1
|
Shi X, Li C, Cheng L, Ullah H, Sha S, Kang J, Ma X, Ma Y. Mycobacterium tuberculosis Rv1324 Protein Contributes to Mycobacterial Persistence and Causes Pathological Lung Injury in Mice by Inducing Ferroptosis. Microbiol Spectr 2023; 11:e0252622. [PMID: 36625672 PMCID: PMC9927160 DOI: 10.1128/spectrum.02526-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the pathogenic agent of tuberculosis (TB). Intracellular survival plays a central role in the pathogenesis of Mtb, a process that depends on an array of virulence factors for Mtb to colonize and proliferate within a host. Reactive nitrogen and oxygen species (RNS and ROS) are among the most effective antimycobacterial molecules generated by the host during infection. However, Mtb has evolved a number of proteins and enzymes to detoxify ROS and RNS. Secretory protein Rv1324, as a possible thioredoxin, might also have oxidoreductase activity against ROS and RNS during Mtb infection, and it is a potential virulence factor of Mtb. In this study, we investigated the biochemical properties of Mtb Rv1324 and its role in mycobacterial survival and virulence. The results showed that the Rv1324 protein had antioxidant activity and increased the survival of M. smegmatis that was exposed to ROS and RNS. In addition, Rv1324 enhanced the colonization ability of M. smegmatis in the lungs of mice. Further, mice infected with M. smegmatis harboring Rv1324 exhibited pathological injury and inflammation in the lung, which was mediated by ferroptosis. In summary, this study advances our understanding of the mechanisms of mycobacterial survival and pathogenesis, and it reveals a novel target for TB treatment. IMPORTANCE The intracellular survival of M. tuberculosis (Mtb) plays a crucial role in its pathogenesis, which depends on various Mtb oxidoreductases that are resistant to reactive oxygen and nitrogen species (ROS and RNS) that are generated by the host during Mtb infection. Secretory protein Rv1324 is a potential virulence factor of Mtb and is a possible thioredoxin that has oxidoreductase activity against ROS and RNS during Mtb infection. We investigated the biochemical properties of Mtb Rv1324 and its role in mycobacterial survival and virulence. It was confirmed that the Rv1324 protein had antioxidant activity and an increased mycobacterial resistance to ROS and RNS. In addition, Rv1324 enhanced mycobacterial persistence and induced pathological injury and inflammation in the lungs of mice by activating ferroptosis. This study advances our understanding of the mechanisms of mycobacterial survival and pathogenesis, and it reveals a novel target for TB treatment.
Collapse
Affiliation(s)
- Xiaoxia Shi
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, China
- Department of Experimental Teaching Center of Public Health, Dalian Medical University, Dalian, China
| | - Chunyu Li
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, China
| | - Lin Cheng
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, China
| | - Hayan Ullah
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, China
| | - Shanshan Sha
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, China
| | - Jian Kang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, China
| | - Xiaochi Ma
- College of Integrative Medicine, Dalian Medical University, Dalian, China
- Pharmaceutical Research Center, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yufang Ma
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, China
- Department of Microbiology, Dalian Medical University, Dalian, China
| |
Collapse
|
2
|
Defenses of multidrug resistant pathogens against reactive nitrogen species produced in infected hosts. Adv Microb Physiol 2022; 80:85-155. [PMID: 35489794 DOI: 10.1016/bs.ampbs.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bacterial pathogens have sophisticated systems that allow them to survive in hosts in which innate immunity is the frontline of defense. One of the substances produced by infected hosts is nitric oxide (NO) that together with its derived species leads to the so-called nitrosative stress, which has antimicrobial properties. In this review, we summarize the current knowledge on targets and protective systems that bacteria have to survive host-generated nitrosative stress. We focus on bacterial pathogens that pose serious health concerns due to the growing increase in resistance to currently available antimicrobials. We describe the role of nitrosative stress as a weapon for pathogen eradication, the detoxification enzymes, protein/DNA repair systems and metabolic strategies that contribute to limiting NO damage and ultimately allow survival of the pathogen in the host. Additionally, this systematization highlights the lack of available data for some of the most important human pathogens, a gap that urgently needs to be addressed.
Collapse
|
3
|
Ssekitoleko J, Ojok L, Abd El Wahed A, Erume J, Amanzada A, Eltayeb E, Eltom KH, Okuni JB. Mycobacterium avium subsp. paratuberculosis Virulence: A Review. Microorganisms 2021; 9:2623. [PMID: 34946224 PMCID: PMC8707695 DOI: 10.3390/microorganisms9122623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022] Open
Abstract
To propose a solution for control of Mycobacterium avium subsp. paratuberculosis (MAP) infections in animals as well as in humans, and develop effective prevention, diagnostic and treatment strategies, it is essential to understand the molecular mechanisms of MAP pathogenesis. In the present review, we discuss the mechanisms utilised by MAP to overcome the host defense system to achieve the virulence status. Putative MAP virulence genes are mentioned and their probable roles in view of other mycobacteria are discussed. This review provides information on MAP strain diversity, putative MAP virulence factors and highlights the knowledge gaps regarding MAP virulence mechanisms that may be important in control and prevention of paratuberculosis.
Collapse
Affiliation(s)
- Judah Ssekitoleko
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala P. O. Box 7062, Uganda; (J.S.); (L.O.); (J.E.)
- Department of Livestock Health Research, Rwebitaba Zonal Agricultural Research and Development Institute, National Agricultural Research Organisation, Entebbe P. O. Box 295, Uganda
| | - Lonzy Ojok
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala P. O. Box 7062, Uganda; (J.S.); (L.O.); (J.E.)
- Department of Pathology, Faculty of Medicine, Gulu University, Gulu P. O. Box 166, Uganda
| | - Ahmed Abd El Wahed
- Institute of Animal Hygiene and Veterinary Public Health, Leipzig University, D-04103 Leipzig, Germany
| | - Joseph Erume
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala P. O. Box 7062, Uganda; (J.S.); (L.O.); (J.E.)
| | - Ahmad Amanzada
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Centre Goettingen, D-37075 Goettingen, Germany;
| | - ElSagad Eltayeb
- Ibn Sina Specialised Hospital, Mohammed Najeeb St., Khartoum 11560, Sudan;
- Faculty of Medicine, Al Neelain University, 52nd St., Khartoum 11112, Sudan
| | - Kamal H. Eltom
- Unit of Animal Health and Safety of Animal Products, Institute for Studies and Promotion of Animal Exports, University of Khartoum, Shambat, Khartoum North 13314, Sudan;
| | - Julius Boniface Okuni
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala P. O. Box 7062, Uganda; (J.S.); (L.O.); (J.E.)
| |
Collapse
|
4
|
da Silva ASM, Albuquerque LHP, de Ponte CGG, de Almeida MR, de Faria SER, Ribeiro MDS, Pereira ENGDS, Antas PRZ. Time to face the proofs: the BCG Moreau vaccine promotes superior inflammatory cytokine profile in vitro when compared with Russia, Pasteur, and Danish strains. Hum Vaccin Immunother 2021; 18:1989913. [PMID: 34766868 PMCID: PMC8942427 DOI: 10.1080/21645515.2021.1989913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Tuberculosis (TB) has been a major public health problem worldwide, and the Bacillus Calmette–Guérin (BCG) vaccine is the only available vaccine against this disease. The BCG vaccine is no longer a single organism; it consists of diverse strains. The early-shared strains of the BCG vaccine are stronger immunostimulators than the late-shared strains. In this study, we have employed a simple in vitro human model to broadly evaluate the differences among four widely used BCG vaccines during the characterization of strain-specific host immune responses. In general, the BCG Moreau vaccine generated a higher inflammatory cytokine profile and lower TGF-β levels compared with the Russia, Pasteur, and Danish strains in the context of early sensitization with TB; however, no changes were observed in the IL-23 levels between infected and noninfected cultures. Unsurprisingly, the BCG vaccines provided different features, and the variances among those strains may influence the activation of infected host cells, which ultimately leads to distinct protective efficacy to tackle TB.
