1
|
Walker AR, Pham DN, Noeparvar P, Peterson AM, Lipp MK, Lemos JA, Zeng L. Fructose activates a stress response shared by methylglyoxal and hydrogen peroxide in Streptococcus mutans. mBio 2025; 16:e0048525. [PMID: 40243330 DOI: 10.1128/mbio.00485-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Fructose catabolism by Streptococcus mutans is initiated by three phosphotransferase (PTS) transporters yielding fructose-1-phosphate (F-1-P) or fructose-6-phosphate. Deletion of one such F-1-P-generating PTS, fruI, was shown to reduce the cariogenicity of S. mutans in rats fed a high-sucrose diet. Moreover, a recent study linked fructose metabolism in S. mutans to a reactive electrophile species methylglyoxal. Here, we conducted a comparative transcriptomic analysis of S. mutans treated briefly with 50 mM fructose, 50 mM glucose, 5 mM methylglyoxal, or 0.5 mM hydrogen peroxide (H2O2). The results revealed a striking overlap between the fructose and methylglyoxal transcriptomes, totaling 176 genes, 61 of which were also shared with the H2O2 transcriptome. This core of 61 genes encompassed many of the same pathways affected by exposure to low pH or zinc intoxication. Consistent with these findings, fructose negatively impacted the metal homeostasis of a mutant deficient in zinc expulsion and the growth of a mutant of the major oxidative stress regulator SpxA1. Importantly, fructose metabolism lowered culture pH at a faster pace, allowed better survival under acidic and nutrient-depleted conditions, and enhanced the competitiveness of S. mutans against Streptococcus sanguinis, although a moderated level of F-1-P might further boost some of these benefits. Conversely, several commensal streptococcal species displayed a greater sensitivity to fructose that may negatively affect their persistence and competitiveness in dental biofilm. In conclusion, fructose metabolism is integrated into the stress core of S. mutans and regulates critical functions required for survival and its ability to induce dysbiosis in the oral cavity.IMPORTANCEFructose is a common monosaccharide in the biosphere, yet its overconsumption has been linked to various health problems in humans including insulin resistance, obesity, diabetes, non-alcoholic liver diseases, and even cancer. These effects are in large part attributable to the unique biochemical characteristics and metabolic responses associated with the degradation of fructose. Yet, an understanding of the effects of fructose on the physiology of bacteria and its implications for the human microbiome is severely lacking. Here, we performed a series of analyses on the gene regulation of a dental pathogen Streptococcus mutans by exposing it to fructose and other important stress agents. Further supported by growth, persistence, and competition assays, our findings revealed the ability of fructose to activate a set of stress-related functions that may prove critical to the ability of the bacterium to persist and cause diseases both within and without the oral cavity.
Collapse
Affiliation(s)
- Alejandro R Walker
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Danniel N Pham
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Payam Noeparvar
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Alexandra M Peterson
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Marissa K Lipp
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - José A Lemos
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Lin Zeng
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| |
Collapse
|
2
|
Walker AR, Pham DN, Noeparvar P, Peterson AM, Lipp MK, Lemos JA, Zeng L. FRUCTOSE ACTIVATES A STRESS RESPONSE SHARED BY METHYLGLYOXAL AND HYDROGEN PEROXIDE IN STREPTOCOCCUS MUTANS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.26.620100. [PMID: 40166302 PMCID: PMC11956903 DOI: 10.1101/2024.10.26.620100] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Fructose catabolism by Streptococcus mutans is initiated by three PTS transporters yielding either fructose-1-phoshate (F-1-P) or fructose-6-phosphate (F-6-P). Deletion of one such F-1-P-generating PTS, fruI, has been shown to reduce the cariogenicity of S. mutans in rats fed a high-sucrose diet. Moreover, a recent study linked fructose metabolism in S. mutans to a reactive electrophile species (RES) methylglyoxal. Here, we conducted a comparative transcriptomic analysis of exponentially grown S. mutans shocked with 50 mM fructose, 50 mM glucose, 5 mM methylglyoxal, or 0.5 mM hydrogen peroxide (H2O2). The results revealed a striking overlap between the fructose and methylglyoxal transcriptomes, totaling 176 genes, 61 of which were also shared with the H2O2 transcriptome. This core of 61 genes encompassed many of the same pathways affected by exposure to low pH or zinc intoxication. Consistent with these findings, fructose negatively impacted metal homeostasis of a mutant deficient in zinc expulsion and the growth of a mutant of the major oxidative stress regulator SpxA1. We further demonstrated the induction of the superoxide dismutase (sodA) and the fruRKI operon by different levels of fructose. Finally, fructose metabolism lowered culture pH at a faster pace, allowed better survival under acidic and nutrient-depleted conditions, and enhanced the competitiveness of S. mutans against Streptococcus sanguinis, although a moderated level of F-1-P might further boost some of these benefits. In conclusion, fructose metabolism is integrated into the stress core of S. mutans and regulates critical functions required for survival in both the oral cavity and during systemic infections. Importance. Fructose is a common monosaccharide in the biosphere, yet its overconsumption has been linked to various health problems in humans including insulin resistance, obesity, diabetes, and non-alcoholic liver diseases. These effects are in large part attributed to the unique biochemical characteristics and metabolic responses associated with the degradation of fructose. Yet, an understanding of the effects of fructose on the physiology of bacteria and its implications to the human microbiome is severely lacking. Here we performed a series of analyses on the gene regulation of a dental pathogen Streptococcus mutans by exposing it to fructose and other important stress agents. Further supported by growth, persistence, and competition assays, our findings revealed the ability of fructose to activate a set of cellular functions that may prove critical to the ability of the bacterium to persist and cause diseases both within and without of the oral cavity.
Collapse
|
3
|
Haj-Yahya F, Steinberg D, Sionov RV. Trans, Trans-Farnesol Enhances the Anti-Bacterial and Anti-Biofilm Effect of Arachidonic Acid on the Cariogenic Bacteria Streptococcus mutans and Streptococcus sobrinus. Int J Mol Sci 2024; 25:11770. [PMID: 39519322 PMCID: PMC11546208 DOI: 10.3390/ijms252111770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Streptococcus mutans and Streptococcus sobrinus are Gram-positive bacteria involved in the development of dental caries, as they are able to form biofilms on tooth enamel, ferment sugars into acids, and survive under acidic conditions. This ultimately leads to a local lowering of the pH value on the tooth surface, which causes enamel cavities. HYPOTHESIS One measure to reduce caries is to limit the growth of cariogenic bacteria by using two anti-bacterial agents with different mechanisms of action. The hypothesis of this study was that the anti-bacterial activity of ω-6 polyunsaturated arachidonic acid (AA) against S. mutans and S. sobrinus can be enhanced by the sesquiterpene alcohol trans, trans-farnesol (t,t-farnesol). METHODS The anti-bacterial activity of single and combined treatment was determined by the checkerboard assay. Bacterial viability was assessed by live/dead SYTO 9/propidium iodide (PI) staining on flow cytometry. Anti-biofilm activity was determined by MTT metabolic assay, crystal violet staining of biofilm biomass, SYTO 9/PI staining by spinning disk confocal microscopy (SDCM) and high-resolution scanning electron microscopy (HR-SEM). RESULTS t,t-Farnesol lowered the minimum inhibitory concentration (MIC) and the minimum biofilm inhibitory concentration (MBIC) of AA at sub-MICs. AA reduced the metabolic activity of preformed mature biofilms, while t,t-farnesol had no significant effect. The enhanced anti-bacterial effect of the combined t,t-farnesol/AA treatment was further evidenced by increased PI uptake, indicating membrane perforation. The enhanced anti-biofilm effect was further verified by SDCM and HR-SEM. Gene expression studies showed reduced expression of some biofilm-related genes. CONCLUSIONS Altogether, our study suggests a potential use of the two naturally occurring compounds arachidonic acid and t,t-farnesol for preventing biofilm formation by the cariogenic bacteria S. mutans and S. sobrinus. These findings have implications for caries prevention.
Collapse
|
4
|
Marin LM, Xiao Y, Seo J, Queiroz D, Siqueira WL. Dietary Carbohydrates Modulate Streptococcus mutans Adherence and Bacterial Proteome. Caries Res 2024; 59:128-138. [PMID: 39476803 DOI: 10.1159/000541821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/30/2024] [Indexed: 11/28/2024] Open
Abstract
INTRODUCTION Streptococcus mutans adherence to the tooth surface and subsequent biofilm development is modulated by the carbohydrate source, but the corresponding effect on bacterial proteome has not been previously studied. This study aimed to assess the effect of different carbohydrates on S. mutans viability and bacterial proteome at 2 time points, early attachment (8 h) and biofilm maturation (24 h). METHODS Hydroxyapatite (HAp) discs coated with parotid saliva proteins were inoculated with S. mutans UA159 in tryptone soy broth without dextrose supplemented with one of the following carbohydrates (n = 12/treatment/time point): 1% sucrose; 0.525% glucose + 0.525% fructose; 10% xylitol; 10% xylitol + 1% sucrose; or culture medium without supplementation as negative control. Once inoculated, HAp discs were incubated for 8 h or 24 h at 37°C and 10% CO2. After each incubation period, adhered bacteria were quantified using the plate-counting method for 6 HAp discs/group, and the remaining 6 HAp discs/group were used to extract bacterial cell wall proteins. Extracted proteins were analyzed using liquid chromatography coupled with mass spectrometry and then classified by their biological process. The study was conducted in three independent assays, and the number of bacteria adhered to the HAp discs was determined at each time point and analyzed by two-way ANOVA followed by Bonferroni test (α = 5%). RESULTS The results suggest that xylitol significantly repressed bacterial adherence and metabolism at 8 h and 24 h; however, bacterial adherence and metabolism were significantly enhanced when xylitol was combined with sucrose, showing no negative effect on S. mutans at both time points. Bacterial proteome was modulated by the carbohydrate source. CONCLUSION The cariogenicity of S. mutans biofilms may be reduced by the alternative sweetener xylitol; however, the combination with fermentable sugars may inhibit such a beneficial effect.
