms 2020; 8:microorganisms8040499. [PMID: 32244524 PMCID: PMC7232477 DOI: 10.3390/microorganisms8040499] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/18/2020] [Accepted: 03/30/2020] [Indexed: 11/18/2022] Open
Abstract
Lotus spp. are widely used as a forage to improve pastures, and inoculation with elite rhizobial strains is a common practice in many countries. However, only a few Lotus species have been studied in the context of plant-rhizobia interactions. In this study, forty highly diverse bacterial strains were isolated from root nodules of wild Lotus parviflorus plants growing in two field locations in Portugal. However, only 10% of these isolates could nodulate one or more legume hosts tested, whereas 90% were thought to be opportunistic nodule associated bacteria. Phylogenetic studies place the nodulating isolates within the Bradyrhizobium genus, which is closely related to B. canariense and other Bradyrhizobium sp. strains isolated from genistoid legumes and Ornithopus spp. Symbiotic nodC and nifH gene phylogenies were fully consistent with the taxonomic assignment and host range. The non-nodulating bacteria isolated were alpha- (Rhizobium/Agrobacterium), beta- (Massilia) and gamma-proteobacteria (Pseudomonas, Lysobacter, Luteibacter, Stenotrophomonas and Rahnella), as well as some bacteroidetes from genera Sphingobacterium and Mucilaginibacter. Some of these nodule-associated bacteria expressed plant growth promotion (PGP) traits, such as production of lytic enzymes, antagonistic activity against phytopathogens, phosphate solubilization, or siderophore production. This argues for a potential beneficial role of these L. parviflorus nodule-associated bacteria.
Collapse
Affiliation(s)
- Ricardo Soares
- Laboratório de Microbiologia do Solo, UEISSAFSV, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV, I.P.), 2780-159 Oeiras, Portugal; (R.S.); (J.T.)
- Laboratório de Bioquímica Inorgânica e RMN, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Jesús Trejo
- Laboratório de Microbiologia do Solo, UEISSAFSV, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV, I.P.), 2780-159 Oeiras, Portugal; (R.S.); (J.T.)
| | - Maria J. Lorite
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, E-18160 Granada, Spain; (M.L.); (J.S.)
| | - Etelvina Figueira
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal;
| | - Juan Sanjuán
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, E-18160 Granada, Spain; (M.L.); (J.S.)
| | - Isabel Videira e Castro
- Laboratório de Microbiologia do Solo, UEISSAFSV, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV, I.P.), 2780-159 Oeiras, Portugal; (R.S.); (J.T.)
- Correspondence:
| |
Collapse
|
10
|
Novel putative Mesorhizobium and Ensifer genomospecies together with a novel symbiovar psoraleae nodulate legumes of agronomic interest grown in Tunisia. Syst Appl Microbiol 2020; 43:126067. [PMID: 32005490 DOI: 10.1016/j.syapm.2020.126067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/08/2019] [Accepted: 12/10/2019] [Indexed: 11/22/2022]
Abstract
Forty rhizobial strains were isolated from Lotus creticus, L. pusillus and Bituminaria bituminosa endemic to Tunisia, and they belonged to the Mesorhizobium and Ensifer genera based on 16S rDNA sequence phylogeny. According to the concatenated recA and glnII sequence-based phylogeny, four Bituminaria isolates Pb5, Pb12, Pb8 and Pb17 formed a monophyletic group with Mesorhizobium chacoense ICMP14587T, whereas four other strains Pb1, Pb6, Pb13 and Pb15 formed two separate lineages within the Ensifer genus. Among the L. pusillus strains, Lpus9 and Lpus10 showed a 96% identical nucleotide with Ensifer meliloti CCBAU83493T; whereas six other strains could belong to previously undescribed Mesorhizobium and Ensifer species. For L. creticus strains, Lcus37, Lcus39 and Lcus44 showed 98% sequence identity with Ensifer aridi JNVU TP6, and Lcus42 shared a 96% identical nucleotide with Ensifer meliloti CCBAU83493T; whereas another four strains were divergent from all the described Ensifer and Mesorhizobium species. The analysis of the nodC gene-based phylogeny identified four symbiovar groups; Mesorhizobium sp. sv. anthyllidis (Lpus3 and Lpus11 from L. pusillus, Lcus43 from L. creticus), Ensifer medicae sv. meliloti (four strains from L. creticus and two strains from L. pusillus), E. meliloti sv. meliloti (four from L. creticus, four from L. pusillus and four from B. bituminosa). In addition, four B. bituminosa strains (Pb5, Pb8, Pb12, and Pb17) displayed a distinctive nodC sequence distant from those of other symbiovars described to date. According to their symbiotic gene sequences and host range, the B. bituminosa symbionts (Pb5, Pb8, Pb12 and Pb17) would represent a new symbiovar of M. chacoense for which sv. psoraleae is proposed.
Collapse
|
11
|
Estrella MJ, Fontana MF, Cumpa Velásquez LM, Torres Tejerizo GA, Diambra L, Hansen LH, Pistorio M, Sannazzaro AI. Mesorhizobium intechi sp. nov. isolated from nodules of Lotus tenuis in soils of the Flooding Pampa, Argentina. Syst Appl Microbiol 2020; 43:126044. [DOI: 10.1016/j.syapm.2019.126044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/21/2019] [Accepted: 11/04/2019] [Indexed: 01/16/2023]
|
12
|
|
13
|
Genetic diversity of rhizobia associated with root nodules of white lupin (Lupinus albus L.) in Tunisian calcareous soils. Syst Appl Microbiol 2019; 42:448-456. [DOI: 10.1016/j.syapm.2019.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/26/2019] [Accepted: 04/04/2019] [Indexed: 11/30/2022]
|
14
|
Irisarri P, Cardozo G, Tartaglia C, Reyno R, Gutiérrez P, Lattanzi FA, Rebuffo M, Monza J. Selection of Competitive and Efficient Rhizobia Strains for White Clover. Front Microbiol 2019; 10:768. [PMID: 31065250 PMCID: PMC6489563 DOI: 10.3389/fmicb.2019.00768] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 03/26/2019] [Indexed: 11/16/2022] Open
Abstract
The practice of inoculating forage legumes with rhizobia strains is widespread. It is assumed that the inoculated strain determines the performance of the symbiosis and nitrogen fixation rates. However, native-naturalized strains can be competitive, and actual nodule occupancy is often scarcely investigated. In consequence, failures in establishment, and low productivity attributed to poor performance of the inoculant may merely reflect the absence of the inoculated strain in the nodules. This study lays out a strategy followed for selecting a Rhizobium leguminosarum sv. trifolii strain for white clover (Trifolium repens) with competitive nodule occupancy. First, the competitiveness of native-naturalized rhizobia strains selected for their efficiency to fix N2 in clover and tagged with gusA was evaluated in controlled conditions with different soils. Second, three of these experimental strains with superior nodule occupancy plus the currently recommended commercial inoculant, an introduced strain, were tested in the field in 2 years and at two sites. Plant establishment, herbage productivity, fixation of atmospheric N2 (15N natural abundance), and nodule occupancy (ERIC-PCR genomic fingerprinting) were measured. In both years and sites, nodule occupancy of the native-naturalized experimental strains was either higher or similar to that of the commercial inoculant in both primary and secondary roots. The difference was even greater in stolon roots nodules, where nodule occupancy of the native-naturalized experimental strains was at least five times greater. The amount of N fixed per unit plant mass was consistently higher with native-naturalized experimental strains, although the proportion of N derived from atmospheric fixation was similar for all strains. Plant establishment and herbage production, as well as clover contribution in oversown native grasslands, were either similar or higher in white clover inoculated with the native-naturalized experimental strains. These results support the use of our implemented strategy for developing a competitive inoculant from native-naturalized strains.