Collapse
Affiliation(s)
- Andreon Santos Machado da Silva
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Rio de Janeiro, andInstituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB)
| | - Lawrence Henrique Paz Albuquerque
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Rio de Janeiro, andInstituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB)
| | - Carlos Germano Garrido de Ponte
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Rio de Janeiro, andInstituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB)
| | - Matheus Rogério de Almeida
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Rio de Janeiro, andInstituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB)
| | - Sandra Elizabete Ribeiro de Faria
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Rio de Janeiro, andInstituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB)
| | | | | | - Paulo Renato Zuquim Antas
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Rio de Janeiro, andInstituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB)
| |
Collapse
|
5
|
Phillips IL, Everman JL, Bermudez LE, Danelishvili L. Acanthamoeba castellanii as a Screening Tool for Mycobacterium avium Subspecies paratuberculosis Virulence Factors with Relevance in Macrophage Infection. Microorganisms 2020; 8:microorganisms8101571. [PMID: 33066018 PMCID: PMC7601679 DOI: 10.3390/microorganisms8101571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/05/2023] Open
Abstract
The high prevalence of Johne's disease has driven a continuous effort to more readily understand the pathogenesis of the etiological causative bacterium, Mycobacterium avium subsp. paratuberculosis (MAP), and to develop effective preventative measures for infection spread. In this study, we aimed to create an in vivo MAP infection model employing an environmental protozoan host and used it as a tool for selection of bacterial virulence determinants potentially contributing to MAP survival in mammalian host macrophages. We utilized Acanthamoeba castellanii (amoeba) to explore metabolic consequences of the MAP-host interaction and established a correlation between metabolic changes of this phagocytic host and MAP virulence. Using the library of gene knockout mutants, we identified MAP clones that can either enhance or inhibit amoeba metabolism and we discovered that, for most part, it mirrors the pattern of MAP attenuation or survival during infection of macrophages. It was found that MAP mutants that induced an increase in amoeba metabolism were defective in intracellular growth in macrophages. However, MAP clones that exhibited low metabolic alteration in amoeba were able to survive at a greater rate within mammalian cells, highlighting importance of both category of genes in bacterial pathogenesis. Sequencing of MAP mutants has identified several virulence factors previously shown to have a biological relevance in mycobacterial survival and intracellular growth in phagocytic cells. In addition, we uncovered new genetic determinants potentially contributing to MAP pathogenicity. Results of this study support the use of the amoeba model system as a quick initial screening tool for selection of virulence factors of extremely slow-grower MAP that is challenging to study.
Collapse
Affiliation(s)
- Ida L. Phillips
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (I.L.P.); (L.E.B.)
| | - Jamie L. Everman
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA;
| | - Luiz E. Bermudez
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (I.L.P.); (L.E.B.)
- Department of Microbiology, College of Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Lia Danelishvili
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (I.L.P.); (L.E.B.)
- Correspondence: ; Tel.: +541-737-6544; Fax: +541-737-2730
| |
Collapse
|
6
|
Hade MD, Sethi D, Datta H, Singh S, Thakur N, Chhaya A, Dikshit KL. Truncated Hemoglobin O Carries an Autokinase Activity and Facilitates Adaptation of Mycobacterium tuberculosis Under Hypoxia. Antioxid Redox Signal 2020; 32:351-362. [PMID: 31218881 DOI: 10.1089/ars.2018.7708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aims: Although the human pathogen, Mycobacterium tuberculosis (Mtb), is strictly aerobic and requires efficient supply of oxygen, it can survive long stretches of severe hypoxia. The mechanism responsible for this metabolic flexibility is unknown. We have investigated a novel mechanism by which hemoglobin O (HbO), operates and supports its host under oxygen stress. Results: We discovered that the HbO exists in a phospho-bound state in Mtb and remains associated with the cell membrane under hypoxia. Deoxy-HbO carries an autokinase activity that disrupts its dimeric assembly into monomer and facilitates its association with the cell membrane, supporting survival and adaptation of Mtb under low oxygen conditions. Consistent with these observations, deletion of the glbO gene in Mycobacterium bovis bacillus Calmette-Guerin, which is identical to the glbO gene of Mtb, attenuated its survival under hypoxia and complementation of the glbO gene of Mtb rescued this inhibition, but phosphorylation-deficient mutant did not. These results demonstrated that autokinase activity of the HbO modulates its physiological function and plays a vital role in supporting the survival of its host under hypoxia. Innovation and Conclusion: Our study demonstrates that the redox-dependent autokinase activity regulates oligomeric state and membrane association of HbO that generates a reservoir of oxygen in the proximity of respiratory membranes to sustain viability of Mtb under hypoxia. These results thus provide a novel insight into the physiological function of the HbO and demonstrate its pivotal role in supporting the survival and adaptation of Mtb under hypoxia.
Collapse
Affiliation(s)
| | - Deepti Sethi
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Himani Datta
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Sandeep Singh
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Naveen Thakur
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Ajay Chhaya
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Kanak L Dikshit
- CSIR-Institute of Microbial Technology, Chandigarh, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| |
Collapse
|
7
|
Piacenza L, Trujillo M, Radi R. Reactive species and pathogen antioxidant networks during phagocytosis. J Exp Med 2019; 216:501-516. [PMID: 30792185 PMCID: PMC6400530 DOI: 10.1084/jem.20181886] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/04/2019] [Accepted: 02/04/2019] [Indexed: 11/23/2022] Open
Abstract
The generation of phagosomal cytotoxic reactive species (i.e., free radicals and oxidants) by activated macrophages and neutrophils is a crucial process for the control of intracellular pathogens. The chemical nature of these species, the reactions they are involved in, and the subsequent effects are multifaceted and depend on several host- and pathogen-derived factors that influence their production rates and catabolism inside the phagosome. Pathogens rely on an intricate and synergistic antioxidant armamentarium that ensures their own survival by detoxifying reactive species. In this review, we discuss the generation, kinetics, and toxicity of reactive species generated in phagocytes, with a focus on the response of macrophages to internalized pathogens and concentrating on Mycobacterium tuberculosis and Trypanosoma cruzi as examples of bacterial and parasitic infection, respectively. The ability of pathogens to deal with host-derived reactive species largely depends on the competence of their antioxidant networks at the onset of invasion, which in turn can tilt the balance toward pathogen survival, proliferation, and virulence over redox-dependent control of infection.