Collapse
Affiliation(s)
- Lina M Marin
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada,
| | - Yizhi Xiao
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jin Seo
- Johnson and Johnson Consumer Companies Inc., Skillman, New Jersey, USA
| | - Daniel Queiroz
- Johnson and Johnson Consumer Companies Inc., Skillman, New Jersey, USA
| | - Walter L Siqueira
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
5
|
Lekakarn H, Prongjit D, Mhuantong W, Trakarnpaiboon S, Bunterngsook B. Exploring Levansucrase Operon Regulating Levan-Type Fructooligosaccharides (L-FOSs) Production in Priestia koreensis HL12. J Microbiol Biotechnol 2024; 34:1959-1968. [PMID: 39252607 PMCID: PMC11540611 DOI: 10.4014/jmb.2404.04043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024]
Abstract
Levan biopolymer and levan-type fructooligosaccharides (L-FOSs) are β-2,6-linked fructans that have been used as non-digestible dietary fiber and prebiotic oligosaccharides in food and cosmeceutical applications. In this study, we explore the operon responsible for levan and L-FOSs production in Priestia koreensis HL12. Presented is the first genomic perspective on sucrose utilization and the levan biosynthesis pathway in this bacterium. Regarding sequence annotation, the putative levansucrase operon responsible for β-2,6-linked fructan was identified in the genome of strain HL12, and comprises sacB levansucrase gene belonging to GH68, located adjacent to levB endo-levanase gene, which belongs to GH32. Importantly, sugars related with the levan biosynthesis pathway are proposed to be transported via 3 types of transportation systems, including multiple ABCSugar and glucose/H+ transporters, as well as glucose- and fructose-specific PTS systems. Based on product profile analysis, the HL12 strain exhibited high efficiency in levan production from high sucrose concentration (300 g/l), achieving the highest yield of 127 g/l (equivalent to 55% conversion based on sucrose consumption), together with short-chain L-FOSs (DP3-5) and long-chain L-FOSs with respective size larger than DP6 after 48 h incubation. These findings highlight the potential of P. koreensis HL12 as a whole-cell biocatalyst for producing levan and L-FOSs, and underscore its novelty in converting sugars into high-value-added products for diverse commercial and industrial applications.
Collapse
Affiliation(s)
- Hataikarn Lekakarn
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit Campus, Khlong Nueang, Khlong Luang, Pathum Thani 12120, Thailand
| | - Daran Prongjit
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit Campus, Khlong Nueang, Khlong Luang, Pathum Thani 12120, Thailand
| | - Wuttichai Mhuantong
- Enzyme Technology Research Team, Biorefinery Technology and Bioproduct Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueang, Khlong Luang, Pathum Thani 12120, Thailand
| | - Srisakul Trakarnpaiboon
- Enzyme Technology Research Team, Biorefinery Technology and Bioproduct Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueang, Khlong Luang, Pathum Thani 12120, Thailand
| | - Benjarat Bunterngsook
- Enzyme Technology Research Team, Biorefinery Technology and Bioproduct Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueang, Khlong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|
6
|
Chen H, Zhang S, Wang H, Ma X, Wang M, Yu P, Shi B. Co-selective effect of dissolved organic matter and chlorine on the bacterial community and their antibiotic resistance in biofilm of drinking water distribution pipes. WATER RESEARCH 2024; 268:122664. [PMID: 39490093 DOI: 10.1016/j.watres.2024.122664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024]
Abstract
The proliferation of pathogenic bacteria and antibiotic resistance genes (ARGs) in the biofilm of drinking water distribution pipes poses a serious threat to human health. This work adopted 15 polyethylene (PE) pipes to study the co-selective effect of dissolved organic matter (DOM) and chlorine on the bacterial community and their antibiotic resistance in biofilm. The results indicated that ozone and granular activated carbon (O3-GAC) filtration effectively removed lignins and proteins from DOM, and chlorine disinfection eliminated carbohydrate and unsaturated hydrocarbons, which both contributed to the inhibition of bacterial growth and biofilm formation. After O3-GAC and disinfection treatment, Porphyrobacter, unclassified_d_bacteria, and Sphingopyxis dominated in the biofilm bacterial community. Correspondingly, the bacterial metabolism pathways, including the phosphotransferase system, phenylalanine, tyrosine and tryptophan biosynthesis, ABC transporters, and starch and sucrose metabolism, were downregulated significantly (p < 0.05), compared to the sand filtration treatment. Under such a situation, extracellular polymeric substances (EPS) secretion was inhibited in biofilm after O3-GAC and disinfection treatment, postponing the interaction between EPS protein and pipe surface, preventing bacteria, especially pathogens, from adhering to the pipe surface to form biofilm, and restraining the spread of ARGs. This study revealed the effects of various water filtration and disinfection processes on bacterial growth, metabolism, and biofilm formation on a molecular level, and validated that the O3-GAC filtration followed by chlorine disinfection is an effective and promising pathway to control the microbial risk of drinking water.
Collapse
Affiliation(s)
- Hui Chen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuxin Zhang
- Department of Civil and Environmental Engineering, The George Washington University, Washington, DC 20052, USA
| | - Haibo Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xu Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Min Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Pingfeng Yu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Zeng L, Noeparvar P, Burne RA, Glezer BS. Genetic characterization of glyoxalase pathway in oral streptococci and its contribution to interbacterial competition. J Oral Microbiol 2024; 16:2322241. [PMID: 38440286 PMCID: PMC10911100 DOI: 10.1080/20002297.2024.2322241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/16/2024] [Indexed: 03/06/2024] Open
Abstract
Objectives To analyze contributions to microbial ecology of Reactive Electrophile Species (RES), including methylglyoxal, generated during glycolysis. Methods Genetic analyses were performed on the glyoxalase pathway in Streptococcus mutans (SM) and Streptococcus sanguinis (SS), followed by phenotypic assays and transcription analysis. Results Deleting glyoxalase I (lguL) reduced RES tolerance to a far greater extent in SM than in SS, decreasing the competitiveness of SM against SS. Although SM displays a greater RES tolerance than SS, lguL-null mutants of either species showed similar tolerance; a finding consistent with the ability of methylglyoxal to induce the expression of lguL in SM, but not in SS. A novel paralogue of lguL (named gloA2) was identified in most streptococci. SM mutant ∆gloA2SM showed little change in methylglyoxal tolerance yet a significant growth defect and increased autolysis on fructose, a phenotype reversed by the addition of glutathione, or by the deletion of a fructose: phosphotransferase system (PTS) that generates fructose-1-phosphate (F-1-P). Conclusions Fructose contributes to RES generation in a PTS-specific manner, and GloA2 may be required to degrade certain RES derived from F-1-P. This study reveals the critical roles of RES in fitness and interbacterial competition and the effects of PTS in modulating RES metabolism.
Collapse
Affiliation(s)
- Lin Zeng
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - Payam Noeparvar
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - Robert A. Burne
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - Benjamin S. Glezer
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| |
Collapse
|
8
|
Khaliullina A, Kolesnikova A, Khairullina L, Morgatskaya O, Shakirova D, Patov S, Nekrasova P, Bogachev M, Kurkin V, Trizna E, Kayumov A. The Antimicrobial Potential of the Hop ( Humulus lupulus L.) Extract against Staphylococcus aureus and Oral Streptococci. Pharmaceuticals (Basel) 2024; 17:162. [PMID: 38399377 PMCID: PMC10893079 DOI: 10.3390/ph17020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Plant extracts are in the focus of the pharmaceutical industry as potential antimicrobials for oral care due to their high antimicrobial activity coupled with low production costs and safety for eukaryotic cells. Here, we show that the extract from Hop (Humulus lupulus L.) exhibits antimicrobial activity against Staphylococcus aureus and Streptococci in both planktonic and biofilm-embedded forms. An extract was prepared by acetone extraction from hop infructescences, followed by purification and solubilization of the remaining fraction in ethanol. The effect of the extract on S. aureus (MSSA and MRSA) was comparable with the reference antibiotics (amikacin, ciprofloxacin, and ceftriaxone) and did not depend on the bacterial resistance to methicillin. The extract also demonstrated synergy with amikacin on six S. aureus clinical isolates, on four of six isolates with ciprofloxacin, and on three of six isolates with ceftriaxone. On various Streptococci, while demonstrating lower antimicrobial activity, an extract exhibited a considerable synergistic effect in combination with two of three of these antibiotics, decreasing their MIC up to 512-fold. Moreover, the extract was able to penetrate S. aureus and S. mutans biofilms, leading to almost complete bacterial death within them. The thin-layer chromatography and LC-MS of the extract revealed the presence of prenylated flavonoids (2',4',6',4-tetrahydroxy-3'-geranylchalcone) and acylphloroglucides (cohumulone, colupulone, humulone, and lupulone), apparently responsible for the observed antimicrobial activity and ability to increase the efficiency of antibiotics. Taken together, these data suggest an extract from H. lupulus as a promising antimicrobial agent for use both as a solely antiseptic and to potentiate conventional antimicrobials.