Collapse
Affiliation(s)
- Pilar Irisarri
- Laboratorio de Microbiología, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Gerónimo Cardozo
- Instituto Nacional de Investigación Agropecuaria, INIA Treinta y Tres, Treinta y Tres, Uruguay
| | - Carolina Tartaglia
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Rafael Reyno
- Instituto Nacional de Investigación Agropecuaria, INIA Tacuarembó, Tacuarembó, Uruguay
| | - Pamela Gutiérrez
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Fernando A. Lattanzi
- Instituto Nacional de Investigación Agropecuaria, INIA La Estanzuela, Colonia, Uruguay
| | - Mónica Rebuffo
- Instituto Nacional de Investigación Agropecuaria, INIA La Estanzuela, Colonia, Uruguay
| | - Jorge Monza
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
15
|
Romero FM, Rossi FR, Gárriz A, Carrasco P, Ruíz OA. A Bacterial Endophyte from Apoplast Fluids Protects Canola Plants from Different Phytopathogens via Antibiosis and Induction of Host Resistance. PHYTOPATHOLOGY 2019; 109:375-383. [PMID: 30156501 DOI: 10.1094/phyto-07-18-0262-r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Endophytic bacteria colonize inner plant tissues and thrive at the apoplast, which is considered its main reservoir. Because this niche is the place where the main molecular events take place between beneficial and pathogenic microorganisms, the aim of this work was to characterize culturable endophytic bacteria from apoplastic fluids obtained from field-grown canola leaves and analyze their potential for biological control of diseases caused by Xanthomonas campestris, Sclerotinia sclerotiorum, and Leptosphaeria maculans. Dual-culture analysis indicated that three isolates (Apo8, Apo11, and Apo12) were able to inhibit the growth of all three phytopathogens. Sequencing of the 16S ribosomal RNA and rpoD genes of these isolates revealed that they are closely related to Pseudomonas viridiflava. One of the isolates, Apo11, was able to diminish the propagation of X. campestris in whole-plant assays. At the same time, Apo11 inoculation reduced the necrotic lesions provoked by S. sclerotiorum on canola leaves. This protective effect might be due to the induction of resistance in the host mediated by salicylic and jasmonic acid signaling pathways or the production of compounds with antimicrobial activity. At the same time, Apo11 inoculation promoted canola plant growth. Thus, the isolate characterized in this work has several desirable characteristics, which make it a potential candidate for the formulation of biotechnological products to control plant diseases or promote plant growth.
Collapse
Affiliation(s)
- Fernando M Romero
- First, second, third, and fifth authors: Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET), Chascomús, Argentina; fourth author: Departament de Bioquímica i Biologia Molecular, Facultat de Ciències Biològiques, Universitat de València, València, Spain; and fifth author: Instituto de Fisiología y Recursos Genéticos Vegetales, Instituto Nacional de Tecnología Agropecuaria (IFRGV-INTA), Córdoba, Argentina
| | - Franco R Rossi
- First, second, third, and fifth authors: Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET), Chascomús, Argentina; fourth author: Departament de Bioquímica i Biologia Molecular, Facultat de Ciències Biològiques, Universitat de València, València, Spain; and fifth author: Instituto de Fisiología y Recursos Genéticos Vegetales, Instituto Nacional de Tecnología Agropecuaria (IFRGV-INTA), Córdoba, Argentina
| | - Andrés Gárriz
- First, second, third, and fifth authors: Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET), Chascomús, Argentina; fourth author: Departament de Bioquímica i Biologia Molecular, Facultat de Ciències Biològiques, Universitat de València, València, Spain; and fifth author: Instituto de Fisiología y Recursos Genéticos Vegetales, Instituto Nacional de Tecnología Agropecuaria (IFRGV-INTA), Córdoba, Argentina
| | - Pedro Carrasco
- First, second, third, and fifth authors: Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET), Chascomús, Argentina; fourth author: Departament de Bioquímica i Biologia Molecular, Facultat de Ciències Biològiques, Universitat de València, València, Spain; and fifth author: Instituto de Fisiología y Recursos Genéticos Vegetales, Instituto Nacional de Tecnología Agropecuaria (IFRGV-INTA), Córdoba, Argentina
| | - Oscar A Ruíz
- First, second, third, and fifth authors: Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET), Chascomús, Argentina; fourth author: Departament de Bioquímica i Biologia Molecular, Facultat de Ciències Biològiques, Universitat de València, València, Spain; and fifth author: Instituto de Fisiología y Recursos Genéticos Vegetales, Instituto Nacional de Tecnología Agropecuaria (IFRGV-INTA), Córdoba, Argentina
| |
Collapse
|
16
|
Vaghchhipawala Z, Radke S, Nagy E, Russell ML, Johnson S, Gelvin SB, Gilbertson LA, Ye X. RepB C-terminus mutation of a pRi-repABC binary vector affects plasmid copy number in Agrobacterium and transgene copy number in plants. PLoS One 2018; 13:e0200972. [PMID: 30412579 PMCID: PMC6226153 DOI: 10.1371/journal.pone.0200972] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/26/2018] [Indexed: 12/23/2022] Open
Abstract
A native repABC replication origin from pRiA4b was previously reported as a single copy plasmid in Agrobacterium tumefaciens and can improve the production of transgenic plants with a single copy insertion of transgenes when it is used in binary vectors for Agrobacterium-mediated transformation. A high copy pRi-repABC variant plasmid, pTF::Ri, which does not improve the frequency of single copy transgenic plants, has been reported in the literature. Sequencing the high copy pTF::Ri repABC operon revealed the presence of two mutations: one silent mutation and one missense mutation that changes a tyrosine to a histidine (Y299H) in a highly conserved area of the C-terminus of the RepB protein (RepBY299H). Reproducing these mutations in the wild-type pRi-repABC binary vector showed that Agrobacterium cells with the RepBY299H mutation grow faster on both solidified and in liquid medium, and have higher plasmid copy number as determined by ddPCR. In order to investigate the impact of the RepBY299H mutation on transformation and quality plant production, the RepBY299H mutated pRi-repABC binary vector was compared with the original wild-type pRi-repABC binary vector and a multi-copy oriV binary vector in canola transformation. Molecular analyses of the canola transgenic plants demonstrated that the multi-copy pRi-repABC with the RepBY299H mutation provides no advantage in generating high frequency single copy, backbone-free transgenic plants in comparison with the single copy wild-type pRi-repABC binary vector.