Collapse
Affiliation(s)
- Lucía Piacenza
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
8
|
Myxococcus xanthus truncated globin HbO: in silico analysis and functional characterization. Mol Biol Rep 2019; 46:2101-2110. [PMID: 30729391 DOI: 10.1007/s11033-019-04662-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 01/29/2019] [Indexed: 10/27/2022]
Abstract
Truncated globins are 20-40 amino acids shorter than full length globins. Till date, globins have been characterized predominantly from bacteria involved in pathogenicity, nitrogen fixation and photosynthesis, where they are implicated in bacterial virulence within the host, protection of nitrogenase from oxygen inactivation and prevention of oxidative damage to the photosynthetic machinery respectively. Myxococcus xanthus, the model myxobacterium, is an obligate aerobe with a multicellular stage in its life cycle where cells encounter oxygen limitation. This work was undertaken to investigate the potential role of the truncated globin in M. xanthus. To examine the role of globins in this unique group of bacteria, the gene coding for a putative truncated globin (HbO) was identified in the genome of M. xanthus DK 1622. The sequence analysis by bioinformatics approaches revealed that HbO from M. xanthus (Mx-HbO) likely adopts a 2-on-2 alpha helical fold of the truncated globins. The gene coding for Mx-HbO was cloned and its expression in E. coli imparted reddish tinge to the cells. The spectral analysis confirmed it to be a functional globin. The expression of Mx-HbO in the heterologous host improved its growth, resulting in the attainment of higher cell density in culture. The transcript of Mx-hbO was induced threefold in the host cells when grown under low aeration condition as compared to the cells grown under high aeration condition. In M. xanthus, an obligate aerobe, where cell growth accompanies swarming, there is a higher density of cells in the middle of the swarm. Our results suggest that Mx-HbO is a functional globin and could facilitate the growth of cells facing oxygen deprivation, the condition prevailing in the middle of the swarm.
Collapse
|
9
|
Antczak M, Płocińska R, Płociński P, Rumijowska-Galewicz A, Żaczek A, Strapagiel D, Dziadek J. The NnaR orphan response regulator is essential for the utilization of nitrate and nitrite as sole nitrogen sources in mycobacteria. Sci Rep 2018; 8:17552. [PMID: 30510199 PMCID: PMC6277429 DOI: 10.1038/s41598-018-35844-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 11/05/2018] [Indexed: 12/12/2022] Open
Abstract
Nitrogen is an essential component of biological molecules and an indispensable microelement required for the growth of cells. Nitrogen metabolism of Mycobacterium smegmatis is regulated by a number of transcription factors, with the glnR gene product playing a major role. Under nitrogen-depletion conditions, GlnR controls the expression of many genes involved in nitrogen assimilation, including the msmeg_0432 gene encoding NnaR, the homologue of a nitrite/nitrate transport regulator from Streptomyces coelicolor. In the present study, the role of NnaR in the nitrogen metabolism of M. smegmatis was evaluated. The ∆glnR and ∆nnaR mutant strains were generated and cultured under nitrogen-depletion conditions. Total RNA profiling was used to investigate the potential role of NnaR in the GlnR regulon under nitrogen-depletion and in nitrogen-rich media. We found that disruption of MSMEG_0432 affected the expression of genes involved in nitrite/nitrate uptake, and its removal rendered mycobacteria unable to assimilate nitrogen from those sources, leading to cell death. RNA-Seq results were validated using quantitative real-time polymerase chain reaction (qRT-PCR) and electrophoretic mobility shift assays (EMSAs). The ability of mutants to grow on various nitrogen sources was evaluated using the BIOLOG Phenotype screening platform and confirmed on minimal Sauton's medium containing various sources of nitrogen. The ∆glnR mutant was not able to convert nitrates to nitrites. Interestingly, NnaR required active GlnR to prevent nitrogen starvation, and both proteins cooperated in the regulation of gene expression associated with nitrate/nitrite assimilation. The ∆nnaR mutant was able to convert nitrates to nitrites, but it could not assimilate the products of this conversion. Importantly, NnaR was the key regulator of the expression of the truncated haemoglobin trHbN, which is required to improve the survival of bacteria under nitrosative stress.
Collapse
Affiliation(s)
- Magdalena Antczak
- Institute for Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Renata Płocińska
- Institute for Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | | | | | - Anna Żaczek
- Department of Biochemistry and Cell Biology, University of Rzeszów, Rzeszów, Poland
| | - Dominik Strapagiel
- Biobank Lab, Department of Molecular Biophysics, University of Łódź, Łódź, Poland
| | - Jarosław Dziadek
- Institute for Medical Biology, Polish Academy of Sciences, Łódź, Poland.
| |
Collapse
|
10
|
Gomez RL, Jose L, Ramachandran R, Raghunandanan S, Muralikrishnan B, Johnson JB, Sivakumar KC, Mundayoor S, Kumar RA. The multiple stress responsive transcriptional regulator Rv3334 of Mycobacterium tuberculosis is an autorepressor and a positive regulator of kstR. FEBS J 2016; 283:3056-71. [PMID: 27334653 DOI: 10.1111/febs.13791] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 06/12/2016] [Accepted: 06/22/2016] [Indexed: 11/26/2022]
Abstract
Rv3334 protein of Mycobacterium tuberculosis belongs to the MerR family of transcriptional regulators and is upregulated during hypoxia and other stress conditions. Employing GFP reporter constructs, mobility shift assays and ChIP assays, we demonstrate that Rv3334 binds to its own promoter and acts as an autorepressor. We were able to locate a 22 bp palindrome in its promoter that we show to be the cognate binding sequence of Rv3334. Using chase experiments, we could conclusively prove the requirement of this palindrome for Rv3334 binding. Recombinant Rv3334 readily formed homodimers in vitro, which could be necessary for its transcriptional regulatory role in vivo. Although the DNA-binding activity of the protein was abrogated by the presence of certain divalent metal cations, the homodimer formation remained unaffected. In silico predictions and subsequent assays using GFP reporter constructs and mobility shift assays revealed that the expression of ketosteroid regulator gene (kstR), involved in lipid catabolism, is positively regulated by Rv3334. ChIP assays with aerobically grown M. tuberculosis as well as dormant bacteria unambiguously prove that Rv3334 specifically upregulates expression of kstR during dormancy. Our study throws light on the possible role of Rv3334 as a master regulator of lipid catabolism during hypoxia-induced dormancy.