Collapse
Affiliation(s)
- Alyona Khaliullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.K.); (A.K.); (L.K.); (O.M.); (D.S.); (E.T.)
| | - Alyona Kolesnikova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.K.); (A.K.); (L.K.); (O.M.); (D.S.); (E.T.)
| | - Leysan Khairullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.K.); (A.K.); (L.K.); (O.M.); (D.S.); (E.T.)
| | - Olga Morgatskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.K.); (A.K.); (L.K.); (O.M.); (D.S.); (E.T.)
| | - Dilyara Shakirova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.K.); (A.K.); (L.K.); (O.M.); (D.S.); (E.T.)
| | - Sergey Patov
- Institute of Chemistry, FRC “Komi Scientific Centre”, Ural Branch of the Russian Academy of Sciences, 167000 Syktyvkar, Russia; (S.P.); (P.N.)
| | - Polina Nekrasova
- Institute of Chemistry, FRC “Komi Scientific Centre”, Ural Branch of the Russian Academy of Sciences, 167000 Syktyvkar, Russia; (S.P.); (P.N.)
| | - Mikhail Bogachev
- Biomedical Engineering Research Centre, St. Petersburg Electrotechnical University, 5 Professor Popov Street, 197022 St. Petersburg, Russia;
| | - Vladimir Kurkin
- Institute of Pharmacy, Samara State Medical University, 443079 Samara, Russia;
| | - Elena Trizna
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.K.); (A.K.); (L.K.); (O.M.); (D.S.); (E.T.)
| | - Airat Kayumov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.K.); (A.K.); (L.K.); (O.M.); (D.S.); (E.T.)
| |
Collapse
|
9
|
Guo W, Li Y, Wang S, Wang Y, Li C, Jin Y, Li Y, Chen X, Miao W. Photodynamic nano hydroxyapatite with biofilm penetration capability for dental plaque eradication and prevention of demineralization. Colloids Surf B Biointerfaces 2023; 225:113242. [PMID: 36905831 DOI: 10.1016/j.colsurfb.2023.113242] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/15/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
Dental caries represents one of the most prevalent diseases worldwide, characteristic of the growth of dental plaque and demineralization of tooth enamel. Current medications for eradication of dental plaques and prevention of demineralization suffer from several limitations to overcome, calling for novel strategies with great potency in eliminating cariogenic bacteria and dental plaque that forms, as well as in inhibiting the demineralization of enamel, into an integrated system. Considering the potency of photodynamic therapy in bacteria inactivation and the composition of enamel, we herein report that the novel photodynamic nano hydroxyapatite (nHAP), named Ce6 @QCS/nHAP, was useful for this purpose. Ce6 @QCS/nHAP, comprised of quaternary chitosan (QCS)-coated nHAP loaded with chlorin e6 (Ce6), exhibited good biocompatibility and non-compromised photodynamic activity. In vitro studies revealed that Ce6 @QCS/nHAP could effectively associate with cariogenic Streptococcus mutans (S. mutans), leading to a significant antibacterial effect through photodynamic killing and physical inactivation against the planktonic microbe. Three-dimensional fluorescence imaging suggested that Ce6 @QCS/nHAP exhibited a superior S. mutans biofilm penetration capacity to free Ce6, resulting in effective dental plaque eradiation when light irradiation was applied. The number of surviving bacteria in biofilm was at least 2.8 log units lower in the Ce6 @QCS/nHAP group compared to that in the free Ce6 group. Further, in the S. mutans biofilm-infected artificial tooth model, treatment with Ce6 @QCS/nHAP also resulted in the significant prevention of hydroxyapatite disks from demineralization, with lower percentage of fragmentation and weight loss These data suggest that our photodynamic nanosystem can effectively eradicate dental plaque while also significantly protecting artificial tooth from demineralization, opening up new possibilities in treating bacterium-associated dental caries.
Collapse
Affiliation(s)
- Wenjing Guo
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Yang Li
- Department of Stomatology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing 210011, PR China
| | - Siyuan Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Yueying Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Chenhui Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Yangye Jin
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Yuanyuan Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Xu Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, PR China; Department of Periodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, PR China.
| | - Wenjun Miao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
10
|
Yun Z, Xianghong L, Qianhua G, Qin D. Copper ions inhibit Streptococcus mutans-Veillonella parvula dual biofilm by activating Streptococcus mutans reactive nitrogen species. BMC Oral Health 2023; 23:48. [PMID: 36709299 PMCID: PMC9883903 DOI: 10.1186/s12903-023-02738-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/11/2023] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND To investigate the inhibition mechanism of copper ions on Streptococcus mutans-Veillonella parvula dual biofilm. METHODS S. mutans-V. parvula dual biofilm was constructed and copper ions were added at different concentrations. After the biofilm was collected, RNA-seq and qRT-PCR were then performed to get gene information. RESULTS The coculture of S. mutans and V. parvula formed a significantly better dual biofilm of larger biomass than S. mutans mono biofilm. And copper ions showed a more significant inhibitory effect on S. mutans-V. parvula dual biofilm than on S. mutans mono biofilm when copper ions concentration reached 100 µM, and copper ions showed a decreased inhibitory effect on S. gordonii-V. parvula dual biofilm and S. sanguis-V.parvula dual biofilm than on the two mono biofilms as the concentration of copper ions increased. And common trace elements such as iron, magnesium, and zinc showed no inhibitory effect difference on S. mutans-V. parvula dual biofilm. The RNA-seq results showed a significant difference in the expression of a new ABC transporter SMU_651c, SMU_652c, SMU_653c, and S. mutans copper chaperone copYAZ. SMU_651c, SMU_652c, and SMU_653c were predicted to function as nitrite/nitrate transporter-related proteins, which suggested the specific inhibition of copper ions on S. mutans-V. parvula dual biofilm may be caused by the activation of S. mutans reactive nitrogen species. CONCLUSIONS Streptococcus mutans and Veillonella parvula are symbiotic, forming a dual biofilm of larger biomass to better resist the external antibacterial substances, which may increase the virulence of S. mutans. While common trace elements such as iron, magnesium, and zinc showed no specific inhibitory effect on S. mutans-V. parvula dual biofilm, copper ion had a unique inhibitory effect on S. mutans-V. parvula dual biofilm which may be caused by activating S. mutans RNS when copper ions concentration reached 250 µM.
Collapse
Affiliation(s)
- Zhang Yun
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041 Sichuan China ,grid.13291.380000 0001 0807 1581Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan China
| | - Liu Xianghong
- grid.54549.390000 0004 0369 4060Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072 China
| | - Gao Qianhua
- grid.54549.390000 0004 0369 4060Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072 China
| | - Du Qin
- grid.54549.390000 0004 0369 4060Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072 China
| |
Collapse
|
11
|
Biofilm ecology associated with dental caries: Understanding of microbial interactions in oral communities leads to development of therapeutic strategies targeting cariogenic biofilms. ADVANCES IN APPLIED MICROBIOLOGY 2023; 122:27-75. [PMID: 37085193 DOI: 10.1016/bs.aambs.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
A biofilm is a sessile community characterized by cells attached to the surface and organized into a complex structural arrangement. Dental caries is a biofilm-dependent oral disease caused by infection with cariogenic pathogens, such as Streptococcus mutans, and associated with frequent exposure to a sugar-rich diet and poor oral hygiene. The virulence of cariogenic biofilms is often associated with the spatial organization of S. mutans enmeshed with exopolysaccharides on tooth surfaces. However, in the oral cavity, S. mutans does not act alone, and several other microbes contribute to cariogenic biofilm formation. Microbial communities in cariogenic biofilms are spatially organized into complex structural arrangements of various microbes and extracellular matrices. The balance of microbiota diversity with reduced diversity and a high proportion of acidogenic-aciduric microbiota within the biofilm is closely related to the disease state. Understanding the characteristics of polymicrobial biofilms and the association of microbial interactions within the biofilm (e.g., symbiosis, cooperation, and competition) in terms of their potential role in the pathogenesis of oral disease would help develop new strategies for interventions in virulent biofilm formation.
Collapse
|
12
|
Li JT, Jia P, Wang XJ, Ou SN, Yang TT, Feng SW, Lu JL, Fang Z, Liu J, Liao B, Shu WS, Liang JL. Metagenomic and metatranscriptomic insights into sulfate-reducing bacteria in a revegetated acidic mine wasteland. NPJ Biofilms Microbiomes 2022; 8:71. [PMID: 36068230 PMCID: PMC9448743 DOI: 10.1038/s41522-022-00333-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
The widespread occurrence of sulfate-reducing microorganisms (SRMs) in temporarily oxic/hypoxic aquatic environments indicates an intriguing possibility that SRMs can prevail in constantly oxic/hypoxic terrestrial sulfate-rich environments. However, little attention has been given to this possibility, leading to an incomplete understanding of microorganisms driving the terrestrial part of the global sulfur (S) cycle. In this study, genome-centric metagenomics and metatranscriptomics were employed to explore the diversity, metabolic potential, and gene expression profile of SRMs in a revegetated acidic mine wasteland under constantly oxic/hypoxic conditions. We recovered 16 medium- to high-quality metagenome-assembled genomes (MAGs) containing reductive dsrAB. Among them, 12 and four MAGs belonged to Acidobacteria and Deltaproteobacteria, respectively, harboring three new SRM genera. Comparative genomic analysis based on seven high-quality MAGs (completeness >90% and contamination <10%; including six acidobacterial and one deltaproteobacterial) and genomes of three additional cultured model species showed that Acidobacteria-related SRMs had more genes encoding glycoside hydrolases, oxygen-tolerant hydrogenases, and cytochrome c oxidases than Deltaproteobacteria-related SRMs. The opposite pattern was observed for genes encoding superoxide reductases and thioredoxin peroxidases. Using VirSorter, viral genome sequences were found in five of the 16 MAGs and in all three cultured model species. These prophages encoded enzymes involved in glycoside hydrolysis and antioxidation in their hosts. Moreover, metatranscriptomic analysis revealed that 15 of the 16 SRMs reported here were active in situ. An acidobacterial MAG containing a prophage dominated the SRM transcripts, expressing a large number of genes involved in its response to oxidative stress and competition for organic matter.