Collapse
Affiliation(s)
| | - Sharon Radke
- Woodland Campus, Monsanto Company, Woodland, CA, United States of America
| | - Ervin Nagy
- Monsanto Company, St. Louis, MO, United States of America
| | - Mary L. Russell
- Woodland Campus, Monsanto Company, Woodland, CA, United States of America
| | - Susan Johnson
- Monsanto Company, St. Louis, MO, United States of America
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States of America
| | - Stanton B. Gelvin
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States of America
| | | | - Xudong Ye
- Monsanto Company, St. Louis, MO, United States of America
- * E-mail:
| |
Collapse
|
17
|
Lorite MJ, Estrella MJ, Escaray FJ, Sannazzaro A, Videira e Castro IM, Monza J, Sanjuán J, León-Barrios M. The Rhizobia- Lotus Symbioses: Deeply Specific and Widely Diverse. Front Microbiol 2018; 9:2055. [PMID: 30258414 PMCID: PMC6144797 DOI: 10.3389/fmicb.2018.02055] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/13/2018] [Indexed: 11/13/2022] Open
Abstract
The symbiosis between Lotus and rhizobia has been long considered very specific and only two bacterial species were recognized as the microsymbionts of Lotus: Mesorhizobium loti was considered the typical rhizobia for the L. corniculatus complex, whereas Bradyrhizobium sp. (Lotus) was the symbiont for L. uliginosus and related species. As discussed in this review, this situation has dramatically changed during the last 15 years, with the characterization of nodule bacteria from worldwide geographical locations and from previously unexplored Lotus spp. Current data support that the Lotus rhizobia are dispersed amongst nearly 20 species in five genera (Mesorhizobium, Bradyrhizobium, Rhizobium, Ensifer, and Aminobacter). As a consequence, M. loti could be regarded an infrequent symbiont of Lotus, and several plant-bacteria compatibility groups can be envisaged. Despite the great progress achieved with the model L. japonicus in understanding the establishment and functionality of the symbiosis, the genetic and biochemical bases governing the stringent host-bacteria compatibility pairships within the genus Lotus await to be uncovered. Several Lotus spp. are grown for forage, and inoculation with rhizobia is a common practice in various countries. However, the great diversity of the Lotus rhizobia is likely squandered, as only few bacterial strains are used as inoculants for Lotus pastures in very different geographical locations, with a great variety of edaphic and climatic conditions. The agroecological potential of the genus Lotus can not be fully harnessed without acknowledging the great diversity of rhizobia-Lotus interactions, along with a better understanding of the specific plant and bacterial requirements for optimal symbiotic nitrogen fixation under increasingly constrained environmental conditions.
Collapse
Affiliation(s)
- María J. Lorite
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - María J. Estrella
- Instituto Tecnológico de Chascomús, IIB-INTECH, UNSAM-CONICET, Chascomús, Argentina
| | - Francisco J. Escaray
- Instituto Tecnológico de Chascomús, IIB-INTECH, UNSAM-CONICET, Chascomús, Argentina
| | - Analía Sannazzaro
- Instituto Tecnológico de Chascomús, IIB-INTECH, UNSAM-CONICET, Chascomús, Argentina
| | | | - Jorge Monza
- Facultad de Agronomia, Universidad de la República, Montevideo, Uruguay
| | - Juan Sanjuán
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Milagros León-Barrios
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de la Laguna, Santa Cruz de Tenerife, Spain
| |
Collapse
|
18
|
Sannazzaro AI, Torres Tejerizo G, Fontana MF, Cumpa Velásquez LM, Hansen LH, Pistorio M, Estrella MJ. Mesorhizobium sanjuanii sp. nov., isolated from nodules of Lotus tenuis in the saline-alkaline lowlands of Flooding Pampa, Argentina. Int J Syst Evol Microbiol 2018; 68:2936-2942. [DOI: 10.1099/ijsem.0.002924] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- A. I. Sannazzaro
- 1IIB-INTECH (Instituto de Investigaciones Biotecnológicas – Instituto Tecnológico Chascomús), CCT-La Plata, CONICET – Universidad Nacional de San Martín – Avenida Intendente Marino, Km 8.2, (7130) Chascomús, Argentina
| | - G. Torres Tejerizo
- 2IBBM (Instituto de Biotecnología y Biología Molecular), CCT-La Plata, CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| | - M. F. Fontana
- 1IIB-INTECH (Instituto de Investigaciones Biotecnológicas – Instituto Tecnológico Chascomús), CCT-La Plata, CONICET – Universidad Nacional de San Martín – Avenida Intendente Marino, Km 8.2, (7130) Chascomús, Argentina
| | - L. M. Cumpa Velásquez
- 1IIB-INTECH (Instituto de Investigaciones Biotecnológicas – Instituto Tecnológico Chascomús), CCT-La Plata, CONICET – Universidad Nacional de San Martín – Avenida Intendente Marino, Km 8.2, (7130) Chascomús, Argentina
| | - L. H. Hansen
- 3Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark
| | - M. Pistorio
- 2IBBM (Instituto de Biotecnología y Biología Molecular), CCT-La Plata, CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| | - M. J. Estrella
- 1IIB-INTECH (Instituto de Investigaciones Biotecnológicas – Instituto Tecnológico Chascomús), CCT-La Plata, CONICET – Universidad Nacional de San Martín – Avenida Intendente Marino, Km 8.2, (7130) Chascomús, Argentina
| |
Collapse
|
19
|
Andrews M, De Meyer S, James EK, Stępkowski T, Hodge S, Simon MF, Young JPW. Horizontal Transfer of Symbiosis Genes within and Between Rhizobial Genera: Occurrence and Importance. Genes (Basel) 2018; 9:E321. [PMID: 29954096 PMCID: PMC6071183 DOI: 10.3390/genes9070321] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/21/2018] [Accepted: 06/21/2018] [Indexed: 01/17/2023] Open
Abstract
Rhizobial symbiosis genes are often carried on symbiotic islands or plasmids that can be transferred (horizontal transfer) between different bacterial species. Symbiosis genes involved in horizontal transfer have different phylogenies with respect to the core genome of their ‘host’. Here, the literature on legume⁻rhizobium symbioses in field soils was reviewed, and cases of phylogenetic incongruence between rhizobium core and symbiosis genes were collated. The occurrence and importance of horizontal transfer of rhizobial symbiosis genes within and between bacterial genera were assessed. Horizontal transfer of symbiosis genes between rhizobial strains is of common occurrence, is widespread geographically, is not restricted to specific rhizobial genera, and occurs within and between rhizobial genera. The transfer of symbiosis genes to bacteria adapted to local soil conditions can allow these bacteria to become rhizobial symbionts of previously incompatible legumes growing in these soils. This, in turn, will have consequences for the growth, life history, and biogeography of the legume species involved, which provides a critical ecological link connecting the horizontal transfer of symbiosis genes between rhizobial bacteria in the soil to the above-ground floral biodiversity and vegetation community structure.