Collapse
Affiliation(s)
- Roshna Lawrence Gomez
- Mycobacterium Research Group, Tropical Disease Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Leny Jose
- Mycobacterium Research Group, Tropical Disease Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Ranjit Ramachandran
- Mycobacterium Research Group, Tropical Disease Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Sajith Raghunandanan
- Mycobacterium Research Group, Tropical Disease Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Balaji Muralikrishnan
- Mycobacterium Research Group, Tropical Disease Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - John Bernet Johnson
- Viral Disease Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | | | - Sathish Mundayoor
- Mycobacterium Research Group, Tropical Disease Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Ramakrishnan Ajay Kumar
- Mycobacterium Research Group, Tropical Disease Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| |
Collapse
|
11
|
Comparative analyses of Legionella species identifies genetic features of strains causing Legionnaires' disease. Genome Biol 2015; 15:505. [PMID: 25370836 DOI: 10.1186/preaccept-1086350395137407] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The genus Legionella comprises over 60 species. However, L. pneumophila and L. longbeachae alone cause over 95% of Legionnaires’ disease. To identify the genetic bases underlying the different capacities to cause disease we sequenced and compared the genomes of L. micdadei, L. hackeliae and L. fallonii (LLAP10), which are all rarely isolated from humans. RESULTS We show that these Legionella species possess different virulence capacities in amoeba and macrophages, correlating with their occurrence in humans. Our comparative analysis of 11 Legionella genomes belonging to five species reveals highly heterogeneous genome content with over 60% representing species-specific genes; these comprise a complete prophage in L. micdadei, the first ever identified in a Legionella genome. Mobile elements are abundant in Legionella genomes; many encode type IV secretion systems for conjugative transfer, pointing to their importance for adaptation of the genus. The Dot/Icm secretion system is conserved, although the core set of substrates is small, as only 24 out of over 300 described Dot/Icm effector genes are present in all Legionella species. We also identified new eukaryotic motifs including thaumatin, synaptobrevin or clathrin/coatomer adaptine like domains. CONCLUSIONS Legionella genomes are highly dynamic due to a large mobilome mainly comprising type IV secretion systems, while a minority of core substrates is shared among the diverse species. Eukaryotic like proteins and motifs remain a hallmark of the genus Legionella. Key factors such as proteins involved in oxygen binding, iron storage, host membrane transport and certain Dot/Icm substrates are specific features of disease-related strains.
Collapse
|
12
|
Gomez-Valero L, Rusniok C, Rolando M, Neou M, Dervins-Ravault D, Demirtas J, Rouy Z, Moore RJ, Chen H, Petty NK, Jarraud S, Etienne J, Steinert M, Heuner K, Gribaldo S, Médigue C, Glöckner G, Hartland EL, Buchrieser C. Comparative analyses of Legionella species identifies genetic features of strains causing Legionnaires’ disease. Genome Biol 2014. [PMID: 25370836 PMCID: PMC4256840 DOI: 10.1186/s13059-014-0505-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background The genus Legionella comprises over 60 species. However, L. pneumophila and L. longbeachae alone cause over 95% of Legionnaires’ disease. To identify the genetic bases underlying the different capacities to cause disease we sequenced and compared the genomes of L. micdadei, L. hackeliae and L. fallonii (LLAP10), which are all rarely isolated from humans. Results We show that these Legionella species possess different virulence capacities in amoeba and macrophages, correlating with their occurrence in humans. Our comparative analysis of 11 Legionella genomes belonging to five species reveals highly heterogeneous genome content with over 60% representing species-specific genes; these comprise a complete prophage in L. micdadei, the first ever identified in a Legionella genome. Mobile elements are abundant in Legionella genomes; many encode type IV secretion systems for conjugative transfer, pointing to their importance for adaptation of the genus. The Dot/Icm secretion system is conserved, although the core set of substrates is small, as only 24 out of over 300 described Dot/Icm effector genes are present in all Legionella species. We also identified new eukaryotic motifs including thaumatin, synaptobrevin or clathrin/coatomer adaptine like domains. Conclusions Legionella genomes are highly dynamic due to a large mobilome mainly comprising type IV secretion systems, while a minority of core substrates is shared among the diverse species. Eukaryotic like proteins and motifs remain a hallmark of the genus Legionella. Key factors such as proteins involved in oxygen binding, iron storage, host membrane transport and certain Dot/Icm substrates are specific features of disease-related strains. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0505-0) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Ascenzi P, di Masi A, Tundo GR, Pesce A, Visca P, Coletta M. Nitrosylation mechanisms of Mycobacterium tuberculosis and Campylobacter jejuni truncated hemoglobins N, O, and P. PLoS One 2014; 9:e102811. [PMID: 25051055 PMCID: PMC4106858 DOI: 10.1371/journal.pone.0102811] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/23/2014] [Indexed: 01/19/2023] Open
Abstract
Truncated hemoglobins (trHbs) are widely distributed in bacteria and plants and have been found in some unicellular eukaryotes. Phylogenetic analysis based on protein sequences shows that trHbs branch into three groups, designated N (or I), O (or II), and P (or III). Most trHbs are involved in the O2/NO chemistry and/or oxidation/reduction function, permitting the survival of the microorganism in the host. Here, a detailed comparative analysis of kinetics and/or thermodynamics of (i) ferrous Mycobacterium tubertulosis trHbs N and O (Mt-trHbN and Mt-trHbO, respectively), and Campylobacter jejuni trHb (Cj-trHbP) nitrosylation, (ii) nitrite-mediated nitrosylation of ferrous Mt-trHbN, Mt-trHbO, and Cj-trHbP, and (iii) NO-based reductive nitrosylation of ferric Mt-trHbN, Mt-trHbO, and Cj-trHbP is reported. Ferrous and ferric Mt-trHbN and Cj-trHbP display a very high reactivity towards NO; however, the conversion of nitrite to NO is facilitated primarily by ferrous Mt-trHbN. Values of kinetic and/or thermodynamic parameters reflect specific trHb structural features, such as the ligand diffusion pathways to/from the heme, the heme distal pocket structure and polarity, and the ligand stabilization mechanisms. In particular, the high reactivity of Mt-trHbN and Cj-trHbP reflects the great ligand accessibility to the heme center by two protein matrix tunnels and the E7-path, respectively, and the penta-coordination of the heme-Fe atom. In contrast, the heme-Fe atom of Mt-trHbO the ligand accessibility to the heme center of Mt-trHbO needs large conformational readjustments, thus limiting the heme-based reactivity. These results agree with different roles of Mt-trHbN, Mt-trHbO, and Cj-trHbP in vivo.
Collapse
Affiliation(s)
- Paolo Ascenzi
- Interdepartmental Laboratory of Electron Microscopy, University Roma Tre, Roma, Italy
- * E-mail:
| | - Alessandra di Masi
- Interdepartmental Laboratory of Electron Microscopy, University Roma Tre, Roma, Italy
- Department of Sciences, University Roma Tre, Roma, Italy
| | - Grazia R. Tundo
- Department of Clinical Sciences and Translational Medicine, University of Roma “Tor Vergata”, Roma, Italy
- Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Bari, Italy
| | | | - Paolo Visca
- Interdepartmental Laboratory of Electron Microscopy, University Roma Tre, Roma, Italy
| | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine, University of Roma “Tor Vergata”, Roma, Italy
- Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Bari, Italy
| |
Collapse
|
14
|
Abstract
The genus Mycobacterium is comprised of Gram-positive bacteria occupying a wide range of natural habitats and includes species that range from severe intracellular pathogens to economically useful and harmless microbes. The recent upsurge in the availability of microbial genome data has shown that genes encoding haemoglobin-like proteins are ubiquitous among Mycobacteria and that multiple haemoglobins (Hbs) of different classes may be present in pathogenic and non-pathogenic species. The occurrence of truncated haemoglobins (trHbs) and flavohaemoglobins (flavoHbs) showing distinct haem active site structures and ligand-binding properties suggests that these Hbs may be playing diverse functions in the cellular metabolism of Mycobacteria. TrHbs and flavoHbs from some of the severe human pathogens such as Mycobacterium tuberculosis and Mycobacterium leprae have been studied recently and their roles in effective detoxification of reactive nitrogen and oxygen species, electron cycling, modulation of redox state of the cell and facilitation of aerobic respiration have been proposed. This multiplicity in the function of Hbs may aid these pathogens to cope with various environmental stresses and survive during their intracellular regime. This chapter provides recent updates on genomic, structural and functional aspects of Mycobacterial Hbs to address their role in Mycobacteria.