Collapse
Affiliation(s)
- Jin-Tian Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Pu Jia
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Xiao-Juan Wang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Shu-Ning Ou
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Tao-Tao Yang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Shi-Wei Feng
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Jing-Li Lu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Zhou Fang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Jun Liu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Bin Liao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Wen-Sheng Shu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Jie-Liang Liang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
13
|
Zhu J, Chu W, Luo J, Yang J, He L, Li J. Dental Materials for Oral Microbiota Dysbiosis: An Update. Front Cell Infect Microbiol 2022; 12:900918. [PMID: 35846759 PMCID: PMC9280126 DOI: 10.3389/fcimb.2022.900918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/07/2022] [Indexed: 11/21/2022] Open
Abstract
The balance or dysbiosis of the microbial community is a major factor in maintaining human health or causing disease. The unique microenvironment of the oral cavity provides optimal conditions for colonization and proliferation of microbiota, regulated through complex biological signaling systems and interactions with the host. Once the oral microbiota is out of balance, microorganisms produce virulence factors and metabolites, which will cause dental caries, periodontal disease, etc. Microbial metabolism and host immune response change the local microenvironment in turn and further promote the excessive proliferation of dominant microbes in dysbiosis. As the product of interdisciplinary development of materials science, stomatology, and biomedical engineering, oral biomaterials are playing an increasingly important role in regulating the balance of the oral microbiome and treating oral diseases. In this perspective, we discuss the mechanisms underlying the pathogenesis of oral microbiota dysbiosis and introduce emerging materials focusing on oral microbiota dysbiosis in recent years, including inorganic materials, organic materials, and some biomolecules. In addition, the limitations of the current study and possible research trends are also summarized. It is hoped that this review can provide reference and enlightenment for subsequent research on effective treatment strategies for diseases related to oral microbiota dysbiosis.
Collapse
Affiliation(s)
- Jieyu Zhu
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenlin Chu
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Jiaojiao Yang, ; Libang He,
| | - Libang He
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Jiaojiao Yang, ; Libang He,
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
The fruB Gene of Streptococcus mutans Encodes an Endo-Levanase That Enhances Growth on Levan and Influences Global Gene Expression. Microbiol Spectr 2022; 10:e0052222. [PMID: 35588281 PMCID: PMC9241797 DOI: 10.1128/spectrum.00522-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus mutans, the primary etiologic agent of human dental caries, and a variety of oral Streptococcus and Actinomyces spp. synthesize high molecular mass homopolymers of fructose (fructans) with predominantly β2,1- (inulins) or β2,6-linkages (levans). The ability of S. mutans to degrade fructans contributes to the severity of dental caries. The extracellular product of fruA of S. mutans is an exo- β-d-fructofuranosidase that releases fructose from levan and inulin. Located 70 bp downstream of fruA, fruB encodes a member of the glycoside hydrolase family 32, but the function of FruB has not been established. Growth assays performed using wild-type UA159 and fruB-deficient derivatives, with fructans as the sole carbohydrate source, showed a significant reduction in the growth rate of a fruB mutant on levan, but not on inulin. A purified, recombinant FruB protein degraded levan to release mainly fructooligosaccharides. Driven by the fruA promoter and a secondary promoter located in the 3′ region of the fruA sequence, the fruB gene is inducible by fructose and especially by levan, but a stable stem-loop structure in the intergenic region likely modulates transcriptional read-through from fruA. Transcriptomic analysis of UA159 and a fruB mutant grown on 0.2% levan revealed differential expression of genes encoding ABC transporters, transcriptional regulators and genes involved in growth and stress tolerance. The ability of FruB to enhance levan metabolism and the high degree of conservation of FruB across S. mutans isolates imply a significant contribution of FruB to the fitness and virulence of this pathogen in human dental biofilms. IMPORTANCE Carbohydrate metabolism and acid production are essential for the development of dental caries. As a by-product of sucrose metabolism, formation, and degradation of fructans enhances the severity of caries by S. mutans in animal models. This study highlights a significant breakthrough in identifying FruB in S. mutans as an endolevanase that contributes to efficient utilization of levan, a specific type of fructan produced by certain commensals but not S. mutans. Transcriptomic analysis revealed that FruB-dependent levan metabolism impacted global gene regulation, including a large number of novel genes. Considering the preference for levan by both FruA and FruB, the conservation of fruAB in S. mutans might represent a competitive advantage in access to the energy storage produced by dental microbiome. This is the first report demonstrating the presence of an endolevanase in S. mutans, therefore should be of broad interest to the fields of dental caries and complex carbohydrate metabolism.
Collapse
|
15
|
Yuan K, Hou L, Jin Q, Niu C, Mao M, Wang R, Huang Z. Comparative transcriptomics analysis of Streptococcus mutans with disruption of LuxS/AI-2 quorum sensing and recovery of methyl cycle. Arch Oral Biol 2021; 127:105137. [PMID: 33965851 DOI: 10.1016/j.archoralbio.2021.105137] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The LuxS/AI-2 quorum sensing (QS) system has critical roles in Streptococcus mutans cariogenicity. Whereas the molecular and cellular mechanisms of the LuxS/AI-2 QS system are not thoroughly understood. Given that LuxS has roles in QS and methyl cycle, its mutation can cause QS deficiency and methyl cycle disruption. The aim of this study was to investigate effects of the LuxS/AI-2 QS system on gene expression in Streptococcus mutans when methyl cycle was recovered with exogenous sahH gene. METHODS Our previous study introduced the exogenous sahH gene from Pseudomonas aeruginosa into an S. mutans luxS-null strain to restore the disrupted methyl cycle, and this produced the solely the LuxS/AI-2 QS system deficient strain. Here, we analyzed the transcriptomics of this strain to get insights into the molecular mechanisms of the LuxS/AI-2 QS system applying RNA-seq. RESULTS With recovery of methyl cycle, 84 genes didn't change in expression trends in S. mutans luxS-null strain. These genes mainly encode the ABC transporters, sugar transporter EII and enzymes of carbohydrate metabolism, and are rich in the Phosphotransferase system, Fructose and mannose metabolism, Amino sugar and nucleotide sugar metabolism, Galactose metabolism, Glycolysis/Gluconeogenesis, RNA degradation, Lysine biosynthesis, and Glycine, serine and threonine metabolism. CONCLUSIONS The LuxS/AI-2 QS system may mainly affect ABC transporters and carbohydrate transport, transformation and metabolism via EII subunits and enzymes to influence virulence-associated traits without effects of methyl cycle inStreptococcus mutans.
Collapse
Affiliation(s)
- Keyong Yuan
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai JiaoTong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Lili Hou
- Department of Nursing, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qiaoqiao Jin
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai JiaoTong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Chenguang Niu
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai JiaoTong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Mengying Mao
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai JiaoTong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Ruirui Wang
- Department of Stomatology, Minhang Branch, Zhongshan Hospital, Fudan University, China.
| | - Zhengwei Huang
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai JiaoTong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.
| |
Collapse
|
16
|
Lee K, Kaspar JR, Rojas-Carreño G, Walker AR, Burne RA. A single system detects and protects the beneficial oral bacterium Streptococcus sp. A12 from a spectrum of antimicrobial peptides. Mol Microbiol 2021; 116:211-230. [PMID: 33590560 DOI: 10.1111/mmi.14703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 10/22/2022]
Abstract
The commensal bacterium Streptococcus sp. A12 has multiple properties that may promote the stability of health-associated oral biofilms, including overt antagonism of the dental caries pathogen Streptococcus mutans. A LanFEG-type ABC transporter, PcfFEG, confers tolerance to the lantibiotic nisin and enhances the ability of A12 to compete against S. mutans. Here, we investigated the regulation of pcfFEG and adjacent genes for a two-component system, pcfRK, to better understand antimicrobial peptide resistance by A12. Induction of pcfFEG-pcfRK was the primary mechanism to respond rapidly to nisin. In addition to nisin, PcfFEG conferred tolerance by A12 to a spectrum of lantibiotic and non-lantibiotic antimicrobial peptides produced by a diverse collection of S. mutans isolates. Loss of PcfFEG resulted in the altered spatio-temporal arrangement of A12 and S. mutans in a dual-species biofilm model. Deletion of PcfFEG or PcfK resulted in constitutive activation of pcfFEG and expression of pcfFEG was inhibited by small peptides in the pcfK mutant. Transcriptional profiling of pcfR or pcfK mutants combined with functional genomics revealed peculiarities in PcfK function and a novel panel of genes responsive to nisin. Collectively, the results provide fundamental insights that strengthen the foundation for the design of microbial-based therapeutics to control oral infectious diseases.
Collapse
Affiliation(s)
- Kyulim Lee
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Justin R Kaspar
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA.,Division of Biosciences, College of Dentistry, Ohio State University, Columbus, OH, USA
| | - Gisela Rojas-Carreño
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Alejandro R Walker
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Robert A Burne
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
17
|
Costa Oliveira BE, Ricomini Filho AP, Burne RA, Zeng L. The Route of Sucrose Utilization by Streptococcus mutans Affects Intracellular Polysaccharide Metabolism. Front Microbiol 2021; 12:636684. [PMID: 33603728 PMCID: PMC7884614 DOI: 10.3389/fmicb.2021.636684] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/05/2021] [Indexed: 11/13/2022] Open
Abstract
Streptococcus mutans converts extracellular sucrose (Suc) into exopolysaccharides (EPS) by glucosyl-transferase and fructosyl-transferase enzymes and internalizes Suc for fermentation through the phosphotransferase system (PTS). Here, we examined how altering the routes for sucrose utilization impacts intracellular polysaccharide [IPS; glycogen, (glg)] metabolism during carbohydrate starvation. Strain UA159 (WT), a mutant lacking all exo-enzymes for sucrose utilization (MMZ952), and a CcpA-deficient mutant (∆ccpA) were cultured with sucrose or a combination of glucose and fructose, followed by carbohydrate starvation. At baseline (0h), and after 4 and 24h of starvation, cells were evaluated for mRNA levels of the glg operon, IPS storage, glucose-1-phosphate (G1P) concentrations, viability, and PTS activities. A pH drop assay was performed in the absence of carbohydrates at the baseline to measure acid production. We observed glg operon activation in response to starvation (p<0.05) in all strains, however, such activation was significantly delayed and reduced in magnitude when EPS synthesis was involved (p<0.05). Enhanced acidification and greater G1P concentrations were observed in the sucrose-treated group, but mostly in strains capable of producing EPS (p<0.05). Importantly, only the WT exposed to sucrose was able to synthesize IPS during starvation. Contrary to CcpA-proficient strains, IPS was progressively degraded during starvation in ∆ccpA, which also showed increased glg operon expression and greater PTS activities at baseline. Therefore, sucrose metabolism by secreted enzymes affects the capacity of S. mutans in synthesizing IPS and converting it into organic acids, without necessarily inducing greater expression of the glg operon.