Collapse
Affiliation(s)
- Mitchell Andrews
- Faculty of Agriculture and Life Sciences, Lincoln University, P.O. Box 84, Lincoln 7647, New Zealand.
| | - Sofie De Meyer
- Centre for Rhizobium Studies, Murdoch University, Murdoch 6150, Australia.
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium.
| | - Euan K James
- James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK.
| | - Tomasz Stępkowski
- Autonomous Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), 02-776 Warsaw, Poland.
| | - Simon Hodge
- Faculty of Agriculture and Life Sciences, Lincoln University, P.O. Box 84, Lincoln 7647, New Zealand.
| | - Marcelo F Simon
- Embrapa Genetic Resources and Biotechnology, Brasilia DF 70770-917, Brazil.
| | - J Peter W Young
- Department of Biology, University of York, York YO10 5DD, UK.
| |
Collapse
|
20
|
Hakim S, Mirza BS, Zaheer A, Mclean JE, Imran A, Yasmin S, Sajjad Mirza M. Retrieved 16S rRNA and nifH sequences reveal co-dominance of Bradyrhizobium and Ensifer (Sinorhizobium) strains in field-collected root nodules of the promiscuous host Vigna radiata (L.) R. Wilczek. Appl Microbiol Biotechnol 2017; 102:485-497. [PMID: 29110071 DOI: 10.1007/s00253-017-8609-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 11/27/2022]
Abstract
In the present study, the relative distribution of endophytic rhizobia in field-collected root nodules of the promiscuous host mung bean was investigated by sequencing of 16S ribosomal RNA (rRNA) and nifH genes, amplified directly from the nodule DNA. Co-dominance of the genera Bradyrhizobium and Ensifer was indicated by 32.05 and 35.84% of the total retrieved 16S rRNA sequences, respectively, and the sequences of genera Mesorhizobium and Rhizobium comprised only 0.06 and 2.06% of the recovered sequences, respectively. Sequences amplified from rhizosphere soil DNA indicated that only a minor fraction originated from Bradyrhizobium and Ensifer strains, comprising about 0.46 and 0.67% of the total retrieved sequences, respectively. 16S rRNA gene sequencing has also identified the presence of several non-rhizobial endophytes from phyla Proteobacteria, Actinobacteria, Bacteroides, and Firmicutes. The nifH sequences obtained from nodules also confirmed the co-dominance of Bradyrhizobium (39.21%) and Ensifer (59.23%) strains. The nifH sequences of the genus Rhizobium were absent, and those of genus Mesorhizobium comprised only a minor fraction of the sequences recovered from the nodules and rhizosphere soil samples. Two bacterial isolates, identified by 16S rRNA gene sequence analysis as Bradyrhizobium strain Vr51 and Ensifer strain Vr38, successfully nodulated the original host (mung bean) plants. Co-dominance of Bradyrhizobium and Ensifer strains in the nodules of mung bean indicates the potential role of the host plant in selecting specific endophytic rhizobial populations. Furthermore, successful nodulation of mung bean by the isolates showed that strains of both the genera Bradyrhizobium and Ensifer can be used for production of inoculum.
Collapse
Affiliation(s)
- Sughra Hakim
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Faisalabad, Pakistan.,Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | - Babur S Mirza
- Biology Department, Missouri State University, Springfield, MO, 65897, USA
| | - Ahmad Zaheer
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Faisalabad, Pakistan.,Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | - Joan E Mclean
- Utah Water Research Laboratory, Utah State University, Logan, UT, USA
| | - Asma Imran
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Faisalabad, Pakistan.,Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | - Sumera Yasmin
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Faisalabad, Pakistan.,Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | - M Sajjad Mirza
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Faisalabad, Pakistan. .,Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan.
| |
Collapse
|
21
|
Andrews M, Andrews ME. Specificity in Legume-Rhizobia Symbioses. Int J Mol Sci 2017; 18:E705. [PMID: 28346361 PMCID: PMC5412291 DOI: 10.3390/ijms18040705] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 03/19/2017] [Accepted: 03/21/2017] [Indexed: 11/24/2022] Open
Abstract
Most species in the Leguminosae (legume family) can fix atmospheric nitrogen (N₂) via symbiotic bacteria (rhizobia) in root nodules. Here, the literature on legume-rhizobia symbioses in field soils was reviewed and genotypically characterised rhizobia related to the taxonomy of the legumes from which they were isolated. The Leguminosae was divided into three sub-families, the Caesalpinioideae, Mimosoideae and Papilionoideae. Bradyrhizobium spp. were the exclusive rhizobial symbionts of species in the Caesalpinioideae, but data are limited. Generally, a range of rhizobia genera nodulated legume species across the two Mimosoideae tribes Ingeae and Mimoseae, but Mimosa spp. show specificity towards Burkholderia in central and southern Brazil, Rhizobium/Ensifer in central Mexico and Cupriavidus in southern Uruguay. These specific symbioses are likely to be at least in part related to the relative occurrence of the potential symbionts in soils of the different regions. Generally, Papilionoideae species were promiscuous in relation to rhizobial symbionts, but specificity for rhizobial genus appears to hold at the tribe level for the Fabeae (Rhizobium), the genus level for Cytisus (Bradyrhizobium), Lupinus (Bradyrhizobium) and the New Zealand native Sophora spp. (Mesorhizobium) and species level for Cicer arietinum (Mesorhizobium), Listia bainesii (Methylobacterium) and Listia angolensis (Microvirga). Specificity for rhizobial species/symbiovar appears to hold for Galega officinalis (Neorhizobium galegeae sv. officinalis), Galega orientalis (Neorhizobium galegeae sv. orientalis), Hedysarum coronarium (Rhizobium sullae), Medicago laciniata (Ensifer meliloti sv. medicaginis), Medicago rigiduloides (Ensifer meliloti sv. rigiduloides) and Trifolium ambiguum (Rhizobium leguminosarum sv. trifolii). Lateral gene transfer of specific symbiosis genes within rhizobial genera is an important mechanism allowing legumes to form symbioses with rhizobia adapted to particular soils. Strain-specific legume rhizobia symbioses can develop in particular habitats.