Collapse
|
15
|
Arya S, Sethi D, Singh S, Hade MD, Singh V, Raju P, Chodisetti SB, Verma D, Varshney GC, Agrewala JN, Dikshit KL. Truncated hemoglobin, HbN, is post-translationally modified in Mycobacterium tuberculosis and modulates host-pathogen interactions during intracellular infection. J Biol Chem 2013; 288:29987-29999. [PMID: 23983123 PMCID: PMC3795296 DOI: 10.1074/jbc.m113.507301] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 08/22/2013] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is a phenomenally successful human pathogen having evolved mechanisms that allow it to survive within the hazardous environment of macrophages and establish long term, persistent infection in the host against the control of cell-mediated immunity. One such mechanism is mediated by the truncated hemoglobin, HbN, of Mtb that displays a potent O2-dependent nitric oxide dioxygenase activity and protects its host from the toxicity of macrophage-generated nitric oxide (NO). Here we demonstrate for the first time that HbN is post-translationally modified by glycosylation in Mtb and remains localized on the cell membrane and the cell wall. The glycan linkage in the HbN was identified as mannose. The elevated expression of HbN in Mtb and M. smegmatis facilitated their entry within the macrophages as compared with isogenic control cells, and mutation in the glycan linkage of HbN disrupted this effect. Additionally, HbN-expressing cells exhibited higher survival within the THP-1 and mouse peritoneal macrophages, simultaneously increasing the intracellular level of proinflammatory cytokines IL-6 and TNF-α and suppressing the expression of co-stimulatory surface markers CD80 and CD86. These results, thus, suggest the involvement of HbN in modulating the host-pathogen interactions and immune system of the host apart from protecting the bacilli from nitrosative stress inside the activated macrophages, consequently driving cells toward increased infectivity and intracellular survival.
Collapse
Affiliation(s)
- Swati Arya
- From the Council of Scientific and Industrial Research (CSIR)-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Somasundaram S, Anand RS, Venkatesan P, Paramasivan CN. Bactericidal activity of PA-824 against Mycobacterium tuberculosis under anaerobic conditions and computational analysis of its novel analogues against mutant Ddn receptor. BMC Microbiol 2013; 13:218. [PMID: 24083570 PMCID: PMC3853930 DOI: 10.1186/1471-2180-13-218] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 09/27/2013] [Indexed: 11/10/2022] Open
Abstract
Background The resurgence of multi-drug resistant tuberculosis (MDR-TB) and HIV associated tuberculosis (TB) are of serious global concern. To contain this situation, new anti-tuberculosis drugs and reduced treatment regimens are imperative. Recently, a nitroimidazole, PA-824, has been shown to be active against both replicating and non-replicating bacteria. It is activated by the enzyme Deazaflavin-dependent nitroreductase (Ddn) present in Mycobacterium tuberculosis which catalyzes the reduction of PA-824, resulting in the release of lethal reactive nitrogen species (RNS) within the bacteria. In this context, PA-824 was analyzed for its activity against latent tuberculosis under anaerobic conditions and compared with rifampicin (RIF) and pyrazinamide (PZA). Recent mutagenesis studies have identified A76E mutation which affects the above mentioned catalysis and leads to PA-824 resistance. Hence, novel analogues which could cope up with their binding to mutant Ddn receptor were also identified through this study. Results PA-824 at an optimum concentration of 12.5 μg/ml showed enhanced bactericidal activity, resulting in 0 CFU/ml growth when compared to RIF and PZA at normal pH and anaerobic condition. Further docking studies revealed that a combinatorial structure of PA-824 conjugated with moxifloxacin (ligand 8) has the highest binding affinity with the wild type and mutant Ddn receptor. Conclusions PA-824 has been demonstrated to have better activity under anaerobic condition at 12.5 μg/ml, indicating an optimized dose that is required for overcoming the detoxifying mechanisms of M. tuberculosis and inducing its death. Further, the development of resistance through A76E mutation could be overcome through the in silico evolved ligand 8.
Collapse
Affiliation(s)
- Sulochana Somasundaram
- Foundation for Innovative New Diagnostics, Flat No, 6-14 (excluding No, 7), 9th floor, Vijaya Building, 17-Barakhamba Road, New Delhi 110 001, India.
| | | | | | | |
Collapse
|
17
|
Abstract
Campylobacter jejuni is a zoonotic Gram-negative bacterial pathogen that is exposed to reactive nitrogen species, such as nitric oxide, from a variety of sources. To combat the toxic effects of this nitrosative stress, C. jejuni upregulates a small regulon under the control of the transcriptional activator NssR, which positively regulates the expression of a single-domain globin protein (Cgb) and a truncated globin protein (Ctb). Cgb has previously been shown to detoxify nitric oxide, but the role of Ctb remains contentious. As C. jejuni is amenable to genetic manipulation, and its globin proteins are easily expressed and purified, a combination of mutagenesis, complementation, transcriptomics, spectroscopic characterisation and structural analyses has been used to probe the regulation, function and structure of Cgb and Ctb. This ability to study Cgb and Ctb with such a multi-pronged approach is a valuable asset, especially since only a small fraction of known globin proteins have been functionally characterised.
Collapse
|
18
|
Role of PheE15 gate in ligand entry and nitric oxide detoxification function of mycobacterium tuberculosis truncated hemoglobin N. PLoS One 2012; 7:e49291. [PMID: 23145144 PMCID: PMC3493545 DOI: 10.1371/journal.pone.0049291] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Accepted: 10/08/2012] [Indexed: 11/19/2022] Open
Abstract
The truncated hemoglobin N, HbN, of Mycobacterium tuberculosis is endowed with a potent nitric oxide dioxygenase (NOD) activity that allows it to relieve nitrosative stress and enhance in vivo survival of its host. Despite its small size, the protein matrix of HbN hosts a two-branched tunnel, consisting of orthogonal short and long channels, that connects the heme active site to the protein surface. A novel dual-path mechanism has been suggested to drive migration of O(2) and NO to the distal heme cavity. While oxygen migrates mainly by the short path, a ligand-induced conformational change regulates opening of the long tunnel branch for NO, via a phenylalanine (PheE15) residue that acts as a gate. Site-directed mutagenesis and molecular simulations have been used to examine the gating role played by PheE15 in modulating the NOD function of HbN. Mutants carrying replacement of PheE15 with alanine, isoleucine, tyrosine and tryptophan have similar O(2)/CO association kinetics, but display significant reduction in their NOD function. Molecular simulations substantiated that mutation at the PheE15 gate confers significant changes in the long tunnel, and therefore may affect the migration of ligands. These results support the pivotal role of PheE15 gate in modulating the diffusion of NO via the long tunnel branch in the oxygenated protein, and hence the NOD function of HbN.