Collapse
Affiliation(s)
- Bárbara Emanoele Costa Oliveira
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States.,Department of Biosciences, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | | | - Robert A Burne
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| | - Lin Zeng
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| |
Collapse
|
18
|
Abstract
Although the composition of the oral human microbiome is now well studied, regulation of genes within oral microbial communities remains mostly uncharacterized. Current concepts of periodontal disease and caries highlight the importance of oral biofilms and their role as etiological agents of those diseases. Currently, there is increased interest in exploring and characterizing changes in the composition and gene-expression profiles of oral microbial communities. These efforts aim to identify changes in functional activities that could explain the transition from health to disease and the reason for the chronicity of those infections. It is now clear that the functions of distinct species within the subgingival microbiota are intimately intertwined with the rest of the microbial community. This point highlights the relevance of examining the expression profile of specific species within the subgingival microbiota in the case of periodontal disease or caries lesions, in the context of the other members of the biofilm in vivo. Metatranscriptomic analysis of the oral community is the starting point for identifying environmental signals that modulate the shift in metabolism of the community from commensal to dysbiotic. These studies give a snapshot of the expression patterns of microbial communities and also allow us to determine triggers to diseases. For example, in the case of caries, studies have unveiled a potential new pathway of sugar metabolism, namely the use of sorbitol as an additional source of carbon by Streptococcus mutans; and in the case of periodontal disease, high levels of extracellular potassium could be a signal of disease. Longitudinal studies are needed to identify the real markers of the initial stages of caries and periodontal disease. More information on the gene-expression profiles of the host, along with the patterns from the microbiome, will lead to a clearer understanding of the modulation of health and disease. This review presents a summary of these initial studies, which have opened the door to a new understanding of the dynamics of the oral community during the dysbiotic process in the oral cavity.
Collapse
Affiliation(s)
- Ana E Duran-Pinedo
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
19
|
Antimicrobial Effect of a Peptide Containing Novel Oral Spray on Streptococcus mutans. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6853652. [PMID: 32258136 PMCID: PMC7086434 DOI: 10.1155/2020/6853652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/17/2020] [Accepted: 02/04/2020] [Indexed: 02/05/2023]
Abstract
Objective To investigate the antibacterial effect of a novel antimicrobial peptide containing oral spray GERM CLEAN on Streptococcus mutans (S. mutans) in vitro and further explore the related mechanisms at phenotypic and transcriptional levels. Methods The disk diffusion method was used to preliminarily appraise the antimicrobial effect of GERM CLEAN. The minimal inhibitory concentration (MIC) of GREM CLEAN towards S. mutans was determined by the broth dilution method. S. mutans was determined by the broth dilution method. Results The diameter (10.18 ± 1.744 mm) of inhibition zones formed by GERM CLEAN preliminarily indicated its inhibitory effect on the major cariogenic bacteria S. mutans was determined by the broth dilution method. S. mutans was determined by the broth dilution method. S. mutans was determined by the broth dilution method. S. mutans was determined by the broth dilution method. gtfB, gtfC, gtfD, and ldh were significantly repressed by treating with GERM CLEAN, and this was consistent with our phenotypic results. Conclusion The novel antimicrobial peptide containing oral spray GERM CLEAN has an anti-Streptococcus mutans effect and the inhibitory property may be due to suppression of the virulence factors of S. mutans including adhesive, acidogenicity, EPS, and biofilm formation.Streptococcus mutans effect and the inhibitory property may be due to suppression of the virulence factors of S. mutans including adhesive, acidogenicity, EPS, and biofilm formation.S. mutans was determined by the broth dilution method.
Collapse
|
20
|
Chen X, Liu C, Peng X, He Y, Liu H, Song Y, Xiong K, Zou L. Sortase A‐mediated modification of the
Streptococcus mutans
transcriptome and virulence traits. Mol Oral Microbiol 2019; 34:219-233. [PMID: 31342653 DOI: 10.1111/omi.12266] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Xuan Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases Sichuan University Chengdu China
| | - Chengcheng Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases Sichuan University Chengdu China
- Department of Periodontics West China Hospital of Stomatology, Sichuan University Chengdu China
| | - Xian Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases Sichuan University Chengdu China
| | - Yuanli He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases Sichuan University Chengdu China
| | - Haixia Liu
- Stomatological Hospital of Chongqing Medical University Chongqing China
| | - Ying Song
- Stomatological Hospital of Chongqing Medical University Chongqing China
| | - Kaixin Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases Sichuan University Chengdu China
| | - Ling Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases Sichuan University Chengdu China
- Department of Conservation Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University Chengdu China
| |
Collapse
|
21
|
Valm AM. The Structure of Dental Plaque Microbial Communities in the Transition from Health to Dental Caries and Periodontal Disease. J Mol Biol 2019; 431:2957-2969. [PMID: 31103772 PMCID: PMC6646062 DOI: 10.1016/j.jmb.2019.05.016] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/27/2019] [Accepted: 05/09/2019] [Indexed: 01/01/2023]
Abstract
The human oral cavity harbors diverse communities of microbes that live as biofilms: highly ordered, surface-associated assemblages of microbes embedded in an extracellular matrix. Oral microbial communities contribute to human health by fine-tuning immune responses and reducing dietary nitrate. Dental caries and periodontal disease are together the most prevalent microbially mediated human diseases worldwide. Both of these oral diseases are known to be caused not by the introduction of exogenous pathogens to the oral environment, but rather by a homeostasis breakdown that leads to changes in the structure of the microbial communities present in states of health. Both dental caries and periodontal disease are mediated by synergistic interactions within communities, and both diseases are further driven by specific host inputs: diet and behavior in the case of dental caries and immune system interactions in the case of periodontal disease. Changes in community structure (taxonomic identity and abundance) are well documented during the transition from health to disease. In this review, changes in biofilm physical structure during the transition from oral health to disease and the concomitant relationship between structure and community function will be emphasized.
Collapse
Affiliation(s)
- Alex M Valm
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12210, USA.
| |
Collapse
|
22
|
Wu S, Liu Y, Zhang H, Lei L. The Pathogenicity and Transcriptome Analysis of Methicillin-Resistant Staphylococcus aureus in Response to Water Extract of Galla chinensis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:3276156. [PMID: 31379958 PMCID: PMC6662456 DOI: 10.1155/2019/3276156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 07/03/2019] [Indexed: 02/05/2023]
Abstract
AIM Antibiotic abuse contributes to the emergence of methicillin-resistant Staphylococcus aureus (MRSA). It is increasingly important to screen new antimicrobial agents for the management of MRSA infections. G. chinensis, a nontoxic Chinese herbal medicine, is considered a potential antibacterial agent. The aim of this study was to investigate the bactericidal effects of the aqueous extracts of G. chinensis on MRSA. The potential mechanisms of G. chinensis aqueous extract inhibition of the pathogenicity of MRSA in vivo are also discussed. METHODS G. chinensis aqueous extract was prepared and its antimicrobial activities were examined by determining its minimum inhibitory concentration (MIC). Biofilm biomass was determined by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). RNA sequencing (RNA-seq) was used to evaluate differentially expressed functional pathways in MRSA treated with G. chinensis aqueous extract. We validated the role of G. chinensis aqueous extract in the invasive ability and pathogenicity of MRSA in vivo using a rat infectious model. RESULTS The results indicated that MRSA was sensitive to the G. chinensis aqueous extracts at concentration of 31.25μg/mL. G. chinensis extract led to a reduction in dextran-dependent aggregation and biofilm formation in MRSA. Based on the transcriptome analysis, G. chinensis aqueous extracts significantly downregulated the gene expression related to biofilm formation and carbohydrate metabolism. G. chinensis aqueous extract inhibited the invasive ability and the pathogenicity of MRSA in vivo. CONCLUSION The antimicrobial properties of G. chinensis aqueous extract are likely related to its modulation of MRSA biofilm formation and carbohydrate metabolism. G. chinensis aqueous extract is a promising supplementary therapy to lessen or eliminate the use of antibiotics and is a potential tool for the management of MRSA infections.
Collapse
Affiliation(s)
- Shizhou Wu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yunjie Liu
- West China School of Public Health, Sichuan University, Chengdu, China
| | - Hui Zhang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Lei
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Damé-Teixeira N, Deng D, Do T. Streptococcus mutans transcriptome in the presence of sodium fluoride and sucrose. Arch Oral Biol 2019; 102:186-192. [PMID: 31071638 DOI: 10.1016/j.archoralbio.2019.04.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/27/2019] [Accepted: 04/29/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Considering the diverse mechanisms by which fluoride could affect oral bacteria, this study evaluated the effect of sodium fluoride onStreptococcus mutans transcriptome in the presence of sucrose. METHODS S. mutans UA159 was cultured in 3 different types of media: medium control[TY], sucrose control[TY_S], and sodium fluoride sucrose test[TY_S_NaF]. Triplicates of each group were sampled at exponential phase 3 h after inoculation, total RNA was isolated, mRNA enriched and cDNA paired-end sequenced (Illumina Hi-Seq2500). RESULTS Genes related toS. mutans adhesion(gtfB and gtfC), acidogenicity and sugar transport were up-regulated in the presence of sucrose(TY_S) and sucrose/fluoride(TY_S_NaF), whereas gene dltA, D-alanine-activating enzyme, which is related to regulation of non-PTS sugar internalization was down-regulated. Up-regulation of the scrA gene and the PTS fructose-and mannose system, as well as functions such as those involved in stress and defence responses and peptidases; and down-regulation of lacACDG and pyruvate formate-lyase were observed in the TY_S_NaF group, as compared to TY_S group. CONCLUSIONS The presence of NaF has decreased the overall gene expression level inS. mutans. However, its major effect seems to be the inducing of expression of genes involved in some PEP:PTS systems and other metabolic transporters which imply specific cellular internalisation of sugars.