Collapse
Affiliation(s)
- Mitchell Andrews
- Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, Lincoln 7647, New Zealand.
| | - Morag E Andrews
- Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, Lincoln 7647, New Zealand.
| |
Collapse
|
22
|
León-Barrios M, Pérez-Yépez J, Dorta P, Garrido A, Jiménez C. Alkalinity of Lanzarote soils is a factor shaping rhizobial populations with Sinorhizobium meliloti being the predominant microsymbiont of Lotus lancerottensis. Syst Appl Microbiol 2017; 40:171-178. [PMID: 28216096 DOI: 10.1016/j.syapm.2016.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/15/2016] [Accepted: 12/18/2016] [Indexed: 10/20/2022]
Abstract
Lotus lancerottensis is an endemic species that grows widely throughout Lanzarote Island (Canary Is.). Characterization of 48 strains isolated from root nodules of plants growing in soils from eleven locations on the island showed that 38 isolates (79.1%) belonged to the species Sinorhizobium meliloti, whereas only six belonged to Mesorhizobium sp., the more common microsymbionts for the Lotus. Other genotypes containing only one isolate were classified as Pararhizobium sp., Sinorhizobium sp., Phyllobacterium sp. and Bradyrhizobium-like. Strains of S. meliloti were distributed along the island and, in most of the localities they were exclusive or major microsymbionts of L. lancerottensis. Phylogeny of the nodulation nodC gene placed the S. meliloti strains within symbiovar lancerottense and the mesorhizobial strains with the symbiovar loti. Although strains from both symbiovars produced effective N2-fixing nodules, S. meliloti symbiovar lancerottense was clearly the predominant microsymbiont of L. lancerottensis. This fact correlated with the better adaptation of strains of this species to the alkaline soils of Lanzarote, as in vitro characterization showed that while the mesorhizobial strains were inhibited by alkaline pH, S. meliloti strains grew well at pH 9.
Collapse
Affiliation(s)
- Milagros León-Barrios
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, 38200 La Laguna, Tenerife, Canary Islands, Spain.
| | - Juan Pérez-Yépez
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, 38200 La Laguna, Tenerife, Canary Islands, Spain
| | - Paola Dorta
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, 38200 La Laguna, Tenerife, Canary Islands, Spain
| | - Ana Garrido
- Granja Agrícola Experimental, Área de Agricultura y Ganadería, Cabildo de Lanzarote, Canary Islands, Spain
| | - Concepción Jiménez
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, 38200 La Laguna, Tenerife, Canary Islands, Spain
| |
Collapse
|
23
|
Genetic diversity of rhizobia nodulating native Vicia spp. in Sweden. Syst Appl Microbiol 2016; 39:203-210. [DOI: 10.1016/j.syapm.2016.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 11/23/2022]
|
24
|
Baymiev AK, Ivanova ES, Gumenko RS, Chubukova OV, Baymiev AK. Analysis of symbiotic genes of leguminous root nodule bacteria grown in the southern urals. RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415110034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Romero FM, Marina M, Pieckenstain FL. Novel components of leaf bacterial communities of field-grown tomato plants and their potential for plant growth promotion and biocontrol of tomato diseases. Res Microbiol 2015; 167:222-33. [PMID: 26654914 DOI: 10.1016/j.resmic.2015.11.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 10/26/2015] [Accepted: 11/08/2015] [Indexed: 11/30/2022]
Abstract
This work aimed to characterize potentially endophytic culturable bacteria from leaves of cultivated tomato and analyze their potential for growth promotion and biocontrol of diseases caused by Botrytis cinerea and Pseudomonas syringae. Bacteria were obtained from inner tissues of surface-disinfected tomato leaves of field-grown plants. Analysis of 16S rRNA gene sequences identified bacterial isolates related to Exiguobacterium aurantiacum (isolates BT3 and MT8), Exiguobacterium spp. (isolate GT4), Staphylococcus xylosus (isolate BT5), Pantoea eucalypti (isolate NT6), Bacillus methylotrophicus (isolate MT3), Pseudomonas veronii (isolates BT4 and NT2), Pseudomonas rhodesiae (isolate BT2) and Pseudomonas cichorii (isolate NT3). After seed inoculation, BT2, BT4, MT3, MT8, NT2 and NT6 were re-isolated from leaf extracts. NT2, BT2, MT3 and NT6 inhibited growth of Botrytis cinerea and Pseudomonas syringae pv. tomato in vitro, produced antimicrobial compounds and reduced leaf damage caused by B. cinerea. Some of these isolates also promoted growth of tomato plants, produced siderophores, the auxin indole-3-acetic and solubilized inorganic phosphate. Thus, bacterial communities of leaves from field-grown tomato plants were found to harbor potentially endophytic culturable beneficial bacteria capable of antagonizing pathogenic microorganisms and promoting plant growth, which could be used as biological control agents and biofertilizers/biostimulators for promotion of tomato plant growth.
Collapse
Affiliation(s)
- Fernando M Romero
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET), Chascomús, Argentina.
| | - María Marina
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET), Chascomús, Argentina.
| | - Fernando L Pieckenstain
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET), Chascomús, Argentina.
| |
Collapse
|
26
|
|
27
|
Wang S, Hao B, Li J, Gu H, Peng J, Xie F, Zhao X, Frech C, Chen N, Ma B, Li Y. Whole-genome sequencing of Mesorhizobium huakuii 7653R provides molecular insights into host specificity and symbiosis island dynamics. BMC Genomics 2014; 15:440. [PMID: 24906389 PMCID: PMC4072884 DOI: 10.1186/1471-2164-15-440] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 05/20/2014] [Indexed: 11/10/2022] Open
Abstract
Background Evidence based on genomic sequences is urgently needed to confirm the phylogenetic relationship between Mesorhizobium strain MAFF303099 and M. huakuii. To define underlying causes for the rather striking difference in host specificity between M. huakuii strain 7653R and MAFF303099, several probable determinants also require comparison at the genomic level. An improved understanding of mobile genetic elements that can be integrated into the main chromosomes of Mesorhizobium to form genomic islands would enrich our knowledge of how genome dynamics may contribute to Mesorhizobium evolution in general. Results In this study, we sequenced the complete genome of 7653R and compared it with five other Mesorhizobium genomes. Genomes of 7653R and MAFF303099 were found to share a large set of orthologs and, most importantly, a conserved chromosomal backbone and even larger perfectly conserved synteny blocks. We also identified candidate molecular differences responsible for the different host specificities of these two strains. Finally, we reconstructed an ancestral Mesorhizobium genomic island that has evolved into diverse forms in different Mesorhizobium species. Conclusions Our ortholog and synteny analyses firmly establish MAFF303099 as a strain of M. huakuii. Differences in nodulation factors and secretion systems T3SS, T4SS, and T6SS may be responsible for the unique host specificities of 7653R and MAFF303099 strains. The plasmids of 7653R may have arisen by excision of the original genomic island from the 7653R chromosome. Electronic supplementary material The online version of this article (doi: 10.1186/1471-2164-15-440) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Nansheng Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P, R, China.