Collapse
|
19
|
Farhana A, Saini V, Kumar A, Lancaster JR, Steyn AJ. Environmental heme-based sensor proteins: implications for understanding bacterial pathogenesis. Antioxid Redox Signal 2012; 17:1232-45. [PMID: 22494151 PMCID: PMC3430476 DOI: 10.1089/ars.2012.4613] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 04/11/2012] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE Heme is an important prosthetic group required in a wide array of functions, including respiration, photosynthesis, metabolism, O(2) transport, xenobiotic detoxification, and peroxide production and destruction, and is an essential cofactor in proteins such as catalases, peroxidases, and members of the cytochrome P450 superfamily. Importantly, bacterial heme-based sensor proteins exploit the redox chemistry of heme to sense environmental gases and the intracellular redox state of the cell. RECENT ADVANCES The bacterial proteins FixL (Rhizobium ssp.), CooA (Rhodospirillum rubrum), EcDos (Escherichia. coli), RcoM (Burkholderia xenovorans), and particularly Mycobacterium tuberculosis (Mtb) DosS and DosT have emerged as model paradigms of environmental heme-based sensors capable of detecting multiple gases including NO, CO, and O(2). CRITICAL ISSUES How the diatomic gases NO, CO, or O(2) bind to heme iron to generate Fe-NO, Fe-CO, and Fe-O(2) bonds, respectively, and how the oxidation of heme iron by O(2) serves as a sensing mechanism that controls the activity of key proteins is complex and largely unclear. This is particularly important as many bacterial pathogens, including Mtb, encounters three overlapping host gases (NO, CO, and O(2)) during human infection. FUTURE DIRECTIONS Heme is an important prosthetic group that monitors the microbe's internal and external surroundings to alter signal transduction or enzymatic activation. Modern expression, metabolomic and biochemical technologies combined with in vivo pathogenesis studies should provide fresh insights into the mechanism of action of heme-based redox sensors.
Collapse
Affiliation(s)
- Aisha Farhana
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Vikram Saini
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ashwani Kumar
- Institute of Microbial Technology, Chandigarh, India
| | - Jack R. Lancaster
- Department of Anesthesiology, Physiology and Biophysics, and Environmental Sciences, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Adrie J.C. Steyn
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama
- Centers for AIDS Research, University of Alabama at Birmingham, Birmingham, Alabama
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Durban, South Africa
- Department of Pathology, Nelson Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
20
|
Comparative analysis of mycobacterial truncated hemoglobin promoters and the groEL2 promoter in free-living and intracellular mycobacteria. Appl Environ Microbiol 2012; 78:6499-506. [PMID: 22773641 DOI: 10.1128/aem.01984-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The success of Mycobacterium tuberculosis depends on its ability to withstand and survive the hazardous environment inside the macrophages that are created by reactive oxygen intermediates, reactive nitrogen intermediates, severe hypoxia, low pH, and high CO(2) levels. Therefore, an effective detoxification system is required for the pathogen to persist in vivo. The genome of M. tuberculosis contains a new family of hemoproteins named truncated hemoglobin O (trHbO) and truncated hemoglobin N (trHbN), encoded by the glbO and glbN genes, respectively, important in the survival of M. tuberculosis in macrophages. Mycobacterial heat shock proteins are known to undergo rapid upregulation under stress conditions. The expression profiles of the promoters of these genes were studied by constructing transcriptional fusions with green fluorescent protein and monitoring the promoter activity in both free-living and intracellular milieus at different time points. Whereas glbN showed an early response to the oxidative and nitrosative stresses tested, glbO gave a lasting response to lower concentrations of both stresses. At all time points and under all stress conditions tested, groEL2 showed higher expression than both trHb promoters and expression of both promoters showed an increase while inside the macrophages. Real-time PCR analysis of trHb and groEL2 mRNAs showed an initial upregulation at 24 h postinfection. The presence of the glbO protein imparted an increased survival to M. smegmatis in THP-1 differentiated macrophages compared to that imparted by the glbN and hsp65 proteins. The comparative upregulation shown by both trHb promoters while grown inside macrophages indicates the importance of these promoters for the survival of M. tuberculosis in the hostile environment of the host.
Collapse
|
21
|
Gupta S, Pawaria S, Lu C, Hade MD, Singh C, Yeh SR, Dikshit KL. An unconventional hexacoordinated flavohemoglobin from Mycobacterium tuberculosis. J Biol Chem 2012; 287:16435-16446. [PMID: 22437825 PMCID: PMC3351305 DOI: 10.1074/jbc.m111.329920] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 03/20/2012] [Indexed: 12/12/2022] Open
Abstract
Being an obligate aerobe, Mycobacterium tuberculosis faces a number of energetic challenges when it encounters hypoxia and environmental stress during intracellular infection. Consequently, it has evolved innovative strategies to cope with these unfavorable conditions. Here, we report a novel flavohemoglobin (MtbFHb) from M. tuberculosis that exhibits unique features within its heme and reductase domains distinct from conventional FHbs, including the absence of the characteristic hydrogen bonding interactions within the proximal heme pocket and mutations in the FAD and NADH binding regions of the reductase domain. In contrast to conventional FHbs, it has a hexacoordinate low-spin heme with a proximal histidine ligand lacking imidazolate character and a distal heme pocket with a relatively low electrostatic potential. Additionally, MtbFHb carries a new FAD binding site in its reductase domain similar to that of D-lactate dehydrogenase (D-LDH). When overexpressed in Escherichia coli or Mycobacterium smegmatis, MtbFHb remained associated with the cell membrane and exhibited D-lactate:phenazine methosulfate reductase activity and oxidized D-lactate into pyruvate by converting the heme iron from Fe(3+) to Fe(2+) in a FAD-dependent manner, indicating electron transfer from D-lactate to the heme via FAD cofactor. Under oxidative stress, MtbFHb-expressing cells exhibited growth advantage with reduced levels of lipid peroxidation. Given the fact that D-lactate is a byproduct of lipid peroxidation and that M. tuberculosis lacks the gene encoding D-LDH, we propose that the novel D-lactate metabolizing activity of MtbFHb uniquely equips M. tuberculosis to balance the stress level by protecting the cell membrane from oxidative damage via cycling between the Fe(3+)/Fe(2+) redox states.