Collapse
Affiliation(s)
- Naile Damé-Teixeira
- Department of Dentistry, University of Brasilia, Brasilia, Distrito Federal, Brazil
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Thuy Do
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, West Yorkshire, United Kingdom.
| |
Collapse
|
24
|
Zeng L, Burne RA. Essential Roles of the sppRA Fructose-Phosphate Phosphohydrolase Operon in Carbohydrate Metabolism and Virulence Expression by Streptococcus mutans. J Bacteriol 2019; 201:e00586-18. [PMID: 30348833 PMCID: PMC6304665 DOI: 10.1128/jb.00586-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 10/16/2018] [Indexed: 11/20/2022] Open
Abstract
The dental caries pathogen Streptococcus mutans can ferment a variety of sugars to produce organic acids. Exposure of S. mutans to certain nonmetabolizable carbohydrates, such as xylitol, impairs growth and can cause cell death. Recently, the presence of a sugar-phosphate stress in S. mutans was demonstrated using a mutant lacking 1-phosphofructokinase (FruK) that accumulates fructose-1-phosphate (F-1-P). Here, we studied an operon in S. mutans, sppRA, which was highly expressed in the fruK mutant. Biochemical characterization of a recombinant SppA protein indicated that it possessed hexose-phosphate phosphohydrolase activity, with preferences for F-1-P and, to a lesser degree, fructose-6-phosphate (F-6-P). SppA activity was stimulated by Mg2+ and Mn2+ but inhibited by NaF. SppR, a DeoR family regulator, repressed the expression of the sppRA operon to minimum levels in the absence of the fructose-derived metabolite F-1-P and likely also F-6-P. The accumulation of F-1-P, as a result of growth on fructose, not only induced sppA expression, but it significantly altered biofilm maturation through increased cell lysis and enhanced extracellular DNA release. Constitutive expression of sppA, via a plasmid or by deleting sppR, greatly alleviated fructose-induced stress in a fruK mutant, enhanced resistance to xylitol, and reversed the effects of fructose on biofilm formation. Finally, by identifying three additional putative phosphatases that are capable of promoting sugar-phosphate tolerance, we show that S. mutans is capable of mounting a sugar-phosphate stress response by modulating the levels of certain glycolytic intermediates, functions that are interconnected with the ability of the organism to manifest key virulence behaviors.IMPORTANCEStreptococcus mutans is a major etiologic agent for dental caries, primarily due to its ability to form biofilms on the tooth surface and to convert carbohydrates into organic acids. We have discovered a two-gene operon in S. mutans that regulates fructose metabolism by controlling the levels of fructose-1-phosphate, a potential signaling compound that affects bacterial behaviors. With fructose becoming increasingly common and abundant in the human diet, we reveal the ways that fructose may alter bacterial development, stress tolerance, and microbial ecology in the oral cavity to promote oral diseases.
Collapse
Affiliation(s)
- Lin Zeng
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Robert A Burne
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
25
|
Lemos JA, Palmer SR, Zeng L, Wen ZT, Kajfasz JK, Freires IA, Abranches J, Brady LJ. The Biology of Streptococcus mutans. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0051-2018. [PMID: 30657107 PMCID: PMC6615571 DOI: 10.1128/microbiolspec.gpp3-0051-2018] [Citation(s) in RCA: 395] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Indexed: 12/30/2022] Open
Abstract
As a major etiological agent of human dental caries, Streptococcus mutans resides primarily in biofilms that form on the tooth surfaces, also known as dental plaque. In addition to caries, S. mutans is responsible for cases of infective endocarditis with a subset of strains being indirectly implicated with the onset of additional extraoral pathologies. During the past 4 decades, functional studies of S. mutans have focused on understanding the molecular mechanisms the organism employs to form robust biofilms on tooth surfaces, to rapidly metabolize a wide variety of carbohydrates obtained from the host diet, and to survive numerous (and frequent) environmental challenges encountered in oral biofilms. In these areas of research, S. mutans has served as a model organism for ground-breaking new discoveries that have, at times, challenged long-standing dogmas based on bacterial paradigms such as Escherichia coli and Bacillus subtilis. In addition to sections dedicated to carbohydrate metabolism, biofilm formation, and stress responses, this article discusses newer developments in S. mutans biology research, namely, how S. mutans interspecies and cross-kingdom interactions dictate the development and pathogenic potential of oral biofilms and how next-generation sequencing technologies have led to a much better understanding of the physiology and diversity of S. mutans as a species.
Collapse
Affiliation(s)
- J A Lemos
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610
| | - S R Palmer
- Division of Biosciences, College of Dentistry, Ohio State University, Columbus, OH 43210
| | - L Zeng
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610
| | - Z T Wen
- Department of Comprehensive Dentistry and Biomaterials and Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - J K Kajfasz
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610
| | - I A Freires
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610
| | - J Abranches
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610
| | - L J Brady
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610
| |
Collapse
|
26
|
Zeng L, Chen L, Burne RA. Preferred Hexoses Influence Long-Term Memory in and Induction of Lactose Catabolism by Streptococcus mutans. Appl Environ Microbiol 2018; 84:e00864-18. [PMID: 29752268 PMCID: PMC6029091 DOI: 10.1128/aem.00864-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 04/29/2018] [Indexed: 02/05/2023] Open
Abstract
Bacteria prioritize sugar metabolism via carbohydrate catabolite repression, which regulates global gene expression to optimize the catabolism of preferred substrates. Here, we report an unusual long-term memory effect in certain Streptococcus mutans strains that alters adaptation to growth on lactose after prior exposure to glucose or fructose. In strain GS-5, cells that were first cultured on fructose and then transferred to lactose displayed an exceptionally long lag (>11 h) and slower growth compared to cells first cultured on glucose or cellobiose, which displayed a reduction in lag phase by as much as 10 h. When grown on lactose, mutants lacking the cellobiose-phosphotransferase (PTS) or phospho-β-glucosidase lost the accelerated growth associated with prior culturing on glucose. The memory effects of glucose or fructose on lactose catabolism were not as profound in strain UA159, but the lag phase was considerably shorter in mutants lacking the glucose-PTS EIIMan Interestingly, when S. mutans was cultivated on lactose, significant quantities of free glucose accumulated in the medium, with higher levels found in the cultures of strains lacking EIIMan, glucokinase, or both. Free glucose was also detected in cultures that were utilizing cellobiose or trehalose, albeit at lower levels. Such release of hexoses by S. mutans is likely of biological significance as it was found that cells required small amounts of glucose or other preferred carbohydrates to initiate efficient growth on lactose. These findings suggest that S. mutans modulates the induction of lactose utilization based on its prior exposure to glucose or fructose, which can be liberated from common disaccharides.IMPORTANCE Understanding the molecular mechanisms employed by oral bacteria to control sugar metabolism is key to developing novel therapies for management of dental caries and other oral diseases. Lactose is a naturally occurring disaccharide that is abundant in dairy products and commonly ingested by humans. However, for the dental caries pathogen Streptococcus mutans, relatively little is known about the molecular mechanisms that regulate expression of genes required for lactose uptake and catabolism. Two peculiarities of lactose utilization by S. mutans are explored here: (i) S. mutans excretes glucose that it cleaves from lactose, and (ii) prior exposure to certain carbohydrates can result in a long-term inability to use lactose. The study begins to shed light on how S. mutans may utilize bet hedging to optimize its persistence and virulence in the human oral cavity.
Collapse
Affiliation(s)
- Lin Zeng
- Department of Oral Biology, University of Florida, College of Dentistry, Gainesville, Florida, USA
| | - Lulu Chen
- Department of Oral Biology, University of Florida, College of Dentistry, Gainesville, Florida, USA
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Robert A Burne
- Department of Oral Biology, University of Florida, College of Dentistry, Gainesville, Florida, USA
| |
Collapse
|
27
|
Tavernier S, Sass A, De Bruyne M, Baeke F, De Rycke R, Crabbé A, Vandecandelaere I, Van Nieuwerburgh F, Coenye T. Decreased susceptibility of Streptococcus anginosus to vancomycin in a multispecies biofilm is due to increased thickness of the cell wall. J Antimicrob Chemother 2018; 73:2323-2330. [DOI: 10.1093/jac/dky216] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/14/2018] [Indexed: 01/24/2023] Open
Affiliation(s)
- Sarah Tavernier
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Andrea Sass
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Michiel De Bruyne
- Department of Biomedical Molecular Biology and Expertise Centre for Transmission Electron Microscopy, Ghent University, Ghent, Belgium
- Center for Inflammation Research and Bioimaging Core, VIB, Ghent, Belgium
| | - Femke Baeke
- Department of Biomedical Molecular Biology and Expertise Centre for Transmission Electron Microscopy, Ghent University, Ghent, Belgium
- Center for Inflammation Research and Bioimaging Core, VIB, Ghent, Belgium
| | - Riet De Rycke
- Department of Biomedical Molecular Biology and Expertise Centre for Transmission Electron Microscopy, Ghent University, Ghent, Belgium
- Center for Inflammation Research and Bioimaging Core, VIB, Ghent, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | | | | | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
28
|
Coordinated Regulation of the EII Man and fruRKI Operons of Streptococcus mutans by Global and Fructose-Specific Pathways. Appl Environ Microbiol 2017; 83:AEM.01403-17. [PMID: 28821551 DOI: 10.1128/aem.01403-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/15/2017] [Indexed: 11/20/2022] Open
Abstract
The glucose/mannose-phosphotransferase system (PTS) permease EIIMan encoded by manLMN in the dental caries pathogen Streptococcus mutans has a dominant influence on sugar-specific, CcpA-independent catabolite repression (CR). Mutations in manL affect energy metabolism and virulence-associated traits, including biofilm formation, acid tolerance, and competence. Using promoter::reporter fusions, expression of the manLMN and the fruRKI operons, encoding a transcriptional regulator, a fructose-1-phosphate kinase and a fructose-PTS permease EIIFru, respectively, was monitored in response to carbohydrate source and in mutants lacking CcpA, FruR, and components of EIIMan Expression of genes for EIIMan and EIIFru was directly regulated by CcpA and CR, as evinced by in vivo and in vitro methods. Unexpectedly, not only was the fruRKI operon negatively regulated by FruR, but also so was manLMN Carbohydrate transport by EIIMan had a negative influence on expression of manLMN but not fruRKI In agreement with the proposed role of FruR in regulating these PTS operons, loss of fruR or fruK substantially altered growth on a number of carbohydrates, including fructose. RNA deep sequencing revealed profound changes in gene regulation caused by deletion of fruK or fruR Collectively, these findings demonstrate intimate interconnection of the regulation of two major PTS permeases in S. mutans and reveal novel and important contributions of fructose metabolism to global regulation of gene expression.IMPORTANCE The ability of Streptococcus mutans and other streptococcal pathogens to survive and cause human diseases is directly dependent upon their capacity to metabolize a variety of carbohydrates, including glucose and fructose. Our research reveals that metabolism of fructose has broad influences on the regulation of utilization of glucose and other sugars, and mutants with changes in certain genes involved in fructose metabolism display profoundly different abilities to grow and express virulence-related traits. Mutants lacking the FruR regulator or a particular phosphofructokinase, FruK, display changes in expression of a large number of genes encoding transcriptional regulators, enzymes required for energy metabolism, biofilm development, biosynthetic and degradative processes, and tolerance of a spectrum of environmental stressors. Since fructose is a major component of the modern human diet, the results have substantial significance in the context of oral health and the development of dental caries.