| | | | | |
Collapse
|
28
|
Romero FM, Marina M, Pieckenstain FL. The communities of tomato (Solanum lycopersicumL.) leaf endophytic bacteria, analyzed by 16S-ribosomal RNA gene pyrosequencing. FEMS Microbiol Lett 2014; 351:187-94. [DOI: 10.1111/1574-6968.12377] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 01/05/2014] [Accepted: 01/05/2014] [Indexed: 11/28/2022] Open
Affiliation(s)
- Fernando M. Romero
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús; Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET); Chascomús Argentina
| | - María Marina
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús; Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET); Chascomús Argentina
| | - Fernando L. Pieckenstain
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús; Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET); Chascomús Argentina
| |
Collapse
|
29
|
Aserse AA, Räsänen LA, Aseffa F, Hailemariam A, Lindström K. Diversity of sporadic symbionts and nonsymbiotic endophytic bacteria isolated from nodules of woody, shrub, and food legumes in Ethiopia. Appl Microbiol Biotechnol 2013; 97:10117-34. [PMID: 24196581 DOI: 10.1007/s00253-013-5248-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/17/2013] [Accepted: 08/21/2013] [Indexed: 10/26/2022]
Abstract
Fifty-five bacterial isolates were obtained from surface-sterilized nodules of woody and shrub legumes growing in Ethiopia: Crotalaria spp., Indigofera spp., and Erythrina brucei, and the food legumes soybean and common bean. Based on partial 16S rRNA gene sequence analysis, the majority of the isolates were identified as Gram-negative bacteria belonging to the genera Achromobacter, Agrobacterium, Burkholderia, Cronobacter, Enterobacter, Mesorhizobium, Novosphingobium, Pantoea, Pseudomonas, Rahnella, Rhizobium, Serratia, and Variovorax. Seven isolates were Gram-positive bacteria belonging to the genera Bacillus, Paenibacillus, Planomicrobium, and Rhodococcus. Amplified fragment length polymorphism (AFLP) fingerprinting showed that each strain was genetically distinct. According to phylogenetic analysis of recA, glnII, rpoB, and 16S rRNA gene sequences, Rhizobium, Mesorhizobium, and Agrobacterium were further classified into six different genospecies: Agrobacterium spp., Agrobacterium radiobacter, Rhizobium sp., Rhizobium phaseoli, Mesorhizobium sp., and putative new Rhizobium species. The strains from R. phaseoli, Rhizobium sp. IAR30, and Mesorhizobium sp. ERR6 induced nodules on their host plants. The other strains did not form nodules on their original host. Nine endophytic bacterial strains representing seven genera, Agrobacterium, Burkholderia, Paenibacillus, Pantoea, Pseudomonas, Rhizobium, and Serratia, were found to colonize nodules of Crotalaria incana and common bean on co-inoculation with symbiotic rhizobia. Four endophytic Rhizobium and two Agrobacterium strains had identical nifH gene sequences with symbiotic Rhizobium strains, suggesting horizontal gene transfer. Most symbiotic and nonsymbiotic endophytic bacteria showed plant growth-promoting properties in vitro, which indicate their potential role in the promotion of plant growth when colonizing plant roots and the rhizosphere.
Collapse
Affiliation(s)
- Aregu Amsalu Aserse
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, P.O. Box 56, 00014, Finland,
| | | | | | | | | |
Collapse
|
30
|
Rejii M, Mahdhi M, Domínguez-Núñez JA, Mars M. The phenotypic, phylogenetic and symbiotic characterization of rhizobia nodulating Lotus sp. in Tunisian arid soils. ANN MICROBIOL 2013. [DOI: 10.1007/s13213-013-0670-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
31
|
Rhizobial communities in symbiosis with legumes: genetic diversity, competition and interactions with host plants. Open Life Sci 2012. [DOI: 10.2478/s11535-012-0032-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe term ‘Rhizobium-legume symbiosis’ refers to numerous plant-bacterial interrelationships. Typically, from an evolutionary perspective, these symbioses can be considered as species-to-species interactions, however, such plant-bacterial symbiosis may also be viewed as a low-scale environmental interplay between individual plants and the local microbial population. Rhizobium-legume interactions are therefore highly important in terms of microbial diversity and environmental adaptation thereby shaping the evolution of plant-bacterial symbiotic systems. Herein, the mechanisms underlying and modulating the diversity of rhizobial populations are presented. The roles of several factors impacting successful persistence of strains in rhizobial populations are discussed, shedding light on the complexity of rhizobial-legume interactions.
Collapse
|
32
|
Molecular and phenotypic characterization of strains nodulating Anthyllis vulneraria in mine tailings, and proposal of Aminobacter anthyllidis sp. nov., the first definition of Aminobacter as legume-nodulating bacteria. Syst Appl Microbiol 2012; 35:65-72. [DOI: 10.1016/j.syapm.2011.11.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 11/14/2011] [Accepted: 11/30/2011] [Indexed: 11/18/2022]
|
33
|
Lorite MJ, Videira e Castro I, Muñoz S, Sanjuán J. Phylogenetic relationship of Lotus uliginosus symbionts with bradyrhizobia nodulating genistoid legumes. FEMS Microbiol Ecol 2012; 79:454-64. [PMID: 22092879 DOI: 10.1111/j.1574-6941.2011.01230.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 10/13/2011] [Accepted: 10/14/2011] [Indexed: 11/26/2022] Open
Abstract
Lotus species are legumes with potential for pastures in soils with low-fertility and environmental constraints. The aim of this work was to characterize bacteria that establish efficient nitrogen-fixing symbiosis with the forage species Lotus uliginosus. A total of 39 isolates were obtained from nodules of L. uliginosus naturally growing in two different locations of Portugal. Molecular identification of the isolates plus the commercial inoculant strain NZP2039 was performed by REP-PCR, 16S rRNA RFLP, and 16S rRNA, glnII and recA sequence analyses. Limited genetic diversity was found among the L. uliginosus symbionts, which showed a close phylogenetic relationship with the species Bradyrhizobium japonicum. The symbiotic nifH, nodA and nodC gene sequences were closely related with the corresponding genes of various Bradyrhizobium strains isolated from Lupinus and other genistoid legumes and therefore were phylogenetically separated from other Lotus spp. rhizobia. The L. uliginosus bradyrhizobia were able to nodulate and fix nitrogen in association with L. uliginosus, could nodulate Lotus corniculatus with generally poor nitrogen-fixing efficiency, formed nonfixing nodules in Lotus tenuis and Lupinus luteus roots and were unable to nodulate Glycine soja or Glycine max. Thus, L. uliginosus rhizobia seem closely related to B. japonicum biovar genistearum strains.