Collapse
Affiliation(s)
- Sanjay Gupta
- From the Institute of Microbial Technology, Council of Scientific & Industrial Research, Sector 39 A, Chandigarh 160036, India and
| | - Sudesh Pawaria
- From the Institute of Microbial Technology, Council of Scientific & Industrial Research, Sector 39 A, Chandigarh 160036, India and
| | - Changyuan Lu
- the Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Mangesh Dattu Hade
- From the Institute of Microbial Technology, Council of Scientific & Industrial Research, Sector 39 A, Chandigarh 160036, India and
| | - Chaahat Singh
- From the Institute of Microbial Technology, Council of Scientific & Industrial Research, Sector 39 A, Chandigarh 160036, India and
| | - Syun-Ru Yeh
- the Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Kanak L. Dikshit
- From the Institute of Microbial Technology, Council of Scientific & Industrial Research, Sector 39 A, Chandigarh 160036, India and
| |
Collapse
|
22
|
Trivedi A, Singh N, Bhat SA, Gupta P, Kumar A. Redox biology of tuberculosis pathogenesis. Adv Microb Physiol 2012; 60:263-324. [PMID: 22633061 DOI: 10.1016/b978-0-12-398264-3.00004-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mycobacterium tuberculosis (Mtb) is one of the most successful human pathogens. Mtb is persistently exposed to numerous oxidoreductive stresses during its pathogenic cycle of infection and transmission. The distinctive ability of Mtb, not only to survive the redox stress manifested by the host but also to use it for synchronizing the metabolic pathways and expression of virulence factors, is central to its success as a pathogen. This review describes the paradigmatic redox and hypoxia sensors employed by Mtb to continuously monitor variations in the intracellular redox state and the surrounding microenvironment. Two component proteins, namely, DosS and DosT, are employed by Mtb to sense changes in oxygen, nitric oxide, and carbon monoxide levels, while WhiB3 and anti-sigma factor RsrA are used to monitor changes in intracellular redox state. Using these and other unidentified redox sensors, Mtb orchestrates its metabolic pathways to survive in nutrient-deficient, acidic, oxidative, nitrosative, and hypoxic environments inside granulomas or infectious lesions. A number of these metabolic pathways are unique to mycobacteria and thus represent potential drug targets. In addition, Mtb employs versatile machinery of the mycothiol and thioredoxin systems to ensure a reductive intracellular environment for optimal functioning of its proteins even upon exposure to oxidative stress. Mtb also utilizes a battery of protective enzymes, such as superoxide dismutase (SOD), catalase (KatG), alkyl hydroperoxidase (AhpC), and peroxiredoxins, to neutralize the redox stress generated by the host immune system. This chapter reviews the current understanding of mechanisms employed by Mtb to sense and neutralize redox stress and their importance in TB pathogenesis and drug development.
Collapse
|
23
|
Nde CW, Toghrol F, Jang HJ, Bentley WE. Toxicogenomic response of Mycobacterium bovis BCG to peracetic acid and a comparative analysis of the M. bovis BCG response to three oxidative disinfectants. Appl Microbiol Biotechnol 2010; 90:277-304. [PMID: 21152916 DOI: 10.1007/s00253-010-2931-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 09/08/2010] [Accepted: 10/01/2010] [Indexed: 12/16/2022]
Abstract
Tuberculosis is a leading cause of death worldwide and infects thousands of Americans annually. Mycobacterium bovis causes tuberculosis in humans and several animal species. Peracetic acid is an approved tuberculocide in hospital and domestic environments. This study presents for the first time the transcriptomic changes in M. bovis BCG after treatment with 0.1 mM peracetic acid for 10 and 20 min. This study also presents for the first time a comparison among the transcriptomic responses of M. bovis BCG to three oxidative disinfectants: peracetic acid, sodium hypochlorite, and hydrogen peroxide after 10 min of treatment. Results indicate that arginine biosynthesis, virulence, and oxidative stress response genes were upregulated after both peracetic acid treatment times. Three DNA repair genes were downregulated after 10 and 20 min and cell wall component genes were upregulated after 20 min. The devR-devS signal transduction system was upregulated after 10 min, suggesting a role in the protection against peracetic acid treatment. Results also suggest that peracetic acid and sodium hypochlorite both induce the expression of the ctpF gene which is upregulated in hypoxic environments. Further, this study reveals that in M. bovis BCG, hydrogen peroxide and peracetic acid both induce the expression of katG involved in oxidative stress response and the mbtD and mbtI genes involved in iron regulation/virulence.
Collapse
Affiliation(s)
- Chantal W Nde
- Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, MD 20742, USA
| | | | | | | |
Collapse
|
24
|
Sphingosine kinase-1 (SphK-1) regulates Mycobacterium smegmatis infection in macrophages. PLoS One 2010; 5:e10657. [PMID: 20498849 PMCID: PMC2871783 DOI: 10.1371/journal.pone.0010657] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 04/22/2010] [Indexed: 12/22/2022] Open
Abstract
Sphingosine kinase-1 is known to mediate Mycobacterium smegmatis induced inflammatory responses in macrophages, but its role in controlling infection has not been reported to date. We aimed to unravel the significance of SphK-1 in controlling M. smegmatis infection in RAW 264.7 macrophages. Our results demonstrated for the first time that selective inhibition of SphK-1 by either D, L threo dihydrosphingosine (DHS; a competitive inhibitor of Sphk-1) or Sphk-1 siRNA rendered RAW macrophages sensitive to M. smegmatis infection. This was due to the reduction in the expression of iNOs, p38, pp-38, late phagosomal marker, LAMP-2 and stabilization of the RelA (pp-65) subunit of NF-kappaB. This led to a reduction in the generation of NO and secretion of TNF-alpha in infected macrophages. Congruently, overexpression of SphK-1 conferred resistance in macrophages to infection which was due to enhancement in the generation of NO and expression of iNOs, pp38 and LAMP-2. In addition, our results also unraveled a novel regulation of p38MAPK by SphK-1 during M. smegmatis infection and generation of NO in macrophages. Enhanced NO generation and expression of iNOs in SphK-1++ infected macrophages demonstrated their M-1(bright) phenotype of these macrophages. These findings thus suggested a novel antimycobacterial role of SphK-1 in macrophages.
Collapse
|
25
|
Theoretical investigations of nitric oxide channeling in Mycobacterium tuberculosis truncated hemoglobin N. Biophys J 2010; 97:2967-77. [PMID: 19948126 DOI: 10.1016/j.bpj.2009.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 08/28/2009] [Accepted: 09/02/2009] [Indexed: 11/22/2022] Open
Abstract
Mycobacterium tuberculosis group I truncated hemoglobin trHbN catalyzes the oxidation of nitric oxide (NO) to nitrate with a second-order rate constant k approximately 745 microM(-1) s(-1) at 23 degrees C (nitric oxide dioxygenase reaction). It was proposed that this high efficiency is associated with the presence of hydrophobic tunnels inside trHbN structure that allow substrate diffusion to the distal heme pocket. In this work, we investigated the mechanisms of NO diffusion within trHbN tunnels in the context of the nitric oxide dioxygenase reaction using two independent approaches. Molecular dynamics simulations of trHbN were performed in the presence of explicit NO molecules. Successful NO diffusion from the bulk solvent to the distal heme pocket was observed in all simulations performed. The simulations revealed that NO interacts with trHbN at specific surface sites, composed of hydrophobic residues located at tunnel entrances. The entry and the internal diffusion of NO inside trHbN were performed using the Long, Short, and EH tunnels reported earlier. The Short tunnel was preferentially used by NO to reach the distal heme pocket. This preference is ascribed to its hydrophobic funnel-shape entrance, covering a large area extending far from the tunnel entrance. This funnel-shape entrance triggers the frequent formation of solvent-excluded cavities capable of hosting up to three NO molecules, thereby accelerating NO capture and entry. The importance of hydrophobicity of entrances for NO capture is highlighted by a comparison with a polar mutant for which residues at entrances were mutated with polar residues. A complete map of NO diffusion pathways inside trHbN matrix was calculated, and NO molecules were found to diffuse from Xe cavity to Xe cavity. This scheme was in perfect agreement with the three-dimensional free-energy distribution calculated using implicit ligand sampling. The trajectories showed that NO significantly alters the dynamics of the key amino acids of Phe(62)(E15), a residue proposed to act as a gate controlling ligand traffic inside the Long tunnel, and also of Ile(119)(H11), at the entrance of the Short tunnel. It is noteworthy that NO diffusion inside trHbN tunnels is much faster than that reported previously for myoglobin. The results presented in this work shed light on the diffusion mechanism of apolar gaseous substrates inside protein matrix.