Collapse
|
29
|
Intercellular Communication via the comX-Inducing Peptide (XIP) of Streptococcus mutans. J Bacteriol 2017; 199:JB.00404-17. [PMID: 28808131 DOI: 10.1128/jb.00404-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/08/2017] [Indexed: 12/29/2022] Open
Abstract
Gram-positive bacteria utilize exported peptides to coordinate genetic and physiological processes required for biofilm formation, stress responses, and ecological competitiveness. One example is activation of natural genetic competence by ComR and the com X -inducing peptide (XIP) in Streptococcus mutans Although the competence pathway can be activated by the addition of synthetic XIP in defined medium, the hypothesis that XIP is able to function as an intercellular signaling molecule has not been rigorously tested. Coculture model systems were developed that included a "sender" strain that overexpressed the XIP precursor (ComS) and a "responder" strain harboring a green fluorescent protein (GFP) reporter fused to a ComR-activated gene (comX) promoter. The ability of the sender strain to provide a signal to activate GFP expression was monitored at the individual cell and population levels using (i) planktonic culture systems, (ii) cells suspended in an agarose matrix, or (iii) cells growing in biofilms. XIP was shown to be freely diffusible, and XIP signaling between the S. mutans sender and responder strains did not require cell-to-cell contact. The presence of a sucrose-derived exopolysaccharide matrix diminished the efficiency of XIP signaling in biofilms, possibly by affecting the spatial distribution of XIP senders and potential responders. Intercellular signaling was greatly impaired in a strain lacking the primary autolysin, AtlA, and was substantially greater when the sender strain underwent lysis. Collectively, these data provide evidence that S. mutans XIP can indeed function as a peptide signal between cells and highlight the importance of studying signaling with an endogenously produced peptide(s) in populations in various environments and physiologic states.IMPORTANCE The comX-inducing peptide (XIP) of Streptococcus mutans is a key regulatory element in the activation of genetic competence, which allows cells to take up extracellular DNA. XIP has been found in cell culture fluids, and the addition of synthetic XIP to physiologically receptive cells can robustly induce competence gene expression. However, there is a lack of consensus as to whether XIP can function as an intercellular communication signal. Here, we show that XIP indeed signals between cells in S. mutans, but that cell lysis may be a critical factor, as opposed to a dedicated secretion/processing system, in allowing for release of XIP into the environment. The results have important implications in the context of the ecology, virulence, and evolution of a ubiquitous human pathogen and related organisms.
Collapse
|
30
|
Peng X, Michalek S, Wu H. Effects of diadenylate cyclase deficiency on synthesis of extracellular polysaccharide matrix of Streptococcus mutans revisit. Environ Microbiol 2017; 18:3612-3619. [PMID: 27376962 DOI: 10.1111/1462-2920.13440] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 06/28/2016] [Indexed: 11/29/2022]
Abstract
An emerging secondary messenger c-di-AMP plays an important role in bacterial physiology. It was reported by Cheng et al. that inactivation of a gene coding for diadenylate cyclase (DAC), a c-di-AMP producing enzyme, resulted in enhanced synthesis of extracellular polysaccharides (EPS) by a cariogenic bacterium, Streptococcus mutans (Cheng et al., 2016). We constructed a similar mutant and observed a completely different effect, the DAC deficiency resulted in a decrease in the production of EPS. Our studies provided the following compelling evidence, (1) the DAC mutant we constructed can be readily complemented for the production of EPS, while the mutant from the Cheng group cannot; (2) Our mutant exhibits the regular pattern of key enzymes that produce EPS, glucosyltransferases (Gtfs), while Cheng et al. reported an irregular pattern, which was inconsistent with their earlier studies. (3) We demonstrated that the response of the DAC mutant to oxidative stress is independent of GtfB, the key enzyme producing EPS, while the Cheng report suggests that overproduction of EPS is a responsive mechanism for the DAC mutant to adapt to the oxidative stress. Therefore, the validity of the relationship between DAC and EPS reported by Cheng et al. warrants further investigation and clarification.
Collapse
Affiliation(s)
- Xian Peng
- Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA.,State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - Suzanne Michalek
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hui Wu
- Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
31
|
Effects of Arginine on Streptococcus mutans Growth, Virulence Gene Expression, and Stress Tolerance. Appl Environ Microbiol 2017; 83:AEM.00496-17. [PMID: 28526785 DOI: 10.1128/aem.00496-17] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/11/2017] [Indexed: 11/20/2022] Open
Abstract
Streptococcus mutans is a common constituent of oral biofilms and a primary etiologic agent of human dental caries. The bacteria associated with dental caries have potent abilities to produce organic acids from dietary carbohydrates and to grow and metabolize in acidic conditions. By contrast, many commensal bacteria produce ammonia through the arginine deiminase system (ADS), which moderates the pH of oral biofilms. Arginine metabolism by the ADS is a significant deterrent to the initiation and progression of dental caries. In this study, we observed how exogenously provided l-arginine affects the growth, the virulence properties, and the tolerance of environmental stresses of S. mutans Supplementation with 1.5% arginine (final concentration) had an inhibitory effect on the growth of S. mutans in complex and chemically defined media, particularly when cells were exposed to acid or oxidative stress. The genes encoding virulence factors required for attachment/accumulation (gtfB and spaP), bacteriocins (nlmA, nlmB, nlmD, and cipB), and the sigma factor required for competence development (comX) were downregulated during growth with 1.5% arginine. Deep sequencing of RNA (RNA-Seq) comparing the transcriptomes of S. mutans growing in chemically defined media with and without 1.5% arginine revealed differential expression of genes encoding ATP-binding cassette transporters, metal transporters, and constituents required for survival, metabolism, and biofilm formation. Therefore, the mechanisms of action by which arginine inhibits dental caries include direct adverse effects on multiple virulence-related properties of the most common human dental caries pathogen.IMPORTANCE Metabolism of the amino acid arginine by the arginine deiminase system (ADS) of certain oral bacteria raises the pH of dental plaque and provides a selective advantage to health-associated bacteria, thereby protecting the host from dental caries (cavities). Here, we examine the effects of arginine on the cavity-causing bacterium Streptococcus mutans We find that arginine negatively impacts the growth, the pathogenic potential, and the tolerance of environmental stresses in a way that is likely to compromise the ability of S. mutans to cause disease. Using genetic and genomic techniques, multiple mechanisms by which arginine exerts its influence on virulence-related properties of S. mutans are discovered. This report demonstrates that a primary mechanism of action by which arginine inhibits the initiation and progression of dental caries may be by reducing the pathogenic potential of S. mutans.
Collapse
|
32
|
He J, Kim D, Zhou X, Ahn SJ, Burne RA, Richards VP, Koo H. RNA-Seq Reveals Enhanced Sugar Metabolism in Streptococcus mutans Co-cultured with Candida albicans within Mixed-Species Biofilms. Front Microbiol 2017. [PMID: 28642749 PMCID: PMC5462986 DOI: 10.3389/fmicb.2017.01036] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Early childhood caries (ECC), which can lead to rampant tooth-decay that is painful and costly to treat, is one of the most prevalent infectious diseases affecting children worldwide. Previous studies support that interactions between Streptococcus mutans and Candida albicans are associated with the pathogenesis of ECC. The presence of Candida enhances S. mutans growth, fitness and accumulation within biofilms in vitro, although the molecular basis for these behaviors is undefined. Using an established co-cultivation biofilm model and RNA-Seq, we investigated how C. albicans influences the transcriptome of S. mutans. The presence of C. albicans dramatically altered gene expression in S. mutans in the dual-species biofilm, resulting in 393 genes differentially expressed, compared to mono-species biofilms of S. mutans. By Gene Ontology analysis, the majority of up-regulated genes were related to carbohydrate transport and metabolic/catabolic processes. KEGG pathway impact analysis showed elevated pyruvate and galactose metabolism, suggesting that co-cultivation with C. albicans influences carbohydrate utilization by S. mutans. Analysis of metabolites confirmed the increases in carbohydrate metabolism, with elevated amounts of formate in the culture medium of co-cultured biofilms. Moreover, co-cultivation with C. albicans altered transcription of S. mutans signal transduction (comC and ciaRH) genes associated with fitness and virulence. Interestingly, the expression of genes for mutacins (bacteriocins) and CRISPR were down-regulated. Collectively, the data provide a comprehensive insight into S. mutans transcriptomic changes induced by C. albicans, and offer novel insights into how bacterial–fungal interactions may enhance the severity of dental caries.