Collapse
Affiliation(s)
- María J Lorite
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | | | | | | |
Collapse
|
34
|
Baymiev AK, Ivanova ES, Ptitsyn KG, Chubukova OV, Baymiev AK. Phylogenetic analysis of symbiotic genes of nodule bacteria in plants of the genus Lathyrus (L.) (Fabaceae). MOLECULAR GENETICS MICROBIOLOGY AND VIROLOGY 2012. [DOI: 10.3103/s0891416811040021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Jaiswal SK, Anand A, Dhar B, Vaishampayan A. Genotypic characterization of phage-typed indigenous soybean bradyrhizobia and their host range symbiotic effectiveness. MICROBIAL ECOLOGY 2012; 63:116-26. [PMID: 21984348 DOI: 10.1007/s00248-011-9950-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 09/20/2011] [Indexed: 05/31/2023]
Abstract
Analysis of genetic diversity among indigenous rhizobia and its symbiotic effectiveness with soybean cultivar is important for development of knowledge about rhizobial ecology. In India, little is known about the genetic resources and diversity of rhizobia nodulating soybean. Indigenous bradyrhizobia isolated from root nodules of soybean plants, collected from traditional cultivating regions of two states (Madhya Pradesh and Uttar Pradesh) of India, were screened for bacteriophage sensitivity to identify successful broad host range symbiotic effectivity. Of 172 rhizobial isolates, 91 showed sensitivities to eight lytic phages and form ten groups on the basis of sensitivity patterns. The genetic diversity of 23 isolates belonging to different phage groups was assessed along with that of strains USDA123 and USDA94 by the restriction fragment length polymorphism (RFLP) analysis of 16S rDNA, intergenic spacer (IGS) (16S-23S rDNA), and DnaK regions. RFLP analysis of 16S rDNA formed 5 groups, whereas 19 and 9 groups were revealed by IGS and the DnaK genes, respectively. The IGS regions showed many amplified polymorphic bands. Nine isolates which revealed high RFLP polymorphism in the abovementioned regions (16S rRNA, IGS, DnaK) were used for 16S rRNA sequence analyses. The results indicate that taxonomically, all isolates were related to Rhizobium etli, Bradyrhizobium spp., and Bradyrhizobium yuanmingense. The doubling time of isolates varied from 9 h (MPSR155) to 16.2 h (MPSR068) in YM broth. Five isolates which did not show cross infectivity with isolated phage strains were studied for symbiotic efficiency. All isolates showed broad host range symbiotic effectiveness forming effective nodules on Vigna mungo, Vigna radiata, Vigna unguiculata, and Cajanus cajan. The present study provides information on genetic diversity and host range symbiosis of indigenous soybean rhizobia typed by different phages.
Collapse
Affiliation(s)
- Sanjay Kumar Jaiswal
- Microbiology Laboratory, Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| | | | | | | |
Collapse
|
36
|
Escaray FJ, Menendez AB, Gárriz A, Pieckenstain FL, Estrella MJ, Castagno LN, Carrasco P, Sanjuán J, Ruiz OA. Ecological and agronomic importance of the plant genus Lotus. Its application in grassland sustainability and the amelioration of constrained and contaminated soils. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 182:121-33. [PMID: 22118623 DOI: 10.1016/j.plantsci.2011.03.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 03/16/2011] [Accepted: 03/24/2011] [Indexed: 05/04/2023]
Abstract
The genus Lotus comprises around 100 annual and perennial species with worldwide distribution. The relevance of Lotus japonicus as a model plant has been recently demonstrated in numerous studies. In addition, some of the Lotus species show a great potential for adaptation to a number of abiotic stresses. Therefore, they are relevant components of grassland ecosystems in environmentally constrained areas of several South American countries and Australia, where they are used for livestock production. Also, the fact that the roots of these species form rhizobial and mycorrhizal associations makes the annual L. japonicus a suitable model plant for legumes, particularly in studies directed to recognize the mechanisms intervening in the tolerance to abiotic factors in the field, where these interactions occur. These properties justify the increased utilization of some Lotus species as a strategy for dunes revegetation and reclamation of heavy metal-contaminated or burned soils in Europe.
Collapse
Affiliation(s)
- Francisco J Escaray
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús UNSAM/CONICET, 7130, Camino circunvalación laguna km 6, Chascomús, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Genetic diversity of root nodule bacteria nodulating Lotus corniculatus and Anthyllis vulneraria in Sweden. Syst Appl Microbiol 2011; 34:267-75. [DOI: 10.1016/j.syapm.2011.01.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/20/2011] [Accepted: 01/24/2011] [Indexed: 11/24/2022]
|
38
|
Castagno LN, Estrella MJ, Sannazzaro AI, Grassano AE, Ruiz OA. Phosphate-solubilization mechanism and in vitro plant growth promotion activity mediated by Pantoea eucalypti isolated from Lotus tenuis rhizosphere in the Salado River Basin (Argentina). J Appl Microbiol 2011; 110:1151-65. [PMID: 21299771 DOI: 10.1111/j.1365-2672.2011.04968.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS To isolate and characterize phosphate-solubilizing strains from a constrained environment such as the Salado River Basin and to assess their phosphate-solubilizing mechanisms, to further selection of the most promising strains to inoculate and improve the implantation and persistence of Lotus tenuis in the most important area devoted to meat-cow production in Argentina. METHODS AND RESULTS Fifty isolates were obtained and through BOX-PCR analysis, 17 non-redundant strains were identified. Subsequently, they were found to be related to Pantoea, Erwinia, Pseudomonas, Rhizobium and Enterobacter genera, via 16S rRNA gene sequence analysis. This was in agreement with the clusters obtained by antibiotic resistance analysis. All isolates were tested for their phosphate-solubilizing activity and selected strains were inoculated onto L. tenuis plants. The most efficient isolate, was identified as Pantoea eucalypti, a novel species in terms of plant growth-promoting rhizobacteria. CONCLUSIONS The isolates obtained in this study showed a significant in vitro plant-growth promoting activity onto Lotus tenuis and the best of them solubilizes phosphate mainly via induction of the metabolism through secretion and oxidation of gluconic acid. SIGNIFICANCE AND IMPACT OF THE STUDY The use of these bacteria as bioinoculants, alone or in combination with nitrogen-fixing micro-organisms, could be a sustainable practice to facilitate the nutrient supply to Lotus tenuis plants and preventing negative side-effects such as eutrophication.
Collapse
Affiliation(s)
- L N Castagno
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnólogico de Chascomús, Chascomús, Argentina
| | | | | | | | | |
Collapse
|
39
|
Sannazzaro AI, Bergottini VM, Paz RC, Castagno LN, Menéndez AB, Ruiz OA, Pieckenstain FL, Estrella MJ. Comparative symbiotic performance of native rhizobia of the Flooding Pampa and strains currently used for inoculating Lotus tenuis in this region. Antonie van Leeuwenhoek 2010; 99:371-9. [PMID: 20811776 DOI: 10.1007/s10482-010-9502-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 08/23/2010] [Indexed: 11/24/2022]
Abstract
The Flooding Pampa (FP) is the most important area for cattle breeding in Argentina. In this region, persistence and yield of typical forage legumes are strongly limited by soil salinity and alkalinity, which affect around 30% of the total area. Instead, naturalized Lotus tenuis is the main forage legume in this region. Rhizobial strains currently used for inoculating L. tenuis in the FP are exotic or native from non-saline soils of this region, their taxonomic identity being unknown. Assuming that rhizobia native from the most restrictive environments are well adapted to adverse conditions, the use of such isolates could improve the productivity of L. tenuis in the FP. Hence, the goal of this study was to evaluate the symbiotic efficiency of selected L. tenuis rhizobia native from the FP, as compared with strains currently used for field inoculation of this legume. Under non-stressing conditions, the symbiotic performance of native strains of FP exceeded those ones currently used for L. tenuis. Moreover, the symbiotic performance of the native strain ML103 was considerably high under salt stress, compared with strains currently used as inoculants. Analysis of 16S rRNA gene sequencing revealed that unclassified rhizobia currently used for field inoculation of L. tenuis and native strains grouped with the genus Mesorhizobium. As a whole, results obtained demonstrate that soils of the FP are a source of efficient and diverse rhizobia that could be used as a sustainable agronomic tool to formulate inoculants that improve forage yield of L. tenuis in this region.