Collapse
|
26
|
Coats V, Schwintzer CR, Tjepkema JD. Truncated hemoglobins in Frankia CcI3: effects of nitrogen source, oxygen concentration, and nitric oxide. Can J Microbiol 2009; 55:867-73. [PMID: 19767859 DOI: 10.1139/w09-042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Frankia strain CcI3 produces 2 truncated hemoglobins, HbN and HbO. Using ion-exchange chromatography, we characterized the expression of the relative amounts of HbN and HbO in -N (nitrogen-fixing) cultures and +N (nitrogen-supplemented) cultures. The -N cultures maintained an approximately constant ratio of HbO to HbN throughout the life of the culture, with HbO constituting 80%-85% of the total hemoglobin produced. In contrast, in +N cultures, HbN was observed to increase over time and HbO decreased. Total hemoglobin as a fraction of total protein was approximately constant throughout the growth phase in -N cultures, while it decreased somewhat in +N cultures. Subjecting -N cultures to a NO generator resulted in increased production of HbN, relative to the controls. Nitrite accumulated in +N cultures, but not in -N cultures. This suggests that the greater amount of HbN in +N cultures might be due to NO produced by the reduction of nitrite. The effects of O2 concentration were determined in +N cultures. Cultures grown in 1% O2 produced about 4 times more HbO than cultures grown in 20% O2. Overall, these results provide evidence for a role of HbN in NO oxidation and for a role of HbO in adaptation to low oxygen concentrations.
Collapse
Affiliation(s)
- Vanessa Coats
- School of Biology and Ecology, University of Maine, 5722 Deering Hall, Orono, ME 04469-5722, USA
| | | | | |
Collapse
|
27
|
Lama A, Pawaria S, Bidon-Chanal A, Anand A, Gelpí JL, Arya S, Martí M, Estrin DA, Luque FJ, Dikshit KL. Role of Pre-A motif in nitric oxide scavenging by truncated hemoglobin, HbN, of Mycobacterium tuberculosis. J Biol Chem 2009; 284:14457-68. [PMID: 19329431 DOI: 10.1074/jbc.m807436200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycobacterium tuberculosis truncated hemoglobin, HbN, is endowed with a potent nitric-oxide dioxygenase activity and has been found to relieve nitrosative stress and enhance in vivo survival of a heterologous host, Salmonella enterica Typhimurium, within the macrophages. These findings implicate involvement of HbN in the defense of M. tuberculosis against nitrosative stress. The protein carries a tunnel system composed of a short and a long tunnel branch that has been proposed to facilitate diatomic ligand migration to the heme and an unusual Pre-A motif at the N terminus, which does not contribute significantly to the structural integrity of the protein, as it protrudes out of the compact globin fold. Strikingly, deletion of Pre-A region from the M. tuberculosis HbN drastically reduces its ability to scavenge nitric oxide (NO), whereas its insertion at the N terminus of Pre-A lacking HbN of Mycobacterium smegmatis improved its nitric-oxide dioxygenase activity. Titration of the oxygenated adduct of HbN and its mutants with NO indicated that the stoichiometric oxidation of protein is severalfold slower when the Pre-A region is deleted in HbN. Molecular dynamics simulations show that the excision of Pre-A motif results in distinct changes in the protein dynamics, which cause the gate of the tunnel long branch to be trapped into a closed conformation, thus impeding migration of diatomic ligands toward the heme active site. The present study, thus, unequivocally demonstrates vital function of Pre-A region in NO scavenging and unravels its unique role by which HbN might attain its efficient NO-detoxification ability.
Collapse
Affiliation(s)
- Amrita Lama
- Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh 160036, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Yam KC, D'Angelo I, Kalscheuer R, Zhu H, Wang JX, Snieckus V, Ly LH, Converse PJ, Jacobs WR, Strynadka N, Eltis LD. Studies of a ring-cleaving dioxygenase illuminate the role of cholesterol metabolism in the pathogenesis of Mycobacterium tuberculosis. PLoS Pathog 2009; 5:e1000344. [PMID: 19300498 PMCID: PMC2652662 DOI: 10.1371/journal.ppat.1000344] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 02/20/2009] [Indexed: 01/07/2023] Open
Abstract
Mycobacterium tuberculosis, the etiological agent of TB, possesses a cholesterol catabolic pathway implicated in pathogenesis. This pathway includes an iron-dependent extradiol dioxygenase, HsaC, that cleaves catechols. Immuno-compromised mice infected with a DeltahsaC mutant of M. tuberculosis H37Rv survived 50% longer than mice infected with the wild-type strain. In guinea pigs, the mutant disseminated more slowly to the spleen, persisted less successfully in the lung, and caused little pathology. These data establish that, while cholesterol metabolism by M. tuberculosis appears to be most important during the chronic stage of infection, it begins much earlier and may contribute to the pathogen's dissemination within the host. Purified HsaC efficiently cleaved the catecholic cholesterol metabolite, DHSA (3,4-dihydroxy-9,10-seconandrost-1,3,5(10)-triene-9,17-dione; k(cat)/K(m) = 14.4+/-0.5 microM(-1) s(-1)), and was inactivated by a halogenated substrate analogue (partition coefficient<50). Remarkably, cholesterol caused loss of viability in the DeltahsaC mutant, consistent with catechol toxicity. Structures of HsaC:DHSA binary complexes at 2.1 A revealed two catechol-binding modes: bidentate binding to the active site iron, as has been reported in similar enzymes, and, unexpectedly, monodentate binding. The position of the bicyclo-alkanone moiety of DHSA was very similar in the two binding modes, suggesting that this interaction is a determinant in the initial substrate-binding event. These data provide insights into the binding of catechols by extradiol dioxygenases and facilitate inhibitor design.
Collapse
Affiliation(s)
- Katherine C. Yam
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Igor D'Angelo
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rainer Kalscheuer
- Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Haizhong Zhu
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jian-Xin Wang
- Department of Chemistry, Queen's University, Kingston, Ontario, Canada
| | - Victor Snieckus
- Department of Chemistry, Queen's University, Kingston, Ontario, Canada
| | - Lan H. Ly
- Department of Microbial and Molecular Pathogenesis, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Paul J. Converse
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - William R. Jacobs
- Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Natalie Strynadka
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lindsay D. Eltis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|