Collapse
Affiliation(s)
- Jinzhi He
- State Key Laboratory of Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan UniversityChengdu, China.,Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, PhiladelphiaPA, United States
| | - Dongyeop Kim
- Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, PhiladelphiaPA, United States
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan UniversityChengdu, China
| | - Sang-Joon Ahn
- Department of Oral Biology, College of Dentistry, University of Florida, GainesvilleFL, United States
| | - Robert A Burne
- Department of Oral Biology, College of Dentistry, University of Florida, GainesvilleFL, United States
| | - Vincent P Richards
- Department of Biological Sciences, Clemson University, ClemsonSC, United States
| | - Hyun Koo
- Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, PhiladelphiaPA, United States
| |
Collapse
|
33
|
Rice KC, Turner ME, Carney OV, Gu T, Ahn SJ. Modification of the Streptococcus mutans transcriptome by LrgAB and environmental stressors. Microb Genom 2017; 3:e000104. [PMID: 28348880 PMCID: PMC5361627 DOI: 10.1099/mgen.0.000104] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/20/2016] [Indexed: 12/14/2022] Open
Abstract
The Streptococcus mutans Cid/Lrg system is central to the physiology of this cariogenic organism, affecting oxidative stress resistance, biofilm formation and competence. Previous transcriptome analyses of lytS (responsible for the regulation of lrgAB expression) and cidB mutants have revealed pleiotropic effects on carbohydrate metabolism and stress resistance genes. In this study, it was found that an lrgAB mutant, previously shown to have diminished aerobic and oxidative stress growth, was also much more growth impaired in the presence of heat and vancomycin stresses, relative to wild-type, lrgA and lrgB mutants. To obtain a more holistic picture of LrgAB and its involvement in stress resistance, RNA sequencing and bioinformatics analyses were used to assess the transcriptional response of wild-type and isogenic lrgAB mutants under anaerobic (control) and stress-inducing culture conditions (aerobic, heat and vancomycin). Hierarchical clustering and principal components analyses of all differentially expressed genes revealed that the most distinct gene expression profiles between S. mutans UA159 and lrgAB mutant occurred during aerobic and high-temperature growth. Similar to previous studies of a cidB mutant, lrgAB stress transcriptomes were characterized by a variety of gene expression changes related to genomic islands, CRISPR-C as systems, ABC transporters, competence, bacteriocins, glucosyltransferases, protein translation, tricarboxylic acid cycle, carbohydrate metabolism/storage and transport. Notably, expression of lrgAB was upregulated in the wild-type strain under all three stress conditions. Collectively, these results demonstrate that mutation of lrgAB alters the transcriptional response to stress, and further support the idea that the Cid/Lrg system acts to promote cell homeostasis in the face of environmental stress.
Collapse
Affiliation(s)
- Kelly C Rice
- 1Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Matthew E Turner
- 1Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - O'neshia V Carney
- 1Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA.,†Present address: Department of Health Outcomes and Policy, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Tongjun Gu
- 2Bioinformatics, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA
| | - Sang-Joon Ahn
- 3Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
34
|
Transcriptional Profiling of the Oral Pathogen Streptococcus mutans in Response to Competence Signaling Peptide XIP. mSystems 2017; 2:mSystems00102-16. [PMID: 28066817 PMCID: PMC5209530 DOI: 10.1128/msystems.00102-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/28/2016] [Indexed: 11/20/2022] Open
Abstract
In the cariogenic Streptococcus mutans, competence development is regulated by the ComRS signaling system comprised of the ComR regulator and the ComS prepeptide to the competence signaling peptide XIP (ComX-inducing peptide). Aside from competence development, XIP signaling has been demonstrated to regulate cell lysis, and recently, the expression of bacteriocins, small antimicrobial peptides used by bacteria to inhibit closely related species. Our study further explores the effect of XIP signaling on the S. mutans transcriptome. RNA sequencing revealed that XIP induction resulted in a global change in gene expression that was consistent with a stress response. An increase in several membrane-bound regulators, including HdrRM and BrsRM, involved in bacteriocin production, and the VicRKX system, involved in acid tolerance and biofilm formation, was observed. Furthermore, global changes in gene expression corresponded to changes observed during the stringent response to amino acid starvation. Effects were also observed on genes involved in sugar transport and carbon catabolite repression and included the levQRST and levDEFG operons. Finally, our work identified a novel heat shock-responsive intergenic region, encoding a small RNA, with a potential role in competence shutoff. IMPORTANCE Genetic competence provides bacteria with an opportunity to increase genetic diversity or acquire novel traits conferring a survival advantage. In the cariogenic pathogen Streptococcus mutans, DNA transformation is regulated by the competence stimulating peptide XIP (ComX-inducing peptide). The present study utilizes high-throughput RNA sequencing (RNAseq) to provide a greater understanding of how global gene expression patterns change in response to XIP. Overall, our work demonstrates that in S. mutans, XIP signaling induces a response that resembles the stringent response to amino acid starvation. We further identify a novel heat shock-responsive intergenic region with a potential role in competence shutoff. Together, our results provide further evidence that multiple stress response mechanisms are linked through the genetic competence signaling pathway in S. mutans.
Collapse
|
35
|
Understanding the Streptococcus mutans Cid/Lrg System through CidB Function. Appl Environ Microbiol 2016; 82:6189-6203. [PMID: 27520814 DOI: 10.1128/aem.01499-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/05/2016] [Indexed: 01/09/2023] Open
Abstract
The Streptococcus mutans lrgAB and cidAB operons have been previously described as a potential model system to dissect the complexity of biofilm development and virulence of S. mutans Herein, we have attempted to further characterize the Cid/Lrg system by focusing on CidB, which has been shown to be critical for the ability of S. mutans to survive and persist in a nonpreferred oxygen-enriched condition. We have found that the expression level of cidB is critical to oxidative stress tolerance of S. mutans, most likely by impacting lrg expression. Intriguingly, the impaired aerobic growth phenotype of the cidB mutant could be restored by the additional loss of either CidA or LrgA. Growth-dependent expression of cid and lrg was demonstrated to be tightly under the control of both CcpA and the VicKR two-component system (TCS), regulators known to play an essential role in controlling major catabolic pathways and cell envelope homeostasis, respectively. RNA sequencing (RNA-Seq) analysis revealed that mutation of cidB resulted in global gene expression changes, comprising major domains of central metabolism and virulence processes, particularly in those involved with oxidative stress resistance. Loss of CidB also significantly changed the expression of genes related to genomic islands (GI) TnSmu1 and TnSmu2, the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas system, and toxin-antitoxin (T/A) modules. Taken together, these data show that CidB impinges on the stress response, as well as the fundamental cellular physiology of S. mutans, and further suggest a potential link between Cid/Lrg-mediated cellular processes, S. mutans pathogenicity, and possible programmed growth arrest and cell death mechanisms. IMPORTANCE The ability of Streptococcus mutans to survive a variety of harmful or stressful conditions and to emerge as a numerically significant member of stable oral biofilm communities are essential elements for its persistence and cariogenicity. In this study, the homologous cidAB and lrgAB operons, previously identified as being highly balanced and coordinated during S. mutans aerobic growth, were further characterized through the functional and transcriptomic analysis of CidB. Precise control of CidB levels is shown to impact the expression of lrg, oxidative stress tolerance, major metabolic domains, and the molecular modules linked to cell death and lysis. This study advances our understanding of the Cid/Lrg system as a key player in the integration of complex environmental signals (such as oxidative stress) into the regulatory networks that modulate S. mutans virulence and cell homeostasis.
Collapse
|
36
|
Effects of Carbohydrate Source on Genetic Competence in Streptococcus mutans. Appl Environ Microbiol 2016; 82:4821-4834. [PMID: 27260355 DOI: 10.1128/aem.01205-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/25/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The capacity to internalize and catabolize carbohydrates is essential for dental caries pathogens to persist and cause disease. The expression of many virulence-related attributes by Streptococcus mutans, an organism strongly associated with human dental caries, is influenced by the peptide signaling pathways that control genetic competence. Here, we demonstrate a relationship between the efficiency of competence signaling and carbohydrate source. A significant increase in the activity of the promoters for comX, comS, and comYA after exposure to competence-stimulating peptide (CSP) was observed in cells growing on fructose, maltose, sucrose, or trehalose as the primary carbohydrate source, compared to cells growing on glucose. However, only cells grown in the presence of trehalose or sucrose displayed a significant increase in transformation frequency. Notably, even low concentrations of these carbohydrates in the presence of excess glucose could enhance the expression of comX, encoding a sigma factor needed for competence, and the effects on competence were dependent on the cognate sugar:phosphotransferase permease for each carbohydrate. Using green fluorescent protein (GFP) reporter fusions, we observed that growth in fructose or trehalose resulted in a greater proportion of the population activating expression of comX and comS, encoding the precursor of comX-inducing peptide (XIP), after addition of CSP, than growth in glucose. Thus, the source of carbohydrate significantly impacts the stochastic behaviors that regulate subpopulation responses to CSP, which can induce competence in S. mutans IMPORTANCE The signaling pathways that regulate development of genetic competence in Streptococcus mutans are intimately intertwined with the pathogenic potential of the organism, impacting biofilm formation, stress tolerance, and expression of known virulence determinants. Induction of the gene for the master regulator of competence, ComX, by competence-stimulating peptide (CSP) occurs in a subpopulation of cells. Here, we show that certain carbohydrates that are common in the human diet enhance the ability of CSP to activate transcription of comX and that a subset of these carbohydrates stimulates progression to the competent state. The cognate sugar:phosphotransferase permeases for each sugar are needed for these effects. Interestingly, single-cell analysis shows that the carbohydrates that increase com gene expression do so by enhancing the proportion of cells that respond to CSP. A mathematical model is developed to explain how carbohydrates modulate bistable behavior in the system via the ComRS pathway and ComX stability.
Collapse
|