Collapse
Affiliation(s)
- Analía Inés Sannazzaro
- Unidad de Biotecnología 1, Instituto de Investigaciones Biotecnológicas- Instituto Tecnológico de Chascomús (IIB-INTECH), UNSAM-CONICET, Camino de Circunvalación Km 6, CC 164 (7130), Chascomús, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Lorite MJ, Donate-Correa J, del Arco-Aguilar M, Pérez Galdona R, Sanjuán J, León-Barrios M. Lotus endemic to the Canary Islands are nodulated by diverse and novel rhizobial species and symbiotypes. Syst Appl Microbiol 2010; 33:282-290. [PMID: 20447791 DOI: 10.1016/j.syapm.2010.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 03/09/2010] [Accepted: 03/11/2010] [Indexed: 10/19/2022]
Abstract
Genetic and symbiotic characterization of 34 isolates from several Lotus species endemic to the Canary Islands showed extraordinary diversity, with bacteria belonging to different species of the genera Mesorhizobium (17 isolates), Sinorhizobium (12 isolates) and Rhizobium/Agrobacterium (5 isolates). In a previous report, we showed that the Sinorhizobium isolates mostly belonged to S. meliloti. Here, we focused on the remaining isolates. The Lotus mesorhizobial strains were distributed in the rrs tree within six poorly resolved branches. Partial sequences from atpD and recA genes produced much better resolved phylogenies that were, with some exceptions, congruent with the ribosomal phylogeny. Thus, up to six different mesorhizobial species were detected, which matched with or were sister species of M. ciceri, M. alhagi, M. plurifarium or M. caraganae, and two represented new lineages that did not correspond to any of the currently recognized species. Neither M. loti nor Bradyrhizobium sp. (Lotus), recognized as the typical Lotus-symbionts, were identified among the Canarian Lotus isolates, although their nodulation genes were closely related to M. loti. However, several subbranches of mesorhizobia nodulating Lotus spp. could be differentiated in a nodC tree, with the isolates from the islands distributed in two of them (A1 and A3). Subbranch A1 included reference strains of M. loti and a group of isolates with a host range compatible with biovar loti, whereas A3 represented a more divergent exclusive subbranch of isolates with a host range almost restricted to endemic Lotus and it could represent a new biovar among the Lotus rhizobia.
Collapse
Affiliation(s)
- Ma José Lorite
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | | | | | | | | | | |
Collapse
|
41
|
Characterization of strains unlike Mesorhizobium loti that nodulate lotus spp. in saline soils of Granada, Spain. Appl Environ Microbiol 2010; 76:4019-26. [PMID: 20435777 DOI: 10.1128/aem.02555-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lotus species are forage legumes with potential as pastures in low-fertility and environmentally constrained soils, owing to their high persistence and yield under those conditions. The aim of this work was the characterization of phenetic and genetic diversity of salt-tolerant bacteria able to establish efficient symbiosis with Lotus spp. A total of 180 isolates able to nodulate Lotus corniculatus and Lotus tenuis from two locations in Granada, Spain, were characterized. Molecular identification of the isolates was performed by repetitive extragenic palindromic PCR (REP-PCR) and 16S rRNA, atpD, and recA gene sequence analyses, showing the presence of bacteria related to different species of the genus Mesorhizobium: Mesorhizobium tarimense/Mesorhizobium tianshanense, Mesorhizobium chacoense/Mesorhizobium albiziae, and the recently described species, Mesorhizobium alhagi. No Mesorhizobium loti-like bacteria were found, although most isolates carried nodC and nifH symbiotic genes closely related to those of M. loti, considered the type species of bacteria nodulating Lotus, and other Lotus rhizobia. A significant portion of the isolates showed both high salt tolerance and good symbiotic performance with L. corniculatus, and many behaved like salt-dependent bacteria, showing faster growth and better symbiotic performance when media were supplemented with Na or Ca salts.
Collapse
|
42
|
Han TX, Tian CF, Wang ET, Chen WX. Associations among rhizobial chromosomal background, nod genes, and host plants based on the analysis of symbiosis of indigenous rhizobia and wild legumes native to Xinjiang. MICROBIAL ECOLOGY 2010; 59:311-323. [PMID: 19730765 DOI: 10.1007/s00248-009-9577-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 08/07/2009] [Indexed: 05/28/2023]
Abstract
The associations among rhizobia chromosomal background, nodulation genes, legume plants, and geographical regions are very attractive but still unclear. To address this question, we analyzed the interactions among rhizobia rDNA genotypes, nodC genotypes, legume genera, as well as geographical regions in the present study. Complex relationships were observed among them, which may be the genuine nature of their associations. The statistical analyses indicate that legume plant is the key factor shaping both rhizobia genetic and symbiotic diversity. In the most cases of our results, the nodC lineages are clearly associated with rhizobial genomic species, demonstrating that nodulation genes have co-evolved with chromosomal background, though the lateral transfer of nodulation genes occurred in some cases in a minority. Our results also support the hypothesis that the endemic rhizobial populations to a certain geographical area prefer to have a wide spectrum of hosts, which might be an important event for the success of both legumes and rhizobia in an isolated region.
Collapse
Affiliation(s)
- Tian Xu Han
- State Key Laboratory of Agrobiotechnology, Key laboratory of Agro-Microbial Resource and Application, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | | | | | | |
Collapse
|
43
|
Rivas R, García-Fraile P, Velázquez E. Taxonomy of Bacteria Nodulating Legumes. Microbiol Insights 2009. [DOI: 10.4137/mbi.s3137] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Over the years, the term “rhizobia” has come to be used for all the bacteria that are capable of nodulation and nitrogen fixation in association with legumes but the taxonomy of rhizobia has changed considerably over the last 30 year. Recently, several non-rhizobial species belonging to alpha and beta subgroup of Proteobacteria have been identified as nitrogen-fixing legume symbionts. Here we provide an overview of the history of the rhizobia and the widespread phylogenetic diversity of nitrogen-fixing legume symbionts.
Collapse
Affiliation(s)
- Raúl Rivas
- Departamento de Microbiología y Genética, Laboratorio 209, Edificio Departamental de Biología, Doctores de la Reina s/n, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Paula García-Fraile
- Departamento de Microbiología y Genética, Laboratorio 209, Edificio Departamental de Biología, Doctores de la Reina s/n, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Encarna Velázquez
- Departamento de Microbiología y Genética, Laboratorio 209, Edificio Departamental de Biología, Doctores de la Reina s/n, Